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ABSTRACT

Wide-field optical surveys have begun to uncover large samples of fast (trise . 5d),
luminous (Mpeak < −18), blue transients. While commonly attributed to the break-
out of a supernova shock into a dense wind, the great distances to the transients of
this class found so far have hampered detailed investigation of their properties. We
present photometry and spectroscopy from a comprehensive worldwide campaign to
observe AT2018cow (ATLAS18qqn), the first fast-luminous optical transient to be
found in real time at low redshift. Our first spectra (< 2 days after discovery) are
entirely featureless. A very broad absorption feature suggestive of near-relativistic ve-
locities develops between 3 − 8 days, then disappears. Broad emission features of H
and He develop after > 10 days. The spectrum remains extremely hot throughout its
evolution, and the photospheric radius contracts with time (receding below R < 1014

cm after 1 month). This behaviour does not match that of any known supernova, al-
though a relativistic jet within a fallback supernova could explain some of the observed
features. Alternatively, the transient could originate from the disruption of a star by
an intermediate-mass black hole, although this would require long-lasting emission of
highly super-Eddington thermal radiation. In either case, AT2018cow suggests that
the population of fast luminous transients represents a new class of astrophysical event.
Intensive follow-up of this event in its late phases, and of any future events found at
comparable distance, will be essential to better constrain their origins.

1 INTRODUCTION

The development of sensitive, wide-area digital optical sky
surveys has led to the discovery of populations of rare, lu-
minous extragalactic transients that evolve on timescales
of just a few days—much faster than typical supernovae,
whose light curves are governed by the decay of 56Ni
within a massive envelope and typically take weeks to
months to fade. Many of these have been reasonably well-
explained by known phenomena: shock-breakout flashes
from supernovae (e.g., Ofek et al. 2010; Shivvers et al. 2016;
Arcavi et al. 2017), early emission from relativistic super-
novae (Whitesides et al. 2017), or the shockwave after-
glows from gamma-ray bursts (Cenko et al. 2013, 2015;
Stalder et al. 2017; Bhalerao et al. 2017).

Other objects are more mysterious, however, and still
lack a convincing explanation or firm spectroscopic identifi-
cation. In particular, populations of optical transients with
luminosities comparable to or exceeding those of the most
luminous core-collapse supernovae, but rise times of only
a few days, have been reported by a variety of different
surveys (Arcavi et al. 2016; Drout et al. 2014; Tanaka et al.
2016; Pursiainen et al. 2018; Rest et al. 2018). Nearly all of
these events (dubbed fast-evolving luminous transients by
Rest et al. 2018) were found at great distances (z > 0.1)
where they are difficult to study. Furthermore most were
not recognized as unusual events in real time, preventing
the acquisition of essential follow-up observations. The few
spectra that are available tend to show only featureless blue
continuua. Because of their origins in star-forming galaxies
these transients are widely interpreted as supernovae, but
strong constraints are lacking.

Fortunately, our ability to find and identify fast tran-
sients continues to improve, and several surveys are now
monitoring almost the entire sky at cadences of a few days
or less. The Asteroid Terrestrial-impact Last Alert System
(ATLAS; Tonry et al. 2018) observes most of the visible
Northern sky down to 19 mag every ∼ 2 nights. The Zwicky
Transient Facility (ZTF; Kulkarni 2018) observes a similar
area to 20.5 mag every 3 nights, and a significant fraction of
it at much higher cadence. ASAS-SN (Shappee et al. 2014)

monitors both hemispheres nightly to ∼17 mag. With these
capabilities, it is now possible to find and identify transients
in (almost) real time over most of the night sky.

In this paper, we present a detailed observational study
of the first fast high-luminosity transient to be identified
in the nearby universe in real time: AT2018cow, discovered
by the ATLAS survey and independently detected by ZTF
and ASAS-SN. We present our extensive, worldwide obser-
vational campaign in §2, focusing on observations at ultravi-
olet, optical, and near-infrared wavelengths (the multiwave-
length view of this transient is presented by Ho et al. 2018).
We summarize the key properties of this event in §3, and
illustrate the ways in which AT2018cow is distinct from any
well-established class of transient in §4. In §5 we consider
two possible explanations for its origin: a jet-driven super-
nova erupting into a dense envelope of circumstellar mat-
ter, or alternatively the tidal disruption of a star around an
intermediate-mass black hole located in a small galaxy’s spi-
ral arm. Both models have significant difficulties explaining
the full suite of observations, and our observations suggest
that the origins of fast luminous transients may be signif-
icantly more exotic and complex than previously assumed.
We summarize our results and examine future directions in
fast-transient research in §6.

2 OBSERVATIONS

2.1 Discovery and Pre-Imaging Constraints

AT2018cow1 was discovered and promptly announced via
the Astronomers Telegram (Smartt et al. 2018) by ATLAS;
the discovery and early data are described in detail by
Prentice et al. 2018. The first detection of the transient was

1 The name of this transient was assigned automatically by the
Transient Name Server (https://wis-tns.weizmann.ac.il/). It was
later redesignated SN2018cow following the emergence of broad
features in the spectrum, although we argue here that a SN associ-
ation is not definite and retain the AT designation. The transient
is also known as ATLAS18qqn and as ZTF18abcfcoo.

© 2018 The Authors
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an image taken at 2018-06-16 10:35:02 UT (MJD 58285.441),
appearing as a strikingly bright (14.7 ± 0.1 mag in the
ATLAS o-band) optical source coincident with the galaxy
CGCG 137-068 (z = 0.0141, d = 60 Mpc2; Abolfathi et al.
2018). The preceding ATLAS observation of the field, four
days earlier (MJD 58281.48), registered no detection of any
transient object at the same location to a magnitude limit of
o > 20.2 mag, implying brightening by almost 5 mag within
this period. Independent imaging by the Palomar 48-inch
telescope (P48) as part of the ZTF public Northern Sky
Survey later moved the time of last non-detection one day
closer, to only three days before the first ATLAS detection
(i > 19.5 at MJD 58282.172; Fremling 2018). The ASAS-SN
non-detection reported by Prentice et al. 2018 (g > 18.9 at
MJD 58284.13) provides an even tighter constraint: a rise of
> 4.2 magnitudes over <1.3 days.

A fast rise to a very high optical luminosity (M < −19

mag) is unusual for supernovae but similar to cosmologi-
cal fast-transients of the types discussed in the introduc-
tory paragraph. Motivated by these unusual characteristics,
we initiated a campaign of observations via the GROWTH
(Global Relay of Observatories Watching Transients Hap-
pen) network, a world-wide collaboration of predominantly
small telescopes co-operating in the study of energetic time-
domain phenomena. We also observed it under other tele-
scopic programs. Our observing campaign is described in
detail below.

2.2 Ground-Based Imaging Observations

Nightly imaging observations were acquired with the
Infrared-Optical imager on the robotic Liverpool Telescope
(LT; Steele et al. 2004) in both optical (IO:O) and near-
infrared (IO:I) bands. We typically observed with the full
suite of available filters (uBgVrizH) although on some nights
a more limited set was obtained. We also obtained fre-
quent imaging from a variety of other facilities. These in-
clude the CCD imager on the Mount Laguna Observatory
(MLO; Smith & Nelson 1969) 1m telescope, the EMCCD
demonstrator camera on the Kitt Peak 84-inch telescope
(KP84), ANDICAM on the 1.5m telescope at the Cerro
Tololo Interamerican Observatory, the Himalayan Faint Ob-
ject Spectrograph Camera (HFOSC) on the 2-m Himalayan
Chandra Telescope (HCT), the COATLI 50-cm Telescope
(Watson et al. 2016) at the Observatorio Astronómico Na-
cional in Sierra San Pedro Mártir, and the Reionization
and Transients Infrared instrument (RATIR; Butler et al.
2012; Watson et al. 2012) on the 1.5-meter Harold L. John-
son telescope (also at San Pedro Mártir). Observations were
taken less regularly with the 0.4m (SLT) and 1.0m (LOT)
telescopes at Lulin Observatory in Taiwan, the MITSuME
50 cm telescope of Akeno Observatory in Japan, and with
the Wide-Field Infrared Camera (WIRC) at the Palomar
200-inch Hale Telescope. Finally, a single epoch of deep r-
band imaging was acquired using the Auxiliary Port Camera
(ACAM) on the William Herschel Telescope.

Images were reduced using standard methods. A
dithered sequence of NIR frames was not available for the

2 We assume h = 0.7, ΩM = 0.3, ΩΛ = 0.7.

ANDICAM NIR images and simple pair subtraction was
used to remove the sky.

