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ABSTRACT

The accurate prediction of seismic traveltimes is required in 

many areas of seismology, including the processing of seismic 

reflection profiles, earthquake location, and seismic tomography 

at a variety of scales. In this paper, we present two seismic 

applications of a recently developed grid-based numerical scheme 

for tracking the evolution of monotonically advancing interfaces, 

via finite-difference solution of the eikonal equation, known as the 

fast marching method (FMM). Like most other practical grid-based 

techniques, FMM is only capable of locating the first-arrival phase 

in continuous media; however, its combination of unconditional 

stability and rapid computation make it a truly practical scheme 

for velocity fields of arbitrary complexity.

The first application of FMM that we present focuses on the 

prediction of multiple reflection and refraction phases in complex 

2D layered media. By treating each layer that the wavefront enters 

as a separate computational domain, we show that sequential 

application of FMM can be used to track phases comprising any 

number of reflection and transmission branches in media of arbitrary 

complexity. We also show that the use of local grid refinement in 

the source neighbourhood, where wavefront curvature is high, 

significantly improves the accuracy of the scheme with little extra 

computational expense.

The second application of FMM that we consider is in 

the context of 3D teleseismic tomography, which uses relative 

traveltime residuals from distant earthquakes to image wavespeed 

variations in the Earth’s crust and upper mantle beneath a seismic 

array. Using teleseismic data collected in Tasmania, we show that 

FMM can rapidly and robustly calculate two-point traveltimes 

from an impinging teleseismic wavefront to a receiver array 

located on the surface, despite the presence of significant lateral 

variations in wavespeed in the intervening crust and upper mantle. 

Combined with a rapid subspace inversion method, the new FMM 

based tomographic scheme is shown to be extremely efficient and 

robust.

INTRODUCTION

One of the classic problems in seismology is to accurately and 

robustly predict the traveltime and path of seismic energy between 

two points within a laterally heterogeneous 2D or 3D medium. 

Traditionally, this has been solved using geometric ray tracing 

based on a shooting or bending approach. Shooting methods of ray 

tracing (e.g., Julian and Gubbins, 1977; Sambridge and Kennett, 

1990; Rawlinson et al., 2001) formulate the ray equation as an 

initial value problem that allows a complete ray to be traced if 

the source trajectory is specified. The boundary value problem 

of locating the required two-point path is then solved using an 

iterative update procedure. The bending method of ray tracing 

(e.g., Julian and Gubbins, 1977; Um and Thurber, 1987; Grechka 

and McMechan, 1996) iteratively adjusts the geometry of an initial 

arbitrary path that joins source and receiver until it becomes a true 

ray path (i.e., it satisfies Fermat’s principle).

The principal drawbacks of ray tracing are related to robustness, 

speed, and ray selection. In the presence of even small velocity 

variations, both shooting and bending methods may fail to 

converge; this lack of robustness increases with the complexity of 

the medium. Ray tracing can also be a time-consuming process, 

particularly in the presence of a large number of sources and/or 

receivers. The final difficulty, that of ray selection, results from 

the potential existence of multiple two-point paths. Both shooting 

and bending methods do not necessarily converge to a global-

minimum solution (i.e., the first arrival), and often it can be 

difficult to ascertain which arrival has been located.

A more recently developed and increasingly popular class of 

method, particularly in the exploration industry, for predicting 

traveltimes in complex media is to seek finite-difference solutions 

to the eikonal equation throughout a gridded velocity field 

(e.g., Vidale, 1988; van Trier and Symes, 1991; Hole and Zelt, 

1995; Buske and Kästner, 2004). Although this class of scheme 

is restricted to locating first arrivals only, the complete traveltime 

field can usually be computed extremely rapidly, which allows two-

point traveltimes, ray paths, and wavefront geometry to be easily 

extracted. The main drawback of finite-difference eikonal solvers 

is that they often suffer from stability problems; in particular, the 

progressive integration of traveltimes along an expanding square, 

which is commonly used to compute the traveltime field, has 

the potential to breach causality in the presence of large velocity 

gradients (Qin et al., 1992). However, recent developments with 

essentially non-oscillatory (ENO) finite difference schemes (e.g., Kim 

and Cook, 1999) have helped to address this shortcoming.

