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The Fast Fourier Transform on Hypercube Parallel Computers

Clare Yung-lei Chu, Ph.D.
Cornell University 1988

The Fast Fourier Transform appears frequently in scientific computing. Therefore
it is desirable to implement it efficiently on parallel computers. In this thesis,
we investigate several different aspects of parallel Fast Fourier Transform imple-
mentation techniques for distributed-memory message-passing systems such as hy-
percube multiprocessors. We describe various Fast Fourier Transform algorithms
using a matrix notation. An error analysis is presented that considers the effect of
different methods used in the computation of the Fourier Transform coefficients as
well as accumulated roundoff. New implementations of one and two-dimensional
Fast Fourier Transforms are presented along with comparisons with existing meth-
ods. New algorithms for symmetric transforms are also developed and the results
show excellent speedup when implemented on the Intel iPSC hypercube.
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Chapter 1

Preliminaries

1.1 Introduction

The parallel computation of numerical problems holds a tremendous amount of
promise for speeding up large compute-intensive procedures. The hope is to be
able to perform real-time computations on important applications such as image
processing, the processing of seismic data, signal processing, and the solutions of
partial differential equations. Buried inside a lot of scientific code is the discrete
Fourier transform (DFT). The realization of a “fast” method for its computation
in the 1960’s [Cooley and Tukey (1965)] allows scientists to solve problems that
were previously considered beyond the realm of practical computability. Many
variations of the fast Fourier transform (FFT) were subsequently developed to
cater to the parameters of specific problems and machine architectures. Having
reached the limit with which a single processor can perform FFT computations,
one is naturally led to consider the implementation of FF'Ts on parallel computers.
This dissertation focuses on issues dealing with the design of new algorithms and
procedures for the implementation of the FFT and fast symmetric transforms on
distributed memory ensemble architectures, in particular the hypercube intercon-
nected parallel machine.

The complex FFT is one of the first algorithms to be implemented on the
first experimental hypercubes where inefficiencies due to load imbalance and com-
munication overhead were noted. [Fox (1985)] While on the surface, the radix-2
FFT implementation appears straightforward and easy, further research reveals
that there are many details with room for improvement. Furthermore the efficient
implementation of symmetric transforms is more complicated and had not been

1



extensively studied before. The purpose here is to increase the understanding of
parallel Fourier transforms by presenting new methods and techniques for improv-
ing their execution rates on parallel message-passing computers. New heuristics for
conceptualizing concurrent numerical computations are introduced in the form of
a matrix language representing algorithm design, task allocation, data partitioning
and inter-processor communication.

The first chapter provides the reader with an introduction to the Fast Fourier
Transform algorithm interpreted according to matrix factorizations. The use of
matrix language is well-suited for the description of numerical algorithms especially
for distributed computations. By getting away from the i-5 level, replete with mul-
tiple summations and backwards running indices, an overall view of the big picture
can be obtained where blocks of data are partitioned among distributed Processors
and operated upon. The use of permutation matrices to describe communication
is especially useful and provides a higher-level abstraction for algorithmic descrip-
tion and development. Some basic permutations and notational conventions are
introduced in Chapter 1. The fast Fourier transform is also conveniently denoted
as a sequence of sparse matrix multiplications. Four canonical in-place FFT algo-
rithms are presented along with some of their properties. Facility with the matrix
notation allows us to transcend the tangled web of i-j indices and derive different,
but equivalent, versions of the FFT by rearranging the matrix products.

Chapter 2 presents an error analysis for the radix-2 FFT. A different approach
is used where the FFT coefficients (or multipliers) are assumed to contain noise due
to the method with which they are computed. This is a non-random, determinable
error and dependent on the method that is used to calculate these trigonometric
values. Several methods are highlighted, with their error properties examined.
These errors are then incorporated into the error analysis of the FFT and are
shown to contribute multiplicatively to the total FFT error.

Chapter 3 describes a new method of implementing one-dimensional complex
FFTs on the hypercube. Issues such as load balancing and the mapping of data to
the nodes are examined. A new load balanced method is presented and shown to
execute faster than the naive method. This method also requires no extra buffers
for communication and therefore is more storage efficient. This method is used
subsequent implementations of symmetric transforms.

In Chapter 4, two-dimensional FF'Ts are discussed and implemented using
four different methods that vary in degrees of concurrency, communication costs,
and data transposition requirements. A model is derived that accounts for vector
computers at the nodes. Some conclusions are drawn as to the effect of architecture
and hardware parameters on algorithm choice.

Real symmetric transforms are the topic of both Chapters 5 and 6. The diffi-
culties of implementing them by the usual sequential methods involving pre- and



post- processing of the data is highlighted. Two new methods are presented that
remedy this. The Chapter 5 method involves a modified pre- and post- processing
scheme that computes the sine transform on data both in natural and bit-reversed
order so that all post- processing is processor local. The method of Chapter 6
computes the sine, cosine, quarter-wave sine and quarter-wave cosine transforms
of a single sequence in one pass through the complex FFT subroutine. This new
method is hence extremely simple to implement and fast, as four symmetric trans-
forms are obtained in one FFT with additional processing limited to multiplication
by diagonal matrices. It is also a numerically stable way of computing symmetric
transforms since all of the multiplications applied to the data vector are roots of
unity.

Finally, Chapter 7 describes a particular implementation of a distributed mixed
radix FFT for hypercube multiprocessors, demonstrating that hypercube FFTs are
not limited solely to radix-2 methods.

1.2 Parallel Scientific Computing

The area of scientific computing is being revolutionized by the development of su-
percomputers and parallel machines. Large problems can now be speedily solved
so that engineers can redesign and test problem parameters with faster turnaround
times. More design parameters can be incorporated into a simulation to better
model the physical properties of a particular problem. However as promising
as these new developments are, the problem-solving methods must be carefully
thought through to ensure numerical stability and accuracy as well as compu-
tational efficiency. Therefore using parallel processing architectures requires the
rethinking of solution algorithms.

Efficient implementation of numerical algorithms on parallel architectures de-
pends on a host of system parameters, such as memory organization, processor
power, communication interconnection between the processors and processor load
balancing. A shared-memory machine consists of a number of processors that can
address a single global memory. Memory access conflicts occur when two proces-
sors try to read or write to the same memory address. Therefore some sort of
protection is utilized. This overhead can degrade any potential parallel speedup.

A message-passing system consists of independent processors each possessing
its own private memory with limited memory access. Communication between
the processors is relegated to message passing. Here an interconnection scheme
is very important. The ideal situation is a “crossbar” interconnection where each
processor possesses a direct link to every other processor. However if the goal
is to create a system with a large number of processors, such a communication



pattern becomes prohibitively complex. Nearest neighbor meshes and generalized
hypercube structures [Bhuyan and Agrawal (1984)] are usually implemented so
that processors communicate directly with a few neighbors and indirectly through
message forwarding.

The interconnection schemes and degrees of system coupling will affect the
implementation of numerical algorithms. For example, a fully implicit finite dif-
ference algorithm that is efficiently parallelized on a shared memory machine may
be difficult to implement on message-passing architectures. [George et al. ( 1987)]
Algorithms that work well on serial computers such as the preconditioned con-
jugate gradient methods for solving sparse systems of linear equations become
prohibitively slow on parallel computers because global information is required at
each iteration to check for convergence. Consequently local relaxation methods
whose convergence rates may be slower can become viable candidates on parallel
architectures. [Kuo, Levy and Musicus (1987)]

Thus, the fast computation of large-scale scientific problems requires investiga-
tion into algorithmic design, architectural parameters, and the development and
application of expert systems to integrate and aid in the interpretation of the re-
sults obtained. In this dissertation we concentrate on the study of implementing a
set of FF'T algorithms onto a loosely coupled parallel system with the hypercube
interconnection scheme.

1.3 The Hypercube Architecture

The d-dimensional hypercube is a parallel architecture composed of P = 2¢ node
processors with local memories and an interconnection scheme where two nodes are
joined if and only if their binary node labels differ at exactly one bit. Therefore
nodes whose binary labels have Hamming distance exactly one are connected.
This setting allows the number of nodes to grow linearly with the interconnection
complexity only growing logarithmically. The hypercube connection scheme is
a popular one because many other topologies such as meshes, trees, rings, and
butterflies can be embedded in the binary d-cube graph.

There are several parameters for evaluating an interconnection scheme for a
network of computers. We can represent a computer network as a graph G =
(V,E), aset of vertices V and edges E. The vertices represent the node processors.
and the edges are defined between nodes where there exists a direct link between
them. Each node should have a reasonably small degree, so that each processor
has to only handle a few links. The maximum distance (diameter) from one node
to another should be small. And there should be a large number of alternative
paths from one node to another for fault tolerance. The binary d-cube possesses



the following properties that make it attractive.

o Each and every vertex has degree d;
e G is a connected graph of diameter d:

* If A and B are any two nodes in a d-cube, then there are H (A, B) parallel
paths of length H(A, B) between the nodes A and B.

Parallel paths denote two paths from A to B such that there are no common nodes
on the paths except for A and B. H(A,B) is the Hamming distance between A
and B. These and other properties of the hypercube can be found in Saad and
Schultz (June, 1985).

Parallel computers configured with the hypercube topology are usually message-
passing systems. The system is a multiple-instruction multiple-data (MIMD) ma-
chine where communication between concurrent processes occur only in the context
of messages rather than the use of shared variables. Each processor has a fast local
memory without any shared memory among the processors.

Several commercial machines based on the hypercube architecture have been
built. The first hypercube computer, the Cosmic Cube, was constructed in 1983
at the California Institute of Technology. [Seitz (1985)] Since then, vendors such
as Ametek, Inc., Floating Point Systems, Intel Scientific Computers, and NCUBE
have developed hypercube computers, some with vector processor nodes and some
with transputer communication co-processors. [Wiley (1987)]

The Cornell Theory Center’s 16 processor Intel iPSC /D4MX is the system used
for the results gathered in this dissertation. The hardware consists of a Multibus-
based System 286/310 microcomputer (cube manager) and computational units of
sixteen high performance microcomputers with extended memory. The cube man-
ager is connected to each node processor by an Ethernet communication link. Each
node processor has its own numeric processing unit and local memory. Commu-
nication between nodes is achieved entirely by queued message passing. Messages
can be sent from any node to any other node. The message system automatically
routes messages through the system, forwarding them if necessary. One can think
of “virtual” communications channels that connect all the processors.

All of the algorithms in this thesis are coded in FORTRAN , compiled by the
Ryan McFarland compiler, and executed under the XENIX 286 release 3.4 Update
1 of the host operating system and the iPSC release 3.1.1 of the node operating
system with the Exelan R3.3 networking software. Although the programs are
written for the Intel iPSC System 286 hypercube and our timings results are de-
rived from this particular system, other hypercube are discussed. By considering
their configurations and properties, recommendations on algorithm characteristics
relating to specific properties are given. The current hypercubes by Intel, Ametek,



NCUBE and Floating-Point Systems all have slow communication rates relative to
computational speed. Therefore the implementations strive to both minimize the
‘amount of necessary communication and also the distance that they have to travel.
Some hypercubes are equipped with vector boards on the nodes and therefore al-
gorithms are evaluated with respect to vector length. Other hypercubes, such
as the Floating-Point T-Series, can interleave communication and computation .
simultaneously, making it possible for the programmer to “hide” the communica-
tion overhead within the computational workload. In general there is no specific
algorithm or method that is the best for all situations. Furthermore the state-of-
the-art hypercubes do not come close to supercomputer performance. Therefore
these machines are used primarily as research tools in the study of parallel al-
gorithms with consideration of architectural constraints and hardware properties.
The absolute running times of the results obtained should not be the criteria for
judging the algorithms. Rather, the timings for one method should be considered
only as relative to the timings obtained from another method. Models are created
for the various algorithms to provide general guidelines concerning communication
overhead, vector length, and storage requirements. The timing results are used
roughly to check the model and also to identify the proportion of communication
overhead relative to computational effort.

1.4 Distributed Multiprocessor Computing Is-
sues

Programming paradigms on message passing multiprocessor systems requires a
whole new set of heuristics defining such factors as task allocation, message pass-
ing protocols, computational complexity, communication requirements, processor
mapping and topology, storage space, and synchronization. Conventional rules
of measuring execution time primarily with computational complexity analysis
are superseded by new standards encompassing all aspects of distributed concur-
rent programming techniques. [Adams and Crockett (1984), Gannon and Van
Rosendale (1984)] Given the proliferation of new parallel machines spanning a
whole spectrum of architectural configurations [Haynes et ol (1982)], the task
of creating and implementing algorithms to effectively exploit parallel processing
capabilities is a complicated endeavor.

Communication is a very important topic in distributed memory machines. A
processor can access data in its local memory much faster than data resident in
another processor. In fact general hypercubes are designed to compute at a rate
that is 10 times faster than the rate of communication. [Wiley (1987)] Recall that
each node can communicate directly with its nearest neighbors. Sending a message



to a more remote node requires intermediate processors to relay the message.
Currently communication between neighboring processors is more efficient than
communication between more distant nodes. Hence an important consideration in
hypercube programming is to define the problem so as to minimize communication.

Two message passing primitives are used: sendw and recvw. A processor ex-
ecutes a sendw to initiate transmission of a message to another processor. The
calling process is blocked until the message has been sent. A processor uses a
recvw to receive information. The execution of recvw causes the calling process
to be blocked until the message has arrived. Therefore, if the receiving process
invokes recvw prior to message availability, execution of the routine is delayed.
The processor is then blocked.

Processors do not need to be directly connected in order to communicate. The
networking software is designed to automatically forward messages from node to
node until the message reaches its destination. Hence the particular path that a
message will traverse is entirely transparent to the programmer. The invocation
of a communication request involves a latency period, or communication start-
up time that is an order of magnitude longer than the actual data transfer rate.
Moving a vector of length m from one node to a neighbor takes the time

T + Micomm

where 7 is the communication start-up or latency and the constant tcomm 1s the
elemental transfer time. It is usually the case that T >> t.omm. [Saad and Schultz
(Sept. 1985)] Therefore it is much more efficient to send one long message than
several short ones. This is especially true on the Intel iPSC.

A measure of how well a procedure is utilizing its resources on a multiproces-
sor is the ratio between the cumulative active time and the total duration of the
computation. A processor is active if it is either doing arithmetic, data loading or
rearranging, and actively communicating. It is inactive, or idle, while it is blocked
awaiting data that it must receive before it can proceed with further computation.
The utilization percentage determines the effectiveness of a particular procedure
on the multiprocessor. Several concepts directly affect processor utilization. First
of all there is the allocation of tasks to processors. Tasks that can be performed
in parallel are ideally suited to multiprocessor applications. However these tasks
should be evenly distributed among the processors so that they all have approx-
imately an equal amount of work to do. This is called load balancing and is
important in that processors with a higher workload may cause other processors
to block and wait for critical portions of the total procedure. Processor utilization
of the blocked processors decreases and the total time for the whole procedure
increases. If workload is approximately equal, blocking time would be reduced
along with the total execution time.



Efficient use of the limited local memories of the node processors is another
important consideration. Some computations require the data in the memories of
‘more than one processor. Therefore message organization is important to minimize
the need for buffering and additional storage space. Overwriting is possible for
the straight exchange of two sets of data

y e x

However, if the data requirements were

Yy « f(xy)
x « f(x,y)

overwriting an existing array, say x by the incoming message Y is clearly an algo-
rithmic mistake. Hence an extra buffer is required to store the incoming message.
Therefore, rearrangements in the way of algorithm implementation and data map-
ping into the processor nodes may be called for.

The mapping of node processors into various topologies such as meshes, rings,
trees, etc. is a distributed computing issue as well as an algorithmic abstraction.
Problems modeling two- or three- dimensional physical phenomena such as heat
transfer on plates or gas dynamics work well on mesh topologies. Other appli-
cations which require global broadcast or search algorithms find better matches
on tree structures. Much algorithmic implementation work is therefore concerned
with finding the best match between topology and data movement and permuta-
tion patterns inherent in the algorithm.

Finally it should be noted that the hypercube, being a message-passing com-
puter system, achieves synchronization primarily by the availability and type of
message being sent. A processor cannot request a message, but must wait for mes-
sages that it needs to arrive. Messages are tagged with an integer constant type
that is used to synchronize the total computational effort. For example, iteration
numbers can be used as a message type to keep processors using the correct data
for the correct iteration. In any case, careful design of algorithms is required to
make sure that the entire system does not become deadlocked due to processes
waiting for nonexistent messages.

In this dissertation we review all of the above issues and considerations with
respect to the implementation of Fast Fourier Transforms.

1.5 Definitions and Matrix Notation

The Kronecker Product notation is a way of expressing block matrices as tensor
products (direct products) of lower order matrices. It gives a convenient way of
describing matrices which have a certain repeating structure.



Definition 1.5.1 Kronecker Product: If A € CP*9 and B € C™*" then the
Kronecker product A @ B is the p-by-q block matriz

apB -+ agy-1B
A®B= : : € cpmxgm
ap—l,OB te ap-—l,q—lB

(A ®B)(C®D)=(AC)® (BD) if the matriz multiplications AC and BD are
defined.

Under certain circumstances, a commutativity relation is useful and the following
lemma is a useful tool to have.

Lemma 1.5.1 Letp, q, r, s be integers with the property that
i)pg=rs
1) p divides r
then if A € CPXP qnd B € C*%*
(ARL)I,®B)=(I,® B)(AQL)

Proof See Van Loan (1987) Lemma 6.3.

*

An easy method for designating submatrices is useful for the description of
matrix algorithms or procedures. The MATLAB “colon” method is described
here. [Coleman and Van Loan, (1987), Chapter 5]

There are two forms of colon arguments
{starting value} : {terminating value}
being shorthand for all the indices from the starting value to the terminating
value, with an increment of unit value. For example 1 : 5 designates the indices
{1,2,3,4,5}. When the increment if any other nonzero integer, either positive or
negative, the colon format is

{starting value} : {increment} : {terminating value}

An example is 1: 2 : 5 denoting the indices {1, 3, 5}, whereas 8 : —3 : 1 represents
the set of indices {8, 5,2}.
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A submatrix can now be designated by use of the colon notation for row and /or
column indices. A couple of examples suffice to illustrate.

aip “ .. a,‘q
B=A(::j,p:q) > B=
Qjp " Qg

Letting a(*) denote the kth column of a matrix A the submatrix consisting of the
odd columns of A is denoted as follows:

B=A(;1:2:n)= {a(l),a(g),a(s), ..

Finally the diag notation if used to designate a diagonal matrix. The argument
is usually a vector or an algebraic expression so that

Iy

D = diag(x) - D =
Tn-1
and
D = diag(a?), J=0,...,n-1
a®
al
- D =
an—l

1.6 Permutations

A permutation is a function defined on a finite set X that maps X onto itself in a
one-to-one manner. Permutations occur in the discussion and modeling of switch-
ing networks for loosely coupled distributed computing systems. Data transfers
which are one-to-one are actually permutations that map data from one proces-
sor to another processor. Permutations are also an important part of the FFT
algorithm, manifested in the recursive splitting algorithm that describes and char-
acterizes the FFT.
Permutations can be described in several intuitive ways.

function: If r : {0,1,...,n -1} = {0,1,...,n — 1} is a permutation, we denote
it by

(wtoy =ty 0wty
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The set of all available permutations P(X) forms a group (P(X),0) under
composition. The theory of groups can be applied to their study. [Gilbert
(1976)]

base-p function: Let 7 be a function on a set of integers that can be represented
by an arbitrary base p. Some permutations are more conveniently described
in this manner. Let

j = {bt—l3bt—2"'*,b0}p
= by1p "l + b2p'" 4+ + byp + by,
0<j,m(j)<n—-1

represent the base-p address of an element in the set X. Then permutations
of the set of inputs can be defined by operations or permutations on the
digits (or bits) of the base-p address. [Hockney and Jesshope (1981)] Hence

”(.7) — f({bt—lvbi-% ceey bﬂ}?)
with f one-to-one and onto.

matrix: A permutation can also be described as a matrix. Let
In = [eo,el,eg, .o ,en_l]

be the identity matrix of order n and e; the jth unit vector e;(k) = 1, if
k = j and 0 otherwise. Then the permutation = can be defined as the matrix

P, = [e1r(0)a €x(1)r-- > er(n—l)]

Base-2 Permutations and Kronecker Products

Let = be a permutation defined on a set {0,1,...,n — 1} with the indices written
in binary. = is defined by its action on {bi—1,bt—2,...,b1,b0} for each address.
Denote its corresponding permutation matrix by P,. The kth sub-n permutation
(k) is defined on the k lowest order bits {bx_1,bx—2,...,b1,b} in the same manner

as 7 is on the whole set. The kth super-r permutation 7(¥) is defined on the &
highest order bits {bt—1,bt—2,...,b_k} in the same manner as .

Theorem 1.6.1 Let P, r = 2% be the permutation matriz defining m over the set
{0,...,2F — 1} and assume that n = 2!, with k <t. If

m — Py,
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then

Ty > Loy ® Py
0 BN PT®In/r

Proof The corresponding permutation matrices are:

Pn = [e-;r(O)’ s ae‘lr('n,—l)]
Pr = [eﬂ'(o)7 sy er(r—l)]
r =2k

T(k)(J) leaves the n — k highest order bits of j alone so that

T(k)(J) = 7(x)(j mod 2%).

Since T(k) 1s a bijection, this implies that T(x) operates disjointly on the n/r sets
{0,...;r =1}, {r,...,2r — o, {(B=1)r,...,n - 1}. Each corresponds to an
independent application of P,. Hence the definition of the Kronecker product
gives

(k) = Tnjr @ Py
Similarly 7(*)(;) leaves the n — k lowest order bits alone so that
r®)(j) = 7B /2%),

(k) being a bijection, now operates disjointly on the Zsets {0:7: -1}

{1:r:(2=Dr+1},...,{r=1:7:n- 1}, corresponding to independent

r

applications of P,. Therefore the definition of Kronecker Products gives

™ o P. oI

n/r

*

Theorem 1.6.1 allows us to conveniently discuss permutations both in terms of
binary function notation and matrix notation.

Exchange Permutation

The exchange permutation E,, is described by

Eﬂ = [en—laen——’b e aelveO]
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If y = Enx, then y consists of the elements of x flipped upside-down.

The kth sub-exchange permutation is defined over the binary representation
of j by flipping by through b;_,, and the kth super-exchange involves flipping all
the bits b;_; through b;_;. Let

T11 i =0

then the kth sub- and super- exchange permutations are described as follows:

k) () = (bt=1,. .., b1, Bk—2, ..., b1, Bo)2

e(k)(]) = (Et—lv s agt—ka bt—k—h crey bO)2

The exchange permutation can also be defined in terms of the Binary Reflected
Gray Code representation of j. (See Section 1.9).

e(k)(]) = (gt—ly- RN’} ST 990)2

where Gi(j) = (g¢-1,...,90)2 (with n = 2!) and the bar denoting the complement
of a given bit. The kth exchange permutation is simply the complementing of the
k — 1th bit of the BRGC representation of 7. In matrix terms,

k) © (Inyy ®E,;), r=2F

Butterfly Permutation

The butterfly permutation 8(j) is defined over the binary representation of an
integer j by exchanging the first and last bits:

B(3) = (bo, be—2,...,b1,bt—1)2

with 7 = (b1-1,bt-2,...,b1,80)2 The kth sub-butterfly Bx)(J) exchanges b;_; and
bo, whereas the kth super-butterfly exchange 5;—; with by_k:

/B(k)(J) = {bt-—17"°abkabo,bk—27"'7b17bk-—l}

ﬂ(k)(.]) = {bt—k7 bt—2a sy bt—k-’-l, bi—l, bt—k—l? vy b()}

The butterfly permutation is not conveniently described by matrix notation, how-
ever we shall designate the matrix B, « 8(3).
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Perfect Shuffle and Inverse Shuffle Permutations

The base-p perfect shuffle o(j) corresponds to a circular left shift of the t-digit
base-p integer which represents the address j.

0'(]) = {bt—Z’ bt—3a ey blv bOa bi—l}

The kth sub-shuffle o) and the kth super-shuffle o®) | are defined by cyclic left
shifts on the least and most significant & bits respectively.

U(k)(]) = {bt—la"'ab’mbk—2""abovbk—l}
U(k)(]) = {bt—2"'"bt—k,bt—l7bi—k—17"'7b0}

The base-p inverse perfect shuffle u(j) is defined as a cyclic right shift of the
t-digit base-p integer which represents ;.

w(g) = {bo, bt-1,..., 01}

The kth sub-inverse shuffle K(x) and kth super-inverse shuffle are analogously de-
fined.

py(7) = {bt—1,..., bk, bo,bg—1,...,b1}
”(k)(]) = {bt-—kabt—la"-’bt-k-'l-l’bt—k—.la"'vb()}

If the perfect-shuffle permutation, and likewise the inverse-perfect shuffle were
applied t times, the original bit-sequence will be restored.

Theorem 1.6.2 The perfect shuffle operator
c:{0,1,...,n-1} - {0,1,...,n -1}, n=p
and the inverse perfect shuffle operator
p:{0,1,...,n-1} = {0,1,...,n -1}, n=9p

each form cyclic groups of order t under composition.

Now we define the matrix notation for perfect shuffle and inverse perfect shuffle

operators. Define the base-p perfect shuffle matrix Hﬁ.” ) by its effect on a vector if
indices (0 : n — 1)T. If n = pm, then

HS[’)(O:n—l)T=(O:m:n—1,1:m:n—l,...,m—l:m:n—l)T
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Example
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The base-p inverse perfect shuffle
MY = [P = [P
sorts the indices (0: n — 1)T by

Ms‘p)(O:n—l)T=(0:p:n—1,1:p:n——l,...,p—l:p:n—l)T

Example
0] 0]
1 2
2 4
2y 3 6
My 4|~ |1
5 3
6 5
7 7

Application of Theorem 1.6.1 for the base-2 perfect shuffle and inverse perfect
shuffle permutation gives following correspondences,

o(j) ~ P

w(j) « MY
ory(i) « Ly, eM?
W) o mPeL,,
pm) & L, eMP
W) - MPeL,,
0<;<n-1
n=2!
r=2k

The following theorem allows us to change the order of Kronecker Products.
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Theorem 1.6.3
MPAQL)IP =1,® A

for A an arbitrary square matriz of dimension m = n/p.

Proof Let
B=(AQ®IL,)=a,l,], i,j=0,....,m

Premultiplication by MP picks out every pth row of (A ® I,) and post-multiplica-
tion by ng) picks out every pth column. Hence B(: + k : p: n — L,j+k:p:
n—1)=Afork=0:p—1. Thus [MPBIP|(kp+i kp+j)=Bl+k:p:
n—1,7+k:p:n—1),k=0:p—1, which is exactly (I, @ A).

Corollary 1.6.1
IP(Le AMP =AQ1,

Theorem 1.6.4 The powers of Yy form a cyclic group (mod t) for n = p' on
the product of matriz multiplication.

Theorem 1.6.5 The powers of Mﬁ,”) form a cyclic group (mod t) for n = pt on
the product of matriz multiplication.

The following theorem relates the base-2 inverse perfect shuffle permutation to
the butterfly permutation:

Theorem 1.6.6 Let B, denote the butterfly permutation matriz. Then

nP= ] (L,eB,), r=2
1=t:—1:2

and
MP= ] (B,®L,), r=2
i=t:—1:2

Proof Using theorem 1.6.1 we can translate the permutation matrices into sub-
and super- butterflies and use induction. First we easily see that o)) = By =
p(1) =t the identity. We can also easily check that o2) = B2)Bn) and p(y) =
B0, (Notice here that the permutations are applied from right to left, just
like in matrix multiplication). Let the induction hypothesis suppose that Oy =
Bx) - -+ B(1) is true. Looking at

U(k) = bt—l . bkbk_g e bObk—l
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and
U(k+1) = bt—l v bk—lbk—Z A bobk
we see that o)) = B(k+1)0 (k). Similarly for B(k) = Bk ... 8(1) we see by com-
paring
Ky = by_kbe_1... bt—k+1bt—k_.1 b
and
Bk+1) = bek—1be—1 .. . bp_pp1bi_k ... g

we see that K(k+1) = 5(k+1)/1(k)

Bit-Reversal Permutation

The bit-reversal (or digit-reversal) permutation is naturally described by its action
on the bits of an index address. Let {b;—1,...,b;,5} be the base-p representation
of j, then p(j) = {bo,b1,...,bt~1} is a reversal of the cordering of the bits of ;.
As with the previous permutations, the kth sub bit-reversal and the kth super
bit-reversal can also be defined over the least and most significant & bits of ;:

Pry(7) = {bt—1,..., bk, b0, b1,... 051}
p(k)(J) = {bt—-kvbt—k-}-la'--7bi—labt—k—l7"-’b0}

A base p bit-reversal permutation y = PPx is defined by numbering the indices
of X in base p notation and then reversing the digits of each index. The vector y
is X reordered according to this recipe.

Example (n=8, r=2):

[ 0 ] [ 0 ]
1 4
2 2
2 3 6
Py = 41711
5 5
6 3

[ 7 ] L 7

Lemma 1.6.1

PPOPP =1, or [PP-1 = P
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Proof Reversing the order of the base p digits of an index twice gives back the
original index.

Corollary 1.6.2

[PPNT = pip)

n

There are several ways that PP can be factored in terms of Kronecker Products

and the Shuffle and Inverse Shuffle matrices [Sloate (1974)]. In the following we

assume that n = pt.

Theorem 1.6.7

(1.6-1) PP = I1{PX(1, ®Pn/p)

Proof Translating this into bit function notation we basically have to show that
P(k+1) = T(k+1)P(k)
This can be easily seen by comparing
Pk)(J) = be—1 ... bpbr_1...b1bo

and
Pk+1)(J) = be—y..  brboby .. . be_y

Lemma 1.6.2
(1.6-2) Pﬁ,”) = HSzp)(IP ® nf;‘;)p)(lpz ® Hff;)pg) (Inyp2 ® HL’;))

Proof Recursively plugging in 1.6-1 of Theorem 1.6.7.

Lemma 1.6.3
(1.6-3) PP = (M3 O 1,,:)(M1Y @ L/,3) - (¥ @ 1)1

Proof Lemma 1.6.2 and Theorem 1.6.3.
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This is the sorting scheme described by Singleton (1967) for p = 2. Let Mgcp) =
[chp)]_l‘

Lemma 1.6.4
(1.6-4) PP = (L @ MY)(L, 0 @ MP). (I, ® M M)

Proof Taking the transpose of 1.6-2.

ok
Lemma 1.6.5
(1.6-5) PP =MPMY) oL,)- - (MP & LMY ®1,),)
Proof Taking the transpose of 1.6-3.
*

Flip Permutation

The kth flip permutation is defined by flipping the (k — 1)th bit of the binary
representation of j.

¢ty (7)) = {bn-1,-- - Bk_1,..., 00}

where the bar denotes the complementation of a given bit. This permutation
corresponds to the data-transfer pattern of the radix-2 in-place FFT algorithms.

Shift Permutations
The forward shift permutation takes
{0,1,...,n -1} - {1,2,...,n - 1,0}
and is represented by the permutation matrix
R, =[e1,e2,...,e,_1,€q].
The backward shift permutation is

RZ = [en—lve07 €1,... 7e‘n—2]'



Reflection Permutation

The reflection permutation matrix T, is defined as follows

T. = E,RL.

1 0
-l gl ]

Let n be a positive integer, then

It can be shown that

7(j) =n—jmodn

This permutation occurs in the discussion of symmetric FFT's.

1.7 The Fast Fourier Transform

The discrete Fourier Transform (DFT) of a complex vector

(1:0711,' .. 71"71—1)T

is defined by

1l 2nj5k
y(k) == z,exp(—i ]
i’

), k=01,... n—1.
n

This expression describes the computation of n equations. Defining

.27

Wy = exp(—z?),

we can compose the n-by-n matrix F, by setting the j, k element of F, to be
wlkmodn  The discrete Fourier transform can then be written in the form of the

following matrix-vector multiplication:

Yo WO s W0 o
Y1 1 WOow w1 Ty
S : :
Yn—1 Wt wrl o Bl Tn-1

or more compactly as



(1969), Bertram (1970), Brigham ang Morrow (1967), Cochran et 47 (1967), Coo.
ley and Tukey ( 1965), Cooley, Lewis ang Welch ( 1969a, 1969b), Gentlemap and
Sande (1966)]

Kahaner (1970), Pease ( 1968), and Theilheimer (1969) for different versions of the
FFT. Sloate ( 1974) uses Kronecker product Notation and the Perfect shuffje base

Genera] Radix FFT Factorization

Let n = P w, = exp(—; 24). Define 5 diagona] matrix of weights

n
Deﬁnition 1.8.1

A,,/pk=diag(1,wn/k,...,w:/k ) k=pl = 1oyt =2



Definition 1.8.2

DY), = diag(Lypi, Anpis A2y, AL )

The basic splitting equation for the decimation in time FFT is introduced in
the following theorem.

Theorem 1.8.1
(1.8-1) F.I% = (F, 9L, DY, ® Fu/p)

Proof Theorem 3.4 in Van Loan [1987].

Corollary 1.8.1

(1.8-2) Fopell?, = (Fp®Lyu)DY) (L, & Fy )
k=p1,_] =0,1,...,t -2

Equations 1.8-1 and 1.8-2 can be applied repeatedly to obtain the radix-p deci-
mation in time algorithm that takes data in digit-reversed order and utilizes the
trigonometric weights in natural order. The use of 1.6-2 combines the shuffle

matrices applied during the recursion into the digit-reversal matrix P'?.
Definition 1.8.3 Decimation in Time (DIT2): Ifn = pt, then
F,P? = A,... A,

letting L = p9,
A= (T, ®(Fp ®11/,))1,/, ® DP)

The radix-2 Cooley-Tukey algorithm (CT2) is gotten by replacing p by 2.
The transpose of Theorem 1.8.1 gives,

Theorem 1.8.2
(1.8-3) M{PF, = (I, ® F,/,)DP(F, ®1L,/,)
Corollary 1.8.2

(1.8-4) Foptl1Y), = (Fp® L/u)DE,(I, ® Foyp)
k=p’,]=0,1,..., t—2
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The corresponding decimation in frequency radix-p FFT algorithm that post-sorts
the data and uses trigonometric weights in natural order can be derived from
recursing on equations 1.8-3 and 1.8-4 and using equation 1.6-4 to combine the

inverse shuffle matrices into P,(,p ).

Definition 1.8.4 Decimation in Frequency (DIF1): Ifn = pt, then
POF, = AT...AT

where letting L = 29,

A7 = (L, ® DP)(L,/; ® (F, ®1;,,))

By taking p = 2, we get the Gentleman-Sande (GS1) algorithm.

There are two more in-place algorithms that require the trigonometric weights
in digit-reversed order, DIT1 and DIF2. The radix-2 DIT1 algorithm is the original
Cooley-Tukey algorithm (CT1) where the data is input in natural order, trigono-
metric weights are used in bit-reversed order and post-sorting of data is required.
The DIF2 radix-2 algorithm is the Gentleman-Sande algorithm that requires pre-
sorting of data with bit-reversed ordered weights. Each pair of algorithms (DIF1
and DIT2) and (DIT1 and DIF2) can be used together to perform a forward trans-
form followed by an inverse transform without the necessity of bit-reversal of data
items.

The following theorem allows us to establish the factorization for the two canon-
ical forms in which the multipliers are applied in digit-reversed order.

Theorem 1.8.3 (Sloate (1974))

Fop = MZ (Lo ® Fp)(MY), DY), MP), )(F, /0 @ 1,)

n

k=p’, j=0,1,....t—2

Proof Starting with equation 1.8-2 and using theorem 1.6.3 we can commute
the next to the last term. Hence,

Fap = (Fp ® LDV (T, ® Frypu)MY)
= (Fp® In/pk)D?/)ka:;)k(Fn/pk ®Ip)
Next we commute the term (F, ® L./pi). Let v = I—;‘E and v = p”~! since F=p".

Then )
(Fp®L)= nyk(lv ® F,,)Mf:’/k
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The I'Iff/)k forms a group (mod v) under matrix multiplication, so that

(Fo@Lyp) = [Hg,”/)k]7"1(1n/pk ® Fp)[Mff/)k]"—l
= Mszp/)k(ln/zik ® Fp)nff;)k

*

Next we use equations 1.6-2, 1.6-3, 1.6-4, 1.6-5, theorem 1.8.3, and lemma 1.5.1

to recursively develop a factorization for the DIT1 FFT (PLP)F,,). We show the
first step in detail. Initially we have

IPF, = (L, @ Fp) (TP DPMP)F,), © 1)

()

Now we apply Hn/p

® I, to the left of the equation and recurse on F, /p-

(M%) © L)IPF, =
(Hn/p ® Ip)(1,/, ® F,)IIPDP M p)(M(p ® I,,)

(Lo ® Fp @ LY(ITY), @ L)(DY), 8 L,)(MP) @ L)(F, /2 ® Lz)

Using lemma 1.5.1, we can push the permutation (H(p) ®1I,) past the term (I,,,@

n/p
F,).

= (L, ® F,)(TL), o L TP DPMP (M), 9 1,)]

(Tnjp2 @ Fp @ (M), DY) ME)) @ LI(Fy 2 @ 1, 52)

Next theorem 1.6.3 allows us to commute the diagonal portion,

[(H(P) D(P) M(P)

n/pMnjp) @ L] = eI, @ n(p) p® M(p) ]M

n/p

Continuing in this manner we get obtain a factorization for the DIT1 algorithm.
Definition 1.8.5 Decimation in Time (DIT1): Ifn = p', then

pgp)Fn =C;---Cy

Let L = p9,
Co=(I ®F, ® L, )[PP(L,,. ® DY PP
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The radix-2 Cooley-Tukey algorithm (CT1) comes from p = 2.
The analogous Decimation in Frequency algorithm (DIF2) is now easy to come
by. We simply transpose the DIT1 factorization.

