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Abstract. We present the bilateral solver, a novel algorithm for edge-
aware smoothing that combines the flexibility and speed of simple filter-
ing approaches with the accuracy of domain-specific optimization algo-
rithms. Our technique is capable of matching or improving upon state-of-
the-art results on several different computer vision tasks (stereo, depth
superresolution, colorization, and semantic segmentation) while being
10–1000× faster than baseline techniques with comparable accuracy, and
producing lower-error output than techniques with comparable runtimes.
The bilateral solver is fast, robust, straightforward to generalize to new
domains, and simple to integrate into deep learning pipelines.

1 Introduction

Images of the natural world exhibit a useful prior – many scene properties (depth,
color, object category, etc.) are correlated within smooth regions of an image,
while differing across discontinuities in the image. Edge-aware smoothing tech-
niques exploit this relationship to propagate signals of interest within, but not
across edges present in an image. Traditional approaches to edge-aware smooth-
ing apply an image-dependent filter to a signal of interest. Examples of this include
joint bilateral filtering [37,40] and upsampling [20], adaptive manifolds [12], the
domain transform [11], the guided filter [16,17], MST-based filtering [41], and
weighted median filtering [30,44]. These techniques are flexible and computation-
ally efficient, but often insufficient for solving more challenging computer vision
tasks. Difficult tasks often necessitate complex iterative inference or optimization
procedures that encourage smoothness while maintaining fidelity with respect
to some observation. Optimization algorithms of this nature have been used in
global stereo [34], depth superresolution [10,19,24,26,29,32], colorization [25],
and semantic segmentation [6,22,28,45]. These approaches are tailored to their
specific task, and are generally computationally expensive. In this work we present
an optimization algorithm that is 10–1000× faster than existing domain-specific
approaches with comparable accuracy, and produces higher-quality output than
lightweight filtering techniques with comparable runtimes.
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(a) Input (MAE = 6.00, RMSE = 38.8) (b) Output (MAE = 3.02, RMSE = 17.9)

(c) Input Confidence (d) Input Reference

Fig. 1. The bilateral solver can be used to improve depth maps. A depth map (a) from
a state-of-the-art stereo method [43] is processed with our robust bilateral solver using
a reference RGB image (d). Our output (b) is smooth with respect to the reference
image, resulting in a 50 % reduction in error.

Our algorithm is based on the work of Barron et al. [2], who presented the
idea of using fast bilateral filtering techniques to solve optimization problems
in “bilateral-space”. This allows for some optimization problems with bilateral
affinity terms to be solved quickly, and also guarantees that the solutions to
those problems are “bilateral-smooth” — smooth within objects, but not smooth
across edges. In this paper we present a new form of bilateral-space optimization
which we call the bilateral solver, which efficiently solves a regularized least-
squares optimization problem to produce an output that is bilateral-smooth and
close to the input. This approach has a number of benefits:

General. The bilateral solver is a single intuitive abstraction that can be applied
to many different problems, while matching or beating the specialized state-of-
the-art algorithms for each of these problems. It can be generalized to a variety
of loss functions using standard techniques from M-estimation [14].

Differentiable. Unlike other approaches for edge-aware smoothness which
require a complicated and expensive “unrolling” to perform backpropagation
[45], the backward pass through our solver is as simple and fast as the forward
pass, allowing it to be easily incorporated into deep learning architectures.

Fast. The bilateral solver is expressible as a linear least-squares optimization
problem, unlike the non-linear optimization problem used in [2]. This enables
a number of optimization improvements including a hierarchical preconditioner
and initialization technique that hasten convergence, as well as efficient methods
for solving multiple problems at once.
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2 Problem Formulation

We begin by presenting the objective and optimization techniques that make up
our bilateral solver. Let us assume that we have some per-pixel input quantities t

(the “target” value, see Fig. 1a) and some per-pixel confidence of those quantities
c (Fig. 1c), both represented as vectorized images. Let us also assume that we
have some “reference” image (Fig. 1d), which is a normal RGB image. Our goal
is to recover an “output” vector x (Fig. 1b), which will resemble the input target
where the confidence is large while being smooth and tightly aligned to edges
in the reference image. We will accomplish this by constructing an optimization
problem consisting of an image-dependent smoothness term that encourages x to
be bilateral-smooth, and a data-fidelity term that minimizes the squared residual
between x and the target t weighted by our confidence c:

minimize
x

λ

2

∑

i,j

Ŵi,j (xi − xj)
2

+
∑

i

ci(xi − ti)
2 (1)

The smoothness term in this optimization problem is built around an affinity
matrix Ŵ , which is a bistochastized version of a bilateral affinity matrix W .
Each element of the bilateral affinity matrix Wi,j reflects the affinity between
pixels i and j in the reference image in the YUV colorspace:
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Where pi is a pixel in our reference image with a spatial position (px
i , py

i ) and
color (pl

i, p
u
i , pv

i )1. The σxy, σl, and σuv parameters control the extent of the
spatial, luma, and chroma support of the filter, respectively.