The problem of calculating traveltimes to every point on a grid 

can be posed in terms of tracking the evolution of a monotonically 

advancing interface (e.g., a first-arrival seismic wavefront) that 

propagates throughout the medium from the source. The need to 

track an advancing interface is not limited to seismic wavefronts; 

many other areas of science require this problem to be solved. A 

recently introduced technique called the fast marching method or 

FMM (Sethian, 1996; Sethian and Popovici, 1999) was developed 

 Research School of Earth Sciences

 Australian National University

 Canberra ACT 0200

 Australia

 Phone: (02) 6125 0339

 Facsimile: (02) 6257 2737

 Email: nick@rses.anu.edu.au

 Presented at the 17th ASEG Geophysical Conference & Exhibition,  

 August 2004.  

 Revised manuscript received 9 June, 2005.

341Exploration Geophysics (2005) Vol 36, No. 4

Exploration Geophysics (2005) 36, 341–350



with this in mind. To date, FMM has been applied to a wide variety 

of problems including optimal path planning, medical imaging, 

geodesics, and photolithographic development (Sethian, 1999, 

2001). In seismology, FMM has been used in the migration of 

coincident reflection profiles (Popovici and Sethian, 2002).

FMM is a grid-based numerical algorithm which tracks an 

evolving interface along a narrow band of nodes that are updated 

by solving the eikonal equation using upwind entropy satisfying 

finite-difference approximations to the gradient vector. The scheme 

distinguishes itself from other eikonal solvers by combining 

unconditional stability (i.e., it always converges to the true 

solution as grid spacing is decreased) with rapid computation. The 

unconditional stability of FMM comes from properly addressing 

the development and propagation of gradient discontinuities in the 

evolving wavefront.

In this paper, we briefly describe the basic FMM method before 

demonstrating its use in two practical seismic applications. The first 

application involves tracking wavefronts composed of any number 

of reflection and transmission branches in strongly heterogeneous 

layered media. In order to track this class of multiple, we treat each 

layer that the wavefront enters as an independent computational 

domain. Thus, a wavefront is propagated through a layer until it 

impinges on all points of an interface. From here, a transmitted 

or refracted branch can be tracked by re-initialising FMM from 

the narrow band of interface nodes into the adjacent layer, and 

a reflected branch can be obtained by re-initialising FMM in 

the incident layer. Wavefronts composed of any number of 

reflection and transmission branches can therefore be assembled 

by using this multi-stage approach. Four examples are presented to 

demonstrate the speed, accuracy, and stability of this new scheme 

for calculating later-arriving phases.

The second application we present is in 3D tomographic 

imaging using teleseismic sources. This class of problem typically 

requires thousands of traveltimes to be predicted in the presence 

of significant lateral variations in wavespeed; as mentioned 

previously, conventional ray tracing methods are not always 

robust in such circumstances. The tomographic imaging method 

that we develop uses FMM to solve the forward problem of 

predicting the traveltime residual pattern for each source, and a 

subspace inversion scheme to solve the inverse problem. In order 

to account for the non-linearity of the inverse problem, the forward 

and inverse steps are applied iteratively. To verify the efficiency, 

robustness, and practicality of the new method, we apply it both to 

synthetic and observational data.

THE FAST MARCHING METHOD

The basic FMM method for continuous velocity media is 

briefly described below; for more details, refer to Sethian (1996), 

Sethian (1999), and Rawlinson and Sambridge (2004). The eikonal 

equation, which governs the propagation of seismic waves in the 

high-frequency limit, may be written:

                                       (1)

where ∇
x
 is the gradient operator, T is traveltime, and s(x) is 

slowness as a function of position x. A significant obstacle for 

finite-difference methods that seek to solve the eikonal equation 

for the first-arrival traveltime field is that the wavefront may 

be discontinuous in gradient. This occurs when the wavefront 

self-intersects (multi-pathing) but later-arriving information is 

discarded. The eikonal equation cannot be easily solved in the 

presence of gradient discontinuities because the equation itself 

requires ∇
x
T to be defined. FMM deals with this difficulty by 

enforcing an entropy condition, stated by Sethian and Popovici 

(1999) as “once a point burns, it stays burnt”: information can 

only be lost (or retained in the absence of multi-pathing) as the 

wavefront evolves because it can only pass through a point once. 

The unconditional stability of FMM comes from strict enforcement 

of this condition.