Definition 1.8.6 Decimation in Frequency (DIF2): Ifn =pt, then
F.PP =cT... cr
where letting L = pd,

C{ = [PP(L,;, ® DY )PP|(1;/, @ F,®1,,,)

The radix-2 Gentleman-Sande algorithm (GS2) is the special case p=2.

We next discuss some algorithmic details of the four in-place canonic forms of
the FFT, including stride length, multiplier application, and sorting. Notice that
at each step there is a data-permutation matrix and a coefficient matrix. The

coefficient matrix is a direct sum of matrices D(LP ). Recall that
DY) = diag(I;,,, Ay, Al Jpr 2 AR

and

Apj, = diag(l,wg,...,wl/P ),

Following are the algorithms for each canonic form and a listing of certain prop-

erties.

Algorithm 1.8.1 DIT1:
/* compute x — PPF,x */

fork=1:¢

q ]C, L — pq

x — (I, ® Fp ® L,/ )[PP(1,,, ® DP)PP)x
end

¢ post-sorting of data;
o multipliers applied in digit-reversed order;
e at step k in the algorithm:

— stride length n/L = p*~*:

— powers of wy = w,':/L = w!, where r = pt~¥,
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Algorithm 1.8.2 DIT2:
/* compute z — F,PPx */
fork=1:t¢
q k’ L~ pq

X = (In/L ® FP ® IL/p)(In/L ® D(Lp))x
end

e pre-sorting of data;
¢ multipliers applied in the natural order;
¢ at step k£ in the algorithm:

— stride length L/p = pF—1;

— powers of wy = WL = w! where r = pt—*.

— multiplier applied to z; is wimOdL/ P,

Algorithm 1.8.3 DIF1:
/* compute z — PPF,x */
fork=1:¢
g (t—k+1) Lo ph
x— (I ® D(Lp))(In/L QF,®@I;/,)x
end

e post-sorting of data;
¢ multipliers applied in the natural order;
¢ at step k in the algorithm:

— stride length L/p = p*—F:
/L

— powers of w;, = wn'~ = W], where r = pF-1;
— multiplier applied to z; is wJLm°dL/ P



Algorithm 1.8.4 DIF2:
/* compute x — F,PPx */
fork=1:¢
g—(t—k+1);, L=p? ,

x — [PP(L,, @ DY )PP1,/, @ F, I,/ )x
end

e pre-sorting of data;
e multipliers applied in digit-reversed order;
¢ at step k in the algorithm:
— stride length n/L = p*-1;
— powers of wy = wh/t = wh where r = pF-1

The version DIT2 has the property that the partial transforms which are produced
at the intermediate stages possess the same properties as the full transform. [Briggs
(1987)] This property makes the DIT2 FFT the most convenient to describe.

1.9 The Binary Reflected Gray Code

The Binary Reflected Gray Code (BRGC) can be defined recursively as follows:

Gy = [0,1]
Gay1 = [0G4,1GH

where 0G4 denotes the sequence obtained by prefixing each member of G; by 0
and GF is the sequence obtained by reversing the order of G,.

This particular Gray code has several important properties which we shall
summarize below.

Nearest Neighbor. The Hamming distance between any two consecutive (cycli-
cally) members of the sequence is equal to one. Example: For d = 4, 0100
and 1100 are the 7th and 8th elements, respectively of G4.

Exchange. The Hamming distance between elements Gy(:) and Gag(20 -1 1)
(1 < j < d), where all the subscripts are taken modulo 2(i+1) ig equal to one.
Example: For d = 4, j = 3, 1111 and 1011 are the 9th and 14th elements.
respectively of Gjy.
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Proof By induction. G; = [0,1] where G;(0) = 0 and Gi(2'-1-0) =1
80 it is trivially true for d = 1. Suppose that the sequence Gy also has this
property. Then by induction the Hamming distance between any pair Gae1(2)
and Gg11(27 —1—-4) (1 < J < d) is equal to one because both of them are in the
same half of the sequence since the indices are taken modulo 20+1). For J=d+1
we have Ggy1(¢) and Gy41(2%+! —1—1) which differ at exactly one bit, the (d+1)st .
bit by construction.

Ga11(i) = 0Gq(7)

Gan(2™ —1-4) = 1G4(i)
fori=0,...,2¢ —1
Gan(d) = 1G24 ~1-7)
Gy (2 —1~14) = 0Gu(2*! —1—14)

fori=24,... 24+l _1

*

Global Connectivity. The Hamming distance between elements G4(2) and Gg(i+
27) (j > 0) is precisely 2. The indices are taken modulo 29.

Proof [See Johnsson (1985)]
*

The first property shows that the BRGC is indeed a Gray code as claimed. Each
element differs from its neighbors at exactly one bit. The second property is the
exchange property of the BRGC where elements which differ only at the jth bit
are exchanges of each other around the jth dimension. And the last is a global
connectivity property since elements which differ by strides 27 (7 > 0), no matter
how large, remain at a constant Hamming distance of 2. This distance also does
not increase with the dimension of the Gray code.

Let By be the binary encoding of the numbers 0,1,...,2% — 1. We now show
that the binary encoding does not possess some of the important properties of the

BRGC.

Claim 1. The binary encoding B, does not possess the nearest neighbor property.
Example: For d = 4, 0111 differs from 1000 in all 4 bits.

Claim 2. The binary encoding B has Hamming distance j for elements that are
exchanges around the jth dimension. Example: For d = 4 the elements
0000 and 1111 that are exchanges of each other in all 4 dimensions are at a
Hamming distance of 4.
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Claim 3. The binary encoding By possesses the property such that elements that
differ by 27 when i and 7 + 27 are in the same (7 + 1)-dimensional sub-cube
have Hamming distance exactly one. This can be seen from the fact that
flipping the jth bit results in a binary number that differs from the original
one by a stride length of a power of 2. Example: For d = 4, 0100 and 0110
differ at only one bit.

Therefore one can conclude that while the binary encoding is superior in terms
of the particular powers-of-two connections needed for the FFT butterfly, it falls
short with regard to nearest neighbor connections and exchange connections, with
a maximum Hamming distance that increases with the dimension of the code. The
BRGC, however incorporates the best compromise between these three properties.



Chapter 2

Multiplier Computation, Error
Analysis

2.1 Introduction

There is no point in having an efficient computational procedure if the results
produced are not to the precision required. Errors in finite precision arithmetic
are unavoidable. The representation of numbers by a finite number of digits means
that most quantities cannot be represented exactly on the computer. If a number
z is represented by the nearest floating point number with precision t and machine
base b, then

fllz) = =1+  |d<u

where u is the unit roundoff defined by
1
— _bl—t
172

When arithmetic operations are done on floating point numbers, roundoff errors
occur. These errors can then be magnified by a particular numerical method.
The amount of magnification of errors is related to the stability of the numericai
method and its error propagation properties. Sometimes, two different ways of
computing a quantity, while equivalent mathematically, can produce drastically
different results when implemented in finite precision arithmetic. See Golub and
Van Loan (1983, pp. 32-38), for details on rounding errors.

Mathematically, the FFT is a sequence of sparse unitary matrix-vector multi-
plications based on the recursion

x® LA, k-1
p

30
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where A is defined in Chapter 1. Here we have n = p'. Since each —lﬁAk is

unitary, we have at each stage
A = -0 = = <O
and
[yl = IFax|| =[x}

letting x = x(®) and y = x(!). In what follows we denote A; = ﬁAk to simplify
notation.

The use of finite precision arithmetic, however, causes the matrix-vector prod-
uct to generate an error vector d; such that the computed recursion is

k) A x(k-1) 4 gk®)

Letting e*) = %(¥) — x(¥) we see that the error vector is also built up according
to a recursion,

e®) — Agelk-1) 4 dk) e® =0
or ‘
le®) < [lAx] - [le®=D)| + [a®))), le®]j =0
A} is unitary so it does not magnify errors, hence
le®] < fle®-Dj + |d®), le®) =0

where ®

a0 _

cmy ~ O

Because the FFT is performed in t = log, n stages, the final roundoff error should
be of the form
le®]

[
with ¢ a constant of order unity, or

= cte, e<u

I¥ — yll = O(log; n)ully||

Therefore if the A; and x(® are exact to full machine precision, we can expect
the final error to be proportional to the number of arithmetic operations.

In practice the matrices Ay are not exact. The trigonometric elements making
up A; are computed values, and are therefore inexact. For example, if the sine is
computed by series expansion, two sources of error will appear, the error from the
computational arithmetic and that caused by truncation of the series. Therefore
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careful computation of the entries of the DFT matrix (which we alternately call
multipliers or weights) is of prime importance if we want accurate results.

The purpose of this chapter is to bring into FFT error analyses, the question of
how various methods of computing the entries in A} alter the accuracy of the FFT.
Instead of assuming random noise in the computation of trigonometric functions.
we detail in a deterministic manner the errors incurred by various computational
methods and their transference into the FFT algorithm. We first focus on several
methods for computing these trigonometric functions. Properties such as stability. -
number of arithmetic operations needed per multiplier, the effect of previously
computed weights on subsequent weights, error propagation and magnification
are examined. Experimental data is used to confirm our analysis and general
bounds are given for the errors generated by each procedure. The error bounds
are then incorporated into an overall error analysis of the FFT where the norm
used is the infinity norm || - ||eo.

2.2 Previous Work

The roundoff error analysis of the FFT has been studied from several different
viewpoints. Gentleman and Sande (1966) show that the use of the FFT reduces
the upper bound for accumulated roundoff error by a factor of W%k—l—) (where

n = m¥) from that of computing the DFT directly by matrix-vector multiplication.
This established the FFT as both a more efficient and a more accurate procedure
than the DFT.

Fixed point error analyses were considered by the several researchers. Welch
(1969) analyzes the accuracy of using rounded sign-magnitude binary arithmetic on
a floating-block Decimation-In-Time (DIT) radix-2 FFT where the computations
between successive stages are statistically independent. Upper and lower bounds
were derived for the root-mean-square error, with the upper bound increasing as
Vvn or % bit per stage, and the lower bound increasing as %-logz n. Oppenheim
and Weinstein (1972) analyze the case where rounded binary arithmetic is used
on a DIT radix-2 FFT with white noise as data, while Thong and Liu (1976)
treat all cases generated by rounded or truncated 2-complement binary arithmetic
on DIT and Decimation-In-Frequency (DIF) radix-2 FF'T’s. Knight and Kaiser's
study (1979) cover truncated, rounded, complement, sign-magnitude arithmetic
for any number base using DIT or DIF, mixed-radix FFT algorithms with data
requiring any possible number of scaling shifts and give worse-case, rather than
probabilistic, bounds. They also discuss the possibility of trigonometric errors
affecting the results of the FFT.

A statistical approach for floating-point FFT error analysis is used by several
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authors who assumed random errors with zero mean, uniformly distributed in
the interval (—27%,27%), with ¢ the number of bits of precision. Weinstein (1969)
predicts the output noise-to-signal ratio in floating-point FFT computations for the
case of white noise and rounded arithmetic. The ratio is found to be proportional
to logy n. The author surmises that if chopped arithmetic were used, this ratio
would be proportional to (log, n)2. This is verified by Alt (1978). Bois and
Vignes (1980) then present a FORTRAN program that is used to estimate the
local accuracy of the FFT by computing the DIT algorithm three times, with
different random perturbations done on each run. The mean of the three runs
is used to estimate the result with comparison to the results obtained by double
precision. Their computed error estimations are in line with those suggested by
the theory.

A series of papers by Liu and several co-authors deal with the statistical
approach for finding bounds for the total relative mean square error (MSE) of
floating-point FFT’s. The DIF algorithm is first analyzed in Kaneko and Liu
(1970). They derive upper and lower bounds for the total relative MSE and find
that it is bounded by vlog,n and 3vlog, n (where v = 2-2¢ /3 is the variance of
a random variable uniformly distributed in (—27*,27*)). Liu and Kaneko (1975)
then extend the method to the DIT FFT and find that while the analysis is differ-
ent from that of the DIF approach for the individual Fourier coefficients, the upper
and lower bounds for the total relative MSE is identical. Thong and Liu (1977b)
next present a unified approach to DIT and DIF algorithms using their statistical
approach. Throughout their analyses they assume that the sines and cosines are
generated exactly. The same authors (1977a) also experiment with the use of a
double precision floating point accumulator for single precision FFT’s and find
that the roundoff for an N-point transform (N = a™), is O(m) independent of the
radix a. Finally Munson and Liu (1981) derive a rather complicated expression
for the floating point MSE of the prime factor FFT.

Prakash and Rao (1982) derive error variances for a multidimensiona] Vec-
tor Radix FFT algorithm using fixed-point arithmetic They find that the error
performance of the vector radix approach is superior to the conventional method
of successively applying one-dimensional FFTs when no scaling is done between
the stages, otherwise the vector radix approach is only marginally better. Pitas
and Strintzis (1983) analyze floating point Vector Radix-2 FFTs as well as Nuss-
baumer’s (1979) Polynomial transform and prove that the Vector Radix FFT has
better error characteristics for a two-dimensional FFT than either the Polyno-
mial transform or the regular row-column approach. Multidimensional transforms
were also considered by Chan and Jury (1974) who extend the method of FFT
error analysis to general orthogonal transforms that can be computed with fast
algorithms similar to the FFT.
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Ramos (1971) takes a different tack and presents the roundoff analysis of the
FFT as a sequence of sparse matrix-vector multiplications. In the bounds the
effect of roundoff in the computation of the sines and cosines are modeled, although
Just by an absolute error constant. The bounds show that the contribution of the
absolute error term for the computed sines and cosines is of the same proportion as
that of the total roundoff error incurred by the additions and multiplications. Tsao
(unpublished) compares the radix-2 DIT and DIF FFT algorithms and concludes
that they are “equivalent” in terms of error complexity measures.

Our approach is similar to that of Ramos and is defined in terms of the Cooley-
Tukey (CT2) algorithm in Chapter 1. The results for the Cooley-Tukey FFT are
then extended to the Gentleman-Sande FFT algorithm. The errors in cosine and
sine computation are incorporated as a function of how they are computed. As we
shall see, in some unstable cases, these errors can actually overwhelm the roundoff
errors incurred in the actual butterfly calculations.

2.3 Trigonometric Function Generation

The computation of a complex DFT F,x requires the computation of multipliers,
wi j=0,...,n/2-1
where wy, is the nth root of unity, exp( —%;"'- .
™ T

wl = cos(j — —1sin(j —=)

n/2 n/2

The generation of the cosines and sines of the angles j8 = j2n—"', with j ranging
from 0 to n/8, i.e. the angles between 0 and T is required. This is because the
following symmetries can be used to acquire the rest of the sines and cosines.

(2.3-1) cos(g—a) = sin(a)
(2.3-2) sin(g—a) = cos(a)
(2.3-3) cos(g+a) = —sin(a)
(2.3-4) sin(-g-l-a) = cos(a)
(2.3-5) cos(m —a) = —cos(a)
(2.3-6) sin(r —a) = sin(a)

There are many methods for computing these values [Oliver (1975)], most of
which are based on recurrence relations. A few methods are based on angle bi-
section. Oliver finds that the bisection methods exhibit error properties superior
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to that of the various recurrence methods. But in any case, the error analysis in-
volved demonstrates how mathematically equivalent recurrence relations can have
very different computational properties. In this section we consider the numeri-
cal accuracy of several methods. Details on implementation requirements for the
the FFT are discussed in the following section, while implementation on vector

processors and distributed memory processors is discussed in Chapter 3.
Let

6=2",
n
and set
c; = cos(j0)
sj = sin(j6).

The computed ¢;j and s; are assumed to satisfy

laj _ CjI < h;_nethodu

|§j _ Sjl < h;pethodu

where h;-"‘”“’d varies with j and is dependent on the computational method used.
On a system with good COS and SIN library functions, it is not unreasonable to
assume that cosines and sines can be computed to machine precision, i.e. hf) C=1,
(DC stands for the Direct Call method of Algorithm 2.3.2.)

Different methods for the computation of ¢; and s; and equivalently w; =
c;j — 18; are presented and the error coeflicient h;-"e”wd developed for each method.
To standardize our discussion we define the problem as:

Given: n, and 0 = 27"' Find: cj and s; for j = 1,...,n/8 such that

¢j = cos(j8) and s; = sin(76).

The following algorithm creates a table of the n/2 cosines and sines of the angle
78, 7 =0,...,n/2, i.e. the angles from 0 to .

Algorithm 2.3.1 Create Table

o= 2=

for jn= 0:n/8-1
c(j) « COS(j8); s(j) — SIN(j6)
c(n/4 —3) < 8(j); 8(n/4—3) «~ <(j)
c(n/4+3) < —s(j); s(n/4 + ) « <(3j)
c(n/2 — j) « —<(j); s(n/2 = 3) «— s(j)

end



36

Library Functions

The most straightforward method is to use direct calls to the COS and SIN library
functions.

A simple procedure for generating a table of cosines and sines can be written
for any n.

Algorithm 2.3.2 Direct Call
c(0) «~1;s5(0) «0
for j = 1:n/8

a=7—1§5-7r

c(j) « COS(a); s(j) « SIN(a)
end

Theorem 2.3.1 If fl(y) = COS(z) = cos(z)(1 + ¢), and fl(y) = SIN(z) =
sin(z)(1 + €5), with |e] < u, then computing ¢j and s; by direct calls to the COS
and SIN routines produces ¢; and S; such that

g — ¢l < hPCu
15 — 5] < RPCu

where thC =1.

This method gives the most numerical accuracy and we use it as the “correct”
solution for comparison with the other methods.

Forward Recursion

Forward recursion is based on the relations,

cos(jf) = 2cos(8)cos([j — 1]0) — cos([j — 2]6)
sin(j#) = 2cos(8)sin([j — 1]8) — sin([j — 2]6)

A simple procedure for computing the cosines and sines of successive angles
follows.
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Algorithm 2.3.3 Forward Recursion
=)
c(0) «1;35(0) «0
(1) — COS(8), s(1) — SIN(8)
tcl «— 2-¢(1)
for j=2:n/8-1

c<(3) = tet-c(i —1) —e(j —2); 8(3) — tet-8(j — 1) — s(j — 2)

end

Each step of the recursion involves one multiplication and one addition. Therefore
roundoff error ~ 2u is incurred at each step. How these errors are magnified can
be clarified by looking at the matrix which represents the relevant computations
at each step. We focus on the cosines. However the same analysis applies to the
sines since the recursion formulas are similar. The transition from step 7 —1to
can be written as the following matrix-vector multiplication:

B |k

Let A be the forward recursion matrix.

_ 201 -1
= 7]

Let the initial error vector be

e=[§], | < u

assuming the only errors are in ¢;. We have
lAellz < [|All2]le]}2

therefore all we have to do is to find the two-norm of A to get a bound for the
magnification factor.

Theorem 2.3.2

JAllz = /262 + 1+ 261/ 4 1

Proof ||Allz = [AmasATA]Y/2. Working through the algebra, we find that

A=2cf +1+2¢1\/ci+1



38

Theorem 2.3.3 If¢; and 3 are computed via Algorithm 2.3.38 then
&i =<l < hfFu+0O(u?)
5i = ;1 < AFRu+0(u?)
with th = (le1] + f|e1|? + 1)?
Proof fl(c1) = COS(£1(8)) so:
|61 - Cll S h{)Cu
= [2(&18-1)(1 4 6;) — §_2)(1 + ¢;)
From the forward recursion formula:
cj = fl(Cj) = fl[2fl(515j_1) - 5j_2]
So that
€5 —cil < 16— (2818j-1 — &j—2))
+|2516j_1 - E]‘_g - le

IN

|2618;-1(8; + €;) — &j-2¢j]
+|2515j_1 —2c1c-1| + IEJ'_Q - cj—2|

< 2ugj] + 2[&|€j-1 - ¢j-1

+[2¢;-1l[61 — e1] + |j—2 — ¢cj-a

< 2ugl + 2|c1|hfﬁu +2|c;—1|hPCu + hf_gu + O(u?)
The roundoff error for each step if 2u. The magnification of the error from the
previous cosine c,_; is reflected in the term

2le1|hfBu.
The error in the j — 2 cosine ¢;_; is represented in the term
FR
hj_zu

Solving the recurrence

th =zl = 2|c;|2?"! + Tj—2

hER = (sl + \/lea|? + 1)

The same analysis can be carried out for the sines.

gives us
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*

This algorithm is unstable because it magnifies roundoff error at each stage by

roughly a factor of |e1]|+1/|c1]2 + 1, a quantity greater than 2|c1|. Furthermore. the
roundoff error introduced at each step propagates exponentially into subsequent
steps.

Repeated Multiplication

Another way to generate FFT weights is to observe that exp(—i(j6)) = cos(j6) —
1sin(j6). Let w’ = exp(—i(j6)). Then w/*! = w - w7,

Algorithr(n 2).3.4 Repeated Multiplication
f=(2=
c(0) «1;s(0) «0
c(1) « COS(8); s(1) — SIN(6)
for j=2:n/8-1
(i) —c(1)-e(i-1)+s(1)-s(j —1)
Z(J') —=s(1)-c(j—1)+c(1)-s(j —1)
en

Each step involves one complex multiplication which breaks down to two multi-
plications and one addition for each trigonometric function. The multiplication
w - w’ is a Given’s rotation;

c]‘ - C1 $1 Cj-1

3j —81 ¢y s]'_l
Given’s rotations are orthonormal and therefore do not magnify roundoff errors.
Their properties are presented in Golub and Van Loan (1983, pp. 43-47).
Theorem 2.3.4 If&; and §; are computed via Algorithm 2.9.4 then
hEMu 4 O(u?) + O(u?)

<
< hEMy 4 O(u?) + O(u?)

with hEM = 2



40

Proof Since ¢; and s; are computed by calls to the cosine and sine function we
have:

&1 — a1l < h{Y%u
|§1—Sll S hf)cu

Let y; = [cj,5;]T and G be the Given’s rotation. Then

fl(é'\yj—l) =Gy, +E,

where
IEll2 £ ly;-1/l20(u)
We have
¢; = fllfl(é1¢;-1) + fl(5155-1)]
= [(&18=1)(1 + 61) + (515j-1)(1 + 62)](1 + &1)
so that

18— ¢l < & —@8j-1 + §18;-1]

+[€1€j-1 — c1cj-1| + 1518j-1 — s185-1]

< 2ulggl + [allgi-1 = ¢j1] + |ej-1llér — a
+1511185-1 — sj-1] + |s;-1]]51 — 81
< 2ulg] + @] u

+lej-1h?Cu + 151 [REMu + |s;21 AP0 + O(u?)

Since |e1| < 1 and [s1] < 1, the error from the previous cosine hf”{ is not magnified

and the absolute roundoff error, 2u|c;|, decreases as c¢j — 0. Therefore th = 2j.
this is quite a liberal upper bound for the error. The analogous computations give
the same result for the sines except that the roundoff error 2uls;| increases from
near 0 to 2u as s; — 1.

Logarithmic Recursion

The methods in the previous two sections call COS and SIN only once, namely
to compute ¢; and s;, and thus suffered degeneracy of accuracy as j increases.
To garner more accuracy throughout the range of j, we could use the approach
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of computing a logarithmic number of cosines and sines exactly and derive the
remaining ones. A natural distribution is to compute

{e;: j = 2%, k=0,1,...}

{Sj:j=2k, k=0,1,...}

by calls to the COS and SIN routine. Using the recurrence formula:

cos(A + B) = (2cos(B))cos(A) — cos(A — B)
sin(A + B) = (2cos(B))sin(A) — sin(A — B).

we derive a method of computing the rest of the c¢;’s and s;’s. Of course, this
necessitates the storage of all the previously computed weights. In forward recur-
sion, the angle B was always 6 and A ranged from 6, 26,... etc. In logarithmic
recursion, the angle B is 6 at first, then 26, then 46, etc. Meanwhile for each of the
B’s = 2%9, A will range from 6 to (2F — 1)8. The angle B represents the cosines
that were computed by calls to COS. The following procedure generates ¢; and

. A— n
si»1=1...,%

Algorithm 2.3.5 Logarithmic Recursion
n=2! 6= Vol
c(1) « COS(8); s(1) « SIN(8)
fork=1:t—-4
j =2t
<(3) — COS(j8)
s(j) — SIN(j6)
form=1:;-1
(5 +m)  2¢(3) - o(m) - <(j — m);
53 +m) — 2¢(3) - s(m) + s(j — m)
end
end -
j = 2t—3
c(j) «— COS(;0); s(j) « SIN(j6)

Notice that we stay in the first quadrant so that cos(A — B) = cos(B — A).
This explains the subtraction by Cj—m in the main loop. For the sines, we have
sin(A — B) = —sin(B — A) explaining the addition by Sj—m.
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If n = 2*, then j ranges from 0 to n/8. Let j = (b;_3...b1bg)2 and define

t—2
Bi =3 b

1=0

B; is the number of bits in j’s binary expansion that are equal to 1. Since all

{7 : j = 2F} were computed by direct calls to COS or SIN, € = cqr + € and

gSk = Szk + €, i.e. thkR = hgc = 1.

Theorem 2.3.5 If ¢; and 5; are computed via Algorithm 2.3.5 then

P

le; —cj] < h]LRu
|§j—Sj| < hJL-Ru

with [RFR| = [Tp=1(legi| + y/legs 2 + 1)

Proof First we have

= [282k6m(1 + 51) - 62"—m](1 + 61)

and thus

[6j —¢il < 185 — 28u8m — Ep_p
+1285kEm — 2¢orcm| + |3k _py — €k
< 2uc;| + 2|6k]|Em — cml
+2lem||Epr — cor] + 106y — Cok
< 2u|cj| + 2jeyr|hEBu + 2|cm|h3£mu + hfﬁmu + O(u?)

[fl(e;) = 5| < 4ulejl + 2lep |hru + 2lem 2w + AEE u + O(u?)

There are a logarithmic number of multiplications and additions for each J so that
roundoff is of order 3;. However, this method also suffers from the instability
analogous to that of forward recursion, although not to such a great extent. The
error coefficient for ¢,y is multiplied by |eye| + \/|cye|? + 1 where Boe = 1. We
have 3; = 1 + B, due to this by_; = 1 term. Since the error coefficient for Cm

includes all the other |cy| 4 y/|cyi|2 + 1 where b; = 1, the error for ¢; is simply

|car[+1/lcg|? + 1 times the error for ¢,, and is thus a product of the leil++/leil?2 + 1

for b = 1. Cosines decrease as the argument goes from 0 to 1 and therefore
error magnification is not as bad as forward recursion. There are only 3 ; steps to
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contaminate. Letting the binary representation of j be by_3 . . . , bo, an approximate
bound for the magnification factor for c; would be

IT ezl + Vieal2 + 1.

1:5;=1

This says that the only factors |cy| + y/|cyi|2 + 1’s that enter into the error of J
are those where j’s ith bit is equal to 1. The same bound holds analogously for
the sines, although sines increase from 0 to 1.

Subvector Scaling

This method also computes the c;’s and s,’s where j = 2F k£ =0,1,. .. by directly
calling the COS and SIN routines The rest of the weights are computed by noting

wi = w'|51°82 7} .wi—UOS'z b
At each stage k we have the weights w(0 : 2¥ — 1) and we can compute
w(2F: 2F 1y = w2 (0 2k 1)

by scaling our previous vector of weights by w?,k. The following algorithms com-
putes the weight vector by this method.

Algorithm 2.3.6 Subvector Scaling
n=2%

c(0) (<—— )1; s(0) « 0
¢ — COS(0); s — SIN(6)
c(1) —c;8(1) ~ s
forg=1:t-4
L—2%L,~L/2
forj=0:L,-1
cLo*+jde—c-c(j) +s-8(j); s(Lo+j)e— —s- c(j) +<-s(3)
end
N — No/2
0= (%)
c—COS(6); s — SIN(6)
c(L) «c, s(L) «s
end
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Each w’ needs only a maximum of ¢t —4 multiplications. The multiplications are all
Given’s rotations and hence do not magnify errors. The following theorem proves
that there are a logarithmic number of multiplications. Here we let the complex
weight vector w(0 : n/8 — 1) represent ¢(0 : n/8 — 1) +:s(0:n/8 —1).

Theorem 2.3.6 Let n = 2t and j = (by_3...bo)2, where b; is the ith bit in the
binary ezpansion of j. Then computing the weight vector w(0:n/4-1) by Algo-
rithm 2.8.6 gives w(j) as a result of

Proof This is based on induction with ¢ = number of bits involved.

complez multiplications.

g=1 3 = 0 w(0)=1,
no multiplications
J = 1 w(l) = wy,

direct computation, no multiplications

Now assume this is true for ¢ = k, i.e. j = (Bk—1...b1bo)2. w(j) is a consequence
of (bg—1 +--- + bp — 1) multiplications by the induction hypothesis. There are two
cases.

w(07j) = w(j)
result carries over
since b; = 0 here, hence true for ¢ = k + 1.

¥(173) = wyp - ¥(j)
one multiplication + what we had previously

since by = 1 here, we have a total of (br +bg—y +---bp — 1) multiplications, and
hence the result follows for ¢ = k + 1.

Theorem 2.3.7 If ¢, and 3; are computed via Algorithm 2.3.6 then
IE]‘ - le < hfsu
15 =551 < hj%u

with hfs = 2B;, with B; the number of bits in j’s binary ezpansion that is equal
to 1.
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Proof Each

€5 = Cllogy j] * €j—|log, 1ia Cllogy 5] * Sj~|log, j)-

]
roundoff for this step. Each Given’s rotation adds roughly 2u to the roundoff, but

does not magnify them. From the proof of Theorem 2.3.4, we see that

Therefore the errors for each c; are those of Cj~|log, ;] and Sj-|log, ;] Plus the

-~ SS DC
& = sl < 2ule;l + lejiog, j) A7 1og, 18 + e (1og, jj1ABS, ju
5S DC 2
+|SU°82 7] lhi"UOSz jJu,Sj-[1082 7] Ihl_logz jju + O(u )
Recall that 3, is the number of ones in the binary representation of j, hence

hf S = 28; The sines are computed in the same manner so that a similar accounting
of errors gives the same bound.

*

The error properties of this method are extremely good. The stability is that of
the Given’s rotations combined with only a logarithmic number of multiplications.

Recursive Bisection

A stable method introduced by Hopgood and Litherland in the 1960’s involves
interpolation. [Oliver(1975)] The underlying relations are specified by the trigono-
metric identities:

(2.3-7) cos Acos B = % {cos(A — B) + cos(A + B)}
(2.3-8) sinAcos B = % {sin(A — B) +sin(4 + B)}

Notice that A is an angle that is half-way between the angles A— B and A+ B. This
means that if we knew the cosines or sines for A — B and A4 + B, we can then find

the cosine or sine of A by one multiplication, one addition and the computation
of cos B.

Suppose n = 2t and § = ﬁ'z' and we wish to compute the cosines Cj = cos j %
and sines s; =sinjn"5, J=1,...,8 -1

Algorithm 2.3.7 Recursive Bisection
c(0) —1;,8(0) «0
c(n/8) « v/2/2; s(n/8) — V2/2
for L = 4:t
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i —n/2L, j —njol
c(n/2L) «— COS(2r/2L)
s(n/2L) « SIN(27/2L)
h «— 1/2¢(n/2%)
for m=1.2L/8 — 1
Je—7+2
() =h-(cG—1)+e(i +1)); s(3) — A (s(3 — 1) +c(j + 1))
end
end

Again the powers-of-two multipliers are computed by direct calls to the COS
and SIN functions. Therefore we have {c;, s;: j = 2¥}. To get the rest of the
¢;'s and s;’s we must compute them via Equations 2.3-7 and 2.3-8. How many
steps it takes to get to a particular j depends on the number search steps S; it
takes to “find” j when initially only the powers of two are available. For example,
if we had {1,2,4,8,16,32}, S3 = 1, since it comes right in between 2 and 4, which
we have. Sg = 1 also, since it comes right in between 4 and 8. Sy4 = 2, since we
have to first get 12 between 8 and 16, and then 14 between 12 and 16. If we write
out these numbers in binary, we see that S ; 18 equal to the position of the highest
order 1 minus the position of the lowest order 1. Let J=(bt...b1bo)2

Lemma 2.3.1

(2.3-9) Sj = maz{k: b =1} — min{k : by =1}

Proof Since we initially have all the powers of two, the number of search steps
needed to find them is 0. Each binary representation of 2% has a 1 at the kth
position and zeros everywhere else. Thus Spe=k—k=0. {j:j=2F42F1} can
now be found by averaging between 2* and 25+! for each k. These numbers have
a 1 at the kth position and another 1 at the k — 1th position, thus Sok pok-1 =
k —(k —1) = 1. Next all the numbers {j : j = 2F + 2k=2 ;j — ok 4 ok~1 | 2F—2}
can be found by interpolating between {j : j = 2% j = 2% + 2%=1}, These numbers
all have a 1 at the kth position and another 1 at the k — 2th position. Some of
them also have a 1 at the k — 1th position and others have a 0 there, but for our
purposes, it does not matter. We can now see a pattern emerge where all numbers
{j:j=2F+ (Zf;kl_sﬂ bi2*') + 2F=3} have search number S; = s, representing s
bisection steps.

Lemma 2.3.2

Sj = |logymy]
where mj; = j /(5. AND. ~ j)
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Proof In two’s complement arithmetic, 7. AND. — j determines the number
which is represented by the trailing 1. For example,

1010.AND. - 1010 = 1010.AND.0110
0010

Dividing 5 by j.,AND. — j has the effect of stripping away all the trailing zeros.
Hence for our example, 1010/0010 = 0101. Now taking the floor of the logarithm
base two of the result gives us the spread between the highest order 1 and the
lowest order 1.

*

Let I; = log,(j.AND. — j), then [; gives us the number of trailing zeros in ;.
ci; is the cosine of the angle which is half of the spread between ¢j-1; and c;yp;,
and similarly sy; is the sine of the angle which is halfway between s j—1; and s ;-

Theorem 2.3.8 If¢; and 5; are computed via Algorithm 2.3.7 then

thu
thu

IN A

with hfw = 25; where S; is described by Equation 2.3-9.
Proof We have

& —cil < Ig- 2—;’;(51'-1,- +2j40,)
oy — sy + | it — ey |
2¢y; 7 2 1 2¢y; T 2 7
< Ic%lc,-l + él—clmhf_l’,j + §Ii—lj|-hfﬁj + O(u?)
Hence
& — ;] < 2u lej| | max(S;_y;, Sy )u +O(u?)

Icljl 'cljl

and thus hfw = 25;. The sines are computed by the same formula so analogous -
results hold.
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Experimental Results

The results using single-precision arithmetic on a VAX shows that subvector scal-
ing with the direct computation of the powers-of-two weights fares the best overall,
with recursive bisection a close second. Table 2.1 shows the magnification factor
for the maximum component error of a vector ¢ consisting of cosines. This is
computed as the maximum error divided by the single precision machine epsilon,
which on the VAX is 2.98023e — 08. Table 2.2 shows the root mean square error
of the vector ¢ and thus takes an average error of all the components. Again, this
error is divided by the single precision machine epsilon.

When Forward Recursion and Repeated Multiplication is implemented in dou-
ble precision, we do not get magnification of errors until n is quite large with
respect to % This is, of course, a machine dependent parameter. For Forward Re-
cursion, this starts at n = 32768, and for Repeated Multiplication, n = 2097152,
Table 2.3 compares the magnification factors of these two method with respect
to single precision machine epsilon. The use of double precision for Forward Re-
cursion delays the appearance of significant amounts of error until about n = 107
since the single precision unit roundoff for the VAX is about 10~8. See Table 2.3.

2.4 Multipliers for the FFT

We do not have to worry about the error coefficient and its ordering and placement
in the FFT algorithm for the method of Direct Call to Library Functions since
it is assumed to be constant for each ¢; and s;. However for the other methods.
each multiplier and its error coefficient h;-’“”“’d must be linked explicitly to the
components of x that it is applied to. We must therefore be able to pinpoint the
exact multiplier that is applied to each component at each stage.

The radix-two FFT algorithm for a vector x of length n = 2¢ runs through ¢

stages (k = 1,...,t). Denote xgk) to be the jth component of x at the completion

of the kth stage. At the beginning of stage k, the multipliers are applied to x(*~1).
The particular multiplier used in the CT2 butterfly involving z; is

; (r/2)
w{m°d2 , r=2k

The angle used at stage k is §; = 27/2*% hence w, is directly computed. Since

wg'mod2("/ ) is used for transforming xgk—l) to zgk)
(k)

3

, the error coefficient associated
with 2>/ is

k
hjmod2("/2)’ r = 2 .
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Table 2.1: Maximum Error Magnitude = ||c||oo/u

Forward Repeated Logarithmic Subvector Recursive

n Recursion = Multiplication  Recursion Scaling  Bisection

8 5.0 1.0 1.0 2.0 0.0

16 47.0 2.0 5.0 3.0 2.0

32 34.5 2.0 11.5 3.0 2.0

64 321.0 2.0 16.0 3.0 4.0

128 50.3 4.0 21.0 6.0 4.0
256 6353.4 14.4 57.0 4.0 4.0
512 14705.1 17.5 95.5 6.0 6.0
1024 18818.1 8.0 151.4 6.0 8.0
2048 373315.0 21.0 172.0 6.0 8.0
4096 682278.0 12.0 519.5 6.0 10.0
8192 1.87937e+06 35.0 717.5 6.0 12.0
16384 3.35480e+07 34.0 1920.9 6.0 12.0
32768 3.35512e+4-07 38.0 5137.7 8.0 12.0
65536 3.35528e+07 24.0 6746.0 8.0 12.0
131072 3.35536e+07 47.5 7550.2 8.0 12.0
262144 3.35540e4-07 136.0 7952.3 8.0 14.0
524288 3.55542e+07 492.0 8153.3 8.0 14.0

1048576 3.35543e+-07 5300.7 8253.8 12.0 14.0
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Table 2.2: Root Mean Square Error Magnitude = ||c||yms/u

Forward Repeated Logarithmic Subvector Recursive

n Recursion  Multiplication = Recursion Scaling  Bisection

8 4.8 1.5 0.5 1.5 0.0

16 31.3 1.5 1.9 2.1 1.0

32 19.2 1.1 5.3 1.9 1.1

64 146.7 1.0 6.5 2.0 1.4

128 31.0 1.6 7.3 2.0 1.4
256 3238.7 8.2 19.4 1.8 1.8
512 7981.9 10.0 31.5 2.1 2.1
1024 10514.6 3.2 50.6 2.0 2.1
2048 198593.0 11.9 56.4 2.2 3.3
4096 357597.0 6.2 181.3 2.2 4.2
8192 1.34489e+06 20.8 235.7 1.9 5.0
16384 1.59806e+-07 20.3 661.4 1.9 4.9
32768 1.59795e+-07 16.0 1793.2 1.9 5.0
65536 1.59789e+-07 14.6 2291.6 1.9 5.2
131072 1.59787e+07 26.5 2536.0 1.9 5.4
262144 1.59785e+-07 55.3 2657.3 1.9 5.6
524288 1.59785e+-07 264.8 2717.8 1.9 5.8

1048576 1.59784e+4-07 2781.9 2748.0 1.9 6.1
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Table 2.3: Double Precision Implementations

Forward Recursion Repeated Multiplication

n MAX RMS MAX RMS
32768 2.0 0.1 - -
65536 2.0 0.2 - -
131072 2.0 0.5 - -
262144 2.0 0.6 - -
524288 4.3 2.3 - ~
1048576 16.0 8.3 - -
2097152 65.6 34.0 - -
4194304 66.4 34.6 - -
8388608  1230.2 635.3 3.1e-02 1.5e-05
16777216  6388.3 3299.3 6.1e-05 -
33554432 14912.5 7799.4 1.0 2.9e-04
67108864 18841.0 10058.6 2.0 5.2e-04

(~ means it is < u.)