This W matrix is commonly used in the bilateral filter [40], an edge-
preserving filter that blurs within regions but not across edges by locally adapting
the filter to the image content. There are techniques for speeding up bilateral
filtering [1,5] which treat the filter as a “splat/blur/slice” procedure: pixel val-
ues are “splatted” onto a small set of vertices in a grid [2,5] or lattice [1] (a soft
histogramming operation), then those vertex values are blurred, and then the
filtered pixel values are produced via a “slice” (an interpolation) of the blurred
vertex values. These splat/blur/slice filtering approaches all correspond to a
compact and efficient factorization of W :

W = STB̄S (3)

Barron et al. [2] built on this idea to allow for optimization problems to be
“splatted” and solved in bilateral-space. They use a “simplified” bilateral grid
and a technique for producing bistochastization matrices Dn, Dm that together
give the the following equivalences:

Ŵ = STD−1
m DnB̄DnD−1

m S SST = Dm (4)

1 To reduce confusion between the Y’s in “YUV” and “XY” we refer to luma as “l”.
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They also perform a variable substitution, which reformulates a high-dimensional
pixel-space optimization problem in terms of the lower-dimensional bilateral-
space vertices:

x = STy (5)

Where y is a small vector of values for each bilateral-space vertex, while x is a
large vector of values for each pixel. With these tools we can not only reformulate
our pixel-space loss function in Eq. 1 in bilateral-space, but we can rewrite that
bilateral-space loss function in a quadratic form:

minimize
y

1

2
yTAy − bTy + c (6)

A = λ(Dm − DnB̄Dn) + diag(Sc) b = S(c ◦ t) c =
1

2
(c ◦ t)Tt

where ◦ is the Hadamard product. A derivation of this reformulation can be
found in the supplement. While the optimization problem in Eq. 1 is intractably
expensive to solve naively, in this bilateral-space formulation optimization can
be performed quickly. Minimizing that quadratic form is equivalent to solving a
sparse linear system:

Ay = b (7)

We can produce a pixel-space solution x̂ by simply slicing the solution to that
linear system:

x̂ = ST(A−1b) (8)

With this we can describe our algorithm, which we will refer to as the “bilat-
eral solver.” The input to the solver is a reference RGB image, a target image
that contains noisy observed quantities which we wish to improve, and a confi-
dence image. We construct a simplified bilateral grid from the reference image,
which is bistochastized as in [2] (see the supplement for details), and with that
we construct the A matrix and b vector described in Eq. 6 which are used to
solve the linear system in Eq. 8 to produce an output image. If we have multiple
target images (with the same reference and confidence images) then we can con-
struct a larger linear system in which b has many columns, and solve for each
channel simultaneously using the same A matrix. In this many-target case, if b

is low rank then that property can be exploited to accelerate optimization, as
we show in the supplement.

Our pixel-space loss (Eq. 1) resembles that of weighted least squares filtering
[8,9,31], with one critical difference being our use of bilateral-space optimization
which allows for efficient optimization even when using a large spatial support in
the bilateral affinity, thereby improving the quality of our output and the speed
of our algorithm. Our algorithm is similar to the optimization problem that
underlies the stereo technique of [2], but with several advantages: Our approach
reduces to a simple least-squares problem, which allows us to optimize using
standard techniques (we use the preconditioned conjugate gradient algorithm
of [36], see the supplement for details). This simple least-squares formulation
also allows us to efficiently backpropagate through the solver (Sect. 3), allowing
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it to be integrated into deep learning pipelines. This formulation also improves
the rate of convergence during optimization, provides guarantees on correct-
ness, allows us to use advanced techniques for preconditioning and initialization
(Sect. 4), and enables robust and multivariate generalizations of our solver (see
the supplement).

