
domain. The inverse transform reverses the process, con-
verting frequency data into time-domain data. Such trans-
formations can be applied in a wide variety of fields, from
geophysics to astronomy, from the analysis of sound signals
to CO2 concentrations in the atmosphere. Over the course
of three articles, our goal is to provide a convenient sum-
mary that the experimental practitioner will find useful. In
the first two parts of this article, we’ll discuss concepts as-
sociated with the fast Fourier transform (FFT), an imple-
mentation of the DFT. In the third part, we’ll analyze two
applications: a bat chirp and atmospheric sea-level pressure
differences in the Pacific Ocean. 

The FFT provides an efficient algorithm for implement-
ing the DFT and, as such, we’ll focus on it. This transform
is easily executed; indeed, almost every available mathe-
matical software package includes it as a built-in function.
Some books are devoted solely to the FFT,1–3 while others
on signal processing,4–6 time series,7, 8 or numerical meth-
ods9,10 include major sections on Fourier analysis and the
FFT. We draw together here some of the basic elements
that users need to apply and interpret the FFT and its in-
verse (IFFT). We will avoid descriptions of the Fourier ma-
trix, which lies at the heart of the DFT process,11 and the
parsing of the Cooley-Tukey algorithm12 (or any of several
other comparable algorithms), which provides a means for
transforming the discrete into the fast Fourier transform. 

The Cooley-Tukey algorithm makes the FFT extremely
useful by reducing the number of computations from some-
thing on the order of n2 to n log(n), which obviously pro-
vides an enormous reduction in computation time. It’s so
useful, in fact, that the FFT made Computing in Science &
Engineering’s list of the top 10 algorithms in an article that
noted the algorithm is, “perhaps, the most ubiquitous algo-

rithm in use today.”13 The interlaced decomposition
method used in the Cooley-Tukey algorithm can be applied
to other orthogonal transformations such as the Hadamard,
Hartley, and Haar. However, in this article, we concentrate
on the FFT’s application and interpretation. 

Fundamental Elements
As a rule, data to be transformed consists of N uniformly
spaced points xj = x(tj), where N = 2n with n an integer, and tj
= j � �t where j ranges from 0 to N – 1. (Some FFT imple-
mentations don’t require that N be a power of 2. This num-
ber of points is, however, optimal for the algorithm’s
execution speed.) Even though any given data set is unlikely
to have the number of its data points precisely equal to 2n, zero
padding (which we describe in more detail in the next section)
provides a means to achieve this number of samples without
losing information. As an additional restriction, we limit our
discussions to real valued time series as most data streams are
real. When the time-domain data are real, the values of the
amplitude or power spectra at any negative frequency are the
same as those at the corresponding positive frequency. Thus,
if the time series is real, one half of the 2n frequencies contain
all the frequency information. In typical representations, the
frequency domain contains N/2 + 1 samples. 

The FFT’s kernel is a sum of complex exponentials. As-
sociated with this process are conventions for normaliza-
tion, sign, and range. Here, we present what we consider to
be good practice, but our choices are not universal. Users
should always check the conventions of their particular soft-
ware choice so they can properly interpret the computed
transforms and related spectra.

Equation 1 shows some simple relationships between pa-
rameters such as �t, the sampling time interval; �f, the spac-
ing in the frequency domain; N, the number of samples in
the time domain; and fj, the Fourier frequencies. The num-
ber of samples per cycle (spc) for a particular frequency
component with period T in the time domain and (in some
cases) the total number of cycles (nc) in the data record for
a particular frequency component are two other pieces of
information that are useful because they remind us of the
adequacy of the sampling rate or the data sample. Some re-
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lations between these parameters are 

�f = and fj = j · �f,

where j = 0, ..., N/2

spc = , nc = = = . (1)

The period T represents only one frequency, but, as we
discuss later, there must be more than 2 spc for the highest
frequency component of the sampled signal. This band-
width-limiting frequency is called the Nyquist frequency and
is equal to half the sampling frequency. The spacing in the
frequency domain �f is the inverse of the total time sampled,
so time and frequency resolution can’t both be simultane-
ously improved. Thus, the maximum frequency represented
is �f · N/2 = 1/(2 · �t), or the Nyquist frequency. 

We can express the transform in several ways. A com-
monly used form is the following (with i = ):

, k = –N/2, …, –1, 0, 1, …,

N/2 – 1, (2)

where xj represents the time-domain data and Xk their rep-
resentation in the frequency domain. 