This means that we are using the (j mod 25=1)th cosine and sine generated by a

particular method. Let
R _ k-1
= j mod 2

denote the order of creation that the multiplier applied to zg-k_l) to produce xg-k)
at the kth stage of the CT2 FFT algorithm. This notation serves as a shorthand
in our multiplier-connected FFT error analysis.

The multiplier used on xg»k_l) to get :cg-k) at stage k in the Gentleman-Sande
(GS1) algorithm is z; at stage k is

wgmod(s/Z)’ s = 2t—lc+l‘

Therefore, the corresponding shorthand is,

(k)GSl

m:

5 = j mod 2%,

The above indices for the weights are applicable to the two methods, Forward
Recursion, and Repeated Multiplication, where at each stage, a different § = 27 /2%
is used as the initial angle. This is because these two methods, when used efficiently
and intelligently, do not store a table of cosines and sines, and thus to capture the
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best possible error properties, i.e not let j get too large, we generate the multipliers
at each stage with the largest initial angle possible.

The methods requiring the direct calculation of a logarithmic number of weights
are usually implemented in an FFT subroutine by initializing a table first. This
table is of length O(n) and hence includes all the cosines and sines of angles which
are a multiple of zn—", n = 2!, At each stage in the FFT algorithm one would
perform a table lookup for the correct weight. The correct error coefficient would
be corresponding to the index in the table that the weights are placed, since it has
something to do with the order with which the weights are computed. In addition.
recall that not all the weights are actually computed. The symmetries of the cosine
and sine function (eqns. 2.3-1- 2.3-6) are all that are needed to determine the
rest. Hence for methods requiring table lookup (Logarithmic Recursion, Subvector
Scaling and Recursive Bisection),

(k)CT2
J

GS1
)

m = G(2'7%(j mod 2*=1)) mod (2!3)

= G(2*7!(j mod 2!™*)) mod (2t-%)

where G() is the Binary Reflected Gray Code of Chapter 1.

The method of directly calling the Library Functions is most sensible for gen-
eral purpose FFT computations where a large number of FFTs are done. Here a
O(n) table is created once at the initialization phase. Swarztrauber’s FFTPACK
pretabulates the weights during the initialization phase. The Digital Signal Pro-
cessing Committee (1979) FFT subroutines also use direct call, but without storing
the weights in table. They simply compute the cosines and sines as needed.

The FFT subroutines in Press et al. (1985) use double precision Repeated
Multiplication for computing the FFT weights, as does the FORTRAN code in
Swarztrauber (1984a). Forward Recursion is not used by anyone known to the
author, for obvious reasons.

Logarithmic Recursion is not used in practice but was described primarily
to illustrate that magnification errors can overwhelm roundoff errors, Repeated
Multiplication consists of a stable set of computations, but has O(j) steps for
each ¢;. Meanwhile Logarithmic Recursion has only O(log, j) steps per c;, vet
its absolute error is much worse than that of Repeated Multiplication because
of the exponential magnification of these O(ulog, j) errors. Subvector Scaling is
also an O(log, j) procedure but with a stable algorithm. Hence its error bound is
proportion to log, j.

Recursive Bisection is used by Buneman ( 1987) in his FFT codes. Buneman
(1987) also describes a way of generating the ¢;’s and s;’s in the natural order by
requiring only O(log, n) of table storage.
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2.5 Error Analysis of the FFT

Floating Point Complex Arithmetic

In this error analysis, we compute the componentwise error of the Cooley-Tukey
radix-2 FFT algorithm. Since the arithmetic done is complex, we start by deriving
a model for floating-point complex arithmetic.

Lemma 2.5.1 (Floating-Point Real Arithmetic) If a and b are floating point

numbers and O is a binary operator, then by the model of floating-point arithmetic
in Golub and Van Loan (1983) we have

fl(aDb) = (aTB)(1 +¢), e <u

where
| fl(aDb) — (aDb)] <u
la0b| -

A complex number z is represented by the ordered pair

alb #0

r = (zR,zJ).

Let z be a floating point complex number and % be the computed quantity
for z. Let u be a machine dependent constant, floating point machine precision.
Then the difference between 7 and z can be quantified by 8(z) where

|Z = z| < 8(2)u + O(u?).

We use this function 6(2) to keep an account of the amount of error accumulated
during a series of floating point computations leading up to z.

First we establish the model for floating-point complex arithmetic as it relates
to addition and multiplication.

Lemma 2.5.2 (Floating Point Complez Addition) If ¢ = (zp,z1) and y =
(yr,y1) are floating-point complez numbers and if 2= fl(z +vy), then

2~ 2] < ud(z)
where 8(2) = |z|.
Proof
fiz +y) = fi(zr + yr) +ifl(z1 + y1)
= (zrR+YR)(1 +€er) +i(zr +y1)(1 + 1)

= z+ep(zr +yr) + ter(zr +y1)
ler], ler] < u

N)
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12—z < lerl®ler +yrI® + les |z + yr|?
<

u’(lz +y[?)

*

Lemma 2.5.3 (Floating-Point Complez Multiplication) Ifz =(zg,z7) andy =
(yr,y1) are floating-point complez numbers and if 2= fl(zy), then

|z — z| < ué(z) + O(u?)

where §(2) = 2|z|.

Proof

N)

fllzy) = [zrYR(1 + 61) — z1yr(1 + 62)|(1 + €R)
+ilzryr(1 + 63) + zryr(1 + 64))(1 + ¢1)

TRYR — TIYI + O1TRYR — S271y1 + €r(TRYR — 1Y)
+i[zryr + TRYI] + 632 1yR + 184z RYI + i€1(TIYR + TRYI)
611, 621, 1631, 164, ler], ler] < u

Recall that the norm of a complex number z = (2R, z1) is equal to the two-norm

[
of the two-vector | “F , hence

I

| | i ]

21

Im[z] +

biz —boz
= AL el 2 ]
[ er(ZRYR — z1y1) }
e1{(z1yR + TRYI)
ulz|lyr| + ulz|lyz| + ulz|
ulz|v2y| + ulz|
(1+ V2)ulz|

2

2

I IA A

or |7 — 2| < (1 + v/2)ulz| + O(u?) and

2 — 2| < §(z)u + O(u?)

with §(2) = (1 4+ V2)|z|.



55

*

Having defined the bound §(z), we now need to know how they accumulate from
previous floating-point computations. For example, given computed quantities
and 7 with discrepancies §(z1) and 6(z;), respectively; the quantity £ = fI(3,0%)
has a new discrepancy 6(z) derived from discrepancies of the two terms and a
contribution from the operation O performed.

Lemma 2.5.4 (Compounding Errors—Addition) Ifz =214+2, and 5 = fl(z1+
Zy) where

|27 - Z]l < (5(21)11 + O(uz)

22— 22| < §(z2)u+ O(u?)

then

|2 — 2| < 6(2)u + O(uz)
where

0(z) = |z| + (1) + 8(22)
Proof

Z=(z1+22)|<Z— (A +2)|+|51+ 5 — (21 + 22)|

we know from the lemma on complex addition that the first term on the right
satisfies

= |z]u + O(u?)

12— (214 2)| < |51+ Zlu+ O(u?)

SO

|2 — (21 + 22)] 12— (Z1+ %)+ 51— z1] + |52 — 2]

<
< (l2l +8(21) + 6(22))u + O(u?)

*

The corresponding result for multiplication is described in the next lemma.

Lemma 2.5.5 (Compounding Errors—Multiplication)  Suppose z = 212, and
Z = fl(21%;) where

21 — 2]

|22 — 29

6(z1)u + O(u?)

<
< 8(z2)u+ O(u?)
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then
|2 — 2] < 8(2)u + O(u?)
where
8(z) = (1 + V2)|z| + 6(z1)|22] + 8(22)|z1 |
Proof

2= (2122)| < 12— (212)| + 215, — 2129
From the lemma on complex multiplication, the first term on the right satisfies

Z-512] < (1+Vv2)|55(u+ 0(u?)
(1+ v2)|zJu + O(u?)

and
12— (2122)] < |2 = (212)] + |31]155 — 22| + |z2]|21 — 21

or with |Z]| & |21] we get

2= (2122)] S {1+ V2)lz| + [8(21)|z2] + 8(22) |1 [Ju + O(u?)

Butterfly Errors

We present two separate error analyses for the radix-2 FFT, one using the Cooley-
Tukey (CT2) procedure and the second one the Gentleman-Sande (GS1) algorithm.
In order to track the effect of multiplier computations we measure the error of each
component of the transform with a bound given by the infinity norm of the starting
vector. This type of analysis, emphasizing the error of each component, highlights
the different error properties of the Cooley-Tukey algorithm versus that of the
Gentleman-Sande algorithm. Although the order of magnitude between the two
methods are equivalent, differences in the individual components result from the
differences between the algorithms.
Recall that the CT2-FFT computes the DFT

1
X —Fnan,
n

and the CT2 algorithm can be written conveniently as follows,
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Algorithm 2.5.1 x « P,x

fork=1:¢
X — Apx
end
x<—%x

where Ay =1,,; ® By, L = 2F and
Ig App
B, = / /
[ L2 —Ap,
and Ay, = diag(l,wp,... ,wf/z_l). Each B; has exactly two nonzero elements
per row and two nonzero elements per column. Hence By is composed of indepen-

dent 2-by-2 matrices superimposed on each other. We call these 2-by-2 matrices
CT2 Butterfly matrices and denote the generic CT2 butterfly by

1 w
n=|) 2]

where we do not worry what w is except that it is a root of unity. We first consider
the error analysis of a generic CT2 Butterfly B,

The following lemma tells how the supremum norm of a vector grows with
application of the FFT Butterfly matrices.

Lemma 2.5.6 At each step of the FFT,
”x(k)”oo < 2k”x(o)”oo
Proof Observe that BIB, = 2I and hence
IBuxlloo < [Buxllz = v2[Ix|l2 < 2/|x]|oo
and A is composed of independent butterflies B,, so

lAx] < 2{|x]le

*

We start with the radix-2 FFT error analysis. First we look at the most simple
butterfly operations for a 2-vector x = [z7, z5]T.
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Lemma 2.5.7 (CT2 Butterfly Error Analysis)  Let

|

1 w ] E - [0 O(w)u } % = 37, 25T

1 —~w 0 —é(w)u
with |E| < [8 gg:g } u

|Z7 —z7] < 8(z7)u+ O(u?)
lfB—xBI < 6(1'B)u+0(u2)
< §(w)u + O(u?)

|6 — wl

and B =B + E. Then if

and

6(z3) <
[6(=3)1 <

T
T

xt =

Bx

o+3+

|

%t = fI(BR)

1X*lloo + (1 + V2)xlloo + l|xllcol6(w)] + |6(z7)| + [6(z5)]
1x* lloo + (1 4+ V2)l[xlloo + [[x[loo|8(w)] + [8(27)] + |6(z5)]

Proof The CT2 butterfly is defined by

First we have

¥ — fl@7+ fi(©zg))
I — fUFr - fi(Gzp))

|fi(&zp) —wzp| < [(1+ \/§)|wa| + [zB|6(w) + |w|é(zp)]u + O(u?)

We know that |w|

= 1 so this becomes

§(wzp) = (1+ V2)lep| + |z5(l6(w)| + [6(zp)|

The lemma on addition shows us that

6(21) < |21 +18(21) + (1 + V2)|z 5] + |6(w)|le 5] + [6(z5)]

which is bounded by replacing |z} | and |zp| by the sup norms,

5(27) < X lloo + (1 + V2)lIxlloo + [[Xlloolé(w)]| + [8(z7)| + |6(z5)]

A similar analysis

gives the same bound for §(z}).
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*

This shows that a current component is dependent upon the errors incurred in
the previous step added to the multiplier error and the current roundoff. Hence
to do an error analysis, one must be able to “track” the errors and “know” which
multipliers are used in all the previous steps in computations leading up to the
current one. For the two FFT variants with multipliers applied in natural order
we have explicit formulae for determining which multiplier was applied to which
component at each stage. Furthermore for the decimation in time algorithm (CT2)
we also know that both components involved in a particular butterfly have identical
multiplier histories.

Theorem 2.5.1 (Multiplier History—CT2) If xgk) stands for the jth compo-
nent of X at stage k of a radiz-2 FFT of length n = 2!, then

wgk) = D4 w(mg-k))xg.lf—l)

¢
]
:1:55) = zg-k_l)—w(mg-k))xg-lf_l)

where j' = j + 2F-1 gnd mgk) 13 the shorthand that points to the error coefficient
of the multiplier used at step k on z;, then

(1) (k=1) __(k)y _ ¢ (1) (k-1) (k)
{m; yeosmy U my }—{mj, N 07 ,mj,}

i.e. both J:Sk) and z:gl,c) have the same sequence of multipliers.

Proof It is obvious that mgk) = mg-l,c) so we concentrate on the £ — 1 previous
steps. j and j' = j + 2F~! have the property that

J mod 29 = ;' mod 29, g=1,..., k-1

Since the CT2 FFT algorithm has at step k, n/2*¥ identical sets of computations
of size 2, this means that J and j' occupied the identical position in the separate
independent sets of computations for all the previous steps. Hence the ezact same
set of multipliers had to have been applied to both of them.

*

Theorem 2.5.2 (CT2: Error Analysis) Let x(® be a complez vector of length
n = 2! with components xgo) such that

27 ~ 2" < 12" ju+ O(u?)
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that 1s, 5(:550)) = |m§0)[ < 1% | . If x(® = LF.x(© is the result of a radiz-2 CT?
FFT procedure, then

20— <1+ 41 + (14 V3)/2) + 5 22wl XV ou + O(u?)
k=1 J

Proof For the general term we have

6(23) < 1T lloo + 2lIxlloo + [Ixflool6(w)] + [8(27)]| + 16(z 5)]

and at a specific stage k for a specific z j we know from the CT2 multiplier history

that the error of the multiplier is hm(")‘ Therefore we have
i

5N < %9 loo + (1 + VBV,
I Dlolh ] + 162 + 6
where j' = j £ 2% (it does not matter). Lemma 2.5.6 tells us that x| <
2k”x(o)”°° hence

8 < 2% oo + 2711+ VB Olfoo + 2O |
J

+8(2 )] + 185D
2)1x oo + (1 + V225 xO o0 26 [xO oo [
J

IA

+2[8(z\F=1)y)

The last term 2|5(x§k_1))| is justified because ]6(a:§~k_1)l and lé(ng'l))l are both

bounded by the same quantity. Theorem 2.5.1 tells us that they are the result of

the exact sequence of multipliers—the sequence of hm(;,) are identical. Further-
7

more, the infinity norm is used in the bound so that although xg»k_l) and z\¥-1

are quantitatively different, their error characteristics with respect to multiplier

applications are the same. Therefore it makes sense to recurse on

8N < 251x Ol + (1 + V2)2E1 1% + 251 |xO oo |R_ ]
7
+2[6(z~1)]
to get
SEN < 24x Ol + (1 + V221 xO) o0

t
F2 x0T 1]+ 2% oo
k=1 J
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(t)

The final scaling by % = —1; gives T, -};i?) and

+\/_)

1 t
60 < 1+ B2y, + 51 lloo 3= Ao+ 116l
k=1

*

This shows that the errors hm(") in the multiplier computations is represented

J
in the same proportion as the roundoff error. Our bound is consistent with the

result of Ramos (1971) if we let all the A n® =7 2 0, an absolute error constant.
J

Hence the error is of O(log, n + Zk 2® h (k))

We next examine the radix-2 GS1 FFT algorithm and note a few facts. From
the properties of the GS1 algorithm, we notice that each z; has the same sequence
of multipliers applied to it as in the CT2 algorithm, except in reverse order, and
with one difference. If at step k, the (k — 1)st bit of j’s binary representation
is equal to 0, then no multipliers were applied because z; is the top member of
the butterfly and hence created by a simple addition. Since we are interested in
bounds on the mazimum component error, we shall first look at the error analysis
for z; such that j’s binary representation has nonzeros in every bit. Later we
can say that if j’s binary representation has a zero in position ¥ — 1, then the
contribution of that particular multiplier is deducted.

The radix-2 GS1 algorithm has a butterfly which is the transpose of that for
the radix-2 CT2 FFT. As in lemma 2.5.7, we have the following.

Lemma 2.5.8 Let

BT = [ ulJ —lw ] ET = [ 5(£)u —6(0w)u ] %= [2r, 25"

|Z7 — z7] < &(zr)u+ O(u?)
|z —zB| < 6(zp)u+ O(u?)
& —wl < §(wu+ O(u2)

and BT = BT + ET. Let
xt = { =7 ] = BTx
3
the mazimum absolute error in :’E? and 7} is
6P < [xFlloo + 16(z7)| + |6(z )|
6(zB)] < (1 + V2)lIxFlloo + (1 + V2)[Ix/loo|6(w)|
+(1 + V2)||xlloo + |6(z7)| + |8(2B)|
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Proof The GS1 butterfly is defined by
It «— fl(@r +Zp)
F5 — fUQFfU(Er - 3p))

The z} term requires only a simple addition and hence

§(zF) = |zF|+ |8(z7)] + |8(z )|
< x*lloo + ()| + 16(2 )|

The z} term has

8(z3) = 2lahl+|6(w)ller ~ 28|+ [lo1 — 28] + |6(27)| + |6(25)]]|w]
< 1+ V2)lxtlloo + (1 + V2)||xlo08(w)]
+(1+ V2)|xXlleo + |8(27)| + |6(25)|

*

Notice that the error bound for £} in lemma 2.5.8 is similar to the error bound for
£} in lemma 2.5.7. Therefore as far as maximum absolute error is concerned the
radix-2 GS1 and CT?2 algorithms are almost equivalent. This was shown already
in Tsao (unpublished).

The Multiplier History of the GS1 Algorithm is more complicated that that of
the Cooley-Tukey Algorithm.

Theorem 2.5.3 (Multiplier History—GS1) If:cg-k) stands for the jth component
of z at stage k of a radiz-2 FFT of length n = 2t then

xgk) _ x.(jk-—l)_*_xg_{c—l)
2 = w(m) (kN - k1)

where j' = j + 2F-1 gng mgk) points to the multiplier used on z; at stage k then

letting MJ(-k) be the set of all indices used in the process of creating zgk) we have

(k) _ (k-1) (k-1)

M = MEY oM G (m®)
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Proof The GS butterfly shows that computing :cg-k) requires no multiplications.
Therefore the multiplier history at this step is simply the union of the multiplier
history M J(-k—l) and M™Y. The computation of ng) requires one new multipli-
cation, hence the result.

*

The imbalance in the way multipliers are applied means that in the step in the
error analysis where we wish to recurse on the ]6(z§~k_l) )| and lé(xg-f—l))l where

7' = j+2%~1 we cannot assume that they are basically equivalent. This is because
at each butterfly step, the top element is a pure and simple addition with no
multiplier applied to it. Therefore we concentrate our error bound on the element
with the most complicated set of multipliers, the element z; where j = 11-..1,.
To say something about the other components we use the following lemma.

(k-1)

Lemma 2.5.9 In every GS butterfly between :cg-k—l) and Ty

bit of j is 0 and the (k — 1)st bit of ;' is 1,

where the (k—1)st

16z 2 16z )]

Proof If ;' has a 1 at position (k — 1) then :cgf'_l) is the zp for that butterfly
step. Similarly z;, with j having a 0 at position (k= 1), is the z7. Now using
Lemma 2.5.8 we see that

6(zF)| > 16(F)|

*

The theorem on the Gentleman-Sande Error Analysis is therefore basically a
theorem about the last component.

Theorem 2.5.4 (GS1: Error Analysis). Let x(O) be a complez vector of length
n = 2! with components zg-o) such that

27 = eP) < 1200 u + 0(u?)

that 1is |6(z§-0))| = |x§~0)| < 1x)o. If x® = LF.x) is the result of a radiz-2
GS1 FFT procedure, then

3 1 : | '
&) - < St +v2) + 14 Q—sz—‘/i) 3 o ollx® oo + O(u?)
k=1
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Proof Concentrating on the T; term where j = 11-..1, = 2t — 1, we have

6D < (14 VR)lIxHloo + (1 + V2)l[x]lo0 |6(w)]
+(1+V2)||xlloo + [8(27)| + |6(z )|

or
85 < 251+ VD)I[x oo + 21(1 + V)Xol
J
+2571(1 4+ v2)|xO o + [28(zFD))
recursing on this gives
t
BED < 11+ V22 + 2711 4 VB o, 3 ko
k=1 J

+271(1 + V2)[[xO |0 + 281

Scaling by % = 2—1; gives us

3 1+ \/E t
51 < 50+ VBIOs + CE O 5 o+ [x
k=1

*

We now incorporate the different methods of computing multipliers with their
error properties into the error analysis for the radix-2 FFTs, First we summarize
the error bounds in Table 2.4. We will only be concerned about the order of
magnitude of the errors because individual errors of the different components
vary too much. The main question we have addressed is how the errors in the
multipliers transfer themselves to the errors in the FFT. It turns out that they
do not become suppressed in the FFT, i.e. a multiplier computational method
of O(log, n) combines multiplicatively to the FFT error to become O(log, n)?.
This underscores why it is important to consider the accuracy of the multiplier
computation.

Next we compute the order of the maximum error for the six methods. Let
n = 2! in each of the following. Direct Call is the simplest.

Direct Call: [|% — x[loc < O(t)u.

Recall that Forward Recursion and Repeated Multiplication start from a different
initial argument at each stage. Hence the maximum index used at each stage is
; k-1

J=2"1 -1,
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Table 2.4: Error Bounds for Weight Computational Methods

Method Bound

Direct Call h?c =1
Forward Recursion th = (le1] + y/le1]2 + 1)7
Repeated Multiplication th =2

Logarithmic Recursion h]L-R < (let] + y/f]e1]? + 1)los2s
Subvector Scaling hzs < 2logy g
Recursive Bisection hB < 2log, j

Forward Recursion: First we notice that |c;| + Viei2 +1 > 2|e1], however to
simplify the order of magnitude, we can plug in 2|e1] into max(hm(,,)) =
J

(2]e1]) * x(2¥=1 — 1) into the error bound we get,
1% ~ x|l < O(£27/2)u.
Repeated Multiplication: Here maz(hmgk)) = 2(2%-1 — 1), hence
X — x[lc < O(tn)u.

The following three methods all have the maximum index J at each step equal to
2!=1 — 1, hence the maximum log, j is approximately ¢ — 1.

Logarithmic Recursion: Here maz(hm(k)) < (2le]) * x(t - 1), so
J
|X — x||loc < O(tn)u.
For Subvector Scaling and Recursive Bisection, maz(hm(k)) <2(t - 1), and thus
J

Subvector Scaling: ||% — x| < O(¢?)u.
Recursive Bisection: ||% - x||o < O(#?)u.

Therefore, we see that although the ideal error bound for the FFT is O(t)u,
this is achieved only through the use of Direct Call. This is counterintuitive and
shows that the order of the error bounds for the multipliers affects the total FFT
error bounds multiplicatively instead of additively. This does not contradict the
result of Ramos (1971) because in his case, the error bounds for the multipliers
are constant and hence are of the same order as the roundoff error.
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Double precision computation of the multipliers can be used for the two O(t*)u
methods and the O(n)u method, whenever nii < 1, where i is the double precision
machine precision. This is why double precision Repeated Multiplication can be
used for practical implementations requiring speed and low storage requirements.
(Press et al. (pp. 394-395, 1986))

We summarize our novel approach to FFT error analysis with respect to mul-
tiplier computation and give some conclusions.

e We verified that errors in computing the multipliers are represented in the
same proportion as the roundoff error if the error bound for the multipliers
is an absolute constant.

® The order of the error incurred in the computation of the multipliers is
multiplied by ¢ = log, n in the final error bound of the FFT. Hence methods
that bound the errors in the multipliers by O(t)u actually have a total error
bound for the FFT of O(#?)u.

¢ Using double precision in the Repeated Multiplication method, is accurate
as long as nii < 1. Therefore the double precision, covers up for the O(n)a
absolute error in the multipliers, making them effectively 0.

2.6 Practical Multiplier Generation

The six methods for the generation of FFT multipliers differ in both their numer-
ical characteristics and their implementation properties. There are two ways in
which FFT multipliers can be used. They can either be pre-computed and stored
in a table as Algorithms 2.3.2- 2.3.7 show, or the particular multiplier needed at
each step can be computed right before it is used. We call the latter “Just-in-time”
computation.

Not all of our methods are amenable to just-in-time computation. For example,
Logarithmic Recursion and Subvector Scaling requires storage space of O(n) for the
n/2 multipliers needed for the FFT of length n = 2%. This is because at each stage.
the next set of multipliers computed is a “scaling” of the ones previously computed.
On the other hand, the method of Direct Call can compute multipliers on demand
without need for any table storage. After all, when a cosine of a particular angle is
needed, it is obtained by a direct call to the library function COS. The other three
methods, Forward Recursion, Repeated Multiplication, and Recursive Bisection
vary in the amount of storage required for just-in-time computation.

The basic equations for Forward Recursion are

cos(j#) = 2cos(8)cos([j — 1]8) — cos([j — 2]6)



67

sin(j#) = 2cos(6)sin([; — 1]6) — sin([j — 2]6)

Hence six real numbers need to be stored for each iteration.

Algorithm 2.6.1 Forward Recursion (just-in-time)
6 =2r/n
cp—1;5, <0
cc — COS(0); sc — SIN(6)
ct — 2c¢.
forj=2,...
t+— cc
Cc— Ct*Cc— Cp
cp—1t
t — s
Sc ¢t - 8¢ — Sp
end

Repeated multiplication requires storage for only two complex numbers since
W e w1

is the basic iteration.

Algorithm 2.6.2 Repeated Multiplication (Just-in-time)

0 =2r/n

w « 2exp(—10)

Wi —w

forj=2,...
Wj — W - wj

end

Recursive Bisection is a bit more tricky. The most obvious implementation
requires a full table of O(n). This is because the Recursive Bisection algorithm
computes a full table of multipliers by first starting with e'™/4, ¢i*/2 — ¢, and
e’® = 1, then creating e‘”/s, e3™/8 and then e'*/16 e3i”/16, e3x/16 o Tin/16 514
so on. Initially a short table of half-secants, .5sec(r/4), need to be supplied. For
example, if n = 2* and = 27 /n, then (¢ — 2) half-secants or O(log, n) storage is
required. However to go from one step to the next requires all of the previously
computed multipliers. So to get the odd angles of 7/2F, requires one to have
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available, the multipliers for the angles = /2F-1. Obviously, memory space for the
full table is needed. Furthermore, for the purposes of the FFT, specifically the
Gentleman-Sande algorithms, the multipliers are not created in the correct order.
Recall that the Gentleman-Sande algorithms start with multipliers of the smallest
spacings, i.e. for step k, k = 1,...,t, we use powers of wf = exp(27i/L) where
L = 2t=k+1_ Therefore the spacing of multipliers is exactly the reverse of their
creation by Recursive Bisection, where at step k, k =1, ..., t, the multipliers wy,
L = 2F1 are computed. This spacing, however, is consistent with the Cooley-
Tukey algorithm where wy, L = 2%=1 is utilized at step k.

In any case, if spacing and storage considerations are a factor, Recursive Bisec-
tion, whether pre-computed or not, requires a table of O(n) to store the multipliers
and another table of O(log, n) to store the half-secants.

Buneman’s On-Line Generation of Weights

Buneman (1987) proposes a new method of on-line (just-in-time) creation of FFT
multipliers with the use of two tables of order O(log, n). The table is dynamically
updated and the multipliers are created in the consecutive order, i.e. wp, w2, w3,
etc. An initial table is supplied and holds the cosines and/or sines of the angles
4m, 27, ™, /2, w/4, ©/8,. .., 27 /2¢ requiring ¢ + 2 spots. Another table of length
t + 1 contains the half-secants .5sec(27), .5sec(r),...,.5 sec(2m/2'). The idea is
that whenever an entry has been used, it is replaced by a new entry that is to be
used at a later step. Just enough information is retained in the table so that the
appropriate new entry can be completed by mid-point interpolation.

To describe Buneman’s method, we first define a “degree” to be equal to the
smallest desired spacing of angles, i.e.

cos j = cos2jm/2¢

so that even though the conventional degree is 7/180, our “degree” is typically
2m/2t. Our initial table now looks like this

cos 2“'1, cos 2’, cos 21 y...,c084,cos2,cos 1
or simply, (symbolically),
2t1 ot ot=1 421

These initial values are all powers of two, with each slot in the table reserved for
the odd multiplier of the power of two held originally. For example, the last slot
holds progressively increasing odd degrees, cos1 replaced by cos3, replaced by
cos 5, etc. The second to the last slot has 2, 6, 10, etec.
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A concrete example illustrates the order that multipliers appear in the table.
Let n = 16 and 27 /16 be the smallest increment, that is a “degree” is equivalent
to m/8. This suffices for a 16-point FFT. Initially, the table holds cosines of

4r, 2w, 7, w/2, /4, 7/8

or degrees
32,16,8,4,2,1

Writing everything in binary, we outline the sequence of events in Table 2.5.

Keeping Table 2.5 in mind, we interpret the sequence of events by first noticing
that all entries in the same column have the same number of trailing zeros. This is
because they are all odd multiples of the same power of 2. If we index the columns
in reverse order starting with zero for the last column, we see that the column
index is equal to the number of trailing zeros in the binary representation of the
angle degree. Each interpolation involves the entry preceeding the entry to be
changed and one further back.

Let K be the index of the angle that had just been called, residing in column
p- Then K is to be replaced by K +2-2?. Letting I = 2° we see that K «— K +21.
The two angles needed for interpolation are K + I and K + 31. Since K is an odd
multiple of I, K + I and K + 3] must be odd multiples of 291, (¢ > p). Therefore
K = (25 + 1)I for some j, then K + I = (7 +1)2I and K + 3I = (j + 2)21I.

Case 1: j is even. Then K + I is an odd multiple of 2T and is therefore found
in the entry immediately preceeding our current entry. K + 37 is found further
back in the table. Exactly where can be determined by how many trailing zero
bits it has.

Case 2: j is odd. Then K + I is the one further back in the table and K + 37
is the one immediately preceeding our current location.

Where to find an entry can be determined by testing the number of trailing
zeros it contains in its binary representation. A way to do this is to use two-s
complement arithmetic.

I=KAND.-K

for which log, I is the number we're looking for. We already know where one of
the entries to be used in the interpolation is. It is the one immediately preceeding
our current one. To locate the other, we first form K — I and test to see if the bit
representing 21 is set or not by forming M = 2I.OR.(K — I). If this bit was not
set, we have just set it and know that we have M = K + I in our preceeding entry;,
Le. j was even. If this bit was already set, we still have M = K — I after the
.OR. operation and know that j was odd. In any case M is a number with p + 1
trailing zeros and is one of the interpolants. The other is found by adding 27 to
M; M being either K + I or K — I gives either K +3I or K + I. This number has
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more than p + 1 trailing zeros and has in fact L = logo(M + 2I.0R. — (M + 21))
of them and is thus the Lth entry from the end.

This procedure is mathematically identical to the recursive bisection algorithm
given in Oliver (1975) and differs only in the order with which the trigonometric
functions are calculated. The minimal amount of information is kept which is
needed to generate the subsequent weights. As soon as the weight is used, it is
replaced by one which will be used in the future.

The following procedure is adapted from a FORTRAN program of Buneman's.
The array h( ) contains the half-secants of 2r, r, 7> & etc. The array c( )
initially contains the cosines of 87, 4r, 2, m, etc. 87 and 47 are included so
that we can get back the original table automatically after one complete period.
The half-secant of % is infinite and is irrelevant in the cosine routine. For a sine
routine, just remember that sin(2j + 1)% is always 0.

Algorithm 2.6.3 On-line Cosine Generation (Buneman )
N=2
real h(j+2), c(j+4)
for K=1:2%«N
/¥ find L, the number of trailing zeros in K */
I=KAND. - K
L = logy(I)
/* ¢(7+4-L) contains the Kth cosine */
/* use it and then replace it */
write c(j+4-L)
/* find where the other entry for use in interpolation is located */
I=2+xI+(2xI.ORK -1I) '
c(j+4-L) = h(j+2-L) *(c(j+3-L) +c(j+4-logy(1LAND.-I)))
end

Buneman has used this algorithm for several years in FFT subroutines running
on VAXes and CRAYs. In Chapter 3, we demonstrate a modified version of
Buneman'’s method for multiprocessor FFTs.
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Table 2.5: Buneman’s On-Line Generation of Trigonometric Functions

32 16 8 4 2 1
100000 010000 001000 000100 000010 000001
32 16 8 4 2 3
100000 010000 001000 000100 000010 000011
32 16 8 4 6 3
100000 010000 001000 000100 000110 000011
32 16 8 4 6 5
100000 010000 001000 000100 000110 000101
32 16 8 12 6 S
100000 010000 001000 001100 000110 000101
32 16 8 12 6 7
100000 010000 001000 001100 000110 000111
32 16 8 12 10 7
100000 010000 001000 001100 001010 000111
32 16 8 12 10 9
100000 010000 001000 001100 001010 001001
32 16 24 12 10 9
100000 010000 011000 001100 001010 001001
32 16 24 12 10 11
100000 010000 011000 001100 001010 001011
32 16 24 12 14 11
100000 010000 011000 001100 001110 001011
32 16 24 12 14 13
100000 010000 011000 001100 001110 001101
32 16 24 20 14 13
100000 010000 011000 010100 001110 001101
32 16 24 20 14 15
100000 010000 011000 010100 001110 001111
32 16 24 20 18 15
100000 010000 011000 010100 010010 001111

32 16 24=8 20=4 18=2 17=1
100000 010000 011000 010100 010010 010001




Chapter 3

One Dimensional Parallel Fast
Fourier Transforms

3.1 Introduction

The FFT has a lot of inherent parallelism. The signal flow graph shows clearly that
at each step of the radix-p FFT, n/p independent butterfly operations are done
on n/p mutually exclusive sets of p of data-points. These butterfly computations.
being totally disjoint, can be done in parallel. The FFT is also a global operation.
Each point in the DFT is computed as a weighted sum of every other point. This
can be seen by the representation of the DFT as a matrix-vector multiplication
F,x. The FFT achieves this result efficiently by using a divide-and-conquer split-
ting procedure. This means that for a parallel distributed computing system, the
n/p parallelism of the FFT can only be exploited profitably if the data-points
that make up the disjoint pairs can be efficiently placed exactly where they are
needed when they are needed. Implementation of a parallel one-dimensional FFT
is primarily a data-routing problem.

One of the first things to notice when studying the radix-2 hypercube archi-
tecture and the radix-2 FFT algorithm is the similarity between the adjacency
scheme of the hypercube and the signal flow graph of the FFT. The FFT but-
terfly data flow graph can be mapped into the hypercube graph so that adjacent
nodes in the radix-2 FFT signal flow graph are also adjacent in the hypercube. In
this sense the hypercube is an ideal topology for the implementation of the FFT.
This explains why it is easiest to implement a radix-2 FFT on the radix-2 hyper-
cube. Several authors have either implemented or discussed the implementation of
the radix-2 complex FFT in the hypercube, including Chamberlain (1986), Chan
(1986), Swarztrauber (1986) and Walton(1986).

FFTs of mixed radix can also be implemented on the hypercube by way of the

/
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“twiddle factor” approach where a one-dimensional array is written in terms of
a two-dimensional array. This method is discussed in Chapter 4 along with two-
dimensional FFTs because the data-flow requirements are identical. A variation
to this approach allows us to implement FFT’s of length n = 2F . m on the radix-2
hypercube. We discuss this mixed radix-2 FFT in Chapter 7.

In this chapter we study the implementation of a single one-dimensional com-
plex FFT. Issues such as data distribution, load balancing, communication require-
ments, processor topology and distributed multiplier computation are addressed.
Comparisons for the four canonic in-place radix-2 algorithms of Chapter 1 are ex-
amined to determine properties of the FFT algorithm with respect to distributed
processing. Deficiencies in the conventional procedures are identified and a new
mapping of data into two columns (the Two-Track mapping) is proposed to rem-
edy these problems. The new method is load balanced, executes faster and allows
in-place computation of the FFT without requiring extra buffer space for mes-
sage handling. We also address the issue of topology and show that a mapping
of the hypercube according to a Binary Reflected Gray Code (BRGC), which is
not isomorphic to the FFT butterfly signal flow graph, is a perfectly viable way of
implementing the FFT. This mapping is also more versatile and better suited for
use on general numerical computational problems involving FFTs and other com-
putations that require either nearest-neighbor connections and/or the exchange
permutation. The last section of this chapter examines distributed multiplier
computational issues and describes how each of the methods in Chapter 2 can or
cannot be implemented efficiently on the hypercube.