Host galaxy contribution to the transient flux is not
insignificant (especially at late times; Figure 1). We used a
custom image-subtraction tool written in IDL to remove the
host galaxy flux from all ground-based optical images con-
sistently by convolving both the transient image and a tem-
plate image to a common PSF, then subtracting. Imaging
from the Sloan Digital Sky Survey (SDSS; Abolfathi et al.
2018) was used to subtract the ugriz measurements. For non-
SDSS optical filters (UBVRI) we averaged two adjacent fil-
ters: e.g., to simulate a B-band image we took a weighted
average of the aligned u and g images. The relative weights
for each synthetic filter were estimated based on the relative
magnitude weights from the Lupton transformation equa-
tions.3

Host subtraction for the NIR images is more challeng-
ing: the only available pre-explosion reference is the Two
Micron All Sky Survey (2MASS), which is shallow and has
a very broad PSF. We instead used an SDSS z-band image,
but adjusted the flux scale visually to ensure that the ex-
tended features of the host galaxy are removed. Photometry
was performed uniformly on the subtracted images using a
custom IDL-based aperture photometry tool. Calibration of
the field was established by comparison of stars in unsub-
tracted images to SDSS (or, for NIR images, to 2MASS).
SDSS ugriz magnitudes of calibration stars are transformed
via the Lupton equations to BVRI.

The transient is very blue compared to any other object
in the field: for example, the transient u − g colour is typi-
cally ∼ −0.4 for most of its evolution, compared to a range
between +1.48 and +3.04 for bright stars within 5′. This
greatly magnifies the impact of small differences between
filter transmission curves for different telescopes (and other
wavelength-dependent transmission differences), leading to
offsets between different instruments.

Colour terms for the LT optical filters have been deter-
mined by Smith & Steele (2017). We colour-corrected SDSS
reference stars in the field to the LT system, setting the
zeropoint of the transformation as appropriate for an AB
colour of 0.0 in all filters. We then re-calculated the magni-
tudes of a series of SDSS bright reference star magnitudes
using a set of LT exposures taken under the best weather
conditions, and used these as secondary standards for the
photometry of all LT images (we employ aperture photome-
try via a custom routine and seeing-matched apertures.) An
additional minor adjustment was made to the B filter (−0.05

mag) to match our spectrophotometry (§2.6). For all other
telescopes, we calibrated directly to the SDSS magnitudes,
but applied an additional, filter-specific constant adjustment
to align each filter to the interpolated LT curve in the same
filter and remove any systematic offset.

A subset of our photometry is presented in Table 1, and
the light curves are plotted in Figure 2.

2.3 Swift Observations

Observations of AT2018cow using the Neil Gehrels
Swift Observatory (Swift ; Gehrels et al. 2004) began at

3 http://www.sdss3.org/dr8/algorithms/sdssUBVRITransform.php

MNRAS 000, 000–000 (2018)
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Figure 1. Pre-explosion imaging of AT2018cow from the Sloan Digital Sky Survey compared to imaging with the Liverpool Telescope
taken shortly after peak and deep later-time imaging from the William Herschel Telescope. The transient is significantly brighter than
its host galaxy at peak. The galaxy itself shows a barred morphology and weak spiral features, one of which underlies the transient. A
point-source located at the galaxy nucleus is likely to be a weak AGN, while a fainter compact source slightly southeast of the transient
is likely an H II region. No point source lies under the transient itself (position designated by a green circle in left panel), and there are
no obvious merger indicators.
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Figure 2. Multi-band light curves of the ultraviolet, optical, and near-infrared transient AT2018cow. Small offsets have been applied
to the filters for clarity (shown at left). The offsets for the R, I , and U bands, and of the Swift optical filters, have been chosen to
align them with the closest optical bands. Only the earliest ZTF and ATLAS observations show a rise: from the first epoch of follow-up
the transient fades monotonically with time and experiences no subsequent rise in any band, except for short-lived 1–2 day flares in
the near-IR. The coloured curves show a non-parametric interpolation of the observed points in each filter. The line segments on the
rise show a simple linear interpolation or the early transient based on available ATLAS, ZTF, and ASAS-SN data assuming no colour

evolution. Circles show our ground-based data, diamonds show space-based data, and squares indicate photometric measurements from
the literature. Arrows on error bars indicate marginal (< 2σ) UVOT detections.
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Table 1. Early photometric observations of AT2018cow from our
campaign. No correction for Galactic extinction has been applied.
A machine-readable table of all 949 photometric data points will
be made available online.

MJD Instrument Filter AB magnitude

58287.2674 P60/SEDM r 13.93 ± 0.03
58288.3405 P60/SEDM r 14.18 ± 0.03
58288.4416 Swift/UVOT w1 13.34 ± 0.05
58288.4421 Swift/UVOT u 13.57 ± 0.05
58288.4426 Swift/UVOT b 13.85 ± 0.04
58288.4442 Swift/UVOT w2 13.29 ± 0.06
58288.4448 Swift/UVOT v 14.06 ± 0.05
58288.4464 Swift/UVOT m2 13.40 ± 0.05
58289.0227 LT/IO:O u 13.97 ± 0.03
58289.0234 LT/IO:O g 14.10 ± 0.03
58289.0241 LT/IO:O r 14.35 ± 0.03
58289.0248 LT/IO:O i 14.78 ± 0.03
58289.0255 LT/IO:O z 15.01 ± 0.03
58289.1889 KP84/KPED g 14.18 ± 0.03
58289.1901 KP84/KPED r 14.43 ± 0.04
58289.1904 P60/SEDM r 14.38 ± 0.03
58289.1963 KP84/KPED U 14.03 ± 0.10
58289.2108 P60/SEDM r 14.39 ± 0.03
58289.2229 Swift/UVOT w1 13.55 ± 0.03
58289.2246 Swift/UVOT u 13.92 ± 0.05
58289.2263 Swift/UVOT b 14.14 ± 0.04
58289.2281 Swift/UVOT w2 13.58 ± 0.03
58289.2298 Swift/UVOT v 14.23 ± 0.04
58289.2331 Swift/UVOT m2 13.63 ± 0.05
58289.3493 P60/SEDM r 14.34 ± 0.03
58289.6299 HCT/HFOSC R 14.67 ± 0.03
58289.6336 HCT/HFOSC I 15.00 ± 0.03

58289.6365 HCT/HFOSC V 14.37 ± 0.03
58289.6397 HCT/HFOSC B 14.39 ± 0.03
58289.6434 HCT/HFOSC U 14.24 ± 0.03
58289.9081 LT/IO:I H 15.66 ± 0.03
58289.9131 LT/IO:O z 15.15 ± 0.03
58289.9136 LT/IO:O i 14.99 ± 0.03
58289.9142 LT/IO:O r 14.62 ± 0.03
58289.9147 LT/IO:O g 14.48 ± 0.03
58289.9154 LT/IO:O u 14.31 ± 0.03

MJD 58288.442. Data were collected with both the
Ultraviolet-Optical Telescope (UVOT; Roming et al. 2005)
and the X-ray Telescope (XRT; Burrows et al. 2005). The
transient was well-detected in both instruments (e.g.,
Rivera Sandoval & Maccarone 2018) and remained so for
the entire monitoring period discussed in this paper.

Raw UVOT images were processed by the pipeline pro-
vided by the Swift Data Center at the Goddard Space Flight
Center (GSFC). The reduced level 2 sky images were down-
loaded for photometry. We used the software package uvot-
source and an aperture radius of 3′′, chosen to minimize
the contamination from the extended host galaxy. The fi-
nal photometry output from uvotsource was corrected for
aperture loss using the curve-of-growth method.

The background was computed from an off-target sky
region without any other sources using an aperture radius of
10′′. The image frames were visually inspected and frames
with large pointing smearing were thrown away. For a small
number of frames with slight PSF smearing, we used an
aperture radius of 5′′. For frames with astrometric errors,

we manually provide the correct centroids as the input to
uvotsource.

As the UVOT PSF is stable, we subtracted off the es-
timated host galaxy contribution to the UVOT PSF in flux
space rather than via image subtraction. Photometry from a
final epoch (acquired 120.45 days after the reference epoch)
was used to estimate the magnitudes within our aperture.
In principle, this final epoch could have contained a small
amount of transient flux, although the fact that the optical
bands are fading steeply between 50–80 days while negligi-
ble fading is seen in the UVOT between 60–120 days suggest
that this contribution is very small.)

The XRT data were analysed using an auto-
mated reduction routine following the techniques of
Butler & Kocevski 2007 and binned to increase the S/N.
We assume negligible host contamination (although we note
that the galaxy likely hosts a weak AGN; §3.1).

2.4 Astrosat Observations

AT2018cow was observed by the UltraViolet Imaging Tele-
scope (UVIT; Kumar et al. 2012) on-board AstroSat on
2018-07-03 from 13:45:58 UT to 19:54:12 UT (ToO). These
observations were performed in the FUV F172M filter with
a total exposure time of 5667 seconds. Images were pre-
processed with UVIT L2 pipeline. Aperture photometry was
performed using IRAF using an 18-pixel (7.5′′) aperture,
and calibrated following the calibration procedure men-
tioned in Tandon et al. (2017).