We express the IFFT as

, j = 0, 1, …, N – 1. (3)

The FFT replicates periodically on the frequency axis with
a period of 1/�t; consequently, X(fN/2) = X(f–N/2) so that the
transform is defined at both ends of the closed interval from
–1/(2�t) to + 1/(2�t). This interval is sometimes called the
Nyquist band.

Some FFT and IFFT implementations use different nor-
malizations or sign conventions. For example, some imple-
mentations place the factor 1/N in the FFT conversion
rather than with the IFFT. Some place 1/ in both con-
version processes, and some reverse the signs in the expo-
nentials of the transforms; this sign change reverses the sign
of the phase component. Moreover, some implementations
take the range for k from 0, …, N/2. 

Because Equations 2 and 3 represent the frequency and
time domains of the same signal, the energy in the two cases
must be the same. Parseval’s relation expresses this equality.

For real data, we can express the relation as

, (4)

where X = fft(x). The last term on the right-hand side is not
usually separated from the sum as it is here; we do this be-
cause there should be only N terms to consider in both sum-
mations, not N in one and N + 1 in the other. Recall that be-
cause we’re dealing with real valued data, we can exploit a
symmetry and present the frequency data only from 0 to
N/2; this symmetry is the source of the factor of two associ-
ated with the summation. Unlike the other terms, the +N/2
frequency value isn’t independent and was assigned, as noted
earlier, to the value at –N/2. Should the +N/2 term be in-
cluded in the sum, we would, in effect, double count the
term, so we pull the N/2 term from the sum to avoid this. Of
course, if N is large, this difference is likely to be minimal.

There are two common ways to display an FFT. One is
the amplitude spectrum, which presents the magnitudes of
the FFT’s complex values as a function of frequency:

, k = –N/2, …, –1, 0, 1, …, N/2. (5)

Given the symmetry of real time series, the standard presen-
tation restricts the range of k to positive values: k = 0, 1, …,
N/2. An equally common way to represent the transform is
with a power spectrum (or periodogram), which is defined as

,  k = 0, 1, …, N/2. (6)

However, neither of these spectral representations is uni-
versal. For example, some conventions place a 1 in the nu-
merator instead of a 2 for the amplitude spectrum. The pe-
riodogram is sometimes represented with a factor of 2 in the
numerator instead of 1 or as the individual terms expressed
in Parseval’s relation (Equation 4). 

In Figure 1, as an example of the FFT process, we show
the amplitude spectrum of a single-frequency sine wave with
two different sampling intervals. In one case, the interval �t
is chosen to make nc integral, and in the other, nonintegral.
If nc is integral, f is necessarily a multiple of �f, and one
point of the transform is associated with the true frequency
(see the circles in Figure 1a). However, in any FFT applica-
tion, we’re dealing with a finite-length time series. The
process of restricting the data in the time domain (multi-
plying the data by one over the range where we wish to keep
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the data and multiplying by zero elsewhere—an example of
windowing, discussed later) introduces sidelobes in the fre-
quency domain. These sidelobes are called leakage.

Even though there’s leakage, because there’s only one fre-
quency associated with the transformed sine wave, we might
expect to be able to estimate that frequency with a weighted
average of all the points in the frequency domain. Such an
average, however, wouldn’t yield the correct frequency.

In general, the FFT process generates complex values in
the frequency domain from the real values in the time do-
main. If we transform sine or cosine waves where we consider
an integral number of cycles, the transform magnitudes are
identical.  However, in the frequency domain, a sine curve is
represented only with imaginary values and a cosine curve
only with real values. When the number of cycles is noninte-
gral or if there is a phase shift, then both real and imaginary
parts appear in the transform of both the sine and cosine. 

Zero Padding 
Zero padding is a commonly used technique associated with
FFTs. Two frequent uses are to make the number of data
points in the time-domain sample a power of two and to im-
prove interpolation in the transformed domain (for exam-
ple, zero pad in the time domain, improve interpolation in
the frequency domain).