The entropy satisfying upwind scheme we employ is one that 

has been used by a number of authors including Sethian and 

Popovici (1999), Chopp (2001), and Popovici and Sethian (2002), 

and may be written:

(2)

                        

where (i, j, k) are Cartesian grid increment variables in (x, y, z), and 

the integer variables a, b, c, d, e, f define the order of accuracy of 

the upwind finite-difference operator used in each of the six cases. 

For example, the first two upwind operators for D–xT
i
 are:

(3)

                             

where δx is the grid spacing in x. Which operator is used in 

equation (2) depends on the availability of upwind traveltimes 

and the maximum order allowed. First-order schemes only use D
1
 

operators, second-order schemes preferentially use D
2
 operators 

but revert to D
1 

if T
i-2

 is unavailable (e.g., near a point source). 

Mixed order schemes using higher order operators such as D
3
 may 

also be devised.

Equation 2 describes the finite difference scheme for updating 

the traveltime associated with a particular grid point. Successful 

implementation of this scheme requires that the order in which 

nodes are updated be consistent with the direction of flow of 

information; that is, from smaller to larger values of T. FMM 

achieves this by systematically constructing traveltimes in a 

downwind fashion from known values upwind using a narrow-band 

approach. The narrow band concept is illustrated in Figure 1. All 

grid points are labelled as either Alive, Close or Far. Alive points 

lie upwind of the narrow band and have correct traveltime values; 

Close points lie within the narrow band and have trial values 

calculated using equation 2 with Alive points only; Far points 
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Fig. 1. Principle of the narrow band method for tracking the first 
arrival wavefront. See text for more details.



lie downwind of the narrow band and have no traveltime values 

calculated. The narrow band is evolved by identifying the Close 

point with minimum traveltime (using a heap sort algorithm), 

tagging it as Alive, and then tagging all neighbouring Far points 

as Close. Finally, all Close points adjacent to the new Alive point 

have their traveltimes updated using equation 2. The shape of the 

narrow band approximates the shape of the first arrival wavefront, 

and the idea is to propagate the band through the grid until all 

points become Alive. The use of a heap sort algorithm means that 

FMM has an operation count of O(NlogN) where N is the total 

number of grid points. The fact that the computational cost scales 

with grid size in this way is responsible for the overall efficiency 

of FMM.

Point Source Error Minimisation

A point source is an upwind singularity of the traveltime field 

and can be a major contributor to FMM traveltime error because 

of high wavefront curvature and limited (first-order) accuracy in its 

vicinity. A variety of methods have been proposed to address this 

problem, which afflicts most grid-based eikonal solvers, including 

using a spherical grid centred on each source point (Alkhalifah and 

Fomel, 2001); local grid refinement in the source neighbourhood 

(Kim and Cook, 1999); adaptive gridding with grid refinement 

and coarsening based on a posteriori error estimation (Qian and 

Symes, 2002).

The approach we use for minimising error in the source 

neighbourhood is based on specifying a finely spaced grid in the 

vicinity of the source and a coarser grid away from the source, 

making it similar to the method advocated by Kim and Cook 

(1999), who use an ENO scheme to solve the eikonal equation. 

In their approach, the traveltime field is computed along an 

expanding box; in our case, the traveltime field is computed along 

an expanding wavefront, which means that the computational front 

may pass from the coarse grid back into the finer grid if the local 

grid about the source is defined by a rectangular region. This can 

produce numerical instabilities (see Sethian, 1999). To overcome 

this problem, we define a rectangular grid of refined nodes about 

the source, but downsample the computed traveltime field to the 

coarse grid spacing when the first node on the edge of the refined 

grid becomes Alive (see Figure 2). As a result, the true edge of the 

refined grid will conform to the shape of the narrow band, so that 

information only flows out of the refined grid and never back into 

it. This approach to local grid refinement ensures that the stability 

of FMM is not compromised.

APPLICATION TO COMPLEX LAYERED MEDIA

The Multi-Stage FMM

In a layered medium with undulating interfaces, a purely regular 

grid is no longer suitable for describing structural variations. 