2.5 Other Photometry

In addition to our own photometry we also acquire data from
public sources and the literature. In particular, we use the
first two epochs of GROND observations from Prentice et al.
(2018) to extend our multicolour optical-NIR coverage to
earlier times: we caution that these observations are not
host-subtracted or colour-corrected and the aperture size is
unknown, although the transient was extremely bright at
this time (∼ 14 mag) and the host contribution should be
negligible. We also use the first epoch of ATLAS photometry
from Prentice et al. (2018), r-band data from the Palomar
48-inch telescope taken as part of the public ZTF North-
ern Sky Survey, the ZTF i-band point reported by Fremling
(2018), and the ASAS-SN limit from Prentice et al. (2018).
As these come from imaging-differenced surveys, no host
correction is necessary.

2.6 Optical and Near-IR Spectroscopy

We conducted an extensive campaign to spectroscopically
monitor the evolution of the transient at high cadence. Spec-
troscopic observations began at MJD 58287.268 (1.82 days
after the first ATLAS detection, making this the earliest
spectrum obtained of the transient that has been reported
so far), and continued at least nightly and usually 2–3 times
nightly during the first 12 days after peak. Sub-night ca-
dence during this period was enabled by observations us-
ing spectrographs in California, the Canary Islands, and
India: specifically, the SED Machine (SEDM) on the Palo-
mar 60-inch Telescope (Blagorodnova et al. 2018), the Spec-

MNRAS 000, 000–000 (2018)
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trograph for the Rapid Acquisition of Transients (SPRAT;
Piascik et al. 2014) on the Liverpool Telescope, and the Hi-
malayan Faint Object Spectrograph Camera (HFOSC) on
the the Himalayan Chandra Telescope.

Additional spectra were obtained less regularly and at
later phases using larger telescopes: the DeVeny spectro-
graph at the Discovery Channel Telescope (DCT), the An-
dalucia Faint Object Spectrograph and Camera (ALFOSC)
on the Nordic Optical Telescope (NOT), the Double-Beam
Spectrograph (DBSP; Oke & Gunn 1982) and the Triple-
Spec near-infrared spectrograph on the 200-inch Hale Tele-
scope, the Gemini Multi-Object Spectrograph (GMOS) on
Gemini-North, and the Low-Resolution Imaging Spectro-
graph (LRIS; Oke et al. 1995) at Keck Observatory. A log of
all spectroscopic observations can be found in Table 2, and
all spectra are plotted in Figure 3.

LT/SPRAT and P60/SEDM data were processed by au-
tomated reduction pipelines designed for each facility4. The
LPipe reduction pipeline5 (Perley et al. 2018, in prep) was
used to process the LRIS data. Reductions for the remain-
ing spectrographs were performed manually using standard
IRAF tools.

After initial reduction and flux calibration, all spectra
were absolutely calibrated by comparing synthetic photom-
etry of the spectrum to photometry from our imaging data.
The absolute flux scale is established by comparing synthetic
r-band photometry calculated from each spectrum to our
(true) r-band photometry, interpolated to the appropriate
epoch. To correct for imperfections in the calibration re-
lated to atmospheric attenuation or wavelength-dependent
slit losses, we next colour-correct the spectrum by compar-
ing a synthetic g − r colour to the true photometric g − r

colour, and warping the spectra by a power-law correction
factor.6 Since the spectra unavoidably include some host-
galaxy light, we re-add an estimate of the host galaxy flux
within the slit to the photometry (estimated given the size of
the slit and using our host-galaxy model; §3.5) prior to the
photometric correction, and subtract the host galaxy model
after correction.

3 OBSERVATIONAL PROPERTIES

3.1 Environment and Pre-Explosion Constraints

The transient lies on the sky coincident with the catalogued
galaxy CGCG 137-068, an unremarkable dwarf spiral galaxy
showing a faint bar and spiral arms (Figure 1). Two sources
are present within the SDSS and PS1 pre-imaging: a reddish
point source at the galaxy nucleus (likely a weak AGN) and a
compact, but not truly pointlike, source approximately 1.9′′

east-southeast of the transient (probably an HII region).
AT2018cow is located far from the centre of the galaxy (5.9′′

or 1.7 kpc from the nucleus), and no point or pointlike source

4 The SEDM pipeline is described at
http://www.astro.caltech.edu/sedm/Pipeline.html; the SPRAT
pipeline is a modification of the pipeline for FrodoSpec
(Barnsley et al. 2012)
5 http://www.astro.caltech.edu/ dperley/programs/lpipe.html
6 The colour correction was typically quite small: <0.1 mag in
nearly all cases.
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Figure 3. Our full sequence of spectroscopic observations of
AT2018cow. Numbers indicate the time in days since MJD 58285;
between days 4–22 they indicate approximate times. No scaling
has been applied: the relative offsets are due to the intrinsic,
steady fading of the source. (The t = 31.3d and t =53.4d spec-
tra have been slightly scaled for clarity.) We interpolate over host
narrow features and (when not corrected) over the telluric A+B
bands. Obvious spectral features develop only at late times, al-
though a very broad, blue dip is visible in all spectra between 4–8
days post-explosion.
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Table 2. Log of spectroscopic observations of AT2018cow. Times
are relative to the reference epoch of MJD 58285.

MJD t (d) Exp. (s) Telescope Instrument

58287.268 2.268 1600 P60 SEDM
58287.949 2.949 300 LT SPRAT
58288.341 3.341 1600 P60 SEDM
58289.000 4.000 180 LT SPRAT
58289.191 4.191 1600 P60 SEDM
58289.211 4.211 1600 P60 SEDM
58289.350 4.350 1600 P60 SEDM
58289.651 4.651 900 HCT HFOSC
58289.946 4.946 180 LT SPRAT
58290.097 5.097 450 LT SPRAT
58290.196 5.196 2500 P60 SEDM
58290.261 5.261 250 DCT DeVeny
58290.353 5.353 300 P200 DBSP
58290.327 5.327 1800 Gemini-N GMOS
58290.618 5.618 1200 HCT HFOSC
58291.020 6.020 450 LT SPRAT
58291.224 6.224 2500 P60 SEDM
58291.276 6.276 4800 P200 TripleSpec
58291.337 6.337 1800 Gemini-N GMOS
58291.636 6.636 1000 HCT HFOSC
58291.939 6.939 240 LT SPRAT
58292.027 7.027 450 LT SPRAT
58292.145 7.145 180 DCT DeVeny
58292.181 7.181 2500 P60 SEDM
58292.374 7.374 1800 Gemini-N GMOS
58292.648 7.648 1200 HCT HFOSC
58292.955 7.955 300 LT SPRAT
58293.018 8.018 450 LT SPRAT
58293.182 8.182 2500 P60 SEDM
58293.212 8.212 2500 P60 SEDM
58293.288 8.288 1800 Gemini-N GMOS
58293.821 8.821 1200 HCT HFOSC
58293.892 8.892 300 LT SPRAT
58294.182 9.182 2500 P60 SEDM

58294.656 9.656 1200 HCT HFOSC
58294.989 9.989 300 LT SPRAT
58295.894 10.894 240 LT SPRAT
58296.017 11.017 600 NOT ALFOSC
58296.103 11.103 450 LT SPRAT
58296.913 11.913 240 LT SPRAT
58297.245 12.245 2500 P60 SEDM
58297.349 12.349 1800 P200 TripleSpec
58298.916 13.916 240 LT SPRAT
58299.212 14.212 2500 P60 SEDM
58299.766 14.767 2400 HCT HFOSC
58300.180 15.180 2500 P60 SEDM
58300.389 15.389 900 Gemini-N GMOS
58300.622 15.622 2400 HCT HFOSC
58300.896 15.896 240 LT SPRAT
58301.990 16.990 600 LT SPRAT
58302.275 17.275 2500 P60 SEDM
58302.908 17.908 360 LT SPRAT
58303.180 18.180 2500 P60 SEDM
58304.000 19.028 900 NOT ALFOSC
58307.034 22.034 900 NOT ALFOSC
58307.301 22.301 1200 P200 DBSP
58311.397 26.397 1800 Keck I LRIS
58316.345 31.345 600 P200 DBSP
58318.295 33.295 1200 Gemini-N GMOS
58324.300 39.300 1800 Gemini-N GMOS
58329.254 44.254 1800 Gemini-N GMOS
58338.359 53.359 3180 Keck I LRIS

Table 3. Key properties of AT2018cow

z 0.0140 Redshift (from host emission)
trise ∼2.5 d Rise time to peak (g)
trise,1/2 ∼1.5 d Time to rise from half-max (r)
tdecline,1/2 ∼3 d Time to decay to half-max (r)
Mg,peak −20.4 Peak g absolute magnitude
Mr ,peak −19.9 Peak r absolute magnitude

Lbol,peak 4×1044 erg s−1 UVOIR luminosity at optical peak
Tchar 17000 K Characteristic temperature
Erad 5×1049 erg Total UVOIR radiative output

vspec 6000 km s−1 Velocity width of late emission lines

M∗,host 1.4×109 M⊙ Host stellar mass

SFRhost 0.22 M⊙yr
−1 Host star-formation rate

is visible at the location of the transient itself. Forced pho-
tometry on a median filtered PS1 image limits any contribu-
tion from an unresolved source to g > 22.2, r > 22.3, i > 21.9:
more than 8 magnitudes below the transient at peak.