3 Backpropagation

Integrating any operation into a deep learning framework requires that it is pos-
sible to backpropagate through that operation. Backpropagating through global
operators such as our bilateral solver is generally understood to be difficult,
and is an active research area [18]. Unlike most global smoothing operators, our
model is easy to backpropagate through by construction. Note that we do not
mean backpropagating through a multiplication of a matrix inverse A−1, which
would simply be another multiplication by A−1. Instead, we will backpropagate
onto the A matrix used in the least-squares solve that underpins the bilateral
solver, thereby allowing us to backpropagate through the bilateral solver itself.

Consider the general problem of solving a linear system:

Ay = b (9)

Where A is an invertible square matrix, and y and b are vectors. We can solve
for ŷ as a simple least squares problem:

ŷ = A−1b (10)

Let us assume that A is symmetric in addition to being positive definite, which
is true in our case. Now let us compute some loss with respect to our estimated
vector g(ŷ), whose gradient will be ∂g/∂ŷ. We would like to backpropagate that
quantity onto A and b:

∂g

∂b

= A−1 ∂g

∂ŷ

∂g

∂A
=

(

−A−1 ∂g

∂ŷ

)

ŷT = −
∂g

∂b

ŷT (11)

This can be derived using the implicit function theorem. We see that backprop-
agating a gradient through a linear system only requires a single least-squares
solve. The gradient of the loss with respect to the diagonal of A can be computed
more efficiently:

∂g

∂diag(A)
= −

∂g

∂b

◦ ŷ (12)

We will use these observations to backpropagate through the bilateral solver.
The bilateral solver takes some input target t and some input confidence c, and
then constructs a linear system that gives us a bilateral-space solution ŷ, from
which we can “slice” out a pixel-space solution x̂.

ŷ = A−1b x̂ = STŷ (13)
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Note that A and b are both functions of t and c, though they are not written
as such. Let us assume that we have computed some loss f(x̂) and its gradient
∂f/∂x̂. Remember that the A matrix and b vector in our linear system are
functions of some input signal t and some input confidence c. Using (11) we can
compute the gradient of the loss with respect to the parameters of the linear
system within the bilateral solver:

∂f

∂b

= A−1

(

S
∂f

∂x̂

)

∂f

∂diag(A)
= −

∂f

∂b

◦ ŷ (14)

We need only compute the gradient of the loss with respect to the diagonal of
A as opposed to the entirety of A, because the off-diagonal elements of A do
not depend on the input signal or confidence. We can now backpropagate the
gradient of the loss f(x̂) onto the inputs of the bilateral solver:

∂f

∂t

= c ◦

(

ST ∂f

∂b

)

∂f

∂c

=

(

ST ∂f

∂diag(A)

)

+

(

ST ∂f

∂b

)

◦ t (15)

To review, the bilateral solver can be viewed as a function which takes in
a reference image, some input signal and a per-pixel confidence in that input
signal, and produces some smoothed output:

output ← solverreference(target, confidence) (16)

And we have shown how to backpropagate through the solver:

(∇target,∇confidence) ← backpropreference(∇output) (17)

Because the computational cost of the backwards pass is dominated by the least
squares solve necessary to compute ∂f/∂b, computing the backward pass through
the solver is no more costly than computing the forward pass. Contrast this
with past approaches for using iterative optimization algorithms in deep learn-
ing architectures, which create a sequence of layers, one for each iteration in
optimization [45]. The backward pass in these networks is a fixed function of
the forward pass and so cannot adapt like the bilateral solver to the structure of
the error gradient at the output. Furthermore, in these “unrolled” architectures,
the output at each iteration (layer) must be stored during training, causing the
memory requirement to grow linearly with the number of iterations. In the bilat-
eral solver, the memory requirements are small and independent of the number
of iterations, as we only need to store the bilateral-space output of the solver ŷ

during training. These properties make the bilateral solver an attractive option
for deep learning architectures where speed and memory usage are important.

4 Preconditioning and Initialization

Optimization of the quadratic objective of the bilateral solver can be sped up
with improved initialization and preconditioning. In the previous work of [2],
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the non-linear optimization used a hierarchical technique which lifted optimiza-
tion into a pyramid space, using a bilateral variant of the image pyramid opti-
mization approach of [3]. This approach cannot be used by our solver, as most
linear solvers require a preconditioner where the input is of the same dimension-
ality as the output. Regardless, the approach of [2] is also suboptimal for our use
case, as the simple linear structure of our system allows us to construct more
accurate and effective preconditioning and initialization techniques.