Zero padding, as the name implies, means appending a
string of zeros to the data. It doesn’t make any difference if
the zeros are appended at the end (the typical procedure), at

the beginning, or split between the beginning and end of the
data set’s time domain. One very common use of this process
is to extend time-series data so that the number of samples
becomes a power of two, making the conversion process
more efficient or, with some software, simply possible. Be-
cause the spacing of data in the frequency domain is in-
versely proportional to the number of samples in the time
domain, by increasing the number of samples—even if their
values are zero—the resulting frequency spectrum will con-
tain more data points for the same frequency range. Conse-
quently, the zero-padded transform contains more data
points than the unpadded; as a result, the overall process acts
as a frequency interpolating function. The resulting, more
detailed picture in the frequency space might indicate un-
expected detail (see, for example, Figure 2). As the number
of zeros increases, the FFT better represents the time series’
continuous  Fourier transform (CFT).

As we noted earlier, zero padding introduces more points
into the same frequency range and provides interpolation
between points associated with the unpadded case. When
data points are more closely spaced, clearly, there’s a possi-
bility that unnoticed detail could be revealed (such as Fig-
ure 1a shows). In Figure 2, we see the effect of quadrupling
the number of points for two different cases. The transforms
of the zero-padded data contain the same information as the
unpadded data, and every fourth point of the padded data
matches the corresponding unpadded data point. The in-
termediate points provide interpolation.

E D U C A T I O N
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Figure 1.  Amplitude spectra of a single-frequency sine wave. Two representations of a sine wave of frequency 0.5 are shown in each
part of the figure. In each case, the circles are based on a time series where the number of sample points N = 32 but the time step is
slightly different: (a) N�t = 8, so nc = 4; (b) N�t = 7.04, so nc = 3.52, where nc is the total number of cycles. The solid lines provide a
view of these same spectra with zero padding. This form is closer to what would be expected from a continuous rather than a
discrete Fourier transform. The zero-padded examples reveal detail that might not have been expected, given the appearance of the
unpadded case.
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In Figure 2, we see an application of that interpolating
ability when we consider a signal consisting of two closely
lying frequencies.  In Figure 2a, although the envelope is
more clearly drawn, zero padding does not have the power
to resolve the two frequencies associated with this case. In
Figure 2b, the peaks are sufficiently separated so that the in-
terpolation reveals the two peaks, whereas the unpadded
data seemingly did not. This example reminds us that a
graphical representation connecting adjacent data points
with straight lines can be misleading.

Zero padding can also be performed in the frequency
domain. The inverse transform results in an increase in the
number of data points in the time domain, which could be
useful in interpolating between samples (see Figure 3).
Zero padding is also used in association with convolution
or correlation and with filter kernels, which we discuss
later in this article. 

Aliasing
When performing an FFT, it’s necessary to be aware of the
frequency range composing the signal so that we sample the
signal more than twice per cycle of the highest frequency as-
sociated with the signal. In practice, this might mean filtering
the signals to block any signal components with a frequency
above the Nyquist frequency (2 · �tsample)–1 before perform-
ing a transform. If we don’t restrict the signal in this way,
higher frequencies will not be adequately sampled and will
masquerade as lower-frequency signals. This effect is similar
to what moviegoers experience when the onscreen wheels of
a moving vehicle seemingly freeze or rotate in the wrong di-
rection. The camera, which operates at the sampling rate of

24 frames per second, only has a Nyquist limit of 12 Hz; any
higher frequencies present will appear as lower frequencies.

Let’s assume that we can readily observe a point on a wheel
(not at the center) that’s rotating but not translating. At a slow
rotation rate, each successive frame of our film shows the ob-
servable point advancing from the previous frame. (The frac-
tion of a complete rotation and the sampling rate are related;
the number of samples per rotation is the inverse of the frac-
tion of a rotation per sample.) As the rotation rate increases,
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Figure 2. The effect of zero padding on the transform of a signal containing two different frequencies. We look at two cases: one in
which the two frequencies are too close to be clearly resolved, and one in which resolution is possible. (a) Fast Fourier transforms
(FFTs) of the sum of two sine waves of amplitude 1 and frequencies of 1 and 1.3 Hz; the frequencies aren’t resolved, and (b) FFTs of
the sum of two sine waves of amplitude 1 and frequencies of 1 and 1.35 Hz; the frequencies are resolved. The solid curves are
transforms of zero-padded data and include four times as many samples as the transforms of the unpadded data (dotted curves).
Because the zero-padded curve has four times as many data points as the unpadded case (N = 32), every fourth point of the zero-
padded data is the same as the unpadded data. Zero-padded results provide better interpolation and more detail.
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Figure 3. The effect of zero padding in the frequency domain
on the time-domain data. The frequency data (the unpadded
case in Figure 2a) was zero-padded to four times its original
length. We show the original unpadded time-domain data
(boxes) and the inverse fast Fourier transform of the zero-
padded frequency data (dots). The padding process again acts
as an interpolation function.