Additionally, we checked for evidence of pre-explosion
variability in both the Catalina Real-Time Survey and iPTF
archives. We found no evidence for any previous outbursts
from the location of the transient.

3.2 A Fast, Consistently Blue Transient

Light curves of the transient, assembled by our worldwide
telescope network, are shown in Figure 2. The photometric
properties alone exhibit several remarkable features unprece-
dented for any other extragalactic transient observed at this
level of detail.

As we have already noted, the rise time is very fast.
Comparing the ATLAS o discovery magnitude (which is
dominated by r flux for this blue transient) to the GROND
r magnitude indicates a rise from half-max of only 1–2 days.
The ASAS-SN g−band limit suggests an explosion time of no
more than 1 day prior to the discovery observation, giving
a total time from explosion to peak of between 2–3 days.

The transient is extremely luminous at peak (Mr ∼

−19.9 or Mg ∼ −20.4). This is more luminous than any core-
collapse supernova with the exception of a small fraction
of Type IIn and superluminous supernovae, both of which
exhibit very long rise and decay times.

The fading, like the rise, is quite rapid. The time to
decline to half of its peak flux is only about 4 days, and
there is no subsequent rise to a second, radioactively pow-
ered peak: the light curve fades monotonically (except in the
NIR, which exhibits minor but significant fluctuations on
timescales of 2–3 days). By around 25 days post-discovery
the transient has a luminosity (Mr ∼ −16) well below that
of a typical core-collapse supernova at the same phase.

Finally, the colour is extremely and persistently blue. In
early observations the colours are close to the Rayleigh-Jeans
power-law limit, indicating a thermal origin with a spectral
peak far into the UV (§3.4). Hot, blue early phases of super-
novae are common (shortly after shock breakout and before
adiabatic losses have cooled the ejecta), but AT2018cow re-
tains a high temperature for a remarkably long period: after
a month, the optical colours are bluer than most SNe are
even in their earliest phases and it remains well-detected in
all UV filters.

These properties are summarized in Table 3.
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Prentice et al. (2018) also independently report the
exceptionally fast evolution and blue color of this transient,
as does the recent analysis by Margutti et al. (2018).

3.3 Spectral evolution

The behaviour seen in the spectra is also unprecedented. The
earliest spectra in our sequence (Figure 4), sampling close to
the peak time of the transient, show only a hot and smooth
continuum: they are particularly lacking in emission or ab-
sorption features, except for weak emission from host galaxy
Hα (not shown in our figures since we interpolate over the
host narrow lines). There is no sign of any flash-ionized emis-
sion features (e.g., Gal-Yam et al. 2014; Yaron et al. 2017;
Khazov et al. 2016).

Beginning around MJD 58299 (day 4 on our plots), a
single, extremely broad feature begins to emerge in all of
our spectra and in our photometry. If interpreted as an ab-
sorption trough, its centre is at approximately 4600 Å with
a full-width of 1500 Å. It is vaguely reminiscent of the Fe
II feature seen in broad-lined Ic supernovae around peak
light (e.g. Galama et al. 1998), a resemblance that led to
early suggestions of a Ic-BL classification (Xu et al. 2018;
Izzo et al. 2018). Simultaneously with the emergence of this
feature, a very bright radio/submillimeter afterglow was
detected (de Ugarte Postigo et al. 2018; Bright et al. 2018;
Dobie et al. 2018) which—at the time—seemed to seal the
Ic-BL association and led to anticipation that these fea-
tures would strengthen and a supernova peak would emerge
shortly in the light curve.

This is not what happened: while the feature strength-
ens slightly between days 4 and 5, from then on it begins
to dissipate and by day 8 it vanishes entirely, returning to a
largely featureless blue continuum (Perley et al. 2018).

Very different evolution sets in after this time. First, a
weak and moderately-broad (full-width ∼ 200Å; v ∼ 10000
km/s) emission feature centred at ≈ 4850 Å begins to emerge:
it is difficult to recognize because spectra during this period
are of low quality owing to the presence of the nearly-full
moon, but is seen consistently in both the LT and the SEDM
spectra on days 9, 11, 12, and 14 (Figure 5); it was also inde-
pendently seen in NOT spectra reported by (Benetti et al.
2018). Its most likely interpretation is He ii λ4686. The line
fades thereafter, but a variety of other lines of similar ve-
locity width and offset begin to appear between 20–30 days.
Emission features of He i λ5876 and He i λ5015 are clearly
visible starting at ∼15 days, along with emission from Hα
(in a blend with He i λ6678), Hβ, Hγ, Hδ, and a blend of
several higher Balmer lines. All of these lines are signifi-
cantly and consistently offset to the red by about +3000
km/s at the time of first detection. However, over the subse-
quent 10–20 days the profiles evolve blueward, developing a
“wedge” shape: the peak (which often contains a weak nar-
row component) is very close to the rest-frame wavelength,
with a steep fall towards the blue and a very gradual one
towards the red (Figure 6). Additional lines, including He i
λ7065, weak Ca ii] λλ7291,7324, and (possibly) O i λλ6300,
6363 also begin to emerge at later times (> 30 days). A very
strong, broad upturn between 8000–9000 (also easily visible
in the photometry as a z-band excess) emerges around this
time as well, although its origin is unclear: its wavelength is
close to that of the Ca ii IR triplet but it is much broader

than would be expected from this feature alone if it has a
similar profile as the H and He lines, especially on the blue
wing.

3.4 Physical Properties

To characterize the early SED, we first construct coeval sets
of photometry by performing a nonparametric interpola-
tion of the light curve for each filter (the same procedure
was used in the g and r bands to colour-correct the spec-
troscopy; Section 2.6). Galactic extinction is corrected using
the Fitzpatrick (1999) attenuation curve and EB−V = 0.07
(Schlafly & Finkbeiner 2011). We assume no extinction in
the host galaxy.

The early SEDs are unambiguously thermal. The
UVOIR slope (Fν ∝ να) during the first epoch is α=1.2± 0.1

as measured between the u and the z bands: close to the
Rayleigh-Jeans α = 2 and inconsistent (in particular) with
synchrotron emission, which exhibits α= 0.33 below the peak
frequency and −0.5 to −1.25 above it (e.g., Sari et al. 1998).
The colour of the transient becomes gradually less blue as
time passes, but it remains effectively thermal throughout,
with the peak (in νFν) remaining in the UV at all times.

To characterize the evolution of the photosphere, we
fit a Planck function to the UV-optical data at the time of
each UVOT epoch. A single Planck function fits the UV and
most optical filters well at essentially every epoch, but un-
derpredicts the NIR fluxes after a few days; it also cannot
explain the persistent “dip” seen in the uBg filters in several
early optical observations (Figure 7). We thus exclude the
uBg filters from the fits, and add an additional red compo-
nent to the model. The form of this red component is not
well-constrained by our data (our light curve coverage in
the NIR is very incomplete outside the H-band). We tried
both a second blackbody and a power-law; we obtain ac-
ceptable fits to most bands for a blackbody with a constant,
low (∼3000 K) temperature and a power-law with spectral
index (Fν ∝ να) of α ∼ −0.75. We prefer the power-law
model: a warm blackbody is not well-justified theoretically
(the observed temperature is too hot to be easily explained
as dust, although similar red components have been seen in
some SNe; e.g., Kangas et al. 2016), whereas a synchrotron
power-law of α ∼ 0.5− 1.0 is expected given the bright radio
afterglow (and an extrapolation of the flux to the millime-
ter band provides reasonable consistency with reported mil-
limeter fluxes). The z-band at late times shows strong excess
relative to either model and is excluded from our final fits.
We fix the spectral index at α = −0.75 for all epochs.

At very late times (> 45d) our ground-based coverage
becomes sparse, due to both the fading of the transient and
the shortening window of observations each night. At these
times we fix our epochs to the ground-based (LT) epochs,
interpolating the low-S/N (but numerous) UVOT fluxes via
local regression. We caution that derived parameters in this
regime are particularly uncertain due to the absence of NIR
coverage, presence of emission features, and systematics as-
sociated with the host subtraction. For the last epoch (65
days) the power-law component could not be constrained
and is fixed by extrapolation of the preceding epochs.