To best explain our preconditioning and initialization techniques we must
first present baselines techniques for both. We can extract the diagonal of our A
matrix to construct a Jacobi preconditioner:

diag(A) = λ
(

diag (Dm) − diag(Dn) B̄diagdiag(Dn)
)

+ Sc

This is straightforward to compute, as Dm and Dn are diagonal matrices and
B̄ has a constant value along the diagonal denoted here as B̄diag. The Jacobi
preconditioner is simply the inverse of the diagonal of A:

M−1
jacobi(y) = diag(A)−1y (18)

We can also initialize the state vector y in our optimization to the value which
minimizes the data term in our loss, which has a closed form:

yflat = S(c ◦ t)/S(c) (19)

This preconditioner and initialization technique perform well, as can be seen
in Fig. 2. But we can improve upon these baseline techniques by constructing
hierarchical generalizations of each.

Hierarchical preconditioners have been studied extensively for image interpo-
lation and optimization tasks. Unfortunately, techniques based on image pyra-
mids [38] are not applicable to our task as our optimization occurs in a sparse 5-
dimensional bilateral-space. More sophisticated image-dependent or graph based
techniques [21,23,39] are effective preconditioners, but in our experiments the
cost of constructing the preconditioner greatly outweighs the savings provided
by the improved conditioning. We will present a novel preconditioner which is
similar in spirit to hierarchical basis functions [38] or push-pull interpolation
[13], but adapted to our task using the bilateral pyramid techniques presented
in [2]. Because of its bilateral nature, our preconditioner is inherently locally
adapted and so resembles image-adapted preconditioners [23,39].

We will use the multiscale representation of bilateral-space presented in [2]
to implement our hierarchical preconditioner. This gives us P (y) and PT(z),
which construct a pyramid-space vector z from a bilateral-space vector y, and
collapse z down to y respectively (see the supplement for details). To evaluate
our preconditioner, we lift our bilateral-space vector into pyramid-space, apply
an element-wise scaling of each pyramid coefficient, and then project back onto
bilateral-space:

M−1
hier (y) = PT

(

zweight ◦ P (1) ◦ P (y)

P (diag(A))

)

(20)
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Fig. 2. Our loss during PCG for 20 4-megapixel images, with the loss for each image
normalized to [0, 1] and with the 25th-75th percentiles plotted. We see that precondi-
tioning is critical, and that our hierarchical (“Pyr”) preconditioning and initialization
techniques significantly improve performance over the naive Jacobi preconditioner and
“flat” initialization. Note the non-linear y-axis and logarithmic x-axis.

where the division is element-wise. M−1
hier (·) includes an ad-hoc element-wise

scaling:

zweight =

{

1 if k = 0

α−(β+k) otherwise
(21)

The pyramid-space scaling we use in Eq. 20 is proportional to: (1) the number
of bilateral-space vertices assigned to each pyramid-space coefficient (computed
by lifting a vector of ones), (2) the inverse of the diagonal of the A matrix,
computed by lifting and inverting the diagonal of the A matrix, and (3) an
exponential weighting of each pyramid-space coefficient according to its level
in the pyramid. This per-level scaling zweight is computed as a function of the
level k of each coefficient, which allows us to prescribe the influence that each
scale of the pyramid should have in the preconditioner. Note that as the coarser
levels are weighed less (i.e., as α or β increases) our preconditioner degenerates
naturally to the Jacobi preconditioner. In all experiments we use (α = 2, β = 5)
for the preconditioner.

This same bilateral pyramid approach can be used to effectively initialize the
state before optimization. Rather than simply taking the input target and using
it as our initial state as was done in Eq. 19, we perform a push-pull filter of that
initial state with the pyramid according to the input confidence:

yhier = PT

(

zweight ◦ P (S(c ◦ t))

P (1)

)

/PT

(

zweight ◦ P (S(c))

P (1)

)

(22)

Like our hierarchical preconditioner, this initialization degrades naturally to our
non-hierarchical initialization in Eq. 19 as α and β increase. In all experiments
we use (α = 4, β = 0) for initialization.
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Table 1. Our approach’s runtime has a lower mean and variance than that of [2].
Runtimes are from the same workstation, averaged over the 20 4-megapixel images
used in [2] for profiling.