84 COMPUTING IN SCIENCE & ENGINEERING

E D U C A T I O N

the angle between our observed point in successive frames in-
creases. When the angle reaches 180 degrees, or two samples
per rotation, the perceived rotation rate is at its maximum—
the wheel is rotating at the Nyquist frequency. 

When passing through the Nyquist limit, as the frequency
goes from fNy – � to fNy + � (where � << fNy), the rotation di-
rection appears to change from forward to reverse while the
rotation rate remains the same. Further increases in the ro-
tation rate make the wheel appear to continue rotating in a
reversed direction but at a decreasing rate. When the actual
rotation rate is twice the Nyquist frequency, the apparent
rotation rate is zero and the sampling rate is just once per
rotation. (Another example of one sample per rotation and
an apparent zero rotation rate is to use a stroboscope to de-
termine an object’s rotation rate. With one flash per rota-
tion, the rotating object appears at rest and the flash rate and
rotation rate are equal.) If the frequency of rotation contin-
ues to increase, the wheel will again appear to rotate in the
original rotation direction.

To make this more concrete, consider two constant rota-
tion rates, one of 170degrees between successive frames/sam-

ples and one of 190 degrees. We observe only the current po-
sition in each frame, so as we compute a value sequence, we
take them mod(360). If we compute values for the 170-de-
gree case, we obtain 0, 170, 340, 150, 320, 130, and so on. If
we compute values for the 190-degree case, we get 0, 190,
20, 210, 40, 230, and so on, but we wouldn’t see the 190-
degree rotation. We don’t observe an increase greater than
180 degrees (for angles greater than that, the data is under-
sampled). For the 190-degree case, we would see a 170-
degree step, but with the rotation in the opposite direction.

To consider a reverse rotation, we subtract the forward
rotation angle from 360. The result is the magnitude of the
angle of rotation in the reverse direction. For example, a
forward rotation angle of 350 degrees is equivalent to a 10-
degree step in the reverse direction.  So for our 190-degree
case, the numbers become 0, 360 – 190 = 170, 360 – 20 =
340, 360 – 210 = 150, and so on. Table 1 provides a sum-
mary. The magnitudes of these rotation angles are identi-

cal to the 170-degree data. Thus, we would see the 190-
degree case as equivalent to the 170-degree case in terms of
rotation rate, but with the rotation direction reversed. The
graph in Figure 4 helps demonstrate this kind of behavior.

In the example shown in Figure 4, the Nyquist frequency
is 8 Hz. Frequencies associated with the first leg of the saw-
tooth curve have more than two samples per cycle, and the
apparent and actual frequencies are equal. Once the actual
frequency exceeds the Nyquist frequency, the apparent fre-
quency begins to decrease, with the negative slope corre-
sponding to a reversed rotation direction. At 16 Hz, with
one sample per rotation, the apparent frequency is zero.
With further increases in the true frequency, the apparent
frequency once again increases. 

If we take the FFT of three amplitude 1 cosine waves hav-
ing frequencies of 3.5, 12.5, and 19.5 Hz and where we set
N = 16 and �t = 1/N (so the Nyquist frequency is 8 Hz), we
get identical FFTs, one of which is shown in Figure 5. The
number of samples per cycle for these frequencies is 4.57,
1.28, and 0.82. Only the lowest frequency is adequately rep-
resented; the two higher-frequency cases have fewer than

Table 1. Actual and apparent angles for 170o and 190o rotations.

Angle sequence for 170� step Angle sequence for 190� step Apparent angle 
sequence for 1900 steps with 
rotation direction reversed.*

0 0 0
170 190 170
340 20 340
150 210 150
320 40 320
130 230 130

*Magnitudes of reverse angles are given by 360� – column 2.
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Figure 4. Apparent frequency as a function of the true
frequency. Frequencies greater than the Nyquist frequency fold
back into the allowed frequency range and appear as lower
frequencies. In this example, where the Nyquist frequency is 8
Hz, an actual frequency of 9 Hz would appear as 7 Hz.
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two samples per cycle and consequently masquerade as
lower frequencies, appearing in the allowed range between
0 Hz and the Nyquist frequency. For the example with the
three different frequencies, we purposely selected the higher
frequencies so that their FFTs would be identical to that of
the lowest frequency. Referring to Figure 4, we note that the
frequencies 12.5 and 19.5 Hz would appear on the second
and third legs of the sawtooth curve. The apparent fre-
quency of the 12.5-Hz line is 8 – (12.5 – 8); the apparent fre-
quency of the 19.5-line is 19.5 – 2 � 8. In general, the out-of-
range frequency ftrue would appear as fapparent as given by 

, (7)

where k = 1, 2, …, and k is selected to bring fapparent within
the range 0 … fNy.