Results are plotted in Figure 8 and listed in Table 4.
At peak, the object is very hot (30000 K) and already quite
large in size, with an inferred radius of almost 1015 cm. This
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Figure 4. Spectral energy distribution (in fν) sequence of AT2018cow from the UV to the NIR, with selected spectra overplotted. (The
closest high-quality spectrum to each photometric reference epoch is shown, rescaled by a constant factor to match the absolute flux
level). The spectrum is initially (days 2–3) hot and featureless. A broad absorption feature develops in the UV/blue region of the spectrum
starting around day 4, but disappears again by day 9. Narrower features begin to emerge after > 10 days, and the NIR bands become
dominated by a red SED component that peaks around 10000 Å. Our photometry and spectroscopy show good consistency (except in
z-band at late times). In particular, both show the early, broad spectral feature between 3500–5500 Å.

implies fast ejecta: given the ASAS-SN pre-explosion limit,
the time of the first SED was only ∼ 4 days after the initial
explosion time and thus the expansion speed must exceed
> 0.1c. Alternatively, the rapid expansion of the photosphere
could imply a high-velocity shock traversing pre-existing, op-
tically thick material. However, the broad absorption feature
independently implies that this material must also be trav-
eling at of > 0.1c at this time, so if the transient is due to
an explosion (c.f. §5.2) it must represent part of the ejecta.

Surprisingly, after this initial rise no further expansion
is inferred: the photospheric radius declines continuously
throughout our observations. This is extremely unusual for
a supernova: normally, the photosphere expands with the
expanding material in the early, optically-thick phases.

The temperature initially declines with time, as ex-
pected for most explosive transients. However this parame-
ter, too, begins to exhibit unusual evolution at later epochs:
after 20 days the temperature curve levels off and in sub-
sequent epochs it actually increases, levelling off at about
17000 K before possibly falling again in the last epoch. The
significance of the late increase is dependent on the SED
model (and in particular the treatment of the red excess)
and on the UV host subtraction procedure, but the temper-

ature is, in any case, still extremely high 1–2 months after
peak light.

The bolometric luminosity of the transient decays in a
remarkably simple fashion similar to a power-law in time.
Setting t=0 to our reference epoch of MJD 58285, the tem-
poral index (F ∝ tβ) is β ∼ −2.5, steeper than but not re-
markably different from the classical -5/3 expected for TDEs
and similar accretion-powered events.

We have plotted the luminosity of the two fitted com-
ponents (the thermal peak and the possibly non-thermal red
component) separately in the top panel of Figure 8; the
non-thermal component is integrated only at λ > 1000 Å.
The non-thermal flux shows a similar average decay as the
X-ray (supporting the notion that it arises from a physi-
cally distinct region from the thermal emission) but does
not show the same strong temporal variations (see also
Rivera Sandoval et al. 2018), so it is not clear whether they
truly represent the same component. However, the red bands
do show much greater variability than the bluer filters at
early times: this is best illustrated by an apparent i-band
bump at 20 days visible in Figure 2. (Unfortunately, this
event coincided with the only gap in LT coverage during the
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Figure 5. Sequence showing a subset of our spectra after divi-
sion and normalization by a blackbody model, fit to the coeval
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cal coloured bars, all of which emerge only at later times. Thin
dashed lines show the rest wavelength of each transition, while
the shaded bands show the approximate observed widths of the
emission component.

first month, so we lack H and z photometry to confirm its
origin.)

3.5 Host Galaxy Properties

To characterize the host galaxy in more detail, we gather
multi-wavelength photometry from UV to NIR. We use
photometry from the NASA Sloan Atlas, which includes
both optical photometry from the Sloan Digital Sky Sur-
vey (SDSS; York et al. 2000) and UV photometry from the
Galaxy Evolution Explorer (GALEX;Martin et al. 2005) us-
ing the elpetrosian aperture flux (Blanton et al. 2011). We
also perform our own photometry using images from the
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Figure 6. Late-time spectra of AT2018cow showing the central
region of the spectrograph. Host-galaxy emission has not been
removed; the gap is the telluric band. The helium lines are com-
pletely absent at +11 days, but begin to appear at +15 days. At
+30 days they develop a weak blueshifted narrow component.

Pan-STARRS 3pi survey (Kaiser et al. 2010), the Two Mi-
cron All-Sky Survey (2MASS; Huchra et al. 2012) and the
Wide-field Infrared Survey Explorer (WISE; Wright et al.
2010). Our photometry (AB mags, not corrected for Galac-
tic extinction) is presented in Table 5.

We fit the broad-band spectral energy distribution us-
ing LePhare (Ilbert et al. 2006), correcting for foreground
extinction before fitting the SED. We assume a Chabrier
(2003) IMF, a metallicity between 0.2Z⊙ < Z < Z⊙, a
Calzetti et al. (2000) extinction law, and otherwise use an
identical procedure to that employed in Taggart et al. 2018
(in prep). The W3 and W4 filters (which are dominated by
PAH emission features) were not included in the fit. We de-
rive a stellar mass of M∗ = 1.42+0.17

−0.29
×109 M⊙ and a total

star-formation rate of SFR = 0.22+0.03
−0.04

M⊙ yr−1. The galaxy
photometry and final SED fit are shown in Figure 9.

These properties suggest a star-forming dwarf spiral
similar to the Large Magellanic Cloud. Its mass is smaller
than that of the majority of galaxies that produce core-
collapse supernovae, but is well within the distribution.
While clearly star-forming, the galaxy is not particularly
young nor is it undergoing a notable burst of star-formation.

4 COMPARISONS TO PREVIOUS EVENTS

4.1 A Fast Extreme-Luminosity Transient Seen

Up-Close

The fast rise, early peak, and subsequent rapid decay do
not resemble any common class of extragalactic transient.
While supernovae can show early, luminous peaks associ-
ated with shock heating, these are inevitably followed by
either a long plateau (as in SNe IIP or IIn) or by a sec-
ond, radioactively powered peak (in SNe IIb, SNe Ib/c, and
GRB-SNe). A few classical examples of this are shown in
the top row of Figure 10: SN 1993J (Richmond et al. 1996;
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Figure 7. Fits to the multi-epoch photometry using a combined blackbody (blue curve) and power-law (red curve) model. The green
curve shows the sum of these models. Data points that are not enclosed in circles are excluded from the fits, usually due to contamination
by strong emission or absorption features.

Barbon et al. 1995) and SN 2006aj (Campana et al. 2006;
Ferrero et al. 2006), as well as the double-peaked superlu-
minous supernova SN2006oz (Leloudas et al. 2012). In all
cases the late-time flux of these reference objects exceeds
that of AT2018cow by several magnitudes.

The rest of Figure 10 shows comparisons between the
light curve of AT2018cow and a variety of luminous, fast-
rising transients from different surveys. These transients are
diverse, exhibiting differences in both temporal and colour
evolution. Several retain a high luminosity for a long period
and fail to replicate the fast fading of AT2018cow. These

include iPTF16asu (Whitesides et al. 2017), an initially fea-
tureless transient that later developed into a SN Ic-BL; all
members of the Arcavi et al. (2016) sample (SNLS04D4ec,
the fastest of these, is shown); and the unknown transient
“Dougie” (Vinkó et al. 2015).

The most convincing matches by far are the luminous
members of the PS1 sample from Drout et al. (2014): PS1-
11qr and PS1-12bv, shown at bottom right. While not quite
as luminous or as fast-evolving as AT2018cow, these events
manage to replicate the fast rise, fast decay, and consistent
blue colours around the peak time. (The less luminous ob-
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Figure 9. Spectral energy distribution for the host galaxy
of AT2018cow. Multi-band photometry from GALEX, SDSS,
2MASS, and WISE is shown in purple and the best-fit SED model
(with M∗ = 1.42+0.17

−0.29
×109 M⊙, SFR = 0.22+0.03

−0.04
M⊙ yr−1) is shown

as a curve.

Table 4. Photospheric parameters derived from a combined syn-
chrotron+blackbody fit to the UV-optical-NIR data. Uncertainty
estimates are statistical errors only.

MJD L (L⊙) R (AU) T (kK)