Algorithm component Time (ms)

Barron et al. [2] This work

Problem construction 190 ± 167 35 ± 7

Optimization 460 ± 207 152 ± 36

Total 650 ± 266 187 ± 37

See Fig. 2 for a visualization of how our hierarchical preconditioning and
initialization improve convergence during optimization, compared to the “flat”
baseline algorithms. See Table 1 for a comparison of our runtime compared to [2],
where we observe a substantial speedup with respect to the solver of [2]. Though
the techniques presented here for efficient optimization and initialization are
framed in terms of the forward pass through the solver, they all apply directly to
the backward pass through the solver described in Sect. 3, and produce equivalent
improvements in speed.

5 Applications

We evaluate our solver on a variety of applications: stereo, depth superresolu-
tion, image colorization, and semantic segmentation. Each of these tasks has
been the focus of significant research, with specialized techniques having been
developed for each problem. For some of these applications (semantic segmenta-
tion and stereo) our solver serves as a building block in a larger algorithm, while
for others (colorization and depth superresolution) our solver is a complete algo-
rithm. We will demonstrate that our bilateral solver produces results that are
comparable to or better than the state-of-the-art for each problem, while being
either 1–3 orders of magnitude faster. For those techniques with comparable
runtimes, we will demonstrate that the bilateral solver produces higher quality
output. Unless otherwise noted, all runtimes were benchmarked on a 2012 HP
Z420 workstation (Intel Xeon CPU E5-1650, 3.20 GHz, 32 GB RAM), and our
algorithm is implemented in standard, single-threaded C++. As was done in [2],
the output of our bilateral solver is post-processed by the domain transform [11]
to smooth out the blocky artifacts introduced by the simplified bilateral grid,
and the domain transform is included in all runtimes. For all results of each
application we use the same implementation of the same algorithm with differ-
ent parameters, which are noted in each sub-section. Parameters are: the spatial
bandwidths of the bilateral grid (σxy , σl , σuv ), the smoothness multiplier (λ),
the spatial and range bandwidths of the domain transform (σ′

xy , σ′
rgb). Unless

otherwise stated, the bilateral solver is run for 25 iterations of PCG.
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Table 2. Our robust bilateral solver significantly improves depth map quality the
state-of-the-art MC-CNN [43] stereo algorithm on the Middlebury dataset V3 [33].

Method All NoOcc
bad 1% MAE RMSE bad 1% MAE RMSE

Test Set

MC − CNN[43] 28.1 17.9 55.0 18.0 3.82 21.3
MC − CNN[43]+RBS 28.2 8.19 29.9 18.9 2.67 15.0

Training Set

MC-CNN[43] 20.07 5.93 18.36 10.42 1.94 9.07
MC-CNN[43] + TF[41] 29.15 5.67 16.18 20.15 2.17 7.71
MC-CNN[43] + FGF[16] 32.29 5.91 16.32 23.62 2.42 7.98
MC-CNN[43] + WMF[30] 33.37 5.30 15.62 26.29 2.32 8.22
MC-CNN[43] + DT[11] 25.17 5.69 16.53 15.53 2.01 7.72
MC-CNN[43] + RBS (Ours) 19.49 2.81 8.44 11.33 1.40 5.23

5.1 Stereo

We first demonstrate the utility of the bilateral solver as a post-processing pro-
cedure for stereo algorithms. Because depth maps produced by stereo algorithms
tend to have heavy-tailed noise distributions, we use a variant of our technique
called the robust bilateral solver (RBS) with the Geman-McClure loss (described
in the supplement). We applied the RBS to the output of the top-performing MC-
CNN [43] algorithm on the Middlebury Stereo Benchmark V3 [43]. For compari-
son, we also evaluated against four other techniques which can or have been used
to post-process the output of stereo algorithms. In Table 2 we see that the RBS
cuts test- and training-set absolute and RMS errors in half while having little
negative effect on the “bad 1%” error metric (the percent of pixels which whose
disparities are wrong by more than 1). This improvement is smaller when we
only consider non-occluded (NoOcc) as most state-of-the-art stereo algorithms
already perform well in the absence of occlusions. The improvement provided by
the RBS is more dramatic when the depth maps are visualized, as can be seen in
Fig. 1 and in the supplement. At submission time our technique achieved a lower
test-set MAE and RMSE on the Middlebury benchmark than any published
technique2.