3.2 One-Dimensional Complex FFT on the Hy-
percube

Let x be a vector of length n where n = 2¢. The vector x can be distributed in a
hypercube of dimension d consisting of P nodes (P = 29 and d < t) by partitioning
X into subvectors x; each of length n, = n/P,

Xo
X1

Xn-1

and placing x; in processor i. This is called consecutive storage. Here it is helpful
to imagine the hypercube as a column of P nodes. We call this mapping the
natural ordered mapping of input in natural order. See Figure 3.1.
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p00 (1)
p01 — i
plo| Y :
plli— 3

Figure 3.1: n = 8, d = 2 mapping of data in natural order

As noted before, in-place FFTs that take natural order input produce output
in bit-reversed order. Specifically the procedures CT1 and GS1 overwrite x
P.Fp,x. It is practical to also be able to implement the FFT algorithms that
take bit-reversed input and produces natural ordered output. The CT2 and GS2
radix-2 procedures overwrite x — F,Ppx. The input is mapped so that P,x is
stored in the hypercube in consecutive order shown in Figure 3.2

The most direct method of implementing a distributed FFT on the hypercubeis
to map the input vector into processors consecutively in the natural order. [Cham-
berlain (1986)] The hypercube graph is a compressed version of the radix-two FFT
butterfly data flow graph. The signal flow graph for the original Cooley-Tukey al-
gorithm (CT1) in Figure 3.3 shows how easy it is to map the FFT algorithm onto
the hypercube architecture. For a transform of 2! points consecutively stored in
the d-dimensional hypercube, the first d butterfly steps involve across processor
operations and hence require communication. We refer to these steps as the in-
termingling steps. The remaining ¢ — d butterfly steps are local and hence do not
require communication. We call them the parallel butterflies.

The implementation of the intermingling butterflies requires communication.



p00 M

p01 F— 6

pl0| 4

pll1t—

Figure 3.2: n = 8, d = 2 mapping of data in bit-reversed order

Algorithm 3.2.1 shows the direct implementation of the Cooley-Tukey butterfly

AR ES]

and Algorithm 3.2.2 describes the Gentleman-Sande butterfly

o L] [a)]

We establish some general conventions for the description of the algorithms.

# A generic name referring to the node that the process is running on. On the
Intel iPSC, this is the value of the function mynode().

p A generic name referring to the processor that communication, whether a send
or receive, is being done with.

send(v,Lyp) A primitive containing three separate arguments. v is the address
of the array or vector that is to be sent to processor p. L, is the length of
the vector or array sent. (Note: this is not the length in bytes, but rather a
higher-level abstraction that we usually think of so that 1 unit in length is
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Figure 3.3: n =8, P = 4, signal flow graph (GS1, CT1)
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equivalent to 1 element in the vector. If A is an m-by-n matrix written in
column-major order, then sending A is represented by send(A,m - n,p).

recv(v, Ly,p) A primitive designating that the calling process is to receive an
array v of length L, from the process running on processor p.

b A workspace buffer.

n A constant referring to the length of the transform.
t n =2t

P The number of processors.

d The dimension of the hypercube P = 29,

id(p) The index number that represents u’s place in the node order that the
hypercube is mapped in. For example B, = {0,1,2,3} is the binary mapping
of the nodes in a 2-cube in natural order, then id[2] = 2. However if G, =
{0,1,3,2} is the Binary Reflected Gray Code mapping of the nodes in a
2-cube, 1d[2] = 3.

The basic Cooley-Tukey distributed butterfly involves two processors that send
each other their data. One processor is responsible for the top portion of the
butterfly x + Ay and the other one the bottom portion x — Ay. The processor
responsible for the bottom portion also computes Ay before the communication
so it has a higher workload.

Algorithm 3.2.1 Cooley-Tukey Butterfly
/* 1 = processor id, n =2!, P=24 m = n/P */
/¥ processor p has x(id[u] - m: (id[u] + 1) - m —1) */
/* p = processor id of partner in this particular butterfly */
if (id[u] < id[p]) then
/* 1 houses the top input */

top = .true.
else
/* u houses the bottom input */
top = .false.
end if

if (.not.top) then
/¥ processor on the bottom has to compute the multipliers A */
/* and scale its portion of x */
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X «— Ax

/* communicate with processor p */

/* use buffer b for incoming messages */
send(x,m, p); recv(b,m,p)

/* update */
if (top) then

x~—x+Db
else
X—b-x
end if

The distributed Gentleman-Sande butterfly also involves two processors that
send each other their entire data vector. Here the communication is done before
any scaling by A is done. Again, the processor responsible for the bottom portion
of the butterfly has a heavier workload as a result of the scaling.

Algorithm 3.2.2 Gentleman-Sande Butterfly
/¥ = processor id, n=2!, P=24 m=n/P */
/* processor u has x(id[u] - m : (id[u] + 1) - m — 1) */
/* p = processor id of partner in this particular butterfly */
if (id{u] < id[p]) then
/* u houses the top input */
top = .true.

else
/* u houses the bottom input */
top = .false.
end if

/* communicate with processor p */
/* use buffer b for incoming messages */
send(x,m, p); recv(b,m,p)
/* update */
if (top) then
Xx—x+b
else
/* bottom processor has to compute A and scale x */
x—b-x
X — Ax
end if
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Figure 3.5 depicts the distributed Cooley-Tukey butterfly and Figure 3.4 shows
the distributed Gentleman-Sande butterfly.

The intermingling butterflies involve two processors that pass their entire data
sets to each other. Both processors then compute the updates for that step and
store the results locally. A close look at the distributed butterfly operation reveals
the necessity for an extra complex buffer to store the incoming data. In the case
of the Gentleman-Sande distributed butterfly, processor p0 computes x «— x + y.
However in the recv statement, it is not possible to overwrite x by y since the sum
X +y is required. Similarly processor pl cannot overwrite Y by x. Hence the call
to recv must provide for temporary storage of the incoming data in a buffer.

Another problem is the imbalance of workload between the two processors. As
noted by Chamberlain for the Gentleman-Sande algorithm, processor p0 computes
the sum of its own data and the data it has Just received. Processor pl has to
compute the diagonal matrix of weights A and then do a complex subtraction
followed by a complex multiplication. If A is updated by Algorithm 2.3.4, Re-
peated Multiplication, processor pl incurs two complex multiplies per data point
more than its partner. This imbalance is slightly reduced in the Cooley-Tukey
CT2 version reported by Chamberlain, but is nevertheless present.

Walton (1986) modifies the CT2 algorithm found in Press et al. (1986) and
derives a straightforward implementation for use in the hypercube (Figure 3.6).
He addresses the buffering problem as well as the load balancing issue. Here each
processor exchanges only half of its data points with its partner for a particular
intermingling step. The total butterfly computation now takes place within the
processor, with each processor doing the updates for half of the points. Afterwards,
a second exchange is performed and the half of the updates that “belong” to the
exchange partner is sent “home”. Buffering is not needed since the exchange occurs
before and after the actual update step. Furthermore the butterfly computations
are performed symmetrically so that processor pO computes a portion of both
X — X + Ay for its own update as well as a portion of y «— x — Ay for its
neighbor. Therefore Walton’s method corrects the load imbalance and buffering
problems, but introduces the need for twice as much communication.

Algorithm 3.2.3 Cooley-Tukey Butterfly (Walton’s Implementation)
/*u = processor id, n =2, P=2¢ m = (n/P)/2 */
/¥ processor u holds: */
/* 2 = x(2m - W] :m - (2d[u] + 1) — 1)*/
/*2® = x(m - (2id[p] + 1) : 2m - (idlu] + 1) = 1)*/
/* communicate with processor p */
send(z(?),m, p); recv(z(!), m, )
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1 2 3
send x to pl recv b from pl update
po
x x b Xx—x+Db
/
send y to p0 recv b from p0 update
pl y—b-vy
Y Y b
y — Ay

Figure 3.4: Distributed Gentleman-Sande butterfly
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Figure 3.5: Distributed Cooley-Tukey Butterfly
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Table 3.1: Four Canonic Radix-2 FFT Algorithms

Abbreviation Formula Intermingling | Multiplier Order
(CT1) x —P,F,x first bit-reversed
(CT2) x— F,P.x last natural
(GS1) x~P,F,x first natural
(GS2) x — F,P.x last bit-reversed

/* update */
for j=1:np
t —w-23(j)
20)(j) = 20(j) - t; 20(j) — 2D () + ¢
W W w
end
/* communicate again with processor p */
send(z(¥,m, p); recv(z()), m, p)

3.3 Implementation Results for the One-Dimen-
sional FFT

We first present the implementation of the four canonic radix-2 FFT algorithms
via a method similar to Chamberlain’s (1986). The properties and abbreviations
for these four FFT algorithms are outlined in Table 3.1. We give a comparison
of the timing results as well as a discussion on how the properties of the canonic
forms affect the timing results. Ordering of the multipliers is discussed in Section
3.5.

Table 3.3 shows the result of the comparisons between the four canonic forms.
The timings are given in increments of five milliseconds ranging from the fastest
time to the slowest time. A ‘-’ indicates that data is not available or unnecessary.
These timings were taken from a single sample FFT of 4096 random complex
points. The total time is broken down into components including computation
(abbreviated, comp) and communication (abbreviated, comm) time. Part of the
communication costs is the time a processor spends blocked awaiting data that it
needs to arrive from another processor. Recall from Chapter 1 that a processor is
considered inactive when it is blocked. Therefore the time that a processor spends
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1 2 3 4 5
send x(2 recv y(t) update send y(1) recv x()
to pl from pl y) — Ay to pl from p1
V) o A
pO x(l) x(l) x(l) + y(l) x(l) x(l)
v
%x(2) y® ! x(1) — y(1) y® l; x(2)
send y(1) recv x(2 update send x(2) recv y(1)
to p0 from p0 y® — ay® to p0 from p0
o < —
p1| y x(® x(® 4 y(@ x(2) y® ’
¥
e ¥ x(2) = y(2) e ¥

Figure 3.6: Walton’s Implementation of the Distributed CT2 Butterfly
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Table 3.2: One-Track FFT FORTRAN Code

Algorithm | Code numbers
CT2 (3.1), (3.6)
GS1 (3.2), (3.7)
CT1 (3.8), (3.10)
GS2 (3.9), (3.11)

all (3.3), (3.4), (3.5)

blocked lowers its overall utilization and is thus detrimental to the total speedup
of the parallel computation.

The FORTRAN code is listed in the appendix. The same code is used for the
host and node driver routines for all of the different implementations. Table 3.9
outlines the code that is used for the different FFT algorithms.

The results show markedly different characteristics between the Gentleman-
Sande (GS) algorithms and the Cooley-Tukey (CT) algorithms in terms of com-

time, since the spread between faster and slower processors is smaller than in the
Gentleman-Sande implementations. However, more total time is wasted in block-
ing because slower processors cause faster ones to block. This is primarily due to
the difference between the butterfly structures of the two methods.

A look at the diagram in Figure 3.4 shows that in the distributed Gentleman-
Sande butterfly, processor p0 does not have to wait for processor pl to compute
its multipliers A before it can go ahead and do its update. Therefore slower pro-
cessors did not cause faster ones to block. Furthermore, the data communication
is done before the butterfly operation is commenced. In contrast, the distributed
Cooley-Tukey butterfly (Figure 3.5) requires that processor p0 wait for processor
pl to compute A and scale its contents before communication takes place. In this
case, communication occurs in the middle of the butterfly operation causing the
processor that has no work during the first half of the butterfly to block and wait
for its partner.

A property that shows up in the computational timings is related to the order
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Table 3.3: Forward FFT (Natural Implementation)

n = 4096

dim

B W~ O

total
12290
63056430
3240-3350
1670-1745
865-915

CT1
comp

6080-6255

2995-3195

1475-1635
730-820

comm/blocked

50-345/10-315
50-350/5-320
40-270/0-240
35-180/15-160

dim

W~ O

total
9255
4605-5280
2290-2985
1145-1670
640-995

GS1
comp
4550-5225
2235-2925
1100-1620
555-900

comm/blocked
55/5-10
55-60/5-10
45-50/5-10
80-95/5-70

total

9915
5655-5660
3305-3320
1870-1880
1045-1055

CT2
comp

4830-5610
2365-3270
1165-1840
565-1025

comm/blocked
50-825/5-790
50-940/10-900
40-700/10-675
30-470,/5-440

total

11250
5955-6205
2950-3210
1470-1665

GS2
comp
4775-5525
2710-2970
1325-1525
650-785

comm/blocked

430/10
240-250/10
135-145/0-15
85-130/0-60

740-915
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of the multiplier computation. Algorithm GS1 and CT?2 require the multipliers
to be applied in natural order. In Chapter 2 we discussed various methods to
compute naturally ordered multipliers. Double precision Repeated Multiplication
(Algorithm 2.3.4) was used for GS1 and CT2 whereas the Direct Call method (Al-
gorithm 2.3.2) was used for CT1 and GS2. The computational times show that the
use of Repeated Multiplication to compute multipliers paid off in faster timings.
Therefore methods which employ naturally ordered multipliers are favored for two
reasons, they are faster and simpler.

Finally we notice some differences in communication time that depend on
whether the intermingling steps come first or last. The communication times
of the two algorithms (CT1 and GS1) that intermingle first are faster than those
of their counterparts where intermingling is last (CT2 and GS2). This is because
the weight of all the past computational .imbalances causes some processors to
arrive at the intermingling steps ahead of the other processors. Of course these
processors with a lighter workload block to wait for those with a heavier workload
to reach the intermingling steps. This is especially so in the heavy imbalance in
blocking exhibited by the CT2 algorithm.

Hypercube Mapped in BRGC Order

The topology of the hypercube mapped in Natural order is well-suited for com-
putation of the radix-2 FFT because all messages are between neighboring nodes.
However other computations may be best mapped into an entirely different topol-
ogy. For example if the FFT is involved in the solution of partial differential
equations, it is natural to use a finite difference discretization where a Nearest-
Neighbor mesh type topology would be best suited. It would be inefficient to
arrange the data in a nearest neighbor configuration for the finite difference steps
and later rearranging it for the FFT steps. Therefore Chamberlain (1986) and
Chan (1986) have proposed a compromise whereby the data is mapped into nodes
ordered in a BRGC. See Figure 3.7.

Let a sequence G4 represent a BRGC of dimension k. For example, G3 =
{0,1,3,2,6,7,5,4}. Recall from Chapter 1, the properties of this special gray
code that make it useful.

Nearest Neighbor: Consecutive elements in the BRGC differ at exactly one bit.
Therefore hypercube processors mapped in this order are adjacent to their
nearest neighbors.

Exchange: Corresponding positions in G and and EG differ at exactly one bit.
This means that processors are adjacent to their “mirror images”.
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Figure 3.7: n = 8, d = 2 mapping of data in natural order, cube in BRGC

Global Connectivity: Elements of the BRGC G(j) and G(j £ 2¥) differ at most
in two bits for any £ > 0. The subscripts are to be taken modulo 2¢.
This means that processors are at most a Hamming distance two from any
processor which is ordered a power-of-two apart.

Table 3.4 summarizes the implementation of the CT2 and GS1 algorithm on a
hypercube mapped in BRGC order. We choose to discuss the two variants where
the multipliers are computed in natural order because they are simpler and more
convenient to implement. The communication time ranges are roughly the same
as those for the hypercube mapped in Natural order, see Table 3.3.

3.4 The Two-Track FFT Implementation

We now describe a new method that solves the problems of load imbalance and
extra buffering needs with just minimal communication. We have already seen in
Section 3.2 how an attempt to correct the load imbalance and buffering problems
requires a processor to communicate two times during an intermingling step. By
considering the second exchange in Walton’s implementation we see that it is
unnecessary. Recall that in efficient distributed in-place FF'T implementations, no
attempt is made to perform the bit-reversal permutation. Hence either the input
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Table 3.4: Forward FFT (BRGC Implementation)

n = 4096
CT2
dim total comp comm/blocked
0 9450 - -
1 5420-5435 4595-5385 50-825/10-790
2 3065-3150 2235-3020 125-830/10-790
3 1720-1790 1090-1680 105-630/10-595
4 955-1030 725-925 40-390/15-440
GS1
dim total comp comm/blocked
0 9205 - -
1 4545-5290 4490-5230 55/5-10
2 2555-3305 2190-2925 365-375/70-295
3 1415-1935 1075-1630 300-395/50-270
4 795-1095 530-800  190-300/90-270

or the output is in bit-reversed scrambled order. Our new implementation method
forgoes the second exchange and in doing so, introduces an additional scrambling
of the data. This scrambling is shown to be manageable. The important point is
that it is reversible. Hence our implementation achieves load balancing, in-place
computations, no need for additional buffering space, as well as non-redundant
communication requirements.

The FFT of a vector x of length n (n = 2*) is broken into two pieces, the first
half denoted by x(1) and the second half x(2) and distributed into P processors. We

partition x(1) and x(?) into subvectors of length n/2P, xgl) and xgz), respectively.

These are then placed into the processors such that the xfk) are placed in processor
t, with k = 1,2. We define the left track to consist of the subvectors of x(!) and
the right track the subvectors of x(2).

At each intermingling step, each processor exchanges its portion of x(2) for
the portion of x(1) that its exchange partner for that step has. The butterfly
computation is done and the results are not sent back. Instead, we just accept
that an additional permutation is put into the data. The inverse transform can
be done by starting out with this permuted data and reversing the exchange steps
until the final result is again in the correct order. This scheme is already load
balanced and does not require extra buffers as it is similar to Walton’s method.

However in addition, by accepting an extra permutation, we have eliminated the
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Figure 3.8: Two-Track Forward Transform Data Swapping Pattern

need for extra communication.

The permutation is illustrated with a simple example: (n = 16),(P = 4)
in Figure 3.8, with elements for the next exchange at each step highlighted in
bold. Notice that the last stage involves no intermingling and does not swap data
between the columns, because parallel butterflies take place independently without
need for communication.

An inverse transform with data originating in the scrambled order is done with
sub-vectors swapped in the reverse order as depicted in Figure 3.9.

Figures 3.10 and 3.11 illustrate Two-Track Implementation of the Gentleman-
Sande and Cooley-Tukey distributed butterflies and Algorithms 3.4.1 and 3.4.2
show how a distributed butterfly is done in the Two-Track method. Recall the
two primitives send and recv used for the description of the algorithms. We also
use a function

flip(m,v)

that takes the binary expansion of an integer m and complements the vth bit
of that expansion. For example, £1ip(19,4) = 27, since 19 = 10011, and 27 =
11011,.

The Gentleman-Sande GS1 FFT algorithm utilizing the Two-Track data map-
ping performs the distributed butterflies first. Each update step precedes the
communication step during the distributed butterfly stages. And the last t — d
steps are done independently and locally in the processors.
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Figure 3.9: Two-Track Inverse Transform Data Swapping Pattern

Algorithm 3.4.1 GS1 Two-Track FFT
/* u = processor id; n = 2!, P=2¢ m = (n/P)/2 */
/¥ processor p holds: */
/20 = x(m -id[u] : m - (idlu] + 1) - 1) ¥/
/¥2® =x(3+m-idu]: 2+ m- (6dlu] + 1) - 1) */
/* s tells which multiplier to initialize */
s —n;
forL=1:d
Wo & Wy
p=pu/m (mod s/2)
w — wf
forj=1:m
t = 20(5) = 20()); 20(5)  20() + 20(j)
zZW()—w twewyw
end
3+ 3/2
/¥ communicate */
v=d- L;id[p] = flip(u,v); p =1d(id[p])
send(z(?),m, p); recv(z(1), m, p)
~end
/* do local FFT (GS1) algorithm */
call localGS1(z(V), 2(2) | m)

The Cooley-Tukey CT2 FFT using the Two-Track data mapping commences
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Figure 3.10: Two-Track Implementation of the Distributed GS Butterfly
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Figure 3.11: Two-Track Implementation of the Distributed CT Butterfly
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with local independent FFTs and ends with distributed butterflies. Here the
communication is done before the updating.

Algorithm 3.4.2 CT2 Two-Track FFT
/* 1 = processor id; n = 2!, P = 24 m = (n/P)/2 */
/¥ processor p holds: */
/* 20 = x(m - id[u] - m - (idu] +1) - 1) */
/%2 = x(3 +m-idu] : 3+ m- (idlu] + 1)~ 1) +/
/% do local FFT */
call localCT2z(V, 2(2) m)
s—2-(n/P)
for L=1:d
/* communicate */
v =L; udlp] = flip(u,v); p =id~1(id[p])
send(z(?),m, p); recv(z(),m, p)
/* update */
Wy — wy
p=pu/m (mod s/2)
W — wg
for;j=1:m
t — w-20(;); 20(j) — 2(j) - ¢
z0(5) = 20 () + 4 w — wp - w
end
s$e—2-s
end

Data Permutation of the Two-Track Method

The Two-Track method achieves its objective by utilizing an unconventional map-
ping of data into the processors. The sequence of data transfers results in an output
array that is permuted in another ordering. We describe this data permutation
pattern in the language of permutation matrices and Kronecker products.

Let x be a vector of length n = 2t

x(»
X=1 x@

inside of P = 2% processors. Every processor has a piece of x(1) as well as a piece
of x(2), During the communication of the Two-Track method, portions of x(1) are
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swapped with portions of x(2) resulting in a new vector X which is also split into
%(1) and %(2) mapped into two columns.

Algorithm 3.4.3 gives the data permutation pattern of the Forward Two-Track
method. Recall from Chapter 1 that B, is the matrix representing the Butterfly
Permutation and M, is the inverse perfect shuffle matrix of a sequence of length
n.

Algorithm 3.4.3 for j =2:k + 1

r=2J
X & (Bf ® In/r)x
end

From Theorem 1.6.6 we have

e~ (MAQI

X ( 2P 11/2P)x
The Inverse Two-Track data pattern starts from

X = (Mng)' ® In/2P)x

and works backwards as in Algorithm 3.4.4
Algorithm 3.4.4 for j =k +1:-1:2

r=27
X (BT bY I'n/r)i
end

The transpose of Theorem 1.6.6 gives,
x (T3 © L)%

the original x. If n = 2P, then the result of the forward Two-Track data permu-

tation is that X = Mg)x and similarly the Inverse Two-Track pattern gives back
X.

Timing Results

The timing results in Table 3.6 were done with the processors mapped in natural
order and those of Table 3.7 with processors mapped in BRGC order. The relevant
lines of Table 3.3 are reproduced in Table 3.6 in italicized characters for easy
comparison. Similarly, lines in Table 3.4 appear in italics below their corresponding
entry in Table 3.7.
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Table 3.5: Two-Track FFT FORTRAN Code

Algorithm Code Number
CT2 (3.12), (3.17)
GS1 (3.13), (3.18)
both | (3.14), (3.15), (3.16)

Table 3.6: Forward FFT (Two-Track) Natural

n = 4096
CT2

dim total comp comm/blocked
0 8685 8685 -
0 9915 - -
1 4655 4625-4630 30/0-10
1 5655-5660 4830-5610 50-825/5-790
2 2485-2490 2445-2460 30/0-10
2 3305-3320 2565-3270 50-940/10-900
3 1325-1335 1300-1305 25-30/5-10
3§  1870-1880 1165-1840 40-700/10-675
4 745-765 690-695 50-70/0-55
4 1045-1055 565-1025 30-470/5-440

GS1

0 8365 8365 -
0 9255 - -
1 44904530 4465-4500 25-30/5
1 4605-5280 4550-5225 55/5-10
2 2415-2445 2385-2415 30/5
2 2290-2985 2235-2925 55-60/5-10
3 1295-1320 1265-1285 25-30/0-10
3 1145-1670 1100-1620 45-50/5-10
4 700-760 675-690 20-85/0-65
4 640-995 555-900 80-95/5-70

* Italicized timings are for the One-Track Method.
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The implementation code (in FORTRAN) appears in the Appendix. Table 3.5
tells the subroutine number associated with each Two-Track FFT algorithm.

As one can see, in each case these times for the Two-Track method are balanced
and moreover faster than the slowest processor in Section 3.2. This is because a
lot of the blocking inefficiencies have been eliminated.

To summarize:

¢ Load balancing is achieved by placing sub-vectors so that complete butterflies
are done inside each processor during the intermingling steps.

¢ Only n/2P elements are exchanged at each step rather than n/P elements.
¢ No extra buffering is needed for the distributed butterfiies.

¢ Data is not sent “home”, hence only one exchange per intermingling step is
utilized.

* Timingresults are faster than for one column method, because each processor
only has to calculate n/2P multipliers rather than n /P multipliers (for the
two algorithms with natural ordering of multipliers). The speedup of the
Two-Track method over the one column method increases from 10% to 31%
with increasing dimension for the GS1 algorithm, and from 14% to 38% with
increasing dimension for the CT2 algorithm.

3.5 Distributed Multiplier Computation

In distributed FFT’s each individual processor requires a set of multipliers that is
different from those required by other processors. This is because each processor
is responsible for only a subset of the FFT butterflies.

Let wp, = e~27/" where n = 2¢ and p be a integer ranging from 0,...,n/2 — 1.
Then the powers of wn, p required by processor T, in natural order, are exactly
those p whose binary representation satisfy the pattern,

Al n
7], —0,1,...,§—1
("denotes concatenation of binary numbers), and z is assumed to be in binary
form. (0 <z < P —1), with P = 2¢, the numbers of nodes in a d-dimensional
hypercube. The mapping the integers 0, ... .n/2 in consecutive order through a
hypercube whose nodes are in natural order shows this. The highest order d bits
denote the processor number.
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Table 3.7: Forward FFT ( Two-Track) BRGC

n = 4096
CT2
dim total comp comm/blocked
0 8685 8685 -
0 9450 - -
1 4655 4630 25-30/5
1 5420-54385 4595-5385 50-825/10-790
2 2565-2650 2450-2465 100-195/0-105
2 85065-3150 2285-3020 125-830/10-790
3 1405-1420 1295-1305 100-115/10-95
3  1720-1790 1090-1680 105-630/10-595
4 760-870 695-700 65-175/10-155
4 955-1080 725-925 40-390/15-440
GS1
dim total comp comm/blocked
0 8365 8365 -
0 9205 - -
1 4490-4530 4460-4495 30/5
1 4545-5290 4490-5230 55/5-10
2 2525-2560 2380-2410 125-175/5-110
2 2555-3805 2190-2925 365-375/70-295
3 1395-1460 1265-1290 115-175/50-140
§  1415-1935 1075-1630  300-395/50-270
4 790-865 670-695 110-185/25-165
4 795-1095 530-800 190-300/90-270
* Italicized timings are for the One-Track Method.
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p00 : {00°00,00°01,00"10,00"11}
p01 : {01700,01°01,01°10,01°11}
p10 : {10°00,10°01,10"10,10"11}
pll : {11°00,11°01,11°10,11°11}

Since the left-most d bits designate the processor number, we refer to these
bits as the processor field. Meanwhile, the right-most t — d — 1 bits run from
0,..., 55 — 1 and are designated the working field.

We now show how each of the five algorithms from Chapter 2 can be distributed

in the multiprocessor setting. We do not use the symmetry described on page 34
since each processor only has a selected subset of the trigonometric functions.

Algorithm 3.5.1 Direct Call
/* u = processor id, n = 2!, P =2¢ m = (n/P)/2 */
0 =27r/n
g = 20971 4d[y]
for j=0:m
c(j) — COS(z + 5)8; s(j) « SIN(z + ;)6
end

Algorithm 3.5.2 Forward Recursion
/* u = processor id, n =2, P=2% m = (n/P)/2 */
0 =2r/n
z = 2t=4-1. id[u]
c«— COS(8)
tcl —2-c¢c
c(0) — COS(z8); s(0) « SIN(z6)
c(1) « COS(z +1)6; s(1) « SIN(z +1)6
forj=2:m
e(3) —tet-c(i —1) —e(j - 2)
s(j) —tet-s(j —1)—s(j —2)
end
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Algorithm 3.5.3 Repeated Multiplication
/* u = processor id, n =2, P=2¢ m = (n/P)/2 */

=27/n

z = 2174=1 . 4d[u]

¢~ COS(8); s — SIN(6)

c(0) — COS(z6); s(0) — SIN(z6)

forj=1:m
c(j)—c-c(j-1)+s-s(j —1)
8(j) = —s-c(j—1)+c-s(j—1)

end

Logarithmic Recursion is not practical in the multiprocessor setting. A simple
example illustrates this. Let n = 16, n/2 =8, and d = 1. Let c; denote cos(;6).
Recall that c; = c_; if j is in the first quadrant.

pOlco=1
c1 = cos(0)
¢z = cos(26)

€3 =2c2-¢c1 —c—1
pl | cq4 = cos(46)

cs =2c4-C1 —C_3
6 = 2c4-C2 ~ C_y
¢t =2c4-¢c3—c_1

One glance at the data that processor pl needs to compute cs, cg, and c7 shows
that they are not local and hence require communication.

Algorithm 3.5.4 Subvector Scaling
/* u = processor id, n =2t P=24 m = (n/P)/2 */
0 =2r/n; men/2
z = 2td-1. 4d[u)
c— COS(0); s — SIN(6)
c(0) & COS(z8); s(0) «— SIN(z8)
c(1) « COS(z +1)6; s(1) — SIN(z + 1)8
forg=1:t—-d-1
Le—29,L,—L/2
for j=0:L,~-1
e(Loti) = c-e(3) +5-5(3)
S(Lo+3) = —s - ¢(35) + < - 5(3)
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end
m«— m/2
0=n/m
¢ —C0S(8); s — SIN(6)
(L) —c¢; s(L) « s
end

Algorithm 3.5.5 Recursive Bisection
/¥ u = processor id, n =2, P = 24 m = (n/P)/2 */
6 =2r/n
T = 274l d[u]; y — 28791 (4d[u) +1)
c(0) « COS(z6); s(0) — SIN(zb)
c(m) «+ COS(yh); s(m) — SIN(yb)
forL=1:t-d-1
i —m/2L; j — my/2l
c(j) « COS(z +1)6; s(j) — SIN(z +1)0
h — 1/2¢(3)
fork=1:20-1_
J—J+2
<(3) = h-(c(i ~ ) +e(i +1)); 8(5) — h-s(3 — 1) +c(§ +1))
end
end

Storage Considerations

The methods listed above generate a table of length (n/P)/2 complex numbers
as the multipliers needed by each processor. This may or may not be desirable
depending on whether there is sufficient storage and/or multiple transforms are
done. If only one FFT is done and array storage space is precious, then methods
which do not require table storage should be utilized. Such is the case with our
implementations, where the multipliers are computed as needed.

Recursive Bisection

Recall that Buneman (1987) describes a procedure that implements the Recursive
Bisection algorithm with tables of O(log, n) rather than O(n).
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Now suppose we are in a multiprocessor setting where each processor requires
only a subset of the weights. This situation is applicable to distributing FFT
butterflies among many processors.

Let n = 2! so that the multipliers needed have arguments

: . n
2ry/n j=0,...,— =1
2
Mapping the weights in the natural order among P = 2¢ processors, d < t, we see
that processor k needs to have the weights

cosk™j, j=0,... 2t"9"1

("denotes concatenation of two binary numbers).
Example (t=25,d=2)

p(00): 007000, 00001, 00°010, 00°011, 007100, 007101, 00°110, 00"111.
p(01): 017000, 01001, 01°010, 01°011, 017100, 017101, 01110, 01"°111.
p(10): 107000, 107001, 10°010, 10°011, 107100, 107101, 107110, 10"111.
p(11): 117000, 117001, 11°010, 117011, 117100, 117101, 11110, 11°111.

Notice that the left-most two bits designate the processor number and the
right-most ones run from 0 to 7. In general, we refer to the left-most d bits as the
processor field, and the rightmost ¢t — d — 1 bits, the working field. If we ignore the
processor field, we notice that each processor needs to be able to generate 2¢—4-1
sines and/or cosines. This means that it must have a table of length ¢t — d + 1
to follow Buneman’s scheme. In fact the procedure is exactly the same for each
processor as if it were working on a 2!~9~1 problem ezcept for the initial values.
Instead of initially having the cosines of 2m, m, T etc., processor k would have
the cosines of 2¢t—4-1. "n—" + 2, 2t—d-1. "T" + 7, 2t—d-1, k—n"l + 3, 2t7d-1. ka + %, etc.
In other words, the initial values are the cosines of the angles we would have had
plus the quantity 2t—4-1. %- The characteristics of the working bits are all that
are used, even though the initial and subsequent values are for angles which have
degree (+2!-4-1. k),

To illustrate, this is what processor 1 initially contains in our example:

cos40 cos24 cosl6 cosl2 cosl0 cos9

cos 8 must also be computed and used, but does not enter into our discussion here.
Pretend for a minute that we try to work with the binary representation of 40, 24,
16, 12, 10, and 9.

101000 011000 010000 001100 001010 001001
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We quickly see that we run into trouble in that the first three columns do not have
the proper number of trailing zeros for Buneman’s procedure. Instead, looking
back at table 1, we see that if we add 8 to every number, the angles we need are
generated in precisely the correct order. Therefore using the binary representations
of the working field only, we see that despite what the initial values are, one can
still get the correct order with which to generate the weights. Since the position
and order is determined by the working bits and the values are determined by the
initial values, we can generalize this to any other processor, let’s say processor 3
whose initial values are

cos56 cos40 cos32 cos28 cos26 cos?25

and use the exact same algorithm. In fact Buneman’s algorithm need only be
changed in a few spots, the initialization of the cosine table is different and the
loop runs through fewer values.

Algorithm 3.5.6 Multiprocessor On-line Cosine Generation
/¥ 1 = processor id, n = 2!, P =24 */
n = 2
real h(t+1), c(t+3)
/* generate the portion of the cosine table */
/* depending on processor number id[u] */
arg = 8w
pin = 27"
ine = 20791 4d[y]
fore=1:t+1
arg = arg/2.0
ang = arg + inc*pin
c(i) = COS(ang)
end
c(t+2) = COS(ang-pin)
write c(t+2)
for K =1:2t-4-1_
I=KAND.-.K
L =logy(I)
/¥ c(t+2-L) contains the Kth cosine; use it and then replace it */
write c(t+2-L)
I=2%+ (2*I.OR.K-I)
c(t+2-L) = h(t+2-L)*(c(t+1-L)+c(t+2-log, (I.AND.~I)))
end



Chapter 4

Comparison of Two-Dimensional
FFT Methods on the Hypercube

4.1 Introduction

Multidimensional Fourier transforms, as in the single dimensional case, can also be
broken into pieces that can be done in parallel. Here the possibilities are even richer
than in the one-dimensional case. This is because multidimensional transforms
can be done either as a sequence of separable one-dimensional transforms, or by
directly splitting them into blocks of smaller multidimensional transforms, as in
the vector-radix methods [Rivard (1977), Harris et al. (1977)]. We study only
the case of the two-dimensional Fourier transform because the discussion and
algorithmic methods can be extended directly to computing higher dimensional
Fourier transforms.

Lower dimensional Fourier transforms can be computed by way of multidi-
mensional transforms through the Twiddle Factor Algorithm (see Chapter 1).
Therefore large one-dimensional Fourier transform problems can be approached
from the multi-dimensional point of view. This multidimensional mapping of one-
dimensional DFTs underlies the derivation of prime-factor FFTs, and the very
efficient Winograd Fourier transform algorithm [Nussbaumer (1982)].

Work on two-dimensional FFTs on distributed processors has so far been
restricted to the row-column approach. The strips method partitions the two-
dimensional array, or matrix, into rows, mapping block rows into processors. The
transform of each row is then found, and the matrix is transposed before a second
row transform pass is done on rows that previously had been columns. We follow
McBryan and Van de Velde (1985) in terming this approach the Transpose-Split
(TS) 2D-FFT.

Another row-column method partitions the matrix into blocks of submatrices.

103
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assigning one block per node. The hypercube is then viewed as a two-dimensional
cross-product of smaller dimensional hypercubes with distributed FFTs performed
along both the rows and the columns. No transposing of data is needed here. We
term this method the Block (B) 2D-FFT method.

We present two new methods of implementing 2D-FFTs. The first one is a row-
column approach that partitions data into strips much like the Transpose-Split
method. The difference is that no transpose is done between the horizontal and
vertical steps. Instead, the horizontal FF'Ts are done locally inside each processor
and the vertical FFTs are distributed. We call this the Local-Distributed (LD)
2D-FFT method.

Finally we implement a partial Vector-Radix (VR) 2D-FFT on the hypercube.
What this means is that the individual 2D-FFTs that are done locally inside the
processors are row-column 2D-FFTs, however, the intermingling steps use the
vector radix update scheme.

The Transpose-Split 2D-FFT is favored by several, including John Gustafson
(1987), because all FFT computations are performed locally. The only communica-
tion that takes place occurs within the transpose step. Gustafson has implemented
the Transpose-Split FFT on a 1024-node NCUBE machine which has the pleas-
ant property that each node can perform up to 9 simultaneous communications,
thereby allowing the use of almost all the links of the hypercube during the trans-
pose stage. He can reduce communication time by a factor of d, the hypercube
dimension. Therefore all that is needed to effectively implement this method is
a fast efficient matrix transpose procedure. See Ho and Johnsson (1986) for an
in-depth analysis of the hypercube matrix transpose problem.