58288.44 8.96e+10+2.32e+10
−1.19e+10

52.77+4.70
−3.98

31.39+3.10
−2.04

58289.22 6.64e+10+2.46e+10
−8.66e+09

47.72+3.89
−4.51

30.58+4.12
−2.06

58290.69 2.75e+10+6.67e+09
−1.70e+09

44.29+1.89
−4.35

25.42+3.19
−0.60

58291.56 2.13e+10+4.81e+09
−2.04e+09

38.99+2.44
−3.74

25.42+2.98
−1.08

58292.28 1.53e+10+3.91e+09
−1.06e+09

39.04+2.18
−4.88

23.37+3.40
−0.77

58293.81 9.47e+09+1.17e+09
−8.92e+08

36.39+1.45
−3.94

21.20+2.22
−0.80

58294.61 7.53e+09+5.24e+08
−1.02e+09

32.99+3.97
−1.54

20.91+0.90
−1.49

58295.58 6.23e+09+6.60e+08
−5.08e+08

29.24+2.29
−2.59

21.25+1.37
−1.02

58296.68 5.15e+09+5.53e+08
−3.42e+08

27.07+2.10
−1.84

20.90+1.24
−0.76

58298.39 4.29e+09+3.19e+08
−4.10e+08

24.51+2.08
−0.78

20.91+0.78
−1.17

58299.62 3.22e+09+2.12e+08
−2.46e+08

24.96+1.28
−1.25

19.32+0.73
−0.83

58300.65 2.64e+09+2.74e+08
−1.64e+08

23.50+1.31
−1.37

18.84+1.11
−0.76

58301.79 2.06e+09+2.02e+08
−9.79e+07

22.19+1.52
−1.40

18.04+0.97
−0.64

58302.04 1.95e+09+1.64e+08
−1.24e+08

21.69+1.43
−1.35

18.00+0.85
−0.80

58303.17 1.61e+09+1.05e+08
−9.91e+07

19.86+1.42
−1.23

17.57+0.75
−0.74

58303.78 1.54e+09+1.12e+08
−1.16e+08

19.47+1.79
−1.20

17.28+0.81
−0.89

58305.64 1.41e+09+8.66e+07
−1.06e+08

18.46+1.76
−1.66

17.09+1.00
−0.87

58306.77 1.13e+09+8.69e+07
−6.57e+07

18.62+1.13
−1.05

16.23+0.70
−0.62

58307.16 1.06e+09+7.78e+07
−7.25e+07

18.46+1.66
−1.64

16.01+0.87
−0.68

58307.70 9.69e+08+7.34e+07
−5.53e+07

18.07+1.22
−1.34

15.84+0.75
−0.66

58308.15 9.27e+08+8.19e+07
−5.71e+07

17.70+1.39
−1.42

15.81+0.96
−0.71

58309.23 9.04e+08+5.32e+07
−5.56e+07

16.00+1.34
−1.22

16.55+0.62
−0.76

58310.22 7.73e+08+4.16e+07
−5.47e+07

15.19+1.31
−0.78

16.10+0.68
−0.69

58310.70 6.79e+08+5.02e+07
−4.02e+07

14.78+1.37
−1.18

15.55+0.84
−0.60

58311.16 6.29e+08+5.06e+07
−3.89e+07

14.30+1.18
−1.39

15.30+0.83
−0.55

58311.76 6.26e+08+4.82e+07
−3.94e+07

13.33+1.28
−1.45

15.67+0.98
−0.84

58312.42 6.23e+08+4.23e+07
−5.01e+07

12.88+1.67
−1.21

15.71+0.81
−0.93

58314.75 4.82e+08+2.74e+07
−3.48e+07

12.82+1.25
−1.10

14.82+0.76
−0.86

58316.52 3.96e+08+2.91e+07
−2.75e+07

11.38+1.32
−1.11

15.34+0.95
−0.73

58318.93 3.46e+08+2.72e+07
−2.22e+07

9.34+0.84
−1.00

15.94+1.22
−0.70

58320.24 3.00e+08+2.92e+07
−2.24e+07

9.13+0.85
−0.96

15.66+1.12
−0.74

58322.23 2.78e+08+2.42e+07
−1.63e+07

7.70+0.57
−0.80

16.83+1.46
−0.76

58324.03 2.41e+08+2.54e+07
−1.14e+07

6.64+0.65
−0.79

17.53+1.64
−0.98

58325.36 2.10e+08+1.94e+07
−1.20e+07

6.06+0.60
−0.64

17.31+1.16
−1.15

58326.17 1.99e+08+1.70e+07
−1.87e+07

5.91+0.88
−0.69

17.43+1.13
−1.37

58327.15 1.81e+08+2.66e+07
−1.22e+07

5.46+0.45
−0.72

17.81+2.07
−0.88

58329.22 1.60e+08+2.16e+07
−8.68e+06

5.09+0.64
−0.75

17.43+2.27
−1.21

58334.88 9.52e+07+2.32e+07
−1.52e+07

4.41+1.01
−1.16

16.96+3.17
−1.93

58339.90 5.63e+07+1.67e+07
−1.90e+07

3.56+1.38
−0.86

17.14+3.79
−2.95

58346.92 3.94e+07+2.52e+07
−8.20e+06

3.37+0.90
−1.33

16.30+7.28
−1.86

58354.46 1.68e+07+1.02e+07
−9.16e+05

4.14+1.09
−1.70

10.74+6.65
−1.54

jects in that sample are more questionable: in addition to
being less luminous by a factor of ∼10 they fade more slowly
and clearly become redder at late times.)7

Additionally, both PTF09uj (Ofek et al. 2010) and
KSN-2015K (Rest et al. 2018) also represent good light-

7 The DES fast transients of Pursiainen et al. (2018) do not yet
have publicly available light curves and are not shown in Figure
10. Like the PS1 transients, they exhibit a variety of luminosi-
ties but all are fast-evolving and most are blue at peak. Some
also show evidence of sustained high temperatures and contract-
ing photospheres, similar to what observed in AT2018cow. The
HSC transients of Tanaka et al. (2016) were observed only in g

and r and generally only during the rising phase, so post-peak
constraints are not available.
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Table 5. Host-galaxy photometry from pre-imaging observations.

Filter AB mag uncertainty Survey

FUV 18.376 0.210 GALEX
NUV 17.880 0.038 GALEX
u 16.763 0.036 SDSS
g 15.578 0.003 SDSS
g 15.573 0.010 Pan-STARRS
r 15.021 0.002 SDSS
r 15.048 0.017 Pan-STARRS
i 14.725 0.009 SDSS
i 14.814 0.018 Pan-STARRS
z 14.544 0.020 SDSS
z 14.626 0.024 Pan-STARRS
Y 14.481 0.046 Pan-STARRS
J 14.153 0.054 2MASS
H 14.073 0.081 2MASS
Ks 14.320 0.106 2MASS
W1 15.370 0.007 WISE
W2 16.007 0.017 WISE
W3 14.989 0.032 WISE
W4 14.673 0.242 WISE

curve matches to AT2018cow. Neither has multi-epoch
colour information and they are 1–2 mag fainter at peak,
although the pre-peak UV-optical colour of PTF 09uj and
the single-epoch colours of KSN-2015K suggest that these
transients were indeed similarly blue.

None of these transients have been characterized in de-
tail, although the few spectra that exist are generally fea-
tureless (PTF09uj exhibited weak, narrow emission lines
of hydrogen.) All were found in star-forming galaxies offset
from their host nuclei.

The rate of fast, blue transients was estimated from the
Pan-STARRS sample (Drout et al. 2014): they measured a
value of 4–7% of the core-collapse supernova rate, equivalent
to 1 per year within a radius of 40 Mpc. Given this rate, it
seems credible that one might be detected at 60 Mpc in the
first few years of high-cadence all-sky observations by AT-
LAS or ZTF. (Conversely, given the detection of an event
this close within ATLAS/ZTF, it would be surprising if sim-
ilar events were not present in PS1 and other surveys.)

For these reasons, we argue that AT2018cow is very
likely related to the population of fast, blue, luminous
transients seen by PS1 (and also by DES and HSC;
Pursiainen et al. 2018; Tanaka et al. 2016). Earlier studies
almost universally attributed these transients to supernovae
undergoing shock breakout into, or interaction with, a dense
wind or shell close to the progenitor (Ofek et al. 2010). The
extensive additional observations available for AT2018cow
allow us to examine this connection in much more detail.

4.2 A Spectroscopically Unique Transient

AT2018cow shows at least two distinct spectral phases.
Prior to 10 days it is effectively featureless, save for the
short-lived, broad blue absorption feature. After 12 days it
remains hot and blue but exhibits weak features of (red-
shifted) H, He, and other light elements in emission.

The early, broad feature8 has no obvious analogue in
any previous event. It bears some loose resemblance to the Fe
II P-Cygni absorption trough seen in SNe Ic-BL, but overly-
ing a much hotter continuum. We attempted to subtract the
hot continuum to test this connection more rigorously, but
the match is poor, being both too blue and too broad (Fig-
ure 11) compared to even the earliest spectra of SN1998bw
or SN2002ap (Patat et al. 2001; Kinugasa et al. 2002), or of
the spectrum of SN2008D (Modjaz et al. 2009) during its
shock-cooling phase.9 As of yet we have no convincing ex-
planation for the origin of this feature, other than that it
implies very fast (nearly relativistic) ejecta.

The identities of the features seen in later spectra (H
and He in broad emission) are secure. In spite of this, these
later spectra bear no obvious resemblance to any class of
known supernova. The strongest similarities are to Type IIn
supernovae (which can also remain hot for several weeks af-
ter explosion, and are emission-dominated by definition): in
the bottom panel of Figure 11 we plot AT2018cow versus an
early spectrum of SN1998S from Fassia et al. (2001), which
shows a similar blue continuum and most of the same H
and He transitions. However, the lines in AT2018cow are
not narrow for most of their evolution (v ∼ 6000 km/s, ver-
sus a few hundred km/s for SN1998S). Thomson scattering
within ionized matter could broaden a line enough to wash
out the narrow component, but this would not produce the
net redshift in the emission component that we observe. The
H and He thus must be in the ejecta itself (and seemingly
preferentially in receding ejecta given the net redshift).