See the supplement for a discussion of how our baseline comparison results
were produced, an evaluation of our RBS and our baseline techniques on three
additional contemporary stereo algorithms, the parameters settings used in this
experiment, how we compute the initial confidence c for the RBS, and many
visualizations.

5.2 Depth Superresolution

With the advent of consumer depth sensors, techniques have been proposed for
upsampling noisy depth maps produced by these sensors using a high-resolution

2 http://vision.middlebury.edu/stereo/eval3/.

http://vision.middlebury.edu/stereo/eval3/
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Table 3. Performance on the depth superresolution task of [10]. Runtimes in gray were
not computed on our reference hardware, and algorithms which use external training
data are indicated with a dagger.

Method Err Time (sec)

Nearest Neighbor 7.26 0.003
Bicubic 5.91 0.007

†Kiechle et al.[19] 5.86 450
Bilinear 5.16 0.004
Liu et al. [27] 5.10 16.60
Shen et al. [35] 4.24 31.48
Diebel & Thrun [7] 3.98 −

Chan et al.[4] 3.83 3.02
GuidedFilter[17, 10] 3.76 23.89
Min et al. [31] 3.74 0.383

†Lu & Forsyth[29] 3.69 20
Park et al.[32] 3.61 24.05

...

...
Domain Transform [11] 3.56 0.021
Ma et al. [30] 3.49 18
GuidedFilter(Matlab)[17] 3.47 0.434
Zhang et al. [44] 3.45 1.346
FastGuidedFilter[16] 3.41 0.225
Yang 2015 [41] 3.41 0.304
Yang et al. 2007 [42] 3.25 −

Farbman et al. [9] 3.19 6.11
JBU [1, 20] 3.14 1.98
Ferstl et al.[10] 2.93 140

†Li et al.[26] 2.56 700
†Kwon et al.[24] 1.21 300

BS (Ours) 2.70 0.234

RGB reference image [4,10,19,24,26,27,29,31,32]. Other techniques have been
developed for post-processing depth maps in other contexts [30,35,41], and
many general edge-aware upsampling or filtering techniques can be used for this
task [11,16,17,20,44]. We present an extensive evaluation of the bilateral solver
against these approaches for the depth superresolution task. Given a noisy input
depth map and an RGB reference image, we resize the depth map to be the size
of the reference image with bicubic interpolation and then apply the bilateral
solver or one of our baseline techniques. The hyperparameters used by the solver
for all experiments are: σxy = 8, σl = 4, σuv = 3, σ′

xy = σ′
rgb = 16, λ = 4f−1/2

(where f is the upsampling factor) and 15 iterations of PCG. Our confidence c

is a Gaussian bump (σ = f/4) modeling the support of each low-resolution pixel
in the upsampled image. To evaluate our model, we use the depth superreso-
lution benchmark of [10] which is based on the Middlebury stereo dataset [34].
Our performance can be see in Table 3 and Fig. 3, with more detailed results
in the supplement. The bilateral solver produces the third-lowest error rate for
this task, though the two better-performing tasks [24,26] use large amounts of
external training data and so have an advantage over our technique, which uses
no learning for this experiment. Our approach is 600×, 1200×, and 3000× faster
than the three most accurate techniques. The techniques with speeds compara-
ble to or better than the bilateral solver [11,16,31,41] produce error rates that
are 25–40% greater than our approach. The bilateral solver represents a effective
combination of speed and accuracy, while requiring no training or learning. See
the supplement for a more detailed table, a discussion of baselines and runtimes,
and many visualizations.

5.3 Colorization

Colorization is the problem of introducing color to a grayscale image with a
small amount of user input or outside information, for the purpose of improving
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(a) Input Image (b) True Depth (c) Input Depth (d) JBU [1, 20]

(e) Guided Filter [16] (f) Ferstl et al.[10] (g) Li et al.[26] (h) Our results

Fig. 3. Partial results for the depth superresolution task of [10], see the supplement
for exhaustive visualizations.