The Block method was implemented by Miles et al. (1987) on the Floating
Point Systems T-Series hypercube. By considering the signal flow graph of the
radix-2 FFT algorithm, we see that this implementation requires communication
during both the vertical and horizontal passes. At each step where the butterfly
computation is split between two processors, each node exchanges with its neighbor
exactly half of its data points. Each processor computes the butterfly updates for
the points it possesses after which it contains updates for half of its own points and
half of the points belonging to its communicating partner. Another exchange is
then necessary to repatriate these updates. Therefore two exchanges are required
for one butterfly step. This may seem inefficient unless the communications and
computations are overlapped during the distributed butterfly calculations. This
is indeed possible on the T-Series since each node possesses a transputer that
allows a processor to send data to its neighbor in the next butterfly step even
before it has totally completed the present step. Hence, two communication stages
can be overlapped in one computational step. This method of implementation is
referred to as the Block method since the matrix is mapped by sub-blocks into
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the hypercube such that the (2,7)th block is mapped into the node whose label is
the binary representation of i concatenated with the binary representation of 7j.
[See Miles et al. (1987)]. The powerful vector boards on the T-Series allows this
method to be used advantageously.

The Local-Distributed method and the Vector-Radix-2 method are imple-
mented on the Intel iPSC. The Intel iPSC, unlike the NCUBE and T-Series
machines, does not allow simultaneous communication. This is detrimental for
the Vector-Radix-2 method as the intermingling stages involve total exchanges
between four processors instead of two. A total exchange within a subcube of
processors means that each processor in the subcube exchanges data with every
other processor in the subcube. This particular property of Intel communica-
tion also means that the full cross-bar interconnection scheme cannot be simu-
lated efficiently, and with Intel iPSC /System 286 capabilities, a transpose takes
2d = 2log, P steps to perform, as each node can only do one send followed by
one receive in one direction at a time. Another drawback is that computation
and communication cannot be overlapped and thus distributed FF'Ts will exhibit
blocking during the intermingling butterfly steps caused by one processor waiting
for data from another. The Local-Distributed method does not require a trans-
pose and does distributed FFTs along only one direction instead of two (the Block
method). Meanwhile the Vector-Radix FFT performs local 2D-FFTs followed
by intermingling stages requiring the summation and multiplication of the local
FFTs by “twiddle” factors. The Vector-Radix FFT has a lot of potential that is
not reflected in our implementation on the Intel iPSC precisely because of com-
munication inefficiencies. But we think it is useful to offer it as an alternative to
the row-column approach because of its rich parallelism.

4.2 Two Dimensional FFT Algorithms

Row-Column
The Discrete Fourier Transform (DFT) of a vector z of length n is defined as
y — Fg;x
where F, is the matrix consisting of powers of the nth root of unity w, = e~2m/n
[Fnljk = wit

The two-dimensional (2-D) discrete Fourier transform (DFT) of a two-dimensional
array X € C™>*"2 ig defined as \

Y — Fo, XFT,
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This matrix notation clearly demonstrates the row-column or column-row method
of computing the 2-D transform, since matrix-multiplication is associative. If the
fast Fourier transform (FFT) is used to evaluate the 1-D FFTs along both the
rows and the columns, the number of complex multiplications required is n? log, n
for n = n; = ny. In addition, a matrix transposition algorithm is required.

A one-dimensional FF'T of a long vector of length n = ny - ny can be computed
in a 2-D “fashion” by viewing it as a DFT of an array of size ny x ny [Nussbaumer
(1982)], that is, by writing x as an array Xp,xn,. 1lhis notation is defined in
Chapter 7. Using the Twiddle Factor Algorithm (Chapter 7), we can compute the
n-point DFT of x by an ni-point FFT of the rows, a point-wise multiplication of
x by the twiddle factors, followed by another ng-point FFT on the columns. The
matrix of twiddle factors T is defined

[T]jk=w,{k, J=0,...,n1=1; k=0,...,np—1.

and * denotes the point-wise multiplication of two matrices. Hence the DFT y of
X is another two-dimensional array given by

yzzxnl = Fﬂ1[(Tn1><n2) * [xﬂ1><ﬂ2Fnz]]

The row-column or column-row method can be used to compute the horizontal
and vertical DFTs.

Vector-Radix

The Vector-Radix FFT is a direct decomposition of the two-dimensional DFT into
sums of smaller two-dimensional DFTs multiplied by “twiddle factors”, (the matrix
A). Here a 2-D DFT is recursively broken down into four 2-D DFTs until only
trivial 2D-DFTs need to be evaluated. The number of complex multiplications is
now %n2 log, n, 25% lower than the row-column method. [Rivard (1977), Harris
(1977)] Moreover, no matrix transpose routine is required.

The recursive block structure of the DFT matrix F, is used in two-dimensions
to derive the method. The matrix X € C"*" is segregated into four sets; one over
those samples X(j, k) for which j and k are both even, one for which j is even and
k is odd, one for which j is odd and k is even and one for which both j and k are
odd. The diagram in Figure 4.1 shows schematically the decimations of data in
both the one and two dimensional decompositions.

Theorem 4.2.1 Let X € C™*® with n = 2%, then the 2D vector-radiz splitting of
the 2D-DFT of X is

F.XFl = (FaIL)(M,XMT)nIF7)



107

Figure 4.1: One and Two Dimensional Decimation Schemes

_ [In/Z Ay ][311 312][171/2 I./2 ]
L —Aq X211 X Az —Ag)

where A, )y = diag(l,wn, ... ,w:,'/z'l) and

X, = Fo.pX(0:2:n-2,0:2:n-2)F]),
X2 = FpopX(0:2:n-2,1 :2:71—1)F£/2
Xy = Fn/2X(1:2:n—1,0:2:n—2)F£/2
X = Fp/nX(1 :2:n—1,1:2:n—1)Fz:/2

Proof From Theorem 1.8.1 we ha;ve

_ I A Fn/2 0
R HEV AP

Applying this to both sides of M, XM gives the required decomposition.

*

Theorem 4.2.1 is the basic two-dimensional Cooley-Tukey (CT2) splitting of
the Vector-Radix method for computing the 2-D FFT. The complete algorithm is
obtained by recursive application of this basic decomposition.
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Figure 4.2: 16 columns mapped into 4 processors.

Algorithm 4.2.1 Vector-Radix 2-D FFT

n=2°
X « P,XPT
forg=1:1t

L —2¢

Ay diag(l,wL,...,wf/Q_l)

Ip Arp H [ [ Iyjp Ipp H
XL, ® X|L,®
- { it lIL/2 —Ar/ /L App —Apy,

end

4.3 Data Structures and Mapping

The Local-Distributed method as well as the Transpose-Split method are based on
the natural mapping of block rows into the hypercube, where block row : is stored
in processor i. The particular way we map these block rows into the hypercube
is equivalent to McBryan and Van de Velde's (1987) distributed column mapping.
Figure 4.2 shows the mapping of a matrix into 4 processors. Local FFTs are done
along the rows, with the vectors oriented perpendicular to the direction of the
FFT computations.

The Vector-Radix-2 method and the Block method both partition the matrix
into submatrices, placing one submatrix in each processor. The Block method
involves distributed FFTs along both rows and columns. The Vector-Radix-2
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000°00 000701 000°10 000°11
001700 001°01 001°10 001711
010°00 010701 010°10 010°11
011700 011701 011°10 011°11
100700 100701 100°10 100711
101700 101701 101710 101°11
110700 110701 110710 110°11
111700 111701 111710 111711

Figure 4.3: 5-cube = 3-cube ® 2-cube.

intermingling steps involve total exchanges among two-dimensional subcubes. The
adjacency structure of the communication in both methods requires viewing a d-
dimensional hypercube as a “cross-product” of a k-dimensional by an /-dimensional
hypercube where d = k + .

Toillustrate what we mean, Figure 4.3 gives a low dimension example. Suppose
we have a 5-cube viewed as a “cross-product” of a 3-cube and a 2-cube. Each node
has a binary label A with 5 bits that can be construed as the concatenation of a
binary label b;bsb3 of 3 bits with a binary label cjc; of 2 bits, i.e.

A = b1bbscico

Now we place each node so that in the z-direction cic2 go from 00 to 11; and in
the y-direction by b, b3 go from 000 to 111.

This produces a two-dimensional array of nodes possessing “powers of two”
adjacency for both rows and columns. Notice that we have exactly the adjacency
structure necessary for a two-dimensional radix-2 FFT of a matrix mapped into
the processors in a natural fashion.

"This scheme extends to arbitrary dimensions. Suppose we have a d-dimensional
hypercube where d = k + | + m. We can write the binary label of each node

A=blbg...bkCICQ...CIflfz...fm

and map our nodes in three dimensions. Denoting concatenation by exponentia-
tion, we order the fi f;... fn from 0™ to 1™ along the z-direction, the cic;. .. ¢
from 0! to 1/ along the y-direction and the b1bz...b from OF to 1% along the
z-direction. Therefore if d = dy +dy + ... + d; ( j= dimension of data struc-
ture), a j-dimensional array can be mapped into the d-dimensional hypercube so
that in each direction k = 1,2,...,;, the interconnections are exactly those of an
di-dimensional hypercube.
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Figure 4.4: 16 columns mapped into 16 processors.

A block matrix mapping maps submatrices into the hypercube so that block
Aij goes into processor :"j (where “denotes concatenation). Figure 4.4 shows the
mapping of a matrix into a hypercube of 16 nodes.

In the Block method, the FFT computations must include distributed butterfly
computations in both directions. This method can obviously be extended to higher
dimensions. For the Vector-Radix method, higher dimensional FFTs require total
exchanges among higher dimensional subcubes.

4.4 Efficient Data Transposition on the Intel iPSC

An extensive study on matrix transposition on hypercube architectures was done
by Ching-Tieri Ho and S. Lennart Johnsson (1986). The algorithm we use in
the implementations comes from a recursive block transpose algorithm described
in Johnsson (1985a, 1985b) and McBryan and Van de Velde (1985) and coded
by Ho. Basically a matrix of dimension n mapped into P processors can be fully
transposed in a time of order (n%/P)log, P. The following recursion fully describes
the transpose algorithm.

Algorithm 4.4.1 Transpose(A):

Ago Am}
A= [

A An
Ag1 < Ajo

Transpose(Aoo) Transpose(Ao;)
Transpose(Ayg) Transpose(A;;)
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Figure 4.5: Block Recursive Transpose.

Figure 4.5 describes the recursive block transpose for an 8-by-8 block matrix
mapped into a hypercube of 8 nodes. Each node receives one block row of the
matrix. And the arrows denote the scope of the blocks that are transposed at each
step. Figure 4.6 concentrates on processor 2 and highlights in black the portions
of the matrix that are to be exchanged at each step. Since the matrix is mapped in
the distributed columns formation, each dark block consists of contiguous elements
and can be sent as a single message. The initial step involves an exchange between
processors whose node numbers differ at the highest order bit, or bit number d — 1.
The messages are of length L/2, where L is the length of the portion of our matrix
resident in each processor. In our case, L is the number of data-points in a block
row multiplied by the number of bytes per data-point. In the next step, each
processor now has 2 messages of length L/4 and these are exchanged between
processors whose node numbers differ at the 2nd-highest order bit, (bit number
d — 2). Counting the steps from k = 0 to k = d — 1, we have the property that at
the kth step, there are 2% messages of length L/2%+1 exchanged between Processors
whose node numbers differ at the (d — k — 1)th bit.

A simple procedure describes where each chunk goes at each step. First we
define a function

ithbit(u, k) = { (; if the kth bit of pis 0

if the kth bit of uis 1
For example: ¢thbit(20,2) = 1 since 20 = 10100,.

Algorithm 4.4.2 Recursive Block Transpose
/* 1 = processor id; n =2 m=n/P */



Figure 4.6: Blocks Exchanged by Processor # 2.

/* processor p has: */
/¥ Ajg = AGdp]-m e (dfp] +1) - m=1,0:n - 1)%/
fork=0:d-1
/* partition block row Ay, into 2k+1 submatrices of width n/2k+1 */
/* with the submatrices numbered from j =0...2k1 _1 #/
w — n/2k+1
for j=0:21_1
Aj = AypGg-w:(+1) w-1)
end
/* send 2F submatrices to neighbor in (d — k — 1)st direction */
/* receive 2F submatrices from neighbor in (d — k — 1)st direction */
/¥ determine processor p to ezchange with */
idlp] = flip(id[u],d — k = 1); p = id~*[id(p]]
if ithbit(p,d — k — 1) = 0 then
send({A;:j is odd},m-w,p)
recv({Aj:j isodd},m-w,p)
end if
if tthbit(y,d —k — 1) =1 then
send({A;:j iseven},m-w,p)
recv({A;:j Iiseven},m-w,p)
end if
end
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Notice that as the algorithm progresses, there are more and more messages
of smaller and smaller sizes to exchange. This can cause a tremendous amount
of overhead in terms of message start-ups. Since the start-up time is, in general,
several orders of magnitude slower than the data transfer rate, we would prefer
to buffer the smaller chunks into the largest possible array and transmit a fewer
messages. Of course there are constraints to this approach also, taking into con-
sideration the largest message size B,, and also the “copy” rate of the processors.

Ho and Johnsson (1986) present an optimized version of this algorithm for the
Intel iPSC taking into account the communication startup time, the copying time
for buffering, and other peculiarities of the Intel cube such as its allowing commu-
nication over only one port at time. They have discovered that the time it takes
to copy 4K bytes is about 37 milliseconds and that the time for copying 256 bytes
is approximated the same as one communication start-up. Hence their algorithm
sends blocks of length at least 64 floating-point numbers without buffering. We
have chosen to implement their algorithm for complex numbers. One should also
note that if P = 2%, then after d steps in the block recursive transpose algorithm,
the remaining transpose operations are local to each processor.

4.5 Comments on Data Ordering, Vectorization,
Mixed Radix Implementations, and Storage

One-dimensional transforms of long vectors can also be implemented in procedures
similar to the methods described here by utilizing the twiddle factor algorithm
where the sequence is initially mapped in column order by distributed columns,
Le. block rows of columns. DFTs are taken along the rows, followed by a point-
wise multiplication of twiddle factors. Then the whole array is transposed and the
“column” DFTs are again done on the rows.

Algorithm 4.5.1 Twiddle Factor FFT of X = Xny xng
X — XF,,
X~TxX
X ~XT
X —~ XF,,

Recall that * denotes the point-wise multiplication of two matrices. Since the
results x(ky, k2) are in transposed order, the resulting array x, which actually
contains x7 is in the correct order. Therefore no extra transpose is needed to bring
the data back to its original order. A two-dimensional DFT proceeds in exactly
the same manner except for the omission of the twiddle factor multiplication.
However, the resulting array is in transposed order.
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The usual radix-two in-place FFT algorithms require a data permutation either
at the start of the procedure or at the end. This permutation is the well-known bit-
reversing permutation. In the Transpose-Split method, the FFTs are performed
locally so that this permutation is also done independently and locally. We can
also avoid bit-reversing by using Stockham FFTs locally, albeit this necessitates
an extra array of workspace. In any case, no distributed bit-reversing operation
is necessary. The Local-Distributed methods, require up to an extra d communi-
cations [Swarztrauber (1986a)], on a cube which can communicate simultaneously
in all directions, to perform distributed bit-reversal. This is also discussed by
Van Loan (1987). The Block and the Vector-Radix FFT results in a need for
distributed bit-reversal along both the horizontal and vertical directions, or an ex-
tra 2v/d communications if Swarztrauber’s method is utilized. On the Intel cube,
autosort FFTs incur too much communication overhead to be efficient. However
if the data is to be transformed and then inverse transformed, there would be no
need to unscramble in the transform domain since there are algorithms which take
bit-reversed data on input and return the inverse transform in natural order.

If the data array is mapped within each processor so that its vector orientation
is perpendicular to the direction of the FFT, one can effectively vectorize the
butterfly computations. The vector length is equal to the number of multiple
transforms and hence one would prefer to do the FFT of m transforms in parallel
rather than do one transform after the other. See [Hockney and Jesshope (1981)
and Swarztrauber (1986a)]. The basic operation here is a vector SAXPY where

Ve—ax+y

Vv, X, and y are vectors with a a scalar. Since the direction of the second FFT pass
is perpendicular to that of the first pass, a transpose is needed between the two
stages. For the Transpose-Split method this means that after the block transpose,
one must complete the transpose by performing transposes on all the submatrices
locally. For the two distributed methods, a local transpose of the array resident in
each node is required to retain the correct orientation of the vectors. The Floating
Point Systems implementation of the Block method consists of mapping the array
X in sub-blocks into the nodes of the hypercube. Since the T-Series consists of
vector boards, local transposes are done on each submatrix to keep the correct
orientation for vectorizing.

Vector length is also an important issue when doing multiple transforms on
vector processors. Suppose we have an N-by-N array and p processors. The
length of the vectors in the direction perpendicular to the FFT computations
should be as long as possible (up to the length of the vector register) so as to take
full advantage of vector operations. The Transpose-Split method requires each
processor to do N/p FFTs of length N simultaneously and thus has an effective



115

Table 4.1: Multiple Transforms and Vector Length.

horizontal vertical

TS LD B VR |TS LD
N N N N
NS
m | NN & oalY 5
]L# of FFTs = vector length

ilength of portion in each processor

SNk
SESEE

vector length of N/p. The Block method has each processor responsible for N /P
FFTs of which only N/ /P elements of each FFT are processor-local. The vector
length here is N/,/p and is /P times longer than the Transpose-Split method.
The Local-Distributed method has the same characteristics of the Transpose-Split
method during its local phase, vectors of length N/p; however in its distributed
phase, the effective vector lengths are N. These observations are summarized in
Table 4.1

On the Floating Point Systems T-Series hypercube, the vector registers are of
length 128, and thus the Block method is favored here since its average vector
length is the longest. For example, if p = 64, and N = 1024, the Block method
would give vectors of length 128, whereas the Transpose-Split produces vectors
of length 16. Since the vector boards are so fast (50-60 Mflops for the 2D-FFT)
[Miles et al. (1987)], one would like to “fll up” the registers to minimize the
loading and storage of data. In fact, this was a compelling reason for chosing the
Block method for the FPS T-Series implementation.

A further consideration is whether the problem at hand requires vectors whose
lengths are not a power of two. As the powers of two get large, they are spaced
further and further apart. A partial differential equation problem may take place
on a grid which is 100-by-100. Most of the distributed methods in the literature
presume the use of a radix-two FFT on vector length = 2¢ (some k an integer).
Therefore a point brought out by McBryan is that the use of the Transpose-Split
method permits one to use any FFT subroutine that accepts general n. Given that
there is a good transpose algorithm, such a method is more portable and simple
for the end-user to implement. However, the Local-Distributed Method which we
have proposed here can be used to handle transforms of length n = 2km. This
is because the twiddle factor algorithm can be adapted so that the local in-house
FFTs are of length m and the distributed FFTs running the other direction are
of length 2%, where a radix-two algorithm is used. This method which we call
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the Mixed-Radix-2 will be discussed in Chapter 7. The Vector-Radix method is
generalized by Harris et al. (1977) to include arbitrary radices and non-square
arrays.

Finally, storage requirements differ for these methods. In general, the dis-
tributed methods require an extra N?/p points of storage per processor if one
wants to do only one exchange per distributed butterfly step. This is because
all information must be sent to the other processor before the updating is done.
If one is allowed to incur two exchanges per distributed butterfly step, as in the
FPS implementation, there is no extra buffer space necessary for storage. The
Vector-Radix-2 method can also be done with two exchanges per intermingling
step. Here each processor sends a quarter of its data to each of three members
belonging to a specific two-dimensional subcube as itself. It also receives three
quarter pieces from each member. Updates are done and another total exchange
is necessary to repatriate the data. This means that no extra buffer is needed.
The Transpose-Split method can be done totally in place, if unbuffered transpos-
ing is used. However, as Ho and Johnsson (1986) have noticed, this can cause the
transpose time to grow exponentially in the number of dimensions. Therefore, one
extra buffer is needed to collect the noncontigous blocks and ship them all out
at once. For the Intel iPSC, this buffer is not too large (only 64 floating point
numbers).

4.6 Implementation and Timings

The Transpose-Split, Local-Distributed, Block and Vector-Radix methods for the
two dimensional FFT are implemented on the Intel iPSC/D4MX hypercube run-
ning XENIX R3.4, iPSC Release 3.1 with Exelan R3.3 networking software. The
code was written using Ryan-McFarland FORTRAN. Vector boards are not avail-
able so that all computations within a node are done serially. The Transpose-Split
method (Algorithm 4.6.1) uses local FFTs in both the vertical and horizontal
stages and a recursive block transpose routine. The transpose code used was a
modified version of Ching-Tien Ho’s with the only change being the removal of
the aforementioned buffering.

The following algorithms give a general overview of what the whole system of
processors are doing. For example, the construct

do(in parallel, :=0,...,P—1)

means that all P processors are asynchronously performing the same operation.
The construct
do(for processor p(i)) (in parallel)
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means that processor p(i) is performing that portion of the computations, and that
all processors are asynchronously performing their respective portions of work.
with the necessary communications and updating.

Algorithm 4.6.1 Transpose-Split 2-D FFT
/¥ Find the 2D-FFT of X by using P processors */
partition X wnto block rows X;,1=0,...,P -1
map X, into processor p(i)
do (in parallel, 1 =0,...,P —1)
X; «— X,FL /* GS1 FFT */
end do
call Recursive Block Transpose (X)
do (in parallel, i =0,...,P - 1)
X; — X,’Fg /* GS1 FFT */
end do

The method of implementation for distributed FFTs is that of Chapter 3 where
the sequences are mapped in natural order into the hypercube. The isomorphism
of the radix-2 FFT signal flow graph to the hypercube interconnection scheme is
used to determine the inter-node communication pattern. The FFT subroutine
implemented is the Gentleman-Sande (GS1) algorithm. The Local-Distributed
method is illustrated by Algorithm 4.6.2 and the Block method by Algorithm 4.6.3.
Figure 4.7 shows the communications necessary during the horizontal and vertical
FFT passes for the Block method.

Algorithm 4.6.2 Local-Distributed 2D-FFT
/* Find the 2D-FFT of X by using P processors */
partition X into block rows X;,:=0,...,P -1
map X; into processor p(i)
/* Local FFTs */
do (in parallel,:=0,...,P—-1)
X; — X;FT /* GS1 FFT */
end do
/¥ Distributed FFTs */
do (for processor p(i)) (in parallel)
X; « [FpX]; /* distributed GS1 FFT */
end



118

Algorithm 4.6.3 Block 2D-FFT
/¥ Find the 2D-FFT of X by using */
/* an array of /P x \/P processors */
partition X into blocks of sub-matrices X,;
1=0,....vVP-1,j=0,... VP -1
map X;; into processor p(i’j)
/* Horizontal Distributed FFTs */
do (for processor p(i’j)) (in parallel)
Xij « [XF]];;
end
/* Vertical Distributed FFTs */
do (for processor p(i’j)) (in parallel)
ij — [FaX]ij
end

The Vector-Radix method (Algorithm 4.6.4) is implemented only partially.
In other words, the local independent 2D-DFTs are done by a conventional row-
column 2D-FFT subroutine found in Press et al. (1986), and only the intermingling
steps involve updating by the Vector-Radix method. Since our hypercube has only
16 nodes, only two such intermingling steps are done. In order to perform in-
place computation and do away with the need for extra buffers, the Vector-Radix
updating was done so that each processor in the corner of its two-dimensional
subcube was responsible for all the updating of that particular corner of the data
for its three partners as well as for itself. For example, the processor in the south-
west corner of the two-dimensional subcube for that iteration will send its north-
west corner to the processor above it in exchange for the south-west corner of that
processor. It will also send its north-east corner to the processor diagonally across
from it in exchange for the south-west corner of that processor. And it will send
its south-east corner to the processor to its right in exchange for the south-east
corner of that processor. This processor will update all the submatrices it receives
and then do a reverse exchange with all its partners to get its own updated corners
back. The intermingling steps for processor p0100 1s illustrated schematically in
in Figure 4.8. - ‘

Algorithm 4.6.4 Vector-Radix 2D-FFT
/* Find the 2D-FFT of X */
/* an array of VP x \/P processors */
partition X into blocks of sub-matrices Xi;
i=0,...,.vVP-1,j=0,... VP -1

map X;; into processor p(i’j)
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Figure 4.7: Block Method 2D-FFT Communications for a 16-node hypercube
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Figure 4.8: Vector-Radix Exchanges for Processor p0100

/* Local 2D-FFTs of X;;
do (in parallel, i = 0,...,vV/P -1, j =0,...,.vVP-1)
Xij ~F, ﬁx,,Ff/ p /¥ 2D-FFT */
end do
/¥ intermingling steps for Vector-Radiz method */
forg=0,...,d
Xij — [AXAT];
end

Here A, is defined as in Chapter 1, (L = 29)

I App }
A, =1,
1= /L ® [ I —App,

where Ay = diag(1l,wp, ... ,wf/z_l).

Computation time as well as communication time is displayed for all four meth-
ods. A portion of the communication time is reflected in a processor blocking while
awaiting data that it is to receive. The total execution time is shown in Table 4.2.
Table 4.3 shows the computation time required by each method while Table 4.4
displays the communication time whereas Table 4.5 displays the amount of time
a processor spends blocked. Times are given in milliseconds and range from the
fastest processor to the slowest processor.
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Table 4.2: Total Execution Time.

Total Execution Time

dim TS LD B VR
16 x 16
1 155 145-160 - -
2 90 80-95 90-110 160
3 75-125 55-70 65-85 -
4 140-145 105-150 90-110 125-190
32 x 32
1 710 665-715 - -
2 385-390 340-395 365430 465-470
3 230-275 180-230 235-290 -
4 170-220 105-160 110-205 215-330
64 x 64
1 3280 3110-3305 - -
2 1700 1550-1750 1675-1895 | 1850-1895
3 910-945 785-935 1045-1230 -
4 525-570 415-585 425-555 685-840
128 x 128
1 15130 15025-15230 - -
2 7825-7840 7165-7930 7820-8630 | 7735-7820
3 3965 35754145 4835-5480 -
4 2155 1800-2225 1895-2350 | 2345-2490
256 x 256
3 17650-17665 | 16870-18605 | 22220-24660 -
4 90409215 8135-9615 8695-10370 | 9040-9215




122

‘ We also mention that our implementation of the Block method differs from

Floating Point System’s in that only one exchange is incurred during each dis-
tributed butterfly step. Since the Intel cannot overlap communication and compu-
tation, the added cost of performing two exchanges would degrade the performance
of the distributed methods without giving any basis for comparison.

The results show timings that are roughly within 10% of each other for the
four different methods. However if we look at the break-down of communication
versus computational time, some interesting differences surface.

The computational times of the Transpose-Split method and the Vector-Radix
method are the most load balanced. The Transpose-Split computations exhibit
the most parallelism as all of the actual FFT steps are independent and done in
parallel. For the Vector-Radix method the individual 2D-FFT's done locally within
each processor are also done entirely independently and in parallel. As expected,
the computational times in the distributed methods show a small amount of im-
balance, with greater gaps between the faster and slowest processor than shown
by the Transpose-Split method and the Vector-Radix method. While the Local-
Distributed method stays about even with the Transpose-Split method as far as
computation is concerned, the Block method on the average takes a bit longer.
Since the same FFT algorithm was used for the three row-column methods, we con-
jecture that this might be due to the fact that processors in the Block method get
interrupted during computation at two stages, during both the vertical and hori-
zontal FFTs, whereas the Local-Distributed method only gets interrupted during
its vertical FFT. The Transpose-Split method is only interrupted once, between
the horizontal and vertical stages. Of course the effects of these interruptions
can be minimized if the processors are able to simultaneously communicate and
compute. The computational time for the Vector-Radix method is on the average
faster than any of the row-column methods, especially on large problems. Keep
in mind that we have not taken advantage of the 25% reduction of multiplica-
tions since our Vector-Radix implementation does not recurse all the way down
to the 2 x 2 trivial 2-D transform. Instead, only the intermingling steps are done
via the Vector-Radix splitting and the processor local 2D-FFTs are done by the
regular row-column approach. Hence even at this limited level, we see that the
Vector-Radix shows potential in speeding up computation.

The analysis of the communication times show a different story. Here the
three row-column methods exhibit roughly the same range of times for commu-
nication. As already mentioned, our implementation of the Vector-Radix 2-cube
total exchange is very primitive since the Intel iPSC cannot communicate across
more than one link at the same time. Hence a huge amount of blocking is seen to
be responsible for the slowness of the Vector-Radix communication. The blocking
time for the three row-column methods is about the same. This demonstrates that
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size

Computation Time

dim TSt LD B VR

16 x 16

1 150/10 140-155 - -

2 90/10 70-85 80-100 90-100

3 55/5 40-65 50-70 -

4 40/5 15-40 25-40 30-45
32 x 32

1 705/25 645-695 - -

2 375/15 320-380 345-410 380-385

3 210/10 155-215 210-270 -

4 125/10 85-120 80-135 115-130
64 % 64

1 3250/80 | 3055-3250 - -

2 1670/50 | 1490-1690 | 1615-1835 | 1625-1630

3 880/30 735-885 995-1180 -

4 480/20 380470 385-515 445-460

128 x 128

1 15015/285 | 14805-15010 - -

2 7575/155 | 6935-7705 | 7565-8405 | 7235-7250

3 3870/90 | 3400-3975 | 4660-5315 -

4 2015/60 | 1680-2075 | 1775-2225 | 1895-1915

256 x 256
3 17325/315 | 16150-17875 | 21515-23975 -
4 8815/185 | 7650-9145 | 8205-9910 | 8300-8320

Ttotal computation time and time for internal transpose
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the load imbalance of the distributed methods is not really much of a problem as
far as blocking between send and recv are concerned. One interesting point is
that the Transpose-Split communication results actually show an increase in time
for the N = 16 x 16 problem with increasing number of processors. This is due
primarily to the added complexity of having to send smaller and smaller messages
or extra buffering costs. Even though we have implemented the unbuffered traps-
pose, the results from the use of buffered transposing still show this increase. See
Section 4.7.

In the next section we shall see that while the distributed methods require
O(log, P) start-ups for communication, the transpose method could possibly re-
quire up to O(P) startups if not done carefully. We also consider the effective
vector length of the different methods and hypothesize what would happen if the
node processors have vector boards.

4.7 Discussion and Model

Models of computational and communicational complexity are often useful in giv-
ing general guidelines to the benefits of various methods of implementation. Since
FFT implementations are usually communication bound, we first consider the
analysis of simply transferring data among the processors as specified by the re-
cursive block transform procedure and the distributed methods. The vectorization
of multiple transforms are dealt with next. F inally we give an estimate of the total
time required.

Suppose we have an n-by-n array and P = 24 processors. Throughout this
discussion we shall assume that P is an even power of two. Assuming that P
divides n, each processor would have n?2 /P points. The recursive block transpose
algorithm requires d steps where n?/2P points are exchanged per step. Meanwhile
both distributed FFT algorithms have d steps involving trans-processor butterflies.
Each step requires the exchange of n?/P points. One can see immediately that
twice as much data points are exchanged at each step by the distributed methods.
Notice however, that these points are all contiguous, so that there is no overhead
of sending multiple messages or need to copy into a buffer. However, due to
the algebraic structure of the butterflies, an extra buffer array of n?/P points
is needed for each processor since it cannot overwrite its array until after the
butterfly computation. The extra buffer is not required in the Floating Point
System implementation, however an extra exchange per trans-processor butterfly
step is needed. Three extra buffers would be needed for the Vector-Radix method
if we did not use this trick of exchanging twice per intermingling step. Therefore
in our implementation, we incur the cost of the extra, exchange and hence no extra
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Table 4.4: Communication Time Including Blocking Overhead.

size

Communication Time/Blocked Time

dim TS LD B VR

16 x 16

1 5 ) - -

2 5-10 5-10 5-10 60-65

3 15-70 60-65 5-10 -

4 95-110 | 65-120 55-60 80-155
32 x 32

1 S 15 - -

2 10-15 15-20 15-20 85-90

3 25-65 15-20 15 -

4 35-95 5-20 15-65 90-205
64 x 64

1 30 35560 - -

2 30-35 60 50-55 220-265

3 25-70 45-85 4045 -

4 40-90 35—40 3040 | 230-385

128 x 128

1 110 220 - -

2 245-265 220 220-255 | 495-570

3 80-95 | 165-170 | 160-165 -

4 115-145 | 105-120 | 105-120 | 445-585

256 x 256
3 310-335 | 650-710 | 660695 -
4 230400 | 445-510 | 435-495 | 860-1355
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Table 4.5: Time Spent Blocked during Communication

size Blocked Time
dim TS LD B VR

16 x 16

1 0 0 - -

2 0-5 0-5 0-5 10-45

3 5-60 0-60 0-5 -

4 15-85 | 0-110 3-50 15-90
32 x 32

1 0 0 - -

2 0-5 0-5 5 30-65

3 0-50 0-10 0-5 -

4 5-65 0-15 0-60 30-175
64 x 64

1 ) 10 = -

2 S 0 10 10-175

3 5-20 5-55 0-15 -

4 560 0-15 5-10 115-355

128 x 128

1 15-40 35 - -

2 20-155 | 30-35 | 35-60 | 60-340

3 10-25 | 20-30 | 20-25 -

4 20-85 10-20 15-20 | 125-405

256 x 256
3 40-60 | 90-150 | 95-130 -
4 45-220 | 65-170 | 60-135 | 95-T15
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buffers are necessary.
Let 7 be the data startup time or communication latency time, B,, the maxi-
mum packet size that can be transferred at a time, and ¢, the per element transfer

time. Denote time by

method
Toperation ’

the time required for a certain operation by a certain method.
The total communication overhead is measured by

tc (number of elements to be sent) + 7 (number of start-ups)

First let’s look at unbuffered transpose communication. Ho and Johnsson [1986]
show that the complexity for unbuffered communication is

2 2 2 2
TLS = d%tc + (P + [21;,,, w min(d, log, [B:,Pb - Bn P) 2r
m

The complexity for startups is O(P) and grows exponentially with the dimension
d = log, P of the cube. This can be seen easily where, ignoring Bp,, the complexity
becomes

n? d-1
TLS = d5te + (3 2')2r.
1=0

When %52- > B, we must take into account these extra start-ups and the number
of start-ups is O(P + log, P [nz/QPBm] )-

Buffered communication makes sense only when n? /P remains small and the
complexity is approximately O(log, P) start-ups growing linearly with cube dimen-
sion. Here one must also take into account the extra time required for buffering
as well as the fact that the effective buffer is small, so that on large problems the
transpose is essentially unbuffered.

The Local-Distributed method has communication complexity

2 2
TLD = Qd%tc + 2drmax(1, [BZ,P] )

as does the Block method.
Tcemm = Tcﬁﬁm

Here the complexity only grows linearly with the number of cube dimensions.
however, there is twice as much data to transfer and when the problem gets large.
we get a measurement proportional to [nz / BmP] times the start-up costs. Thus
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the complexity of the distributed methods is O(log, P) start-ups when n?/P < B,,
and O(log, P (nz/Bme when n?/P > B,,.

The communication complexity of our in-place Vector-Radix FFT necessitates
two exchanges per intermingling step. Recall that this scheme is similar to that
of the Floating Point Systems implementation and also Walton's one-dimensional
FFT implementation where portions of the matrix or vector are exchanged and
then sent “home”. Here each portion is of size %nz /P and each processor commu-
nicates with three processors. Hence the communication complexity is

3n?
TVE = 4 log, \/ﬁ(z%tc + 37)

If the three exchanges per intermingling step can be done simultaneously, the
startup term becomes just

4log, VPr
In summary,
n2
TLom < 2(P —1)r + (log, Pt

2
n
Tcgmm < (2log, P) <?tc + T

3n?

2
TCLoﬁm < (2log, P) (%tc + T)
TYE . < (2log, P) (ZFtc +3r

)

Table 4.6 illustrates data transfer time (in milliseconds) without any computa-
tion. Two different transposes are compared for the Transpose-Split method, the
unbuffered and buffered methods described in Ho and Johnsson (1986). One can
see that for small problems, the buffered recursive transpose and the distributed
methods take about the same time communicating, even though the distributed
methods send twice as much data. This is because the data lie in contiguous loca-
tions and thus require only one message. By comparing buffered and unbuffered
transposing we can find the cut-off point beyond which it makes no difference
whether to buffer or not to buffer. Here we see that buffering just does not matter
when the size is larger than 64 x 64. The communication times of the distributed
methods are comparable to buffered transpose times until the problem size gets
larger enough so that the maximum packet size B, is reached. Here we see that
for the 128 x 128 problem, communication for the distributed methods is roughly
twice the time for transposing. Since the number of data points moved is also twice
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that of transposing, this is consistent. For d = 4, the timings are about equal since
the message packets are small enough so that they can be all transferred in one
step. Finally as expected the Vector-Radix communication was the slowest be-
cause of the inefficient implementation on the Intel iPSC. It 1s expected, however
that given an efficient “total exchange” capability where processors can commu-
nicate simultaneously, that the communication times should speed up making the
Vector-Radix method viable and feasible.

Next we model computational time for the three row-column methods on vector
nodes. Hockney and Jesshope (1981) give a model for performing M independent
transforms of length N by using the best serial algorithm and vectorizing the
arithmetic. Let a~! be the per flop computation time, and Ny/p be the vector
length required to achieve half of the asymptotic performance. Then

Tmutft = 5aN(Nyjp + M) logy N

This model cannot be used for the Vector-Radix method since the “multiple trans-
forms” are done simultaneously in two-dimensions. However we know that the
Vector-Radix method, when recursed down to the trivial 2 x 2 2D-FFT has 25%
less multiplications than the row-column approach.

Using this model we see that for the Transpose-Split method each processor
does n/P transforms of length n twice, hence

n
Tczﬁzp = 2a(5n(N1/2 + '};) log2 n)

For the Block method, each processor is responsible for 1/v/Pth of the work for
n/VP transforms of length n and this occurs twice, so

7B ﬁ) log; n)

Finally for the Local-Distributed, each processor does n / P transforms of length n
during the horizontal phase, and (1/P)th of the work for n transforms of length
n during the vertical stage. :

T3 = 2a(5

comp —

(N2 +

n n
TcLo,l,),p = 50m(N1/2 + F) log, n + 5aﬁ(N1/2 +n)log, n

The difference in computation time among the three methods comes from the
N1/2 term, With T.UB = (n/\/}_))Nl/2, T,UTS = nN1/2 a.nd TULD = 1/2(Tl +n/P)N1/2

Comparing coefficients, we see that

Tcgmp < Tcigzp < TCT(;‘ysnp when P > 1
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Analysis of Communication w/o Computation
size TS LD B VR
dim unbuff. buff.