In fact, the best spectroscopic analogues to AT2018cow
are not supernovae at all. Our spectra bear a striking re-
semblance to tidal disruption events: the high tempera-
tures, presence of helium and hydrogen features in emis-
sion, and moderate velocities all match what is observed for
TDEs. The spectral features in AT2018cow are substantially
weaker than in the examples of TDEs that we are aware of
(bottom panel of Figure 11; comparison spectra are from
Holoien et al. 2014, 2016), but the resemblance to a TDE is
much stronger than to any supernova.

We summarize the key observational features of
AT2018cow in Table 3.

5 INTERPRETATION

5.1 Supernova Models: A Jet from a Failed

Supernova?

The location of AT2018cow, and its apparent connection to
other cosmological events that have also been found outside
the nuclei of their host galaxies, give ample justification to
consider a supernova as the most natural interpretation of

8 We emphasize that the existence of this feature is secure: it is
seen with a consistent shape and consistent temporal evolution
in at least three different independently-reduced spectrographs
(SEDM, SPRAT, HFOSC) and is also evident in our photometry
via the evolution of the B −V and g − r colours.
9 This cannot be because the SN features are washed out by a
bright afterglow, as was the case for early spectra of SN 2003dh
/ GRB 030329 (e.g., Hjorth et al. 2003; Deng et al. 2005): the
continuum is far too blue to be predominantly synchrotron in
origin (§3.4).
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Figure 10. Comparison of the light curve of AT2018cow to other classes of fast-rising or luminous events. The dotted lines show
AT2018cow; solid lines indicate comparison objects with dashed lines connecting upper limits to detections. Filter colour codes are the
same as in Figure 2 and are matched to rest-frame wavelengths. AT2018cow is insufficiently luminous at late times compared to GRB-SNe
and also far too blue. It is much faster than any known TDE and the thermal SED is entirely unlike the optically thin spectra of GRB
afterglows. However, it matches well with the cosmological fast transients found in PS1 and Kepler (and to a lesser extent SNLS) in
colour, luminosity, and timescale.

this event. However, the observational aspects of this event
impose severe constraints on any type of stellar explosion.

The first problem for any supernova model is the need to
explain the fast rise. Heating from radioactive 56Ni certainly
cannot produce it: at least 5 M⊙ of Nickel would be needed to
power the luminosity of AT2018cow at peak, which is orders
of magnitude greater than the total ejecta mass that would
be inferred from the fast rise given standard assumptions

about diffusion (Mej ∼ (
trise
20d

)
2

M⊙ or approximately 0.01 M⊙ ;
Arnett 1982; Rest et al. 2018).

A natural alternative is shock heating. Most core-
collapse SNe are believed to exhibit an early shock-breakout
and shock-cooling phase in which the stellar photosphere is
nearly-instantaneously heated to X-ray temperatures by the
emergence of the SN shock, producing a rapid rise in the

light curve (Waxman & Katz 2017). However, for standard
types of stellar progenitor the shock-cooling rise time is far
too fast to explain AT2018cow’s 2–3 day rise. A multi-day
rise could be achieved only if the progenitor was quite ex-
tended (R ∼ 1014 cm, or about 10 AU).

This radius is similar to that of the largest red super-
giants. However, a massive stellar envelope of this nature
would greatly slow down the later evolution of the SN, pro-
ducing a “plateau” phase rather than sudden fading. The
photosphere at the time of shock breakout thus would have
to be unbound, with the shock breaking out into a dense
wind or ejected shell associated with recent, intense mass
loss.

Evidence has been accumulating in recent years that
extreme mass loss shortly before explosion is common

MNRAS 000, 000–000 (2018)
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Figure 11. Comparison of an early spectrum of AT2018cow to the early spectrum of SN2008D (Ib) and two SNe Ic-BL (top row),
and of a later-time spectrum to SN 1998S (IIn) and two tidal disruption events (bottom row). The extremely blue, smooth continuum
bears little resemblance to SN Ib/c, even after attempting to subtract the blue continuum. (A power-law plus a constant have been
subtracted from AT2018cow; the reference SN spectra have been subtracted by a constant only. The strength of the features in the SNe
after subtraction has been suppressed by a factor of 2.) The later-time spectra are dominated by weak emission features of hydrogen and
helium; these features are also present in IIn SNe but are much narrower compared to what is seen in AT2018cow. These features are
seen in known TDEs with similarly broad widths, although typically much greater strengths.

(Ofek et al. 2014; Gal-Yam et al. 2014; Yaron et al. 2017),
so this may not be surprising. However, other observations
place further strong constraints on the nature of this recent
mass loss: the lack of any flash-ionization features, the lack
of shocked hydrogen or helium, and the lack of further re-
brightenings in the light curve all require that the CSM shell
be quite localized in extent. This may also be possible, if the
previous mass-loss episode is both singular and explosive.

Further constraints on the explosion can be imposed
based on the lack of a second, radioactively powered peak
in the light curve. Using the bolometric luminosity at 20
days and scaling relative to SN2002ap (Mazzali et al. 2002;
Foley et al. 2003), we estimate MNi < 0.05M⊙ . While this
is in the range of masses inferred for “normal” core-collapse
supernovae (Rubin et al. 2016; Müller et al. 2017), a mod-
est 56Ni mass seems hard to reconcile with the energetic
shockwave necessary to produce the extraordinary shock-
breakout flash and accelerate substantial ejecta to > 0.1c,
as inferred from the broad absorption seen in the spectra at
∼ 1 week10 and by the luminous radio counterpart. (Veloci-

10 It could be contested whether the broad feature truly rep-

ties this high have been previously seen observationally only
in GRB-SNe, which have universally high ejecta and nickel
masses: Mazzali et al. 2014, although c.f. Fynbo et al. 2006).

Perhaps the shock in this SN was driven not by the
classical neutrino mechanism (or other forms of energy in-
put from a proto-NS), but solely by an energetic jet driven
by a black hole following direct collapse of a massive star
to a black hole (analogous to the original “failed supernova”
model of Woosley 1993). No high-energy prompt emission
was observed from AT2018cow, but the jet could have been
off-axis or (more likely) choked by the stellar envelope. We
may then just have seen a short-lived high-velocity pseudo-
photosphere in the early spectra, which may be supported

resents Doppler-broadened absorption, given the lack of a clear
identification of the line(s) responsible. However, as the SEDs in
Figure 4 make clear, this feature shows up clearly as missing flux
from what is otherwise an excellent fit to a single thermal SED;
multiple emission components or non-thermal features cannot re-
produce this profile. Alternative, non-velocity-broadened sources
of absorption (e.g. transient dust extinction with an unknown
broad feature) are unlikely.
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by a small amount of material surrounding the jet, either
dragged by the jet itself or ejected in a disc wind. This ma-
terial would contain only a small amount of 56Ni, explaining
the lack of a radioactive second peak.

This model (which is similar to that of
Quataert & Kasen 2012, but with the addition of cir-
cumstellar interaction: see also Kashiyama & Quataert
2015) has some appeal, especially given the observation of
bright, self-absorbed radio emission which independently
implies substantial interaction (Ho et al. 2018). Even so, it
faces formidable challenges. The high-velocity absorption
implied by our early spectra suggests material that is
expanding outward rapidly (> 0.1c), but the spectral fea-
tures seen only two weeks later are quite narrow (∼ 0.02c).
This could be achieved if the high-velocity ejecta collided
with a second dense shell of comparable mass—eliminating
the broad lines and largely halting the expansion of the
photosphere that would normally be expected in a young
supernova. But the resulting shock-wave should then have
excited narrow-line emission of H and perhaps He which
we do not see. (The H and He lines that eventually emerge
originate too late and have velocities too broad to be
attributed to shock interaction).

Alternative stellar progenitor scenarios beyond core-
collapse do not provide any appreciable resolution to these
contradictions. Large energies and small 56Ni masses are
expected for neutron star merger models, but such events
should not possess significant hydrogen or helium. Fur-
thermore, AT2018cow empirically bears no relation to the
(much dimmer, fast-cooling, fast-expanding) optical coun-
terpart of GW170817 (McCully et al. 2017; Kasliwal et al.
2017; Evans et al. 2017; Villar et al. 2017; Pian et al. 2017).
White-dwarf explosions (variants on Ia or accretion-induced
collapse models; e.g., Brooks et al. 2017; Poznanski et al.
2010) are also likely to be poor in H and He, and heavily
suppress the UV via iron line blanketing in the ejecta.

Perhaps the biggest challenge for any supernova model
is the lack of expansion of the photosphere. Pursiainen et al.
(2018) noted that a hot, receding photosphere is expected in
the wind shock-breakout model due to the rapid expansion
of the unbound shock-heated material, but this will only be
true during the early phases: the photosphere should eventu-
ally reach the dense stellar envelope, after which its evolution
should follow that of typical supernovae. Regardless of the
progenitor structure, it is difficult to understand how freely-
expanding ejecta would maintain a photosphere on a scale
of only 1014 cm 40 days after the explosion: the material
at the photosphere could be expanding no faster than 300
km/s (much slower than the width inferred by the observed
lines at late times.)