In Figure 6, we see the actual curves that correspond to
the three frequencies and the points where sampling occurs.
If we performed an FFT followed by an IFFT for any one
of the three curves (given the sampling specified), the algo-
rithm would return the same result in each case, which,
without other information, would be interpreted as the
lowest-frequency case.

If the magnitudes of the Fourier coefficients approach
zero (roughly as 1/f ) as the frequency approaches the
Nyquist frequency (a zero between lobes would not qualify),
then there is a good likelihood that aliasing has not occurred.
If it isn’t zero, we can consider the possibility that it has oc-
curred. However, a nonzero value doesn’t imply that alias-
ing has necessarily happened. The Fourier coefficients in
Figure 5 don’t go to zero even in the adequately sampled
case. Zero padding of this example will show a great deal
more detail, but the transform is still nonzero at the Nyquist
frequency.

Relation to Fourier Series 
There is a direct connection between the real and imaginary
parts of the frequency information from an FFT and the co-
efficients in a Fourier series that would represent the corre-
sponding time-domain signal. As we noted earlier, for the
conditions stated, the transform of a single-frequency sine
wave is imaginary, whereas the transform of a single-
frequency cosine wave is real. So, in a Fourier series of the
time-domain signal, we would expect the real parts of the fre-
quency information to be associated with cosine series and
the imaginary parts with sine series. This is, in fact, the case.

An equation for recreating the original signal as a Fourier

series from the frequency information is

. (8)

For the case N = 2n, ak represents the real part of the trans-
formed signal, bk the imaginary part, nt the number of terms
to be included in the series (where nt < N/2), and �f the spac-
ing in the frequency domain. 

An alternate form in terms of magnitude and phase is also
possible. Given that

, (9)

where hk = ak +ibk and the Hj are the magnitudes of hj, the
series is given by
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Figure 5. The FFT of a 3.5 Hz, amplitude one cosine wave
where N = 16 and �t = 1/N (represented by circles). The FFTs
of the frequencies 3.5 Hz, 12.5 Hz, and 19.5 Hz are identical
for the case when the Nyquist frequency is 8 Hz. The solid
curve shows the transform with zero padding.
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Figure 6. A view of the sampling of three cosine curves. Cosine
curves with frequencies 3.5 Hz, 12.5 Hz, and 19.5 Hz are
shown, with the marked points representing those at which
sampling occurs (�t = 1/N and N=16). Only the lowest-
frequency curve is adequately sampled, with more than two
samples per cycle. In this case, the FFT for each curve would
indicate a signal with a frequency of 3.5 Hz. For clarity, we
show only the first five samples.
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. (10)

In Figure 7, we see the square wave signal (one cycle of a
square wave that ranges between 0 and 1 with equal times
high and low) to be transformed as well as the signal con-
structed from the first 10 terms of a Fourier series using the
coefficients from the FFT as per Equation 8. We would ob-
tain an identical waveform if we took the IFFT of a trunca-
tion of the original FFT, where all the FFT’s coefficients

with an index greater than the number of desired terms
(here, nt = 10) are set to zero.

Windows
Windows are useful for extracting and/or smoothing data.
A window is typically a positive, smooth symmetric function
that has a value of one at its maximum and approaches zero
at the extremes. (A window might have a discontinuity in its
first derivative, giving it an inverted V shape—such a win-
dow is sometimes referred to as a “tent”—or two disconti-
nuities for a rectangular or trapezoidal shape.) We apply
windows by multiplying time-domain data by the window
function. Of course, whenever a window is applied, it alters
at least some of the data. 

Smoothing windows, for example, reduce the amplitude
of the time-domain data at both the beginning and the end
of the windowed data set. One effect of this smoothing is to
reduce leakage in the frequency domain. In Figure 8, we
show comparative plots of four frequently used windows.
We show the effect of applying three of those windows to a
sine wave sequence in Figure 9.