16 x 16

1 5 5 5 - -

2 10 10 10 10-15 50-90

3 20-60 65-70 1045 15-20 -

4 105-110 75-140 | 70-110 65~70 10-115
32 x 32

1 10 10 20 - -

2 15 10 20 20-25 45-80

3 20-65 20 15-20 25-60 -

4 45-140  20-25 20-25 25-75 | 15-190
64 x 64

1 30 25-30 55 - -

2 35-70 30-65 60 60-65 | 55-175

3 35-75 30-75 50-85 50-90 -

4 105-110 35-90 35-85 45-105 | 85-285

128 x 128

1 115 110 220-225 - -

2 110-115 110-115 | 220-225 | 225-230 | 110-235

3 140 90-95 170 175-180 -

4 80-125 80-125 | 120-150 | 175-180 | 95-385

256 x 256
3 335-340 330-335 | 660-690 | 670-760 -
4 235-240 235-345 | 445-450 | 450-455 | 295-740
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Hence in terms of vectorization, the Block method is at an advantage which in-
creases with increasing parallelism as measured by Ny/,.

All of the vectorized FFT implementations require an internal transform of the
data in order to set up the vectors in the correct orientation. Since each processor
has n?/P points the overhead here is n2/P - teopy.

Our final model combines the communication and computational portions of
the row-column methods in a straight-forward manner.

T™% = 2a(5n(Nys + 2)logyn) + 2(P — 1)r + (log, P)=t,
2
B _ 2 2 o n
T = Za(sﬁ(Nl/g + \/ﬁ)logz \/ﬁ) + (2log, P)( B te+7)

2
TLD _ San(Ny/; + %) log, n + 50%(N1/2 + n)log, % + (2log, P)( %tc +7)

An analysis of the communication time shows that the coefficient of the ¢, term
is of the same order, but that of the 7 term is clearly against the Transpose-Split
method. Since the 7 term represents the latency time or startup time for each
communication and is several orders of magnitude larger than t., it is obvious that
as P increases, the overhead for transpose communication will become significant.
Of course buffering can reduce this overhead. However the minimum number
of communications needed for recursive block transpose is still of order log, P.
Therefore, the communication needs of the distributed methods present a lower
bound for the transpose communication.

4.8 Conclusion

After consideration of the model and timing results we can draw the following
conclusions.

e The distributed methods are hurt by the interruption of computation dur-
ing the trans-processor butterfly stages, hence their performance should be
enhanced on systems which interleave computation and communication.

¢ The complexity of communication for distributed methods is log, P, there-
fore they could show promise on systems where P is large.

e In the presence of vector processor nodes, the Block method exhibits better
vectorization than any of the other methods since its working vector length
1s approximate v P times longer.
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e The Transpose-Split method is superior on systems which support an efficient
transpose algorithm since its major deficiency is the asymptotic complexity
of recursive block transpose communication growing exponentially to the
number of dimensions. Presently on the Intel iPSC /System 286 where each
node is connected by an Ethernet communication channel, the penalties for
traversing several nodes to get a message across increases linearly with the
distance. Therefore on the current system, Transpose-Split is likely to be
superior when the number of processors is small.

e The Vector-Radix method is promising both in the fact that it is highly
parallel and also that it requires 25% fewer complex multiplications than
the row-column approaches. However a d-dimensional Vector-Radix FFT
requires total exchanges between processors in a d-dimensional subcube dur-
ing each intermingling step. Therefore it is possible to obtain good results
for this method only if the hypercube in question is able to perform efficient
“total exchange” communications.

¢ Future generations of hypercubes will likely support more efficient transpose
algorithms and routing hardware, making the Transpose-Split methodology
more efficient. We have already seen the difference between transpose meth-
ods in Table 4.6.

o The Local-Distributed method is a compromise between the first two meth-
ods. In our implementation it is competitive with the Transpose-Split method
and can be used when one wishes to avoid the transpose.

Our implementation results show that on the Intel iPSC /System 286 without
vector boards on the nodes, there is essentially no difference between the three
row-column methods. Efficient implementation of the Vector-Radix method de-
pends on efficient total exchange communication and is therefore this method is
promising given its faster computational potential. The final analysis is that this
problem is highly system dependent, and one should be aware of the advantages
and disadvantages of these different methods in order to best utilize the parameters
of a particular system.

Our discussion of higher-dimensional transform methods naturally leads to in-
sights on further areas of research. A higher-dimensional DFT can be approached
from any combination of the following: row-column, transposing along any di-
mension, or distributed block manipulations. For example, one way of looking at
a 3-dimensional transform is as a 2-dimensional transform and a 1-dimensional
transform mapped in planes within nodes of a linear array of processors. Another
way of viewing it is to map the data into solid chunks within a three-dimensional
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array of processors. Finally, the use of the vector-radix approach is promising
in the sense that no transposing is involved and maximal parallelism is exhib-
ited during the independent stages. In the distributed stages, there is a total
exchange between subcubes of the same dimension as the transform. While our
implementation of this total exchange on the Intel is extremely primitive, we be-
lieve that this method can be viable in systems containing optimal total exchange
algorithms invisible to the user. Transposing distributed data in three dimensions
is extremely awkward, hence we are especially looking at vector-radix approaches
to 3-dimensional FFTs as an avenue for further work.



Chapter 5

Parallel Sine Transform for the
Hypercube

5.1 Introduction

In some situations, the DFT of a sequence with some sort of symmetry is required.
This sequence might be real, or complex even or odd. The DFT of such a. sequence
usually has special structure, e.g., the DFT of a real sequence is conjugate even.
Hence both storage space and computational time can be saved by utilizing the
redundancy of information presented by symmetry.

The implementation of symmetric FF'Ts on distributed systems is nowhere as
straightforward as that of the complex FFT. While most symmetric FFT algo-
rithms utilize the complex FFT as the core computation, they are implemented
with a series of pre- and post- processing steps designed to take advantage of as-
sociated symmetries to minimize the operation count. In the conventional single
processor setting the savings of both storage and computational effort is a rea-
sonable goal to pursue. We present a new parallel sine transform algorithm that
minimizes the amount of communication required to perform its limited pre- and
post- processing steps.

An important detail in multiprocessor FFTs is the fact that the output of the
Cooley-Tukey complex FFT algorithm is generated in bit-reversed order. In the
single processor case this array can be unscrambled easily with index permuta-
tions. However in the case of the hypercube, the bit-reverse unscrambling takes
d parallel transmission steps, where d is the dimension of the particular hyper-
cube. [Swarztrauber (1986a)] If the data is not unscrambled, post- processing
operations for the sine transform require a significant amount of communication
between processors. Since the complex FFT itself is extremely efficient and also
efficiently parallelizable, it would be a shame if the cost of the pre- and post- pro-

134
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cessing operations and communications were to outweigh the benefits of parallel
computation.

Our new sine transform algorithm attempts to keep pre- and post- processing
communications to a minimum at the expense of a relatively small number of
redundant calculations. We believe that with the high overhead associated with
communication on the Intel hypercube, the total return of this algorithm will be
superior to the savings of some computational effort at the expense of a severe
tie-up in communications.

To summarize this chapter, we first describe the symmetric transforms and
their properties. The reflection and exchange permutations are introduced to
facilitate the matrix description of the transform procedure. We also show how
to work these two permutations into bit-reverse permuted data vectors. A new
permutation, the recursive ezchange is introduced to manipulate the reflection
permutation of sequences in bit-reversed form.

The implementation of permutations on a distributed processor system is done
by communication between processors as well as local permutation of the data
vector. We describe each of the relevant permutations and how to efficiently
implement them on multiprocessor systems.

The parallel sine transform of this chapter algorithm pares the necessary per-
mutation/communication needs down to a bare minimum without doubling the
length of the core complex FFT computation. This is done by partially exploiting
symmetry and at the same time performing some redundant computations in par-
allel. Our procedure is practical and can be utilized on data that is both input in
natural order as well as in bit-reversed order. This provides a complete forward
and inverse sine transform package.

We finish by discussing possible implementations of the existing symmetric
transform algorithms on the hypercube and show how the communication com-
plexity of these methods can potentially hinder performance. Symmetric trans-
forms are a subset of real transforms and as such, we discuss procedures for finding
the FFT of real sequences and their possible implementation on hypercubes via
the complex FFTs of Chapter 3. We then consider the conventional sine and co-
sine transform methods of Cooley et al. (1970) and Swarztrauber (1982). These
methods pre- process the input sequence into either conjugate even sequences or
real sequences and then utilize efficient algorithms for finding real FFTs. The
symmetric transform is then extracted from the real FFT by post- processing
computations. We show that the associated permutations involved with these
data manipulations, when compounded to that of the real FFTs and bit-reversal
permutation result in unwieldy communication requirements. This high degree
of communication traffic means that the savings in communication time consis-
tent with exploiting symmetry is negated by the extra communication overhead
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incurred.

5.2 Symmetries and Properties of the DFT

We start with some definitions of the different kinds of symmetries that a given
sequence may have. These symmetries can be described with the permutation
matrices T, the reflection matrix for even and odd sequences, and E, the exchange
matrix for quarter-wave even and odd sequences. The exchange permutation E,,
1s described by

E, = [ea-1,€n—2,...,€1, €]

If y = Eux, then y consists of the elements of x flipped upside-down. The reflec-
tion permutation matrix T, is defined as follows

1 0
n[3 0]

If y = Trx, then y is best described by fixing the top element, and flipping the
rest of the n — 1 elements upside down. The reflection permutation can also be
described via a circular upshift permutation followed by the exchange permutation.

T, = E,RT

where RI is the circular upshift matrix defined by

[ 20 ] [ =z ]
Tt )
T
RZ : =
Tn-2
Tn-2 Tn-1
[ Tn—1 ] | Zo J

The symmetric properties can now be described in matrix-vector notation in a
compact format. Table 5.1 shows the different symmetries that a sequence might
have along with an eight-point example.

The following lemmas provide a link between the symmetries T and E and the
DFT matrix Fp. These relationships allow us to describe some of the symmetry
properties that F, possesses in a simple matrix-oriented language.

Lemma 5.2.1

F,T, =T,F, =F,



Table 5.1: Symmetric Sequences

Property Definition Example
even (E) x = Tx (x0, 71,22, 23, T4, T3, T2, 21]
odd (O) x=-Tx [0, 21, z2,13,0, -z3, —z2, —71]
quarter-wave even (QE) | x = Ex [0, 21, T2, T3, 23, T2, 21, o)
quarter-wave odd (QO) | x = —Ex | [z0, 21, 22,23, —3, -T2, —27, ~z9]
conjugate even (CE) x=TX [z0, 21,22, 23,24, T3, T2, T1]
conjugate odd (CO) x=-TxX | [0,z1,27,23,0, -3, -T2, —T1]

Lemma 5.2.2
FnE = AnFn
where A = diag(1,wn,...,w?™ 1), w, = exp(—27i/n).

The next two lemmas are due to Swarztrauber (1986b) and provide a method
of representing the DFT of quarter-even (QE-symmetric) and quarter-odd (QO-
symmetric) sequences by purely real or purely imaginary sequences. This allows
the programmer to save on array storage space as a complex number occupies
twice as much space as a real number. These lemmas also simplify the splitting
equations for the cosine and sine transforms by eliminating the need for complex
arithmetic.

Lemma 5.2.3 The DFTy of a QE-symmetric sequence X satisfies
y=4;y

where Ap = diag(1l,wy,...,w 1) (W, = exp(—2ni/n)) and can be represented in
terms of a purely real sequence ¥.

Proof Swarztraubet (1986b).

Lemma 5.2.4 The DFTy of a QO-symmetric sequence X satisfies

y=-a"ly
where A, = diag(l,wn,...,wt"!
imaginary sequence y.

) and can be represented in terms of a purely
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Proof Swarztrauber (1986b).

*

Swarztrauber (1986b) devises splitting equations for various symmetric se-
quences. These equations provide the basic recurrence for symmetric transforms.
We state them here in our matrix notation.

Splitting Equations for Real Sequences

Let z be a real sequence of length 2n and let
z1 — 2(0:2:n-1)
z ~ 2(1:2:n-1)

Since z, z; and 2z, are real sequences their transforms are conjugate even symmet-
ric. Let y = Fo,2, y; = Fyz;, and Y2 = Fnz2. This means that only n + 1 points
of y need to be computed. Suppose ¥1(0 : n/2) and y;(0 : n/2) are available. The
radix-2 splitting algorithm gives

¥(0:n/2) =y1(0:n/2) + Azay2(0: n/2)

and

y(n:-1:n/2+1) = Trnpoy1(0:n/2~1) + Tr/2A2y2(0:n/2 — 1)
where Agp = (1,wap,... ,wg,{z"l) (won = exp2"'"/2"). Tpjplon = —Aj, since
e~i(n=R)2x/2n — _oik27/2n o that the second equation becomes

Y(n:-1:n/2+1)=y;(0:n/2-1) - A2y2(0:n/2-1)
Splitting Equations for Even Sequences

Let z be a real even sequence of length 2n with z; comprised of the even points
of z and z; the odd points. If y, y;, and Y2 are their transforms, respectively, we
have the following symmetries. Y1 is also E-symmetric, y; is QE-symmetric, and
Yy is E-symmetric. Both y and y; are real and y2 = Az'ﬂliz where ¥ is also real.
Substituting this into the splitting equations for real sequences gives

y(0:n/2) = y1(0:n/2) +§2(0:n/2)
y(n:~1:n/2+1) = y1(0:n/2-1)— ¥2(0:n/2-1)

Since all quantities are real, only real arithmetic is needed. ¥2 is computed instead
of y2 so as to avoid complex arithmetic.
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Splitting Equations for Odd Sequences

Now let z be a real odd sequence of length 2n and z; and z; defined as before. Y1 is
also O-symmetric and y, is QO-symmetric, where y and y; are strictly imaginary.
y2 = AZ;l¥, and ¥, is strictly imaginary. Substituting the whole lot into the
splitting equations for real sequences gives,

y(1:n/2) = yi(1:n/2)+ §(1:n/2)
~y(n—=1:-1:n/24+1) = yi(l:n/2-1)—-§(1:n/2-1)

All quantities are purely imaginary so that we can multiply through by ¢ and avoid
complex arithmetic.

Block Structure of the DFT Matrix

The DFT matrix F, has an interesting block structure when we consider real and
imaginary parts separately. First we define some special vectors and matrices to
simplify the following discussion.

wm = (1,1,...,1)TeRrm

Vm = (-1,1,-1,...,(-1)")T e R™

Let E, be the exchange matrix of order n defined as E,, = Li(c,n:-=1:1).
The n-by-n real cosine and sine matrices are defined as

[ cos(m/n+1) --. cos(nw/n + 1)
| cos(nm/n+1) --- cos(n®m/n+1)
and )
sin(m/n+1) --- sin(nm/n+ 1)
Sn = : :
| sin(nw/n+1) --- sin(n?r/n+1)

Theorem 5.2.1 (Matriz Structure of Fu): Letn =2m. If W = Wy, v = Vm—1,
E=En_1,C=Cp_1, and S = Sm—1, then

where
1 m-11 m-1
1 1 w1 wT
Re[lFom] = m-1 w C v  CE
1 1 vl (=)™ +TE
m-—1 w EC Ev ECE



140

lm-11 m-1
1 0O 0 o0 o0
Im[Fm] = m-—1 0 S 0 -SE
1 0 0 o0 o0
m—1 0 -ES 0 ESE

Proof See Van Loan (1987).

*

This matrix structure proves handy in the development of symmetric FFT algo-
rithms and the description of cosine and sine transforms.

5.3 Permutations and Communication on Dis-
tributed Processors

A permutation of data mapped in a distributed fashion in separate nodes of a
parallel computer requires communication between the processors. Sometimes
permutations are unavoidable and on loosely coupled systems they can present
quite a problem.

Several permutations come into play when implementing real and symmetric
FFT procedures. We have already seen the exchange permutation E, the bit-
reversal permutation P, and the reflection permutation T. Because distributed
FFTs are more efficiently implemented without distributed bit-reversal, the data
in the transform domain is usually permuted by P. Hence a facility must be devel-
oped for working with the combination of the exchange and reflection permutations
with the bit-reversal permutation.

To motivate, we first present an easy example concerning the exchange per-
mutation. Suppose that during the course of our computations we are required to
find

x + Ex

where x is distributed among processors in the consecutive order. This can be done
by inter-processor communication that “flips” x upside down. We will suppress.
for the moment, how this is done. Now suppose we really had Px available and
wanted to find

Px + P(Ex)

What would be an easy way to implement the communications necessary? It
would be extremely inefficient to first unscramble x «— Px, then find x — Ex and
finally scramble by P again. Since we have Px available, we would like to work
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directly with Px. Luckily in the case of the exchange matrix E, PE = EP and
therefore we find that

Px + E(Px)
can be implemented by a simple exchange permutation on the vector Px.

Lemma 5.3.1 If n = 2¢, then
P.E, =E,P,

Proof We give an intuitive proof for the case n = 2!. Recall from Chapter 1
that an exchange permutation is defined on the binary representation of the index
J = (bi—1bs—2...b1bg)2 by complementing all of j’s bits. Hence

€(7) = (bt—1bt—2...B1bp)2

Meanwhile the bit-reversal permutation is defined on the binary representation of
the index j = (by—1b;—2... b1bo)2 by reversing all of j’s bits, i.e.

p(5) = (bob1...bs—2bi_1)2

The commutativity comes from observing that if matters not a bit whether the
bits of j are first complemented and then reversed in order, or vice-versa. The
same observation works for the general radix n = p' by defining complementation
as the additive inverse, i.e. 5+ b = 0 mod p.

L3

We now turn to the reflection permutation T and show that things are not so
easy here primarily because PT # TP. Now supposing we want to find

Px + P(Tx)

and we only had Px to work with. What we now need is a permutation G such
that PT = GP. It turns out that a special permutation G, that we call Recursive
Ezchange satisfies this criterion. A look at the structure of G, n = 2! shows that
it is the direct sum of a sequence of smaller exchange matrices.

Definition 5.3.1 Let G, be a permutation matriz which is a direct sum of smaller
exchange matrices, n = 2%,

[ E; ]
E,

E,
G" = E4
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G, can be defined recursively as

Example

~N O U WN~O
= O TN W~ O

The following lemma provides a decomposition of the reflection matrix T, into
a direct sum of two permutation matrices of half the size coupled with a perfect
shuffle of both the rows and columns.

Lemma 5.3.2

_ Tr/o 0
o 8,
Proof We apply the permutations on the right hand side to the vector (0 :
n—1)T,

1. Mn(O:n—l)T=[

(0:2:n-2)T
(1:2:n-1)T

o [ Tajz O (0:2:n-20T ] _[(O,n—2:-2:2)T
' 0 E,; 1:2:n-1)T |~ (n—1:-2:1)T
[0 ]
n—1
-2
3 II (0,n—2:-2:2)T | 2_3
M (=127 | T
L1

The result of applying the permutations on the right hand side is exactly T, (0 :
n—1)T.
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*

Now we are ready to prove a result tieing together the reflection matrix T,
and the recursive exchange matrix G, through the bit-reversal permutation P,,.
Recall that P, is always involved somewhere in distributed FF'T procedures where
unscrambling is not done. This next lemma is of great use in the analysis of bit-
reverse permutation data that also exhibit symmetry.

Lemma 5.3.3
P,T, = G,P,
Proof We use induction. This is obviously true for n = 2. Now

T. = P,G,P,
Cn [T ][ ][ e

0 Pn/z 0 En/z O Pn/2
T 0
— Hn n/2 ] Mn
[ 0 En/2

using the induction assumption P.p 2Ty = G,/2P,/2 and the fact that EP =
PE.

Armed with this fact, we can find
Px + PTx

by the equivalent sum
Px + G(Px)

Permutations on distributed vectors are equivalent to data movement between
and within the processors of a loosely coupled system. In fact after having estab-
lished the equivalency of the two concepts, we can use the permutation matrix as a
shorthand for a sequence of sometimes complicated communication specifications.

In this section we assume that the nodes of a hypercube are mapped in the
Binary Reflected Grey Code (BRGC) order. The input vector is mapped in the
two-track fashion of Chapter 3. The following theorems tell how data mapped
in the Two-Track method of Chapter 3 is rearranged inside the processors when
permuted by the various permutations. Keeping in mind that our main goal is to
provide a setting where the corresponding components of x and let’s say Tx are
in the same processor so that they can be combined. For example, the Two-Track
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0O 8 0 4 0 2 0 1
1 9 1 5 1 3 2 3
2 10 2 6 4 6 4 5
3 11 3 7 5 7 6 7
4 12 - 8 12 —- 8 10 —- 8 9
5 13 9 13 9 1 10 11
6 14 10 14 12 14 12 13
7 15 11 15 13 15 14 15

Figure 5.1: Permutation Pattern of Two-Track FFT

mapping matches each element with its corresponding element that is half of the
vector length away. Hence the computation

(n/2:n-1)
x+[§<o;n/z_1>]

can be done locally without communication.

Theorem 5.3.1 The permutation resulting from the implementation of the FFT
of the Two-Track method is equivalent to M, P,. (See Figure 5.1).

Proof The in-place FFT results in a sequence permuted by P, while Theo-

rem 1.6.6 tells us that repeatedly performing super-butterfly permutations giving
us M,,.

Algorithm 5.3.1 Permutation M,,
/* processors mapped in BRGC order */
/* u = processor id; n =2 P =24, m = (n/P)/2 */
/¥ processor u holds: */
/* 2 = x(m-idlp] : m - (id[u) +1) - 1) */
/*2® = x(3 +m-idlu] : 3+ m - (id[u] + 1)~ 1) 4/

for L=1:d
v=d— L;dlp] = flip(id[u],v)
p = 1d~!(id[p])

send(z(?), m, p); recv(z() m, p)

end, 1)
Z Z
KIEES
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0 8 0 15
1 9 1 14
2 10 2 13
3 11 3 12
4 12 - 4 11
5 13 5 10
6 14 6 9
7 15 7 8

Figure 5.2: Permutation Pattern of Two-Track E,

Theorem 5.3.2 Ezchange. Suppose x is mapped into the hypercube by the Two-
Track mapping. Then getting matching components of x and Ex into the same
processor is equivalent to performing the exchange permutation on the second half

Lz 0 J X. (See Figure 5.2).

of x only, i.e. applying { 0 E,
n/2

Proof The two-track mapping means that x(j) and x(j + %) are in the same
processor. To get x and Ex together we want x(j) and x(n — j — 1) together.
Therefore we need to replace

x(j+g-)<—x(n—j—1), j=0,...,§—1

But doing this is precisely the same as applying [ L2 0 J X.
0 En/z

*

The permutation pattern for an example n = 16 is given in Figure 5.2.

Algorithm 5.3.2 Permutation E,

/* processors mapped in BRGC order */

/* 1 = processor id; n =2, P=2%. m = (n/P)/2 */

/¥ processor u holds: */

/* 2 = x(m - idlu] : m - (id[u] + 1) = 1) */

/2 = x(3 +m-idlu]: 3 +m- (idlu] + 1) = 1) ¥/
V=d—1,p=fllp(/,t,l/)
send(z(?), m, P); recv(z(z), m, p)
z(z) — Emz(2)
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0 8 0 8
1 9 1 15
2 10 2 14
3 11 3 13
4 12 — 4 12
5 13 5 11
6 14 6 10
7 15 7T 9

Figure 5.3: Permutation Pattern of Two-Track T,

Theorem 5.3.3 Reflection. Suppose X is mapped into the hypercube by the
two-track mapping. Then getting matching components of x and Tx into the same
processor is equivalent to performing the reflection permutation on the second half
: : I 0 .
of x only, i.e. applying [ n/2 J X. (See Figure 5.3).
0 Tnp
Proof In the two-track setting x(j) and x(j + %) are in the same processor. To

get x and Tx together we want x(j) and x(n — j ) together. Therefore we need to
replace

x(]+§) — x(n — j), ]=O,...,§—1
Doing this is precisely equivalent to applying
In/z 0
x
[ 0 T, /2

Algorithm 5.3.3 Permutation T,
/¥ processors mapped in BRGC order */
/* u = processor id; n =24, P=24- m = (n/P)/2 */
/¥ processor p holds: */
/* 20 = x(m - idu] : m - (id[u] + 1) - 1) */
/*2?) = x(3 +midlu]: 2+ m- (idlu] + 1)~ 1) */
/* send top element to previous processor */
/* upshift second column */
p = id~![(id[u] — 1) mod P]
v = id~!{(id[u] + 1) mod P]
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send(z(?)(0),1, p); recv(t, 1,v)
z(2) — R;_Z’;z(z)

2 (m — 1) — ¢

call exchange(z(?))

Theorem 5.3.4 Recursive Ezchange. Suppose X 13 mapped into the hypercube
by the two-track mapping. Then getting matching components of x and Gx in
the same processor is equivalent to first performing M, on the sequence and then
applying G/, to the second half of x only. In other words, mapping

L, O
[ 0 Gn/z]M"x

into the processors in the two-track manner. (See Figure 5.4).

Proof In the two-track mapping, x(j) and x(j + %) are in the same processor.
Having matching components of x and Gx in the same processor means that x(;)
and x(2“°32 71 — § mod 2llos25) _ 1), 5=0,..., 5 — 1 are directly matched. The
effect of M, is

x(j) — x(2j)
X(G+3) = x(2j+1)

We want x(25) together with
x(2Mo82241 _ 27 mod 2108224 _ 1)

or
x(2j + 1) — x(2MMog2271 _ 2j mod 2Uog223] _ 1)

This is equivalent to applying G, /2 to x(j') where j' « 2j + 1 is the change of
variables.
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0 8 0 1 0 1
1 9 2 3 2 3
2 10 4 5 4 7
3 11 6 T 6 5
4 12 - 8 9 — 8 15
5 13 10 11 10 13
6 14 12 13 12 11
7 15 14 135 14 9

Figure 5.4: Permutation Pattern of Two-Track G,

Algorithm 5.3.4 Permutation G,
/* processors mapped in BRGC order */
/* u = processor id; n =2, P =2%; m = (n/P)/2 */
/* processor p holds: */
/* 20 = x(m -id[p] : m - (id[u] + 1) = 1) */
/*2®) =x(3+m-idu]: 3+ m- (idu] +1) - 1) */
/* apply My, only if Two-Track FFT was not done */
if(Two-Track FFT not done) then
call Inverse Shuffle(z(1),z(2))
end if
if (id[u] # O.and.idgu] # 1) then
id[p) « 2Mog24dlull _ ;4[,] mod 2llog2dlul] _ 1 )
p = id~1(id[p])
send(z(®),m, p); recv(z(®, m, p)
z(z) — Emz(z)
end if
if (¢d[u] = 0) then
z(?) — G,,z2(?
end if
if (¢d[u] = 1) then
z(3) —~ E,,z(?
end if

Armed with this fact we can find

Px+PTx

by the equivalent sum
Px + G(Px).
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Now that we have related permutations to hypercube communication we can
simplify our ensueing discussion of algorithms. Using the “language” of a permu-
tation matrix, let us say T, we can talk about data movements in distributed
systems by referring to Algorithm 5.3.3. This means that in the course of our
discussion of symmetric transforms, we can simply say

call Permutation(Ty)

and know that the communications detail in Algorithm 5.3.3 are performed.

5.4 Development of the Parallel Sine Transform

In this section we present our new sine transform algorithm designed to be im-
plementable on the hypercube with a simplified pre- and post- processing scheme.
In fact, all of the post-processing is local to a processor and we require only one
upshift (Ryn) communication (or shift-vector operation of McBryan and Van de
Velde (1987)) for the pre-processing, i.e. every processor sends one real number
to its preceeding node and receives one real number from its succeeding node. In
the case that the original sequence is generated by a formula instead of entered
in, we can circumvent this communication by having each processor generate one
extra real number. This method results in the sine transform being laid out so
that just two exchanges are required for pre-processing the inverse sine transform.
This simplified procedure is accomplished by doing some redundant computations
and computing a complex FFT of length n, instead of a real FFT of length n as
was the case for the conventional methods.

Since the sine transform of an (n — 1)-point sequence is derived from the imag-
inary part of the complex transform of the extended odd (2n)-point sequence of
real numbers, we first consider the use of an n-point complex FFT to find the DFT
of this extended sequence. Note that the analogous cosine transform method can
be derived by using the real part of the complex transform of the extended even
(2n)-point sequence of real numbers.

Let z be the real odd extension for our original (n — 1)-point sequence X,

0
x(1:n-1)
0
-Ex(1:n-1)

We can split this sequence into two sequences, one comprised of the even points
and the other the odd points. Let

2y — z(0:2:2n-1)
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z; «~ z(1:2:2n-1)

Swarztrauber (1986) has shown that these sequences exhibit symmetry also, that
1s

Tnz1 =2(2n -2:-2:0)=-2(0:2:2n —2) = —z,

so that z is an odd sequence, and
E,,zz=z(2n—1:—1:1)=—-z(1:2:2n—1)=——zz

and thus z; is quarter-wave odd.

The result is that we have two real sequences each with special symmetry.
We proceed in a similar vein as Procedure 2 except that we have two additional
symmetries to exploit.

Form the complex sequence

S =121 + 129

and let
(5.4-1) w=F.s =y +iy;

Y1 and y; possess properties in addition to the fact that they are conjugate even

i = Ty

Yy = -y

y: = Ty,

y: = —-A7ly,
Y2 = AL¥:
2 = -¥

Recall that ¥, is pure imaginary. Equation 5.4-1 gives
(5.4-2) W=y +iA} ¥
and

W = ¥ —iAny,
(5.4-3) = —y1+:1Any;

Solving equations 5.4-2 and 5.4-3 gives

y2 = -21,-diag ( ) Re[w]

coskm/n
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and
y1 = ilm[w] — idiag (tan k7 /n) Re[w].

Because of the y; and y; are conjugate even, we only have to solve for the first
terms 0,...,n/2. Finally

w(n/2) = yi(n/2)+iexp(ir/2)§2(n/2)
= —¥a(n/2)

and

yi(r/2) = 0
¥2(n/2) = —-w(n/2)= —tIm[w(n/2)]

The splitting equation for odd sequences gives

Y(1:n/2) = Z{yi(1:n/2)+9:(1: n/2)
Y(n=1:=1:n/241) = {5(1:n/2)-yi(1:n/2)]

From the definition of a sine transform, we know that b = 2ty so that we can
multiply through by i and obtain the following equations

b(1:n/2) = yi1(1:n/2)+ §F(1:n/2)
b(n-1:-1:n/2+4+1) = ¥2(1:n/2-1) - yy(1:n/2 -1)

And we never had to compute y in the first place. None of our arrays need to be
larger than n and the extended sequence z was used for illustration and derivation
purposes only. In fact, y; and y; can be real arrays of length n/2 + 1.

Procedure 1. Given: A real sequence x of length n. Find: The sine
transform P, b by the parallelizable sine transform algorithm.

¢ Form the complex sequence s as follows.

x(0:2:n-1)+ix(1:2:m—1)
s —Tppex(0:2:n—1) —iE,;px(1:2:n - 1)

This requires one linear-shift communication R,if /2 and one exchange permu-
tation E, /,

e Find P,w = P,F;s. This requires the communication pattern for dis-
tributed FFTs using the Two-Track method.
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e Set

P,y1 = -Im[P,w]+ P,diag(tan k;l—ﬂ.)Re[in]

P.y: = Re[P,w|diag(1/cos I;—W)

with Pry1(n/2) = 0 and P,¥,(n/2) = Im[Pr,w(n/2)]. This step is local to
a processor.

o Let
P.,b =P,y + P,y

Local to processor.

Algorithm 5.4.1 Forward Sine Transform

/* u = processor id; n =2'; P =24 m = (n/P)/2 */

/* Initially, processor p holds: */

/* x(2m - dd[p] : 2m - (id[u] + 1) - 1) */

/* Form the two-tracks, s(!) and s(?) */
s(l)e—x(0:2:m—1)+ix(1 2:m-—1)

/* form E, ;) — -RI, x(0:2:n-1)—x(1:2:n-1) */
p = id~[(id[u] — 1) mod P]
v = id~[(id[u] + 1) mod P]
send(Re[s(1)(0)], 1, p); recv(temp,1,v)
s@(m ~ 1) « —temp — i(Im[sV(m — 1))
s@(0:m —2) — —Re[s)(1:m —1)] - 1(Im[s®(0 : m — 2)))
call Ezchange (s(¥)) /* code (5.8) */

/¥ W — P,Fps */
call Two-Track FFT(s(),s()) /* code (5.2) */

/* post-processing code (5.5) */

/* k runs through the indices */

/¥ v(2m -id[p] : 2m - (id[u] + 1) — 1) */

/* where v =Pn(0:n —1) */
y1 — —Im{w]| + diag(tan %")Re[w]
y2 «+ Re[w]diag(1/ cos %"—)

/* b is the sine transform of x
Pab =y +y2
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Notice that we have chosen to compute all n points of y1 and ¥, when only
n/2+1 are needed. This is where the redundant computations come in. Therefore
everything after the complex FFT is local to a processor with the introduction of
n extra multiplications and n/2 extra additions. However these extra operations
are not noticeable in the parallel setting since the processors are working indepen-
dently. If the redundant computations were not introduced, some of the processors
would be sitting idle anyhow. Therefore we have achieved load balancing as well
as saved O(d) communication steps for a total of 2d — 1 exchanges and one linear-
shift. Notice the 2d — 1 exchanges are solely used for the computation of the
complex FFT on a hypercube mapped on a BRGC, therefore the pre-processing
resulted in only one (optional) communication.

5.5 The Sine Transform of a Sequence in Bit-
Reversed Order

Even though the sine transform is its own inverse (scaled by a constant) our output
from the forward sine transform is in bit-reversed order. Therefore we require an
inverse sine transform which takes data originally in bit-reversed order and finishes
with it in the natural order.

We have P,b. Recall that

P,b— [Pn/zb(0:2:n—1)]

Poiob(l1:2:n-1)

We would like to construct M,P,s so that we can use the inverse Two-Track
method to obtain w «— F,s. Recall that

b(0:2:n—-1)+ib(1:2:n-1)
> T ~Tapb(0:2:n—1) =3B, ;,b(1:2:n - 1)

From Theorem 1.6.7 we have P, = II,(I, ® P, /2) hence

P,s — I, [ Pnypb(0:2:n—1)+iP,/b(1:2:n - 1) ]

—Pay2Tpyeb(0:2:n - 1) - iPr2Eqjob(1:2:n - 1)
Since the permutations
PT=GP and PE=EP

we can form

M,,P,.s<—[ Poab(0:2:n—1)+iP,;,b(1:2:n—1) }

=Gy /oPryeb(0:2:n — 1) —iE, P, /b(1:2:n — 1)



154

Working on M, Pys the the Inverse Two-Track algorithm, we get
w— F,.s

The post-processing continues locally.

Therefore the rest of Procedure 1a is identical to that of Procedure 1, except
that we have sequences in the natural order. Since the sine transforms is its
own inverse we have just outlined two procedures which can take both the sine
transform and its inverse on data mapped either in the natural order or bit-reversed
order.

Procedure la. Given: A real sequence P,b of length n. Find: The
sine transform x by the parallelizable sine transform algorithm.

e Form the complex sequence

Poppb(0:2:n—-1)+iP,;b(1:2:n~1)
MaPas — =G /Pryb(0:2:n—-1) - iEp/Pryob(1:2:n 1)
The communication patterns for G, /2 and E, /5 are needed.

¢ Find w = F;P,(P,s). Need communication pattern for distributed FFTs
via the Inverse Two-Track method.

o Set
. krn
X1 = ~—Im[w]+ diag(tan F)Re[w}
X2 = Re[w]diag(1/ cos Enlr)

No communication is needed here.

X = X1 + X2

No communication is needed here.

Algorithm 5.5.1 Inverse Sine Transform
/* u = processor id; n =24, P =24 m = (n/P)/2 */
/* Initially, processor u holds: */
/% gV =g(m idlu] :m - (idu] + 1) - 1) */
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;i g(}f) = g(%; m -*i;i[u] g4 me (idu] +1) - 1) ¥/
where g = P,
/* b is the sine transform of x */
/* Form the two-tracks, s(1) and s(?) */
stV — g) 4 g
call Ezchange(g(®)
call Recursive Ezchange(g(®)
g — —gll) _ ;g2
J¥we—F,s */
call Two-Track FFT(s(V,s(?)
X1 — —Im[w] + diag(tan ';—")Re[w]
X3 — Re[W]diag(l/cos%’L
X & X1 + X2

Procedures 1 and 1a are efficiently parallelizable because in both cases the pre-
processing requires minimal communication and the post- processing is entirely
local.

5.6 Implementation Results on the Intel Hyper-
cube

The complete procedure was implemented on a four-dimensional Intel iPSC hy-
percube with extended memory in the nodes. Since our goal is to compute a
forward sine transform, scale it and then do an inverse sine transform, our timings
are for both the forward and inverse transform done back to back. We have also
implemented the Cooley et al. (1970) algorithm on a single node and obtained a
time of 121685 milliseconds for a sine and inverse transform of length 16384.

The results show almost linear speedup and reflect the efficiency with which the
complex FFT can be parallelized. The speedup* against the sequential algorithm
is also very good. Recall that the Cooley et al. sequential algorithm does a complex
FFT of length N/2 or (8192 for our example). Therefore it should be roughly twice
as fast as our algorithm in the sequential case. But our algorithm using only one
processor is only about 4% slower than the conventional algorithm. So we see
that the layers of pre- and post- processing are quite wasteful even in the totally
sequential case.