5.2 Tidal Disruption Models: Disruption of a Star

by an IMBH?

In spite of the circumstantial evidence for a SN origin (the
event occurred in a spiral arm) there are many reasons to
look more broadly at progenitor models, and in particular
to consider a tidal disruption event as an alternative.

Many of the properties of the transient that cause the
most difficulty for the SN interpretation are natural compo-
nents of TDE models. The bolometric light curve declines
as a power-law, as expected under simple TDE models (al-

though the decay is steeper than the canonical t−5/3). The
lack of an early free-expansion phase and the maintenance
of a high temperature are also similar to expectations for
TDEs, which provide continued energy input via BH ac-
cretion and whose potential well hampers free expansion of
the ejecta. And a TDE origin would also explain the H and
He-rich late-time spectra (which empirically resemble known
TDEs more closely than any SN).

Aside from its peculiar location, the primary feature
that distinguishes AT2018cow from known TDEs is its
timescale: typical TDEs have rise times of weeks to months
and decay times even longer. Faster TDEs have been found
more recently (Blagorodnova et al. 2017), but even these
have characteristic timescales an order of magnitude longer
than AT2018cow.

A possible resolution is a smaller black hole mass:
known TDEs appear to show an empirical timescale-
mass correlation (e.g., Blagorodnova et al. 2017), and
there are also reasons to expect one theoretically
(Guillochon & Ramirez-Ruiz 2013). To better constrain the
black hole mass under a TDE model, we fit the UV/optical
data using two different methods: using simple scaling rela-
tions, and using a full MCMC fit to the light curve.

We first fit the bolometric (UVOIR) light curve to a
power-law decay of the form L(t) = L0(

t−t0
t−tD

)−n. We obtain
an excellent fit with a power-law index of n = 3.0 ± 0.1

and a time of disruption (tD) of −1.5 ± 0.3 (relative to
MJD 58285). Under this scenario the implied rise-time-to
peak of tpeak = t0 − tD = 5.0d, according to the simulations
of Guillochon & Ramirez-Ruiz (2013) for a solar-type star,
would correspond to a black hole of 1.5 × 104M⊙ .

Additionally, we fit the light curve in the g, r,
and UVOT w2 bands with the MOSFiT TDE model
(Guillochon et al. 2018; Mockler et al. 2018). The MOSFiT
TDE model uses hydrodynamic simulations of tidal disrup-
tion events from (Guillochon & Ramirez-Ruiz 2013) to cal-
culate the fallback rate of stellar debris to the black hole.
MOSFiT then converts these fallback rates into bolometric
luminosities and passes them through viscosity and repro-
cessing transformation functions to create optical and UV
light curves. Two adjustments to the model were required to
obtain a good fit: the peak luminosity was allowed to exceed
the Eddington limit, and the maximum photosphere radius
was allowed to reach beyond the apocentres of the Keplerian
orbits of the stellar debris. Under these circumstances, our
fit prefers a black hole with a mass of Mh = 1.9+1.2

−0.8
× 104M⊙

and a star with mass M∗ = 0.6+2
−0.5

M⊙ . This is fully consis-
tent with the scaling-relation solution. Fitted light curves
are presented in Figure 12.

These parameters correspond to the disruption of
a main-sequence star around an intermediate-mass black
hole (IMBH). This would be a significant discovery:
IMBH disruptions were recently theoretically predicted
(Fragione & Leigh 2018; Chen & Shen 2018) and if con-
firmed, would represent evidence for the existence of IMBHs
in the low-redshift universe, a topic that remains broadly
controversial. A black hole in this mass range would also
not conflict with the off-nuclear location: it could originate
from a globular cluster or from a massive young star cluster.

However, as the above discussion suggests, the peak lu-
minosity of the transient (∼ 3×1044 erg) is much greater than
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the Eddington luminosity for a black hole of the mass needed
to explain its short timescale (∼ 1042 erg for MBH = 104M⊙).
While TDEs are expected to have super-Eddington mass
fallback rates (e.g., Strubbe & Quataert 2009), the radiated
luminosity is generally expected to be capped at close to
the Eddington luminosity (Chen & Shen 2018), since higher
luminosities would disrupt the accretion and drive the lu-
minosity back down. Super-Eddington luminosities could be
achieved in two ways: by an anisotropic radiation process, or
by a heating source not directly associated with accretion.

There is evidence that some TDEs can indeed pro-
duce highly anisotropic, relativistic jets (Bloom et al. 2011;
Levan et al. 2011; Cenko et al. 2012; Burrows et al. 2011).
The bright (and variable) X-ray and radio emission from
AT2018cow (see also Ho et al. 2018; Margutti et al. 2018)
suggest a similar phenomenon could be present here as well.
However, the optical radiation which gives rise to our lu-
minosity estimates is unambiguously thermal and not easily
beamed, so anisotropy is unlikely to resolve the conflict.

Alternatively, it is possible that the early UV/optical
emission is related to the circularization process (Piran et al.
2015; Dai et al. 2018), rather than accretion. The sim-
ilarity of the peak luminosity of AT2018cow to other
UV/optical TDEs (Hung et al. 2017) and the expected en-
ergy dissipation rate from the circularization process of
1044(MBH/106M⊙)

−1/6 erg s−1 (Piran et al. 2015) support
this interpretation. The self-intersection radius for debris
streams around a 104 M⊙ black hole is ∼ 5 × 1013 cm
(Wevers et al. 2017), which is a factor of 10 smaller than
the observed photosphere radius for AT2018cow. If the lumi-
nosity is powered by stream-stream intersections, then the
photosphere would engulf both the intersection point and
the black hole. This optically thick reprocessing layer would
need to be in place by the time of our first observations
to explain the colour and luminosity of AT2018cow. This
could be associated with matter blown to larger radii dur-
ing an early wind phase (Jiang et al. 2016; Metzger & Stone
2016).

Further modeling will be needed to examine the be-
haviour of tidal disruptions around IMBHs during the super-
Eddington phase. If even some of the PS1 and DES events
belong to the same class as AT2018cow, there is reason to
believe that these events are reasonably common and the
current generation of fast-cadence optical surveys may find
future examples at similar rates as ordinary, SMBH TDEs.11

6 CONCLUSIONS

Prior to AT2018cow, fast high-luminosity transients were
widely attributed to an extreme variant of the shock-
breakout scenario that has already been widely appealed
to in order to explain a variety of nearby supernovae. To
our surprise, the first real-time detection of a nearby event

11 Super-Eddington-luminosity disruptions by more massive
black holes are also of interest: the transient “Dougie” was slower
than AT2018cow (Figure 10) but was vastly more luminous, and
the preferred TDE model fit by Vinkó et al. (2015) also indicated
a highly super-Eddington luminosity, in this case from a some-
what more massive black hole (Mh = 2.0+13.9

−1.3
× 105M⊙).
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Figure 12. Results from an MCMC fit to the data using
the TDE implementation of MOSFiT (Guillochon et al. 2018;
Mockler et al. 2018). The rising and falling timescales of this
transient, along with the slow temperature evolution, are well-
reproduced by a model involving the disruption of a Solar-type
star around an intermediate-mass black hole (∼ 2 × 104M⊙).

belonging to this empirical class has only deepened the mys-
tery surrounding these events. While the off-nuclear loca-
tion within a star-forming region seems to imply the ex-
plosion of a star as a supernova, the actual observational
properties—including high-velocity absorption in early spec-
tra, a long-lived hot photosphere, a complete lack of narrow
lines during the first week, and luminous X-ray through ra-
dio emission— are all difficult to explain under any existing
supernova model. If nothing else, any stellar explosion must
involve a radically different progenitor structure and/or ex-
plosion mechanism compared to known SNe.

In contrast, disruption by an intermediate-mass black
hole provides an excellent description of the qualitative be-
haviour of the transient and its later-time spectra. However,
the highly super-Eddington luminosity of the transient is a
formidable challenge for IMBH TDE models, and it remains
to be seen whether alternative explanations for the early
heating (e.g. circularization of infalling material) provide an
adequate explanation.

Studies of fast optical transients are still in their infancy,
and there is much more to learn both observationally and
theoretically. While an event as close as AT2018cow may
not be a regular occurrence, its sheer brightness suggests
that others of a similar nature are likely to be observed in
the near future at somewhat greater distances. Samples of
the spatially-resolved galaxy environments, total energetics,
and spectroscopic properties of such events are likely to shed
light on their nature.
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We acknowledge the contribution of Leonid Georgiev and
Neil Gehrels to the development of RATIR.

Based partially on data from the Gemini Observatory,
which is operated by the Association of Universities for Re-
search in Astronomy, Inc., under a cooperative agreement
with the NSF on behalf of the Gemini partnership: the Na-
tional Science Foundation (United States), the National Re-
search Council (Canada), CONICYT (Chile), Ministerio de
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