Let’s look at the expressions for four common windows: 

Rectangular:

Hamming: hamwi = 0.54 – 0.46 � cos(2 � � � i/N)
Hann: hanwi = 0.5 – 0.5 � cos(2 � � � i/N)
Blackman: blkwi = 0.42 – 0.5 � cos(2 � � � i/N) + 0.08 �

cos(4 � � � i/N). (11)

The Hamming and Hann windows differ in only one pa-
rameter: if the corresponding coefficients are written � – (1
– �), then � is 0.54 for the Hamming window and 0.5 for the
Hann. The fact that a slight change in the parameter value
gives rise to two different windows hints at the sensitivity of
the windowing process to the value of �.  If � decreases from
0.5, the side lobes increase significantly in amplitude. As �
increases from 0.5 to 0.54, the relative sizes of the side lobes
change. The first set of the Hann side lobes tend to be sig-
nificantly larger than those of the Hamming case, but sub-
sequent Hann side lobes decrease rapidly in magnitude and
become significantly smaller than the Hamming side lobes.
As to general appearance, the Hamming window doesn’t
quite go to zero at the window’s endpoints whereas the Rec-
tangular, Hann, and Blackman windows do. Several other
windows also exist, including Bartlett (tent function), Welch
(parabolic), Parzen (piece-wise cubic), Lanczos (central lobe
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Figure 7. A comparison of the original time-domain signal
and its partial reconstruction as a Fourier series. The original
signal (dotted curve) and the first 10 terms of a Fourier series
(solid curve) computed using coefficients from the original
signal’s FFT.
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Figure 8. The shapes of four different windows.  From the
side, we see a rectangular (red), Hamming (blue), Hann
(green), and Blackman (magenta), respectively. We’ll apply
three of these windows to a sine wave sequence in Figure 9.
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of a sine function), Gaussian, and Kaiser (which uses a mod-
ified Bessel function). 

Each of these windows has particular characteristics. Two
particularly useful points of comparison in the frequency space
are the full width at half maximum of the central peak and the
relative magnitude of central peak to that of the side lobes. An
unwindowed signal’s FFT has the narrowest central peak, but
it also has considerable leakage that decays slowly. The curves
for the Hamming and Blackman cases show wider central
peaks but significantly smaller side lobes. The Blackman win-
dow has the largest peak height to first sidelobe height ratio. 

There is no final summary statement that says you should
use window x in all cases—circumstances decide that. In the
bat-chirp analysis we’ll examine in part two of this series,
we’ll use an isosceles trapezoidal window. Such a window isn’t
generally recommended, but for the bat-chirp case, it’s the
best choice. (A split cosine bell curve, a Hann window shape
for the beginning and end of the curve with a magnitude of
one in the interior, would give essentially the same results.) 

As an example of windowing’s effect on the transform, we
apply a Blackman window to the time-domain data associ-
ated with Figure 1b. Two effects of applying this window, as
Figure 10 shows, are that the leakage is greatly reduced and
that the central peak is broadened.  Obtaining the needed
detail to observe these features requires zero padding.  

I n part two of this series, we’ll discuss auto-regression
spectral analysis and the maximum entropy method, con-

volution, and filtering. In the third and final installment,
we’ll present some applications, including the analysis of a
bat chirp and atmospheric sea-level pressure variations in
the Pacific Ocean. 

Whether there is an interest in CO2 concentrations in the
atmosphere, ozone levels, sunspot numbers, variable star
magnitudes, the price of pork, or financial markets, or if the
interest is in filtering, correlations, or convolutions, Fourier
transforms provide a very powerful and, for many, an essen-
tial algorithmic tool.
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Figure 9. A comparison of the effects (from left to right) of a
rectangular, a Hamming, and a Blackman window on a sine
wave sequence. For convenience of display, we compute the
three examples separately, shift the second and third in time,
and sum the set, with the effect that the three examples
appear sequentially in time; because each example is zero
outside its window zone, the results do not interfere. The
three windows have the same width, but as Figure 8 shows,
the Blackman window increases in magnitude more slowly
than the others, and we can observe the effect on the sine
wave signal. The difference between Hamming and Blackman
windowing is also evident. 
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Figure 10. The effects of windowing as seen in the transform
space. The FFT of the 3.52-cycle example in Figure 1 and the
result of multiplying time-domain data and a Blackman
window before taking the FFT are shown without zero padding
(circles) and with zero padding (solid curve). The windowed
form reduces leakage but has a broader central lobe.
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