One may wonder how this method would compare to doing a 2V-point complex
transform of the extended odd sequence (the only other feasible method on the
hypercube). Results for the N = 32768 sequence are given below. Comparing
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Table 5.2: Timing Results for the Parallel Sine Transform

Time (milliseconds) for Sine and Inverse Transform

N =16384
# proc time speedup speedup*
1 127515 1.00 0.95
2 6751567535 1.89 1.80
4 36870-36915 .  3.45 3.30
8 19315-19375 6.58 6.28
16 10430-10535 12.10 11.55

(* speedup against conventional algorithm)

Table 5.3: Timing Results for Conventional Complex Transform

Time (milliseconds) for Complex Forward and Inverse Transform

N = 32768
# proc time speedup
1 197840 1.00
2 97785-97825 2.02
4 52450-52605 3.76
8 28800-28865 6.85

16 15055-15585 12.69
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results shows that our method is faster than the direct computation of the 2V-
point sequence by 45%, 43%, 49% and 48% for hypercubes of dimension 1, 2, 3,
and 4 respectively. Sequentially, it is also 55% faster.

5.7 The DFT and IDFT of Real Sequences

Real sequences exhibit special symmetry in the transform domain, that is their
transforms are conjugate even. Thus an efficient algorithm computes the FFT
of a real sequence of a fixed length n with the same amount of effort in terms
of storage space and operations count as that of the complex FFT of length n/2.
The economies come from the symmetry. This is indeed the case in the procedures
described in Cooley et al. (1970). We repeat some of the procedures in matrix
notation.

In each case we first derive the procedure and then give a high-level description,
mentioning communication patterns with our permutation matrix language. We
also give the equivalent procedure in bit-reversed order and output in consecutive
order for completeness.

Procedure 2. The DFT of Two Real Sequences done as one

Suppose x; and x; are two real sequences. We wish to find y; = F,x; and
Y2 = Fyx3. Since the transforms of real sequences possess symmetry, and x; and
X2 have zero imaginary parts, we can exploit this by forming the complex sequence
z = X1 + X2 and taking the complex FFT of z. Let w = Fnz =y +1y2. y; and
Y2 are conjugate even, so that we have

W o= y1+1ty:
Y1 —ty2
hence
1
yi = E[TW+W]
?
y2 = E[TW—W]

Procedure 2. Given: Two real sequences X; and x3. Find: the DFT
¥1 and y2 respectively of the two real sequences by using a radix-two
in-place complex FFT which computes P, F,z (either CT1 or GS1).
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e Form the complex vector z «— x; 4+ ix3. No communication is needed if both
x1 and X; are distributed among the processors in the same manner.

e Compute P,w = P,F,2z. This requires the communication pattern of dis-
tributed FFTs discussed in Chapter 3.

e Find
1
Pnyl = E[Gn(PnW) + in]
P.y: = %[G,,(P,,w) ~P,w]

The communication pattern required for G, is needed.

Procedure 2a. Given: Two real sequences P,x; and P,x;. Find:
The DFT y; and y; respectively of the two real sequences using an
in-place complex FFT which computes F,P,z (either CT2 or GS2).

¢ Form the complex vector P,z «— P,x; + iP,x;. No communication is
needed.

¢ Compute w = FyP,(Psz). Requires the communication pattern for dis-
tributed FFTs.

e Find
yi = [TwW+w]
y2 = F[TW-w]

The communication pattern for permutation T, is required.

Procedure 3. The DFT of a real sequence done as a complex FFT of
half length

Let x be a real vector of length n, with € = M?’x. Denote x¢ = X(0:%—1)and
x° = X(§ : n — 1). Form the complex sequence z = x* + ix° of length 7. Notice
that x® and x° are also real sequences so we can use the above procedure to find
Y* =Fu/x° and y° = F,,/,x°. Let w = Fr/22, then

€

y© = [TW+w]

0o

y = [Tw-w]

M) = b -
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The Radix-2 Splitting algorithm gives us

_ Fn/2 AFn/2 x*
an - [Fn/Z _AFn/Z x°

NER|ES
In/2 A y°

where A = diag(l,wn,...,w,'f/z—l) and wn, = exp(—27i/n). Since y = Ty, we

only need to find y(0 : n/2). Hence
y(0:n/2-1) = y*+Ay°
y(n/2) = y*(0) - y°(0)

This procedure is entirely reversible and can be used to find the IDFT or DFT of
a conjugate even complex sequence.

Procedure 3. Given: A real sequence x(0 : n — 1). Find: The DFT
of y(0 : n — 1) by using a radix-two complex FFT of half the length
and post-sorting of data in bit-reversed order.

¢ Form two real sequences x° of the even points of x and x° of the odd points
of x. No communication is needed if x is mapped consecutively and n =
28> P =2F Letz=x®+ix°.

e Implement Procedure 2.
¢ Form P,y = Ppy® + (P, A)P,y°. No communication is needed here.

Note that Procedure 3 requires the same data pattern as Procedure 2.

Procedure 3a. Given: A real vector P,x. Find: The DFT of x by
using a complex FFT of half the length.

o Let X = Ppx. Form P52z = (0 : n/2 — 1) +i%(n/2 : n — 1). Processor
local.

Find w = F,/,P,/3(P,/,2) This requires distributed FFT communication
pattern.

¢ Form y® and y°. The communication pattern for T, is needed.

Form y = y®* + Ay°. No communication is needed.
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Procedure 4. IDFT or DFT of a Conjugate Even Complex Sequence

Suppose we have a conjugate even complex sequence y = Ty. This means that

y(0)
y = y(l:n/2-1)
y(n/2)
Ey(1:n/2—1)

Going backwards, we can find
() = 5¥(0) +y(n/2)
Y(1:in/2=1) = Z[y(1:n/2-1)+Ey(1:n/2— 1)
¥°(0) = 31y(0) - y(n/2)

y(l:n/2-1) = %A‘l(l :n/2=Dy(1:n/2~1) - Ey(1 : n/2 — 1)]

Form w = y® 4+ iy° and find z = F¥w. Now the real sequence X is found

x° = Re[z]
x’ = Im[z]
Procedure 4. Given: A complex conjugate even sequence y(0: n/2)
(we only need to store the first n/2 + 1 elements because of the sym-

metry). Find: The IDFT or DFT of y.

¢ Form y® and y°. Communication pattern for permutation T/, is required.

Let w = y® + 7y°.

¢ Find P,/yz = P, /;F,/,w. The communication pattern for distributed FFTs

is required here.

e Set

Pn/2xe = Re[Pn/Zz]
Pn/2xo = Im[Pn/Zz]

No communication is needed.

Procedure 4a. Given: A complex conjugate even sequence P, y(0:
n/2~1). Find: The DFT x by using a complex FFT of half the length.
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¢ Form P, ,y® and P, /2¥°. This requires communication for T, permutation.
Let Pn/zw = Pn/zye + iPn/gy".

e Find z = Fn/zpn/z(Pn/zw)- This requires communication for the dis-
tributed FFT.

e Let x° = Re[z] and x° = Im[z]. Processor local.

5.8 The Cosine and Sine Transform

The DFT of a real even sequence corresponds to a special transform called the
cosine transform. Similarly the DFT of a real odd sequence corresponds to the sine
transform. These transforms come up in special applications ranging from image
processing to the solution of elliptic partial differential equations with various
boundary conditions.

In this section we introduce these symmetric transforms in matrix notation.
We then focus on the sine transform and discuss the methods of Dollimore (1973)
and Cooley et al. (1970) to compute the sine transform efficiently by exploiting all
possible symmetries. Finally we talk our way through a hypothetical implemen-
tation of these methods on a parallel distributed system such as the hypercube
and show how the plethora of symmetry exploitation causes a very complicated
sequence of permutations (communication).

Matrix Description

Definition 5.8.1 The cosine series of a sequence x(7), 7=0,...,n is defined to
be
1 T 1
21,2 ¥ 2
a=—|szw Cpg 7V X
n 1 1 1)
5 v 2(-1)

Notice that the cosine series is only defined on n + 1 points x(0: n).

Theorem 5.8.1 Cosine Series:  Let z be the even extension of x,

x(0)
(1:n-1)

2=| " x(n)
Ex(1:n-1)

then if y = Fonz, then
a(0: n) = 2Re[y(0 : n)]
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Proof z is real even, implying that y is purely real. Then

1wl 1 wl x(0)
Foz—-—l— w C v CE x(1:n-1)
o | 1 v (=1 VTE x(n)

w EC Ev ECE ][ Ex(l:n-1)

y(0) = 2—17;[:((0) +2wTx(1: n — 1) + x(n)]
y(lin) = 2in[x(O)w +2Cx(1:n—1) + x(n)v]
y(n) = Elg[x(O) +2vTx(1: n = 1) + (=1)"x(n)]
y(n+l:2n-1) = %[x(o)w +2ECx(1: n — 1) + Evx(n)]

Notice that y(n +1:2n — 1) = Ey(1 : n), which is what we expect.

Definition 5.8.2 The Inverse Cosine Transform is defined as
1 T 1
7 W 7
x=|iw Cn_ v a
1 1
o vhoH=Dr
Hence the cosine transform is its own inverse up to a multiplicative constant.

Definition 5.8.3 The DFT of a real odd sequence corresponds to the sine series
defined on a sequence x(j), j =1,...,n.

b(1:n)= %s,,_lxu 1)

Notice that the sine series is defined on only n — 1 points x(1 : n).

Theorem 5.8.2 Let z be the odd eztension of x.

0
x(1:n-1)
0
-Ex(1:n-1)

then if y = Fouz,
b(1:n) = 2iy(1:n)
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Proof Since z is real and odd, the y = Fs,z is purely imaginary, therefore

0 0 0 o 0
_—1]0 S 0 -SE x(1:n—-1)
Frz=5"10 0 o o 0
0 —-ES 0 ESE -Ex(1:n-1)
y(l:n) = ;—;[2Sx(1 :n—1)]
yn+1:2n—1) = %[—2E8x(1 n—1)]

Here y(n +1:2n —1) = ~Ey(1: n) as expected.

Definition 5.8.4 The Inverse Sine Transform is defined as
X = Sn_lb

30 that the sine transform is also its own inverse up to a multiplicative constant.

The Sine Transform Algorithm

The most straightforward sine transform algorithm would be to follow the deriva-
tion in Theorem 5.8.2 and extend the given sequence of length n into its odd
extension. The FFT of this 2n-point sequence is then computed and the sine
transform is found in the imaginary part of the transform of the extended se-
quence. This method has a number of drawbacks in the single processor case.
For one, it requires four times the array storage than necessary. This is because
the extended sequence is both odd and real. But if a complex FFT were to be
done, we would need 2n points of complex storage. It is also obvious that we are
doing computationally more work than is necessary. However given the difficul-
ties with which the conventional sine transform procedures of Dollimore (1973)
and Cooley et al. (1970) are implemented on the hypercube, this naive method
is actually recommended by some researchers for parallel implementation. This
1s because given an efficient complex FFT and parallel computing, one may not
care too much about whether a 2n-point transform is done instead of an n-point
or n/2-point transform. It should be noted that it requires a non-trivial set of
communication to convert an n-point vector mapped in consecutive order into a
2n-point odd extension of itself. Try it with paper and pencil!
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The sine transform can be calculated efficiently via the complex FFT by taking
advantage of the symmetry in the extended sequence. These algorithms usually
involve the use of a real FFT of length n coupled with some pre- and post- process-
ing of the sequence to exploit the additional symmetry. There are two different
ways of doing this. Each is the inverse of the other. The first method is usually
attributed to Dollimore (1973) and is presented by Swarztrauber (1982) and Press
et al. (1986). '
Procedure 5. Dollimore’s Sine Transform

Suppose we have a sequence x(0 : n) where x(0) = 0. An auxilliary array is
constructed so that the first term is even and the second term is odd. Let A =
diag(sinif), j =0,1,...,n — 1. The constructed sequence is

(5.8-1) d=A,x+ Tx)+ %(x - Tx)
Taking the FFT of this sequence yields
Y = Fad = Faly(x + Tx) + ;Fa(x - Tx)

with

Rely] = Re[Fn]A(x+ Tx)

Imly] = %Im[Fn](x — Tx)
First we look at Rely]. We see that TA, = A,T = A, so that

Re[y] = 2Re[F,]A,x

Now
2
[Re[Fr]Aglpg = cos T;pq sinT;—p
1{. (2q+1 ) ) (2q—1 )}
= =—{sin pr ) —sin o
2 n n
Hence

Rely] = RyRe[F,]x — RIRe[F, |x

where RI is the down-shift matrix. For Im(y], we have Im[F,]T = —Im[F,] and

thus
Imly] = s{lm[Fy](x - Tx)
= Im[F,]x
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Im(y] gives us the even terms of the sine transform, and a recursion on Rely] gives
us the odd terms. So

1
b; «~ EY(O)
bar  « Imlyy]
bari1 — bok—;1 + Relyi]

n
k=0,...,——1
2

This algorithm is not efficiently vectorized because of this last recurrence. Tem-
perton (1980) has shown however, that the numerical properties of Dollimore’s
method is superior to the vectorizable method we present next.

The Sine Transform of Cooley et al. (1970)

The inverse of Dollimore’s algorithm is the one presented by Cooley et al. (1970).
A complex conjugate even sequence is formed out of the original real sequence.
Let b(0 : n) be a sequence of real numbers with b(0) = 0. Form the complex
conjugate even sequence z as follows

z(0) — (2b(1),0)
Re[z(j)] < b(2j+1)—b(25 - 1)
Im[2(5)] < b(2j)
J=1,...,n/2-1
z(n/2) — (—2b(n—1),0)

Procedure 4 is used to find d = F,z. d is a real sequence and the inverse of
equation 5.8-1 gives

X = %A;I(Td +d)+ -21-(Td ~d)

Implementation of the Conventional Sine Transform Methods on Dis-
tributed Systems

We outline how the sine transform can be implemented via Dollimore’s algorithm
and the algorithm of Cooley et al. and describe the permutations necessary. Here
we see that the implementation of either of these two sine transform algorithms
would be inefficient due to the complicated maneuvering of the permutations.

Procedure 5. Given: A real sequence x. Find the sine transform b
of x via Dollimore’s algorithm.
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e Form the auxilliary sequence
1
d=A,(x+Tx)+ 5(x - Tx)

The communication pattern for T, is needed.
e Find P,y = P,F,d via Procedure 3.

e Let the even points of P,b = Im[P,y]. Solve the recurrence for the odd
points. This is difficult because the entries of y are in bit-reversed order and
we require adjacent entries to be in adjacent processors. Hence a distributed
bit-reversal must be done first before the linear shift nearest-neighbor per-
mutations R] and R, are performed.

Procedure 6. Given: A real sequence x. Find the sine transform b
of x via the algorithm of Cooley et al.

o Set up the conjugate even sequence z. Nearest neighbor connections or RI
and Ry, permutations are required.

* Use Procedure 4 to find the real sequence d = P,F,z.

e Find 1 1
P.x = ZA;I(GnPnd + P.d) + 5(GnPad — Prd)

The communication pattern for recursive exchange G, is required.

Since the sine transform is its own inverse, any sine transform algorithm can be
used to invert a transform. Hence we outline Procedure 5 and 6 with bit-reversed
mnput.

Procedure 5a. Given: A real sequence P,x. Find the sine transform
b via Dollimore’s algorithm.

¢ Form the auxilliary sequence
1
Pnd = Pr A (Prx + Gp(Ppx)) + E(an - G,(Pax))

Here we need the communication pattern for G,.
¢ Find y = F,P,(P,d) via Procedure 3a.

o Let the even points of b = Im[y], and the odd points are solved by recurrence.
This is inefficiently parallelized.
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Procedure 6a. Given: A real sequence P,b. Fnd the sine transform
X via the algorithm of Cooley et al.

¢ Set up the complex sequence P,z. This is difficult because the real part
of P,z requires nearest neighbor connections, or shift permutations. but
everything we have is scrambled up. Now we have P,.b, but there is no easy
way to commute RI and P,,.

o Use Procedure 4a to find the real sequence d = F,P,(P,z).

e Find ) .
X = ZA;I(Td +d) + 5(Td —d)

The communication pattern for T, is required.

A quick analysis of the communication needed to implement these two sine
transforms show that the recurrence for Dollimore’s algorithm is inefficiently par-
allelized. Setting up P,z for the algorithm of Cooley et al. is also difficult and
requires unnecessary communications to unscramble data. So basically, to im-
plement these conventional sine transform algorithms on distributed systems, we
need to be able to do distributed bit-reversal permutations efficiently. Since many
algorithms require a transform followed by an inverse transform of the data. with-
out need for natural ordered data in the transform domain, unscrambling of the
data is unnecessary. Therefore the cost of pre- and post- processing operations and
the communication needed to carry out these algorithms outweighs the benefits
of their design to minimize operations counts. This is a typical problem in par-
allel computation where problems which are optimized for a single processor can
actually be far more difficult to implement and carry much more overhead to par-
allelize than an algorithm which is less efficient in a single processor environment.
This is because with parallel computing, we desire work to be as independent of
each other to maximize parallelism. Sometimes this means that it is cheaper to
do some redundant computations to defer the need for communication untjl abso-
lutely necessary. This is how we approach our new sine transform, an efficiently
parallelizable version.

5.9 Conclusion and Discussion

Although we have mainly concerned ourselves with the sine transform in this
chapter, the exact same type of reasoning behind our parallel sine transform can
be used for a parallel cosine transform algorithm.
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The sine transform is used extensively in the Fourier method for the solution of
boundary value problems in partial differential equations with Dirichlet-Dirichlet
boundary conditions. [Swarztrauber (1977)] In fact, the tensor product method
for finding the solution to the Poisson equation with Dirichlet boundary condi-
tions involves a two-dimensional sine transform [see Lynch, Rice and Thomas
(1964)]. While in the single processor case, one would choose to use the matrix -
decomposition method [Buzbee (1973)], involving a fast transform in one direction
and tridiagonal solves in the other, with the hypercube, it might be interesting
to substitute the tridiagonal solves with fast transforms that are more efficiently
parallelizable than tridiagonal solvers usually are. Sine and cosine transforms are
also used extensively in image processing which may require transforms in two
or more dimensions. Therefore fast efficiently implemented algorithms for vector
computers and parallel systems are important and should be considered a basic
building block in many other more complicated algorithms.



Chapter 6

Fast Symmetric Transforms

6.1 Introduction

Sine and cosine transforms arise naturally from the Fourier transform of symmet-
ric sequences. They are used in a variety of problems in applied mathematics
ranging from the digital coding of images [Clarke (1985)] to the fast solution of
Poisson’s partial differential equation with various boundary conditions [Swarz-
trauber (1984b)).

Since they exhibit certain special symmetries, the computation of symmetric
transforms should be up to four times more efficient, in terms of storage and op-
erations count, than the complex FFT. This is because the transform of a real
sequence is conjugate even, so there is a two-fold redundancy of information.
Furthermore, the sine transform comes from the DFT of an extended odd real
sequence and is itself odd. Therefore another two-fold redundancy of information
is present. Hence a smart efficient Fast Symmetric Transform algorithm should
require a quarter of the array storage and roughly a quarter of the computational
effort of a complex FFT algorithm. There are several sequential algorithms that
achieve this objective (discussed in Chapter 5 for the sine transform). [Cooley et
al. (1970), Swarztrauber (1982), Press et al. (1986)] These algorithms require pre-
and post- processing and are very difficult to implement efficiently on a parallel
memory-passing system. Therefore in Chapter 5 we present a parallel algorithm
specifically for the sine transform. The technique of Chapter 5 can be used on
other symmetric transforms but each case must be worked out individually.

In this chapter we present a new algorithm that can simultaneously find the
sine, cosine, quarter-wave sine and cosine transform of a single real sequence by
computing only one complex FFT of the same length. Furthermore, all multipli-
cation in our method is by roots of unity and hence the method is numerically
stable. Portability is no problem because after an initial permutation of the data.
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any standard FFT subroutine can be used to find the results.

Other methods used to find symmetric transforms include the method of trans-
forming extended sequences. A sequence is extended so that its symmetry becomes
obvious. For example, given a data vector z;, 1 =1,...,n — 1, we can extend it
into an odd function

(07‘7:13 s axn—1701 —ZTn-1,-- -a_‘rl)'

The DFT of this extended function is both odd and conjugate even, and thus
purely imaginary. Furthermore, the sine transform of x; (up to a factor of 2:). is
found in the imaginary portion of the first n points of the DFT of the extended
function. [See Press et al. (1986)]. This method is as numerically stable as the Fast
Fourier Transform, a sequence of unitary transformations, but requires the use of
an extended sequence of twice the length. Hence, instead of reducing the work by
a factor of four, we have actually increased the work by a factor of two. For higher-
dimensional transforms, the factor increases as 2¢ where d is the dimension of the
transform. This also means that 24 times the storage space is needed to transform
these points. Therefore this method is neither efficient in the computational sense
nor in the use of memory. The advantage however is that this method is portable
to any architecture or machine where efficient FFT subroutines have already been
worked out, implemented and tested.

Direct methods are discussed by Chen, Smith and Fralick (1977), Yip and Rao
(1980), Wang (198la—c), (1984), the gist of which is best explained by Swarz-
trauber (1986b). The basic idea is to emulate the factorization of the DFT ma-
trix. By factoring the discrete sine transform (DST) and discrete cosine transform
(DCT) matrices into sparse matrices, a fast algorithm for these symmetric trans-
forms can be derived with reduced operations counts since redundant operations
are not done. Furthermore since the operations done are a subset of the ones
done by the FFT algorithm, the direct methods possess the numerical stability of
the complex FFT algorithm. The major drawback of these direct methods is the
complexity of the signal flow diagrams. This makes it difficult to implement in
parallel, as significant time could be taken just to find out where something has
to go. See Wang (1984) and references therein for a complete description of the
algorithms as well as the theoretical background leading up to these factorizations.

This chapter is summarized as follows. The four types of cosine and sine
transforms are first defined in terms of their representation as matrix-vector mul-
tiplication. The new method is presented and a demonstration is given on how
the symmetries are exploitable. This method is then implemented on the hyper-
cube and timing results are analyzed. A few applications are discussed and in the
appendix details of the proof for the type III and IV transforms are presented.
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Finally the FORTRAN code for this set of procedures is given to show how easy
it is to implement.

6.2 Definitions and Matrix Notation

The four types of symmetric transforms are described by Wang (1981a—c) as a
real approach to harmonic analysis. If f(z) is a bounded real function it can be
expressed in terms of the orthonormal set of the trigonometric functions

\/;sin[%+(n+a)9:}, n=...,-2,-1,0,1,2,...

n has to be an integer, but a can be any real number. In practice, however, only
integer and half integer (« = k and o = k + %, for k integer) harmonics are used.
This is because in these two cases, symmetry properties of a sequence can be used
to decompose the real transform into discrete cosine and sine transforms. Another
reason is that it is easier to find fast algorithms for these two types of harmonics.

The matrices for the four versions of the discrete cosine transforms (DCTs)
and the discrete sine transforms (DSTs) corresponding to the integer and half-
integer harmonics are described by defining their p-gth element. The transform of
a particular sequence is then a simple matrix-vector multiplication.

DCT-I: \/g[kpkq cos(pgw/n)], p,g=0,1,..., n.

DCT-IL: /Z[kycos(p(g + L)n/n)], pa=0,1,... n—1.
DCT-IIL: /Z{k, cos((p + Lgr/n)], pg=0,1,....n—1.
DCT-IV: %[cos(p + %)(q + -21-)7r/n)], p,¢=0,1,....n—1.
DST-I: \/g[sin(pq‘rr/n)], peg=1,...,n—-1.

DST-IL: \/Z[kysin(p(g — L)r/n)], pa=1,...,n.
DST-III: \/g[kq sin((p— 4)gn/n)], pg=1,...,n.

DST-IV: \/Zfsin((p + })(g + Dr/n)], pg=0,1,...,n~1,

where

1

k 1 ifl#0o0rn
1= 7 ifl=0o0rn.
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It can be shown by simple verification that DCT-I is its own inverse, DCT-II
and DCT-III are inverses of each other, DCT-IV is its own inverse, DST-I is its
own inverse, DST-II and DST-III are inverses of each other, and DST-IV is its
own inverse [Wang and Hunt (1985)).

These symmetric transforms are not artificial creations, but appear naturally
as the eigenvectors of the finite difference operator of Poisson’s equation on a
square with various boundary conditions. [Swarztrauber (1977)] DCT-I and DST-
I are the usual cosine and sine transforms, respectively. And DCT-II and DST-II
are the quarter-wave cosine and sine transforms with DCT-III and DST-III their
inverses, respectively. These transforms are also used in digital signal processing
applications and in image processing. [Ahmed et al. (1974), Kekre and Solanki
(1978), Jain (1976, 1979), Wang and Hunt (1985)]

Matrix Notation

Each of these transform matrices can be simplified into an n-by-n matrix consisting
purely of cosines or sines. We get rid of the k; scaling terms. The matrix-vector
multiplication of this is almost the corresponding discrete transform with a few
adjustments that appear later.

Cl = [cos(pgm/n)], p,g=0,1,....,n—1.
ci = [cos(p(q + %)7(/72)], 7g=0,1,...,n—1.
CHT = [cos((p + %)qﬂ'/n)], p,¢=0,1,...,n—1.
CIV = [cos((p + %)(q + %)ﬂ'/n)], pg=0,1,....,n~1.
sl = [sin(pgw/n)], p,g=0,1,....,n—1.
SI = [sin(s(a + r/n)], pg=0,1,...,n—1
SUT = fsin(p + Dav/n)l, pg=0,1,...,n -1

) 1 1
S2" =[sin((p+ 5)(a + )n/m)l, pg=0,1,...,n-1.

Notice that these definitions are not exactly the same as the corresponding def-
initions of the discrete transforms, however, once we have figured out let’s say

C,IH_I;B, it is easy to find the DCT-I of z by subtracting \/%jxo from each com-
ponent, adding \/gx,, to the even components, and subtracting \/;:z:n from the

odd components. Finally the whole thing is scaled by \/g A summary of these
“retrieval” procedures appears later.
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6.3 Description and Development

In this section, we present our new method of computing the symmetric transforms
so that those of type I and II and computed together and those of type III and IV
are computed together. First we introduce a permutation matrix that is used in
this analysis. We then give an overview of the relationships between the symmetric
transforms, after which we derive these relationships in detail.

Quarter-wave Splitting Permutations

The permutation that is used to simplify the description of sequences with quarter-
wave symmetries is defined as follows.

I
K, = | I ]bu
[ Ejn/2)

A highly related “manipulation” of a data vector is

I
L, = | %/ ] M,
[ ~E|n/2)

In English, K, takes all the even points of a sequence first, and then the odd
points going backwards. L, does the same thing except it takes the negative of
the odd points going backwards.

Example

(07 [0] (0] [ 0]
1 2 1 2
2 4 2 4
3 6 3 6

Knly|=|7 Lol g =] =7
5 5 5 -5
6 3 6 -3
7] L1 L 7] -1

The Four Types of Symmetric Transforms

All four types of cosine and sine transforms are related to a certain complex
matrix-vector multiplication. Recall that the discrete Fourier transform matrix
of dimension n is a matrix consisting of powers of wp, = e~2™/n_ Let F, be the
DFT matrix of order n and F2, be the DFT matrix of order 2n. We consider the
upper-left n-by-n corner of the matrix Fy, denoted by

I‘A‘g,,:Fz,,(O:n—l,O:n—l)
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and show that all of these transforms involve either the term Fonx or Fon(AX)
where A is a particular scaling of x by a diagonal matrix of twiddle factors. i.e.
4n-th roots of unity.

The matrix F3, provides the link between the various transforms. The diagonal
matrices are n-by-n matrices consisting of

A = diag(e—"ik/zn)
A = diag(e_’rik/")

Table 6.1 displays the formulas involved. One can see that the type I transform can
be obtained from the type II transforms and the type II transforms from the type
IV transforms. From Table 6.1 we see that the DFT of K.x or L,x (permuted
versions of x are all that are required to be computed via the FFT algorithm.
Further the FFT is of length n rather than 2n. Basically two DFTs are needed for
each set of four symmetric transforms: Fn(Knx) and Fu(L,x) for the type I and
type II transforms, and F(A%L,x) and F,(A2K,x) for the type IIl and type
IV transforms. The first two are real transforms and the second two are complex
transforms.

Makhoul (1980) describes a way of finding CI/x by find the real part of the
transform AFn(K,x). He establishes the equivalence between Re[AF (K, x)]
and Re[AF;,x]. What we do is establish the same sort of procedure for the type
IT sine transform SZ/x. Once we have CIIx and SI’x available, we show how it is
an easy step to finding the type I transforms. We form a sequence by putting CI/x
in the real part and S{x in the imaginary part. We then scale the sequence by
A~! and then find CLx in the real part of the resulting sequence and SIx in the
imaginary part. A similar procedure is used for the types III and IV transforms.
The algorithms that follow describe the techniques used.

Summary of Procedures

Algorithm 6.3.1 describes how to find the cosine and sine transforms of type I and
type II simultaneously.

Algorithm 6.3.1 Procedure Typel2:
ve—K;x;2z—L;x
veFpv;z—F,z
Ve AV, 2 — Aypz
CHx = Re(v); SIIx = —Im(z)

Re(a) — Re(v); Im(a) = Im(z)
a— Ala
Clx = Re(a); SIx = —Im(a)
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Table 6.1: Symmetric Transform Formulae

transform formulae
DCT-I Cix = Re[Fj,X]
= Re[A~}(ClIx + iSIIx)]
DST-I Six = —Im[Fy,x]
= —Im[A~!(Clx + iSIIx)]
DCT-II Cl'x = Re[AF;,x]
= Re[AF,K,X]
DST-II S:'x = —Im[AF;,X]
= —Im[AF,L,x]
DCT-III Cilly = Re[Fy, Ax]
= Rele™/*" A-1(CIVx + iSIVx)]
DST-III Sy = —Im[F2, AX]
— —Im[e""/4"A‘1(C£Vx + is;f‘Vx)]
DCT-1V C/'x = Re[e""/4"Af‘2,,Ax]
, = Re[e~ /4" AF,A2L,X]
DST-IV SIVx = —Im[e""/“"AanAx]

= —Im[e=™/*" AF, A%K ,x]
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Algorithm 6.3.2 describes the procedure for obtaining the type III and type IV
sine and cosine transforms simultaneously.

Algorithm 6.3.2 Procedure Type34:
ve—K;x;z—L,x
ve—A?v;z — A
ve—F,v;z—F,z
V - e—m'/4nAv’. Z — e~ Ti/in Aqg
CIVx = Re(z); SIVx = —Im(v)
Re(a) = Re(z); Im(a) = Im(v)
a— e7ri/4nA—1a
CllTx = Re(a); SII'x = —Im(a)

We next describe how Algorithm 6.3.1 is derived. The derivation of Algo-
rithm 6.3.2 is similar, but more complicated and is hence relegated to the Ap-
pendix.

Procedure 1: Cl, S, CII| and S!! from two real FFTs of length n

The method of computing the type II cosine transform Cllx by equating
Cllx = Re|AF, K X]

is derived and demonstrated by Makhoul (1980).

Theorem 6.3.1 (Makhoul (1980)) Let x be a real vector of length n, then
Cl/x = Re[AF;,x] = Re[AF, K,x]

Proof Makhoul (1980).

*

The type II DST can be computed in a similar manner to that of the type 11
DCT. We first present a lemma equating the imaginary part of the 2n-point DFT
matrix multiplied by diagonal matrix of 4n roots of unity with the type II sine
transform matrix.

Lemma 6.3.1

Afzn - A_lfzn = —iS{,I
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Proof

[AFZn - A_lﬁzn]pq = e~ TP(2¢+1)/2n _  mip(2g+1)/2n
= —sin(7p(2g + 1)/2n)

*

The following theorem shows that the type II sine transform has two expressions
as imaginary parts the complex sequence — AF,,x and —~AF;L,x, respectively.

Theorem 6.3.2 Let x be a real vector of length n then
(6.3-1) Siix = ~Im[AF;,x] = —~Im[AF,L,x]

Proof Let y be the quarter-odd extension of x

r=| ]

Partition the 2n-point DFT matrix Fs, as follows:
Fi, = [FL, FE
Then letting Y be the DFT of y we have
Y =F,,y = Fix - FREx
However it can be easily shown that FEE = A—2F” so
Y = Fix - A~Fix
Defining Fy, = F2,(0:n~1,0:n — 1) we have for the first n terms of Y,

YO0:n-1) = anx — A_Zf‘znx
= A7NAF,, - A™Fy,)x
= A7T12iIm[AF,x]

At the same time we have
A2, — A7IF,, = —isl!

hence
Y(0:n-1)=-A"12;8x
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Thus ~
SHx = —Im[AF;,x]

and the first part of the proof is complete. The second part of the proof is to
establish the relationship

SHx = —Im[AF,(Lpx)]
As above, we let y be the quarter-even extension of X, and let
2(j) = y(2j)

w(j) = y(2j+1)
7=0,...,n—-1

and note that z = Ly,x and w = ~Ez. Againlet Y = F2,y. Denoting
tn = F2,(:,0:2:2n 1)
o = Foa(5,1:2:2n-1)

be the 2n-by-n matrices containing the even and odd columns of F3n, respectively,
we have

Y= F2ny = gnz + anw
= ;nz - anEZ
Denoting the top half or F§, and F3_, respectively:
:511 = F3,(0:n-1, )
gn = gn(o:n_l’:)
then
Y0:n-1) = F§,z-F,Ez
F.z — A F,z
A~YAF, - A"'F, ]z
A2 Im[AF 2]

we already know that
Y(0:n—-1)=-A"128x

hence this establishes the relationship

S'x = —Im[AF,Ly,x]
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*

This shows that the type II sine transform can also be found by an FFT of a
permuted real sequence z of length n.

Expressions involving F3,x can also be found for the type I cosine and sine
transforms.

Theorem 6.3.3 If x is a sequence of length n, then
Clx = Re[Fonx]

Proof The even extension of x is

=[]

Let Y = Fa,y, and Fy, = [FL,FE], then
Fo,y = Fix+FRTx
(FL + Fh)x
2Re[Flx]
But Cix = 2[(F2ny)(0 : n — 1)], hence the result
Clx = Re[F2,X]

Theorem 6.3.4 If x is a sequence of length n, then
Six = —Im[F,X]

Proof The odd extension of x is

r=[ %)

Let Y = F3,y, and Fy,, = [FL,FR], then
Fa,y = Flx - FfTx
(FL - FL)x
= 2{Im[Flx]

But SIx = -;-(any)(O : n — 1), hence the result

SIx = —Im[Fy,x]
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Now that all the relevant relationships are present:
Ci'x = Re[AF;,x] = Re[AF (K, x)|

Siix = —Im[AF,x] = —Im[AF,(L,x)]
Cix = Re[f‘g,,x]
Six = —Im[F,x]

we can produce the procedure that computes the four type I and II symmetric
transforms.

Let
A = AF,,x
Then
ReA = ReAF,v
ImA = ImAF,z
and
B=A"!A
gives
Cix = ReB
SIx = —ImB

Thus we need to find two real DFTs of length n. It is a well-known fact that
one can find these two DFTs in one pass through the complex FFT subroutine.
Thus by computing only one complex FFT of length n, we have managed to find
four sine and cosine transforms of length n.

Procedure 2: CI/1 gl ClV, and SV from two complex FFTs of length
n.

The type III and type IV symmetric transforms have a very similar relationship
whereby the type III transforms can be computed in linear time once the type IV
transforms are present. The type IV transforms can be found efficiently by taking
the complex FFT of vectors of length n, i.e. a scaled version of either KpxorL,x.
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The derivation and proof is long-winded and is thus relegated to the appendix.
The important results are theorems 6.8.1 and 6.8.2 giving:

ClVx = Rele ™/*"AF,,Ax]
= Re[e""‘/4"AFnA2Lnx]

and theorems 6.8.3 and 6.8.4 giving:

SlVx = —Im[e~™/* AF,, AX]
= —Im[e ™/4" AF, A%K,X]

Also neeed are the relationships
CIlx = Re[Fy, AX]

and
SHlx = —Im[F;,Ax]

Now Algorithm 6.3.2 is derived as follows. Let

A= e_ri/4nA4nF2nA4nx

Then
Re[A] = Rele™"/4"AF,A%]
Im(A] = Im[e ™/*"AF,A2v]
so letting
B = ewi/4nA—1A
gives

Clllx = Re[B]
Sy = Im[B]

Therefore we need to find two complex DFT’s of length n
Fa(A’L,x) Fo(A%’Kx)

to get the four sine and cosine transforms of length n.
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How to get the Transforms

In the procedures above we have always assumed that x was a vector of length
n, with subscripts ranging from 0 to n — 1. However, the exact definitions of some
of these transforms are slightly different. For example, DST-III assumes that the
subscripts run from 1 to n. Furthermore there is that constant ki to deal with.
We now show how easy it is to get the exact definitions from the output of the
procedures.

DCT-I of x(0 : n)
Given: Y = ClIx(0:n —1). Overwrite Y with the DCT-I of x.

Y/(0) ([ (Y(0) — xo) + -x0 + %xn)
Y(k) %( k)—(l—[)xo+( 1)’=\[x,,)
1<k<
n—1 )
Y(n) % (%xo + ];(_1)1 %x]» + %(—1)";:,,)

DST-Tof x(1:n—-1)
Given: Y = S{‘x. Overwrite Y with the DST-I of x.

Y(k) « \/%(Y(k))

1<k<n-1

DCT-II of x
Given: Y = C£Ix. Overwrite Y with the DCT-II of x.

o)

Y(0) «

=AY
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Y(k) \@Y(k)

1<k<n-1

DST-II of x(1: n)
Given: Y =SI/x. Overwrite Y with the DST-II of x.

Y(1) « \/—g(\/gY(l)—xo)
Y%)-¢gﬂﬂﬂ~m)

1<k<n-1

Y(n) «~ \/g(\/gjé(-l)j'IXj)

Given: Y = CIHIx. Overwrite Y with the DCT-III of x.

fro- (431

<n-1

DCT-III of x

Y(k) ~

310

0

IN

DST-III of x(1 : n)
Given: Y =S/ x. Overwrite Y with the DST-III of x.