(a) Input (b) Levin et al.[25] (c) Our results

Fig. 4. Results for the user-assisted colorization task. Our bilateral solver produces
comparable results to the technique of Levin et al. [25] while being 95× faster

black-and-white films or photographs. Levin et al. [25] presented an effective
technique for this task by formulating and solving a specialized optimization
problem. We can solve the same task using our bilateral solver: we use the
grayscale image as the input reference image and the UV channels of the user-
annotated scribbles as the input target images, with a confidence image that
is 1 where the user has scribbled and 0 everywhere else. We then construct
our final output by combining the grayscale image with our output UV images,
and converting from YUV to RGB. Our results can be seen in Fig. 4, where we
see that our output is nearly indistinguishable from that of [25]. The important
distinction here is speed, as the approach of [25] take 80.99 s per megapixel while
our approach takes 0.854 s per megapixel — a 95× speedup. For all results our
parameters are σxy = σl = σuv = 4, λ = 0.5, σ′

xy = 4, σ′
rgb = 8. More results can

be see in the supplement.
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5.4 Semantic Segmentation

Semantic segmentation is the problem of assigning a category label to each pixel
in an image. State-of-the-art approaches to semantic segmentation use large
convolutional neural networks (CNNs) to map from pixels to labels [6,28]. The
output of these CNNs is often smoothed across image boundaries, so recent
approaches refine their output with a CRF [6,45]. These CRF-based approaches
improve per-pixel labeling accuracy, but this accuracy comes at a computational
cost: inference in a fully connected CRF on a 500 × 500 image can take up to
a second (see Table 4). To evaluate whether the bilateral solver could improve
the efficiency of semantic segmentation pipelines, we use it instead of the CRF
component in two state-of-the-art models: DeepLab-LargeFOV [6] and CRF-
RNN [45]. The DeepLab model consists of a CNN trained on Pascal VOC12 and
then augmented with a fixed dense CRF. The CRF-RNN model generalizes the
CRF with a recurrent neural network, and trains this component jointly with
the CNN on Pascal and MSCOCO.

As the bilateral solver operates on real-valued inputs, it is not immediately
clear how to map it onto the discrete optimization problem of the dense CRF.
For each class, we compute the 21-channel class probability image from the CNN
outputs of either the DeepLab or CRF-RNN model. As many class probability
maps are zero across the entire image, the resulting b matrix in the bilateral
solver is often low-rank, allowing us to solve a reduced linear system to recover
the smoothed class probability maps (see the supplement). This approach pro-
duces nearly identical output, with a 5× speedup on average.

We applied our bilateral solver to the class probability maps using uniform
confidence. The resulting discrete segmentations are more accurate and qualita-
tively smoother than the CNN outputs, despite our per-channel smoothing pro-

Table 4. Semantic segmentation results and runtimes on Pascal VOC 2012 valida-
tion set. The bilateral solver improves performance over the CNN output while being
substantially faster than the CRF-based approaches. “Post” is the time spent post-
processing the CNN output, which is the dense CRF for DeepLab, and the generalized
CRF-RNN component for CRF-RNN. FCN is the convolutional neural network compo-
nent of the CRF-RNN model. ∗DeepLab-LargeFOV model from [6] trained on Pascal
VOC 2012 training data augmented with data from [15]. †CRF-RNN model from [45]
trained with additional MSCOCO data and evaluated on reduced Pascal validation set
of 346 images.

Method IOU(%)
Time (ms)

CNN Post Total

DeepLab 62.25∗ 58 0 58
DeepLab + CRF 67.64∗ 58 918 976
DeepLab + BS(Ours) 66.00∗ 58 111 169

CNN 69.60† 715 0 715

CRF − RNN 72.96† 715 2214 2929

CNN + BS(Ours) 70.68† 715 217 913
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(a) Image (b) DeepLab (c) DenseCRF (d) BS (Ours)

Fig. 5. Using the DeepLab CNN-based semantic segmentation algorithm [6] (5b) as
input our bilateral solver can produce comparable edge-aware output (5d) to the Dense-
CRF [22] used in [6] (5c), while being 8× faster.

viding no explicit smoothness guarantees on the argmax of the filtered per-class
probabilities (Table. 4, Fig. 5). The bilateral solver is 8–10× faster than the CRF
and CRF-RNN approaches when applied to the same inputs (Table 4). Although
the bilateral solver performs slightly worse than the CRF-based approaches, its
speed suggests that it may be a useful tool in contexts such as robotics and
autonomous driving, where low latency is necessary.

6 Conclusion

We have presented the bilateral solver, a flexible and fast technique for inducing
edge-aware smoothness. We have demonstrated that the solver can produce or
improve state-of-the-art results on a variety of different computer vision tasks,
while being faster or more accurate than other approaches. Its speed and gen-
erality suggests that the bilateral solver is a useful tool in the construction of
computer vision algorithms and deep learning pipelines.
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