( (k) — xo + [( 1) )
k<n
(2 ' x,-+\/§(-1)n‘—1x,,)

Y(k)

fﬁﬂm 3|

Y(n) <



184

DCT-IV of x
Given: Y = CIVx. Overwrite Y with the DCT-IV of x.

Y(k) %Y(k)
0<k<n-1

DST-IV of x
Given: Y =SIVx. Overwrite Y with the DST-IV of x.

Y(k) \/gY(k)

0<k<n-1

6.4 Error Analysis

Our method is much more stable than that of the traditional methods, including
the Cooley et al. (1970) algorithm. A quick error analysis of the Cooley et al.
algorithm follows.

Cooley et al. Sine Transform

(a) Given values Y(j), j = 1,....,n — 1 of a real odd sequence Y(j), j =
0,1,...,2n — 1, form the complex array X(j):

X() = -[Y(2j +1) - Y(25 - 1)] + Y(2j);

(b) Find the DFT A(k) = —F nX(7). Since X(j) was constructed to be conjugate
even, A(k) is real.

(c) Compute

b(j)

DN =

{ (k) — A(=k)] - mn—)[f‘l(k)+A(—k)]}
k -1
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There are two sources of trouble (assuming that A(k) was computed accu-
rately):

o the formation of X(j), whose real part can have cancellation errors if the
Y(j)’s are close together.

e the divide by sin(xk/n) when n is large.

When n is large, sin(rk/n) =~ % To isolate the error from this step only.

we assume that all the other quantities were computed correctly. Let b be the
computed solution and b be the true solution. Then

HB—bIloosgu—roo n — oo

where u is machine precision.
Type I Sine Transform (Chu)

The error analysis for the method of this chapter is fairly straight-forward once
we have the error analysis of the complex n-point FFT (See Chapter 2).

Six = —Im[A~Y(CUx + iSlx)]

Therefore we first present the error analyses of Cl’x and SIIx. These two error
analyses are equivalent as the transforms are just the real and imaginary parts of
the complex sequences

AF,v and AF,z

respectively. (v = Kyx and z = L, x)
Let y = Fpv such that the computed result ¥y is obtained from a complex FFT
subroutine. Then from Chapter 2, we have

¥ = yll2 < clog, nullyllz + O(u?)
Lemma 6.4.1 Ify = F,v is computed by the complez FFT such that
17 = yll2 < clog, nullyllz + O(u?)
and A = diag(e~2™/4") j =0,1,...,n - 1, such that
IA - Allz < u+ O(u?)

then
Ifi(Ay) — Ayll2 < [(2 + V2) + clog, nlully]|z + O(u?)

where c is a constant of order unity and u is the machine precision.
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Proof

< fUAy) - AFl: + |Ay - Ayll2
< (14 V2)|Aylu+ |A - Allzllyls + lAll2lly — yll2
< (2+ V2)|lyll2 + clog, nu|ly|;

If1(Ay) - Ayl

Using lemma 2.5.3 and the result from the radix-2 complex FFT error analysis.

*

Corollary 6.4.1 Let Z be the computed version of a complez vector z such that
12 = zll2 < é(z)u + O(u?)
and A be a matriz of “twiddle” factors e=2%i/m i i any integer such that
1A - Allz < u+ O(u?)
then the computed product of A and z is such that
If(AzZ) — Az|l; < [(2 + V3) + bz]ulz|);

Using this corollary we see that for b = SIx, the computed sine transform b
1s such that

Ib — bil<[2(2 + V2) + clog, n]ulb]|; + O(u?)

Comparisons between the sine transform presented in this chapter and the
Cooley et al. one implemented by Rabiner (1979a, 1979b) show that the error
grows as n increases.

Three functions were used, y = z, y = random(0,1), and y = sin(z) for z
in [0,1]. The base solution method entails taking the odd extension of y and
transforming this 2n-point sequence by a complex FFT algorithm. Thus any
errors that show up would only be caused by the pre- and post- processing. The
maximum component-wise error for the Cooley et al. implementation is shown in
Table 6.2 and the error for the method of this chapter is shown in Table 6.3.

6.5 Implementation on the Hypercube

The hypercube implementation of this method is fairly obvious. Aside from the
initial permutation of the data, everything else proceeds exactly as an n-point
complex FFT. We use the Two-Track method of Chapter 3 to do this.
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Table 6.2: Cooley et al. Sine Transform Errors

Cooley et al. Sine Transform

n=2¢ y==zx random y = sin(z)

4 = 2° 2.98023e-08 5.96046e-08 2.98023e-08

8 =23 5.96046e-08 5.96046e-08 2.98023e-08
16 = 24 1.19209e-07 1.19209e-07 1.19209e-07
32 =25 1.19209e-07 1.19209e-07 1.19209e-07
64 = 26 4.17233e-07 2.38419e-07 2.98023e-07
128 = 27 | 4.17233e-07 2.38r19e-07 2.98023e-07
256 = 28 | 1.37091e-06 9.83477e-07 1.01328e-06
512 =2 |1.37091e-06 8.94070e-07 3.34465e-07
1024 = 210 | 5.42402¢-06 3.24845e-06 3.66569¢-06
2048 = 2!1 | 5.06639¢-06 3.45707e-06 3.21865e-06
4096 = 212 | 2.13981e-05 1.54972e-05 1.50502¢-05
8192 = 213 | 1.99080e-05 9.20892¢-06 1.34706e-05
16384 = 214 | 8.55923e-05 6.00219e-05 6.03199¢-05
32768 = 215 | 7.90358e-05 3.43919e-05 5.42402¢-05

e Form v — K,x and z «— L,x. Data is entered into the hypercube as M, x.
This is okay because consecutive elements of x are still in the same processor.

Apply the permutation
I
e

meaning that the second track x(?) is exchange permuted.
¢ Implement Two-Track FFT with BRGC mapping on v and z to get
vV — (Mg? ® In/zp)PnFnV
7 — (M{3 ® L/2p)PyFpz
Communication of the Two-Track FFT described in Chapter 3.

¢ Post-processing is multiplication by A a diagonal matrix and other local
operations.

Algorithm 6.5.1 Type 12 Transform
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Table 6.3: Sine Transform (Type I) Errors

Type I Sine Transform

n=2¢% y==z random y = sin(z)

4 =22 1.49012e-08 1.49012e-08 5.96046e-08

8 =23 5.96046e-08 5.96046e-08 2.98023e-08
16 =24 | 5.96046e-08 5.96046e-08 2.00234e-08
32=25 2.98023e-08 5.96046e-08 5.96046e-08
64 = 28 2.98023e-08 4.47035e-08 5.96046e-08
128 =27 | 1.19209e-07 5.02914e-08 2.98023e-08
256 = 28 | 1.78814e-07 1.86265e-08 1.19209e-07
512 =29 |5.96046e-08 2.98023e-08 5.96046e-08
1024 = 210 | 2.38419e-07 5.96046e-08 2.98023e-08
2048 = 211 | 1.78814e-07 5.96046e-08 5.96046e-08
4096 = 212 | 5.96046e-08 2.98023e-08 5.96046e-08
8192 = 213 | 5.96046e-08 2.98023e-08 5.96046e-08
16384 = 214 | 1.19209e-07 2.49129e-08 5.96046e-08
32768 = 215 | 5.96046e-08 2.21189e-08 5.96046e-08
65536 = 216 | 5.96046e-08 2.21189e-08 2.98023e-08
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/* = processor id; n =2, P = 2%, m = (n/P)/2 */
/* Data is entered into the hypercube as M,v */
/* Initially, processor pu holds: */
/¥v) = v(2m id[y]: 2: 2m - (id{p] +1)—1) */
/¥v® =v(am ddu] +1:2: 2m- (dlp]+1)-1) */
call Exchange(v(2)) /* code (6.6) */
z(1) — v(1)
z(?) — _v(?)
call Two-Track FFT(v(D,v(? z(1) 2(2)) /* code (6.2) */
v — Av
z — Az

Of course, for any hypercube procedure the facility to start with bit-reverse
permuted data is necessary in order to inverse transform a sequence. Here we
outline the reverse procedure. Starting with

(M33 @ 1,/5p)Pnx
e Apply the permutation (Hg? ® I/2p) to get back just Ppx.

e Now we need to have P,K,x so that we can apply the inverse FFT to P.v.
But we have P,x. So we apply

[ I e ] P.x = P, K,x

Need to do exchange permutation of second track.
¢ Do Two-Track FFT and find F,P,(P,X).

e Multiply by the diagonal matrix A, and other local post-processing.

Timing results are given for Algorithm 6.3.1 in Table 6.4 for the forward trans-
form with data in natural order and in Table 6.5 for the inverse transform with
data in bit-reversed order. The hypercube is mapped by the BRGC mapping. The
speedup here is excellent.

6.6 Applications: Updating Shifted Sequences
The stability of this method is good for updating shifted sequences as most of the

error of the traditional methods is concentrated in the first few terms and last few
terms.
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Table 6.4: Algorithm Typel2 n = 16384 Timings (Forward)

dim | total comp comm blocked copy diag per  speedup
0 |95735 94780 0 0 950 24310 | 23935 -
1 49430 48620 335 50 480 12155 | 12360 1.94
2 | 25985 24935 810 175 235 6080 | 6495 3.69
3 13515 12790 600 265 120 3040 | 3380 7.08
4 7220 6560 600 290 60 1520 | 1805 13.26
Table 6.5: Algorithm Typel2 n = 16384 Timings (Inverse)
dim | total comp comm blocked copy diag per  speedup
0 | 84445 75765 0 0 8665 11395 | 21110 -
1 [43730 39125 440 65 4165 5705 | 10930 1.93
2 | 24250 20185 2060 495 2000 2855 | 6060 3.48
3 12600 10410 1220 530 1205 1425 | 3150 6.70
4 6720 5375 880 410 460 715 1680 12.57

Suppose we have sequence x = [zo,... ,zn_l]T and we wish to find the sine
and cosine transforms of its shift x4 = [z;,... ,Zn]T. First let us define the upshift
matrix R;1 = [€n—1,€0,€1,...,e,_1]. Then

X4+ =R;1x—[O,...,xo]T—{-[O,...,:cn]T

If we had Clx and SIx, we can find Clxy and SIx, easily without having to
do any more transforms. This is because

Coxy = CIR7'x—1[0,...,z0]T +10,...,24)7)
Six, = SI(R;'x-[0,... ,zo]T 410, ... ,za]T)
Lemma 6.6.1
CiR;' = a.cl+a,s!

SIR-! ASI—aA,cl
letting A, = diag[cos(rp/n)] and A, = diag[sin(np/n)].
Proof
[CaR ]y =
cos(mp(q — 1)/n) = cos(npg/n) cos(mp/n) + sin(rpg/n) sin(mp/n)
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Table 6.6: Updating of Shifted Sequences

transform update
DCT-I Chx+ = AClx + ASIX + (zn — 20)CL(,n — 1)
DST-I Sixy = ASIx — ACLx + (2, — 20)SL(;,n — 1)

DCT-II Cilxy = ACllx + ASUx + (24 — 20)CLI(:,n — 1)
DST-II Sifx; = A SIIx - A,ClTx + (zp — 20)SII(:,n — 1)
DCT-II | Cilix; = ACIx + ASIx + (20 — 2)CLI(:,n — 1)
DST-II | SIfix; = ASiTx —~ A,CLIx + (24 — 20)SIII(:,n — 1)
DCT-IV | CiVxy = AcCL x+ ASIVx + (2 — 20)CLV (5, n - 1)
DST-IV | S)Vxy = ASLVx— A,CIVx + (25 — 20)SLV (5, n ~ 1)

and

[SaR; 1 =
sin(mp(g — 1)/n) = sin(rpg/n) cos(xp/n) — cos(mpg/n)sin(np/n)

Next notice that
Af0,..., 0T = bA(;,n —1)

that is, equal to b times the last column of A.
Therefore updating shifted sequences involves some scaling only. Table 6.6
summarizes the updating procedure. See also Yip and Rao (1987).

6.7 Applications: Fast Poisson Solvers.
Following Van Loan (1987) and others, the eigenvector matrix of the discrete finite

difference operator of Poisson’s equation with various boundary conditions can be
written in terms of DCT or DST matrices. Here, types I-III are involved.

Dirichlet-Dirichlet

Qpp(n-1)= %lsin(mﬂn)], pg=1,...,n—1.

Q5p = [sin(pgm/n)], pg=1,....,n—1.
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Neumann-Neumann

2
Qyn(n+1) = ;[kq cos(pgm/n)] p,q=0,1,... n.

Qv = [kgcos(pgm/n)] p,g=0.1,....n.

Dirichlet-Neumann

Qow(n) = Zlkysin((p — Han/m)] pg=1,...,n

and

Qply = lsin(ple = 3)7/n)] pig=1....n,

Neumann-Dirichlet

Qup(n) = Zlkycos(p + 3)gm/n)] pg=0,1,...,n—1

hEEN

- 1
Qxp = [cos(p(q + /M) pg=01,....n-1
where

1

b — 1 ifl#0o0rn
1= 5 ifl=0orn.

The stability of this method is not an issue until A3 < € since the discretization
error of finite differencing is already A2, and the error growth rate of the Cooley
et al. algorithm is €/h.

6.8 Appendix: Proof for Type III and Type IV
Symmetric Transforms
We derive a procedure that allows us to find the type III and type IV sine and

cosine transforms all at the same time. Since the symmetry is a bit more compli-
cated, this requires two complex FFT’s of length n instead of one.
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More notation is needed:

F}m = F4n(:,0:n-1)
Fi, = Fu(,n:2n- 1)
F}, = Fu(:,2n:3n— 1)

F;, = Fyn(:,3n:4n — 1)

Fy = [F,F% F3 FY
F§L = Fsn(1:2:2n-1,0:n—1)
F3l = F2,(1:2:2n-1,0: n—1)

D = diag(1,-1,...)
A = diag(e—21rik/4n)

The following lemmas are used in the main result.

Lemma 6.8.1 Let D = diag(1,~1,...) and A = diaglexp(—p2mi/4n)], then
~13s1
F’E = DA'F,,
Fin = DFin
—13
FinE =A 1F4n

Proof .
[F4.Elpg = [exp(—27ip(2n — g — 1)/4n)] = [DA™'F,,]p

[Fialpe = lexp(—2mip(q + 2n)/4n)] = [DF} |,
[FinElpg = [exp(~2mip(4n — ¢ — 1)/4n)] = [A~1F, ]

Lemma 6.8.2
Fil = Fq, (1 :2:2n-1,0:n—1)
Proof We look at the pgth element of each matrix.

[Finlee = exp(—2ri(2p + 1)g/4n)
2mipq 27riq)
2n 4n

= exp (—
= [FZnA]pq
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Lemma 6.8.3
e—‘lri/4nAF2nA + e,n'/4nA-1§2nA-1 — ZC7IIV

Proof Look at the pgth element and see that

e—m'/4ne—27rip/4ne—41ripq/4ne—27n'q/4n + e'}ri/4ne21rip/4ne47ripq/4ne21riq/4n
1)(2
— 9cos ((2p+ )29 + 1)#)

4n

is the pgth element of 2CIV .

*

Now we relate the type IV cosine transform CIVx with the transform of an ex-
tended sequence.

Theorem 6.8.1 Let x be a real vector of length n Then
ClVx = Re [e"‘/4"Af‘2,,Ax]

Proof Lety be

Y =F4uy=F;,x—F? Ex - Fi,x +Fi Ex

Notice that because of the D matrices, the even components of Y are zero, thus
we are only interested in Y° = Y(1:2:2n —1).

Y’ = 2F3x + 2[diag(exp(mi(2p + 1)/2n)]ﬂ,l,x
2F91x + 26”‘/2”A"2FZ,1,X

2F 20 Ax + 2¢™/2" A~2F,, A~ 1x

2e™/4" A~ (2Rele™™/4" AF), Ax))

= 2e™/ A-12CIV x]

or
C.Vx = Re [e™™/*" AFy, Ax]
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Fast Cosine’V Transform (FCT/V)

More relationships concerning the 4n-point DFT matrix follow in the next lemma.
Lemma 6.8.4

Fin(:,0:2:2n - 1) = Fp,(:,0 : n — 1)
Fin(5,2n:2:4n — 1) = DF2,(:,0 : n — 1)
Fin(5,1:2:2n - )E = DA™'F,,(;,0: n — 1)
Fan(,2n +1:2:4n = 1)E = A~ Fp,(;,0 : n — 1)
Proof
[Fan(:,0:2:2n — 1)]pg = [exp(—27i(p2)/4n)] = [F2a(:,0 : n — 1)),
[Fan(:,2n: 21 4n — 1)]pg = [exp(~2mip(2q + 2n)/4n)] = [DF3(:,0 : o — 1)]pq

[Fan(:,1:2:2n— 1)E]py = [exp(—2mip(2n — 2q — 1)/4n)]
[DA™'F2,(:,0: n — 1)]pq

[Fan(:,2n+1:2:4n — 1)E],, = [exp(—2mip(4n — 2¢ — 1)/4n)]
[A™1F,,(;,0:n — 1)]pq

Lemma 6.8.5
Fj. = F,A?
Proof

[Fonlpg = Fon(1:2:2n—1,0:n— 1)
= exp (_27rz(2p+ l)q)

*

The following theorem relates CIVx to another transform, but this time of a
sequence of length n.
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Theorem 6.8.2 Let x be a real vector of length n, then
ClVx = Re[e™™/*" AF, A%z
Proof Lety = [x,~Ex,—x,Ex|T and define
2(j) = y(2)

w(j) = y(2j+1)
7=0,...,2n-1

Notice that w' = Ez' and 2z’ = [z, —z] where

7 = x(27), f0<j;<n/2-1
Tl —x(2r-25-1) ifn/2<j<n-1

Here we have z = L,x. Then
Y = F4p(:;,0:2:4n - 1)z +F4n(5,1:2:4n - D)W
= Fn(5,0:2:2n - 1)z —Fy4s(5,2n : 2 : 40 — 1)z
= Fan(1:2:2n -~ 1)Ez + Fyn(:,2n +1:2: 4n — 1)Ez
The lemma above gives,
Y = F},z - DF},z - DA~ 'Fpz + A~z
The even components of Y are again zero due to the effect of D. So
Y(1:2:2n-1) = 2F%.z + 2diag[exp(mi(2p + 1)/2n)]F'2’,1,z
(2Fn A% + 2™/ A2F, A2)z
= 2¢™/*" A~![2Rele"/*" AF, A%

Hence _
C.'x = Re[e"™/" AF, A%]

*

Together Theorems 6.8.1 and 6.8.2 establish the relations we need for the type
IV cosine transform

clVx = Re[e_”‘/4"Af‘gnAx]
= Rele™™/*" AF, AL, x|
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The Fast Sine/V Transform (FST!V)

The derivation for the type IV sine transform is very similar.
Lemma 6.8.6

e/ AF A — e/ AT, A = _2is1V
Proof The pgth element of the expression on the left is

e—m'/4ne—27rip/4ne—47ripq/4ne—27riq/4n _ exi/4ne2xip/4ne41ripq/4ne27n'q/4n
(2p+1)(2q + 1)7r>

= —2sin (
4n

Theorem 6.8.3 Let x be a real vector of length n then
SVx = —Im [e="/4n [AF;, Ax]]

Proof Takey to be
X

Ex
—-X
~Ex

y=

and Y = Fy4,y. Then

Y = Fix+FLEx-F} x-F! Ex
= Fl.x+ DA'IF}mx ~DF}, x — A‘lfinx
As usual, the D matrix causes the even terms to be zero, hence
Y’ = Y(1:2:2n-1)
2Fgax — 2[diag(exp(mi(2p + 1)/2n))|Foix
2F9lx — 2e”‘/2"A‘2FZ,llx
= 2Fy,Ax — 2™/ A2F, A~ 1x
= 2e™/" A~ 2Imle~ /4" AR, Ax]]
= 2e™/4m A-1[_2i8Vy]
Another designation for the type IV sine transform is in terms of the transform
of a permuted sequence of length n.
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Theorem 6.8.4 Let x be a real vector of length n, then then
SlVx=—Im [e—”i/4"AFnA2v]
Proof Lety = [x,Ex,—x,~Ex|T and define

v = 4 x(29), f0<j<n/2~1
|l x(2rn-2j-1) ifn/2<j<n-1

If Y = Fy4,y, then
Y = F4(5,0:2:4n - 1)v—F4n(5,2n:2:4n — 1)v
+ Fun(5,1:2:2n —1)Ev ~F4u(:,2n +1:2: 4n — 1)Ev
= F},v+DFLv-DA Fpv - A1,
The even components of Y are zero due to D so that
Y(1:2:2n-1) = F§,v - 2diaglexp(7i(2p + 1)/2n)] 2,ltv
= (2F,,A2 — 2e”i/2"A_2FnA'2)v
= 2¢™/4 A [2iIm[e /" AF, AZV]|
2e™/4n A1 2;81V x]

*

Together Theorems 6.8.3 and 6.8.4 give the relation needed for the type IV
sine transform.

SIVx = —Imle ™/ AF;, Ax]
= —Im[e ™/ " AF, A’K,x]

Fast Cosine/!! and Sine/!! Transforms (FCT!!! and FST/I)

The equations for the type III cosine and sine transforms,
CIHyx = Re[F;,Ax]

and ~
SiTx = _Im[F,, Ax]

can be derived, in a similar manner, from the Fourier transform of
y = [x, -Tx, —x, Tx|T

and
y = [x,Tx, —-x, —Tx]T,

respectively.
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6.9 Fortran Code

The methods presented in this chapter are extremely easy to implement. All that
is needed is an efficient complex FFT subroutine. Here we use the package by Paul
Swarztrauber called FFTPACK. The subroutines we use from the package are:

e cftti(n,wsave) initialize by factoring n and computing the multipliers

o cfftf(n,a,wsave) transform a complex vector stored in a

Programs using FFTPACK for the complex transform are presented here.

program typel2

Calculates the un-normalized type I and II
sine and cosine transforms of a real vector y

Using FFTPACK complex FFT subroutine

0O o0 00 0 0

real x(n), cix(n), c2x(n), six(n), s2x(n)
complex a(n), v(n), z(n), twid

real wsave(4*n+15)

double precision pi, pi2n

wvrite(6,*) ’enter n’
read(5,*) n

pi = 4.0d0*datan(1.0d0)
pi2n = pi/dfloat(2*n)

call cffti(n,wsave)
do 10 i =1, n

x(i) = func(i)
10 continue

put v in the real part
put z in the imaginary part

0o o0 o0 0

do 20 i = 1, n/2
il = i-1
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a(i) = cmplx(x(2*ii1+1),x(2*i1+1))
a(n-i+1) = cmplx(x(2*i1+2),-x(2*i1+2))
20 continue
if (n/2.1t.float(n)/2.0) then
a(n/2+1) = cmplx(x(n),x(n))
end if

call cfftf(n,a,wsave)

do 30i=1, n

i1=1i -1
v(i) = (.5,0.0)*(conjg(a(mod(n-i1,n)+1))+a(i))
z(i) = ((0.0,1.0)/(2.0,0.0))

$ *(conjg(a(mod(n-i1,n)+1))-a(i))
30 continue

do 40 i =1, n
i1 =43i-1
twid = cmplx(dcos(pi2n*i1),~dsin(pi2n*i1))
v(i) twid*v(i)
z(1) = twid*z(i)
c2x(i) = real(v(i))
s2x(i) = -aimag(z(i))
a(i) = cmplx(c2x(i),-s2x(i))
twid = conjg(twid)
a(i) = twid=*a(i)
cix(i) = real(a(i))
six(i) = -aimag(a(i))
40 continue

write(6,*) ’cosine I transform’
do 50 i = 1, n
vrite(6,*) cix(i)
50 continue
write(6,*) ’sine I transform’
do 60 i =1, n
write(6,*) six(i)
60 continue
write(6,*) ’cosine II transform’
do 70 i =1, n
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write(6,*) c2x(i)
70 continue
write(6,*) ’sine II transform’
do 80 i =1, n
write(6,*) s2x(i)
80 continue

end
program type34

Calculates the un-normalized type III and IV
sine and cosine transforms of a real vector y

Using FFTPACK complex FFT subroutine

real x(n), c3x(n), c4x(n), s3x(n), s4x(n)
complex a(n), v(n), z(n), twid

real wsave(4*n+15)

double precision pi, pin, pi2m, pi4n, arg

write(6,*) ’enter n’
read(5,*) n

pi = 4.0d0*datan(1.0d0)
pin = pi/dfloat(n)
pi2n = pi/dfloat(2*n)
pi4n = pi/dfloat(4*n)

call cffti(n,wsave)

do 10 i =1, n
x(i) = func(i)
10 continue

do 20 i = 1, n/2
il = i-~g
v(i) = cmplx(x(2*i1+1),0.0)
z(i) = v(i)
v(n-i+1) = cmplx(x(2*i1+2),0.0)
z(n-i+1) = -v(n-i+1)
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20 continue

if (n/2.1t.float(n)/2.0) then
v(n/2+1) = cmplx(x(n),0.0)
z(n/2+1) = v(n/2+1)

end if

do 30 i =1, n
il =1i-1
twid = cmplx(dcos(pin*il),-dsin(pin*i1))
v(i) = twid*v(i)
z(1) = twid*z(i)
30 continue

call cfftf(n,v,wsave)
call cfftf(n,z,wsave)

do 40 i = 1, n
it =1 -1
arg = pi4n + pi2n*dfloat(ii)
tvid = cmplx(dcos(arg),-dsin(arg))
v(i) = twid*v(i)
z(1) = twid*z(i)
c4x(i) = real(z(i))
s4x(i) = -aimag(v(i))
a(i) = cmplx(c4x(i),-s4x(i))
twid = conjg(twid)
a(i) = twid*a(i)
c3x(i) = real(a(i))
s3x(i) = -aimag(a(i))
40 continue

write(6,*) ’cosine III transform’
do 50 i =1, n

write(6,*) c3x(i)
50 continue
write(6,*) ’sine III transform’
do 60 i =1, n

write(6,*) s3x(i)
60 continue
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write(6,*) ’cosine IV transform’
do 70 i =1, n

write(6,*) c4x(i)
70 continue
write(6,*) ’sine IV transform’
do 80 i =1, n

write(6,*) s4x(i)
80 continue

end



Chapter 7

Distributed Mixed-Radix FFTs
on the Hypercube

7.1 Introduction

In the previous chapters we have discussed the implementation of radix-two FFT
algorithms that work on vectors of length n = 2%, This is because radix-two
FFT algorithms map very well into the binary hypercube. A practical question is
whether vectors of length other than a power of two can be done on the hyper-
cube architecture efficiently without excessive data permutations and its associated
communication costs.

One method of computing the single dimensional transform of length n = mgq is
to arrange the FFT of a one-dimensional array as a two-dimensional array. This is
commonly known as the “twiddle” factor approach [Gentleman and Sande (1966).
Brigham (1974), Nussbaumer (1982)]. In this fashion, if n = mgq, and z, the input
vector, is mapped as an m-by-q array in column-major order, m transforms of
length ¢ are done vertically and ¢ transforms of length m are done horizontally
with an intervening point-wise multiplication by powers of the nth root of unity.
Obviously, m and ¢ can be any length and computed by any of the mixed-radix
FFT routines.

The approach which we present in this chapter computes mixed-radix FFTs
in a distributed fashion, where some of the butterfly computations require the co-
operation of two nodes. The distributed approach intermingles computation with
communication and in systems such as the Floating Point Systems T-Series where
these two tasks can be overlapped and done simultaneously, this methodology can
be pursued efficiently. Here we also make use of the “twiddle” factor approach by
factoring n into a power of two times any other integer, i.e. n = m2%. We perform
the FFTs of length ¢ = 2* by mapping the signal flow graph into the hypercube as
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before, and the FFTs of length m locally inside a processor and therefore obviate
the need for a transpose. The method of implementation is presented in Chapter
4 and is called the Local-Distributed Method.

Since our method mixes a Mixed-Radix FFT algorithm with a Radix-2 algo-
rithm, we shall term it the Mixed-Radix-2 FFT procedure. While it is true that
not all integers can be factored by a power of two (excluding 2° = 1), one can al-
ways find such a number in the vicinity of the number one wishes. For example, all
even numbers automatically satisfy this criteria, although choosing which power
of two to be ¢ may be dependent on how many processor nodes are available and
the cost of communication.

The Transpose-Split heuristic [McBryan and Van de Velde (1985)] (Chapter 4)
presupposes a two-dimensional array of data which is acted upon both vertically
and horizontally, with the vertical computations totally independent of the hor-
izontal computations. That is, during one stage of the procedure, the algorithm
works on the columns of the array and in a separate stage the rows. Obviously in
between the two stages, the array must be transposed. In this method all the com-
munication takes place in the transpose operation and the computations are all
processor local. The implementation of a single long FFT of length n = mq can be
done by using this approach. Since the FFT computations are entirely local, any
of the available FFT subroutines can be used. The implementation characteristics
are almost exactly the same as that for the Transpose-Split 2-dimensional FFT
of Chapter 4 except that there is a point-wise multiplication by twiddle factors in
between the two FFT stages.

7.2 Twiddle Factor Algorithm Splitting of the
| DFT

Another approach to defining the FFT is to notice that one can split the DFT of
a sequence of length n, if n = mq, n, m, and ¢ integers, into two DFTs, one of
length m and one of length q.

Suppose n = mgq, and x € C®, we can write X as an m-by-q array by the
following definition:

Xmxqg = [a:(O:m——l),:c(m:2m—1),...,:c(n——m:n—1)] € C™x4

Definition 7.2.1 Twiddle Factor Matriz: Tmxq 18 an m-by-q matriz composed
of the first m rows of Fy, and the first ¢ columns of F,, ~
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Definition 7.2.2 Point-wise Multiplication:  Let the operator * denote point-
- wise multiplication of two matrices.

AxB= [a'jlcbjk]
A and B are of the same dimension.

If Frn and F, are the DFT matrices of dimensions m and g, respectively, and
Yy = F,x, then

Theorem 7.2.1 (Twiddle Factor)

y;‘rxm = Fn [(Tmxg) * [XmxeFy)]
Theorem 7.2.2 (Inverse)

Xmxqg = [[Fﬁ)’qu] * Tflrflxq]Ff

where FH i3 the conjugate transpose of F, and TH = FAO:m-1,0: g-—1).

mxgq

If the DFT is computed by matrix-vector multiplication F,x, there would be
O(n?) operations. Computed by the twiddle factor method, we would only have
mg® + gm? + mgq steps which is less than n? = m2¢2. Ifn is a highly composite
number, m and ¢ can be broken down in a similar manner with resulting savings.
In fact if n = 2¥, one can recursively split n into k factors, resulting in O(log, n)
operations. This is in fact the radix-2 FFT Algorithm.

7.3 Procedure for Hypercube Implementation

Let ¢ = 2%, for some k an integer and P = 29, (d < k) be the number of pro-
cessors. Distribute £ column-wise in processors which are lined up row-wise, i.e.
processor ¢ gets block column 7 of mxq. Using the CT1 Cooley-Tukey algorithm.
the distributed FFTs are computed across the rows of Xmxgq- This permutes the
columns of z by the bit-reversal permutation P,. Next point-wise multiplications
by the twiddle factor matrix is done. Since we want to be sure to keep the columns
consistent, we also permute the columns of Tmxq by P,. (The twiddle factors are
computed locally so there is no need to actually do distributed permutation.)

Next m-point FFTs are done along the columns. These are all processor local
and can be unscrambled if desired. The final answer is read across the rows in
bit-reversed order, but down the columns naturally. Notice that while g 1s a power
of two, m can be any number, including a prime number. This is where the mixed-
radix idea comes in. In practice, however, one should try to make m as composite
as possible.
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The inverse consists of first performing processor local transforms of the col-
umn, then multiplication by meqPq and finally, the Gentleman-Sande (GS2)
algorithm where data is in bit-reversed order on input, is used to obtain the an-

swers in natural order. The inverse gives back our original sequence in column-wise
natural order.

Procedure (Forward and Inverse Mixed-Radix-2 FFT)
Step 1: Map Xmxq by the contiguous column mapping into the hypercube.
Step 2: Apply CT1 to the rows of Xmxgq-
Step 3: Compute and store the twiddle factors TmxePy.
Step 4: Apply the twiddle factors.
Step 5: Call FFTPACK to forward transform the columns of Xmxgq Of length m.

a: Factor m and store in array wsave.

b: Calculate the forward transform of each column of Xmxgq-
Step 6: Call FFTPACK to back transform the columns of Tmxgq-

a: Use the saved array wsave.

b: Calculate the inverse transform of the columns of Xmxg-
Step 7: Apply the conjugate of the twiddle factors stored, TmxqP;.
Step 8: Apply GS2 to the rows of Xmxgq-

End: Get back what you started with.

Algorithm 7.3.1 Mixed-Radix-2 Forward FFT
/* u = processor id; n =mgq; P =24 r = n/P;s=gq/P */
/* Initially, processor y holds: */
/Y x(r-adlu] i r - (id[p] + 1) = 1) */
call Distributed CT1(x)
/* compute Xmxq — TmxqP¢Xmxq */
for j=0:9q-1
7' = bitrev(s - idu] + j)
fori=0:m-1
h=ddu]-r+j5 m+i
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X(i + 7 m) — wkx(i +j-m)
end
end
call FFTPACK(x)

Algorithm 7.3.2 Mixed-Radix-2 Inverse FFT
/* 1 = processor id; n = mq; P =24 r = n/P;s=gq/P */
/* Initially, processor u holds: */

/*y(rddlu] 7 i) +1) - 1) */
/* where Y= (Y:{meq) */
call FFTPACK(y)
/* compute yqumeqPq */
for j=0:¢-1
7' = bitrev(s - id[u] + 7)
fori=0:m-1
h=ddlul-r+3 -m+:
X(i+j-m) — @Ex(i + j - m)
end
end
call distributed GS2(y)

This procedure has been coded up on the Intel iPSC using FFTPACK for the
processor-local FFT and distributed Cooley-Tukey and Gentleman-Sande algo-
rithms documented in Chapter 3 and Appendix A.

Times in milliseconds for a 1280-point forward and inverse transform pair is
given in Table 7.1.

Our examples show that the minimum total time occurs roughly where the
local transform and the distributed transform times are close. The overhead of
twiddle factors is unavoidable, so to maximally exploit the parallelism in there.
one should use the largest cube available. Finally the factorization time for m
increases as m increases. However if many transforms are done with the same m.
the factorization can be calculated beforehand and stored, likewise for the twiddle
factors. In our implementation, the factorization is calculated once and stored, as
are the twiddle factors.

A model for determining how large P should be takes into account both com-
putational complexity and communication costs. The computational workload
is directly divided between the numerous processors, hence favoring the use of
more processors. Yet as we add more processors, we get into more complex com-
munication because the distributed FFTs require communication complexity of
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Table 7.1: Mixed Radix-2 Timings

m X q = 1280 point MR2-FFT (Forward and Inverse)

logop ¢ m total dist. local  twiddle factor
1 256 5 | 3540-3640 2015-2115 670 355 5
1 128 10 | 3265-3360 1670-1755 720 865-875 10
1 64 20 | 3005-3100 1410-1490 720 860-875 15
1 32 40 | 2945-3040 1190-1270 875-880 850-865 30
1 16 80 2810 995 940 820 55
1 8 160 2735 810 1040 780 110
1 4 320 2715 680 1125 695 215
1 2 640 2930 630 1335 540 430
2 256 5 |1815-1915 1050-1150 335 425 5
2 128 10 [ 1680-1775 880-965 365 440 10
2 64 20 |1550-1655 745-840 365 425-440 15
2 32 40 | 1555-1655 670-755 440 415435 30
2 16 80 | 1465-1515 545-570 470 395425 55
2 8 160 1465 480 530 855 110
2 4 320 1520 450 580 280 215
3 256 5 | 965-1040 580-650 170 215 5
3 128 10 | 890-945 490-535 185 210-220 10
3 64 20 | 815-890 405475 185 220 15
3 32 40 | 800-875 350-410 220-260 200-225 30
3 16 80 | T790-840 310-335 240 180-215 55
3 8 160 | 820-875 265-300 255-270 145-220 105
4 256 5 500-555 300-360 85 110 5
4 128 10 | 460-510 255-300 90 105-115 10
4 64 20 | 430-480 230-260 95 115 15
4 32 40 | 435-490 200-240 115 85-115 30
4 16 80 | 445-525 185-245 115-125 110 55
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2log, P. Each processor has T points when n = mq and P = 24 Assuming
that m is prime, the local FFTs cost O(m?2q/P) flops. Multiplication by twiddle
factors cost another T multiplications and the computation for the distributed
FFTs measures O(mgqlog, ¢/P) flops. Hence, letting tcomm be the per element
data transfer rate, 7 the communication start-up or latency period, and tcomp the
per flop computational rate, a model for the Mixed-Radix 2 F FT is
m m
T= mz(i)tcomp + —q(m + logy ¢ + 1)tcomp + 2log, P(T + —q-tcomm)
p P P
Usually, tcomm > tcomp and T is several orders of magnitude greater than tcomm.

Hence up until
tcomp

it is always better to use more processors. This is because an increased number of
processors increases parallelism. Looking at the entries in Table 7.1, we can see
that the local FFT portion, the computation of twiddle factors, and the factoriza-
tion of m reflects linear speedup with the doubling of P, i.e., the timings for 2P
processors is almost exactly half of the timings for P processors.

Holding n and P constant, one might ask the question of how m and g should be
chosen. That is, should we always choose the smallest q? The results in Table 7.1
suggest that there should indeed be the tendency to do this, although the timings
between ¢ = 256 and ¢ = 16 differ by only 10% for P = 16. Our timings are done
on a hypercube without vector nodes. However we can conjecture that a smaller ¢
would result in longer vectors of length m to be used during the distributed FFTs.
In our implementation however, no use of this characteristic is made. Hence our
timings show a slight increase for the timings of the smallest ¢ value because of
the increase in overhead for the factorization of m, m becoming more composite
as g decreases. If this factorization time is not accounted for, i.e. the factorization
of m is known and stored, then timings should decrease as g decreases.
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