Instead, we define velocity on a regular grid, and then use an 

adaptive triangular mesh to suture interface nodes to neighbouring 

velocity nodes, as illustrated in Figure 3. Interface nodes are 

defined by the intersection points of the interface (defined by 

cubic B-splines in our examples) with the cell boundaries of the 

rectangular velocity grid. Within this framework, the irregular 

mesh is constructed so that (1) triangles do not span more than 

one rectangular velocity cell or pass through the interface, and (2) 

the presence of obtuse triangles is minimised. Equation 2 is used 

to update grid points in the regular mesh, and a first-order accurate 

scheme for triangular elements is used to evolve the wavefront 

through the irregular mesh. Further details of the irregular mesh 

scheme can be found in Rawlinson and Sambridge (2004).

To understand how FMM can be used to track more than one 

arrival, consider Figure 4a, which shows a wavefront emanating 

from a point source and impinging upon an interface. Rather 

than continuing to propagate through to the adjacent layer, the 

wavefront is only tracked as far as the interface, which is treated 

as one of four boundaries of the computational domain. Once all 

points contained in the layer are Alive, the narrow band ceases to 

exist and the FMM process is terminated. The next step is to track a 

transmitted or reflected wavefront using the traveltime information 
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Fig. 2. Implementing grid 
refinement in the source 
neighbourhood. When the 
narrow band (thick grey 
line) reaches the boundary 
of the refined grid, it is 
mapped onto the coarse 
grid (denoted by triangles) 
before continuing to evolve.

Fig. 3. Interface nodes (black triangles) are locally sutured to adjacent 
velocity nodes (grey dots) via a triangular mesh (dashed black line). 
The thick grey line represents the actual interface.



we have obtained as a starting point. This can be done by using 

interface node traveltimes only, as they store sufficient information 

for first-order accurate estimates of traveltimes to neighbouring 

nodes. The complete set of interface nodes is therefore used as 

the starting narrow band for the next FMM stage, as illustrated 

in Figure 4b. The fact that this narrow band will not in general 

conform to the shape of the wavefront will not compromise the 

integrity of the scheme because the wavefront is not permitted to 

reflect from or transmit through an interface more than once in a 

single FMM step.

From the initial narrow band described by the set of interface 

nodes, a reflected wavefront can be tracked by setting all nodes 

within the incident layer to Far, and re-starting FMM (see Figure 

4c). A transmitted wavefront is tracked in the same manner, 

except that only nodes in the adjacent layer are set to Far, so 

that the wavefront continues to propagate into the next layer (see 

Figure 4d) rather than reflecting back into the incident layer. 

A transmitted wavefront can also be obtained by passing the 

wavefront through an interface in a single FMM iteration; in this 

case, the wavefront may transmit through the interface more than 

once. The basic approach of partitioning each layer into separate 

computational domains as the wavefront evolves can be repeated 

any number of times to track any required phase. Significantly, 

memory resources are proportional to the number of nodes within 

a layer, not the total number of nodes traversed by the wavefront. 

Consequently, the number of bounces and transmissions that can 

be tracked is limited by CPU time only. 

In practice, the total energy carried by 

the wavefront decreases monotonically 

with time, so the modelling of real 

observations is unlikely to require that 

phases composed of large numbers of 

reflection and transmission branches 

be tracked.

Relatively few previous studies have 

attempted to compute later-arriving 

phases using grid-based eikonal solvers. 

Podvin and Lecomte (1991) show 

that first-arriving head waves, which 

often have small amplitude, can be 

suppressed by making the underlying 

high-velocity layer a masking layer 

with zero velocity. This allows the 

later-arriving phase from an overriding 

lower-velocity layer to be tracked. 

Podvin and Lecomte (1991) also find 

reflections by tracking the first-arrival 

traveltime fields from both the source 

and receiver to the entire interface. 

Valid reflection points along the 

interface can then be identified using 

Fermat’s principle of stationary time. 

Narrow band of Close points

Wavefront tracked to interface

traveltime surface

Source

Reflected wavefront initialized from

traveltime surface
Transmitted wavefront initialized from

Set to Alive for transmissionSet to Far for reflection

Set to Far for transmissionSet to Alive for reflection

(a)

(b)

(c) (d)

Fig. 4. Principle behind the tracking of reflection and transmission 
traveltimes. The incident wavefront is tracked to all points on the 
wavefront, before FMM is reinitialised in the incident (for reflection) 
or adjacent (for transmission) layer.

RMST =14.06 s

1000 m

500 m

250 m

125 m

(g) (h)

(e) (f)

(d)(c)

(b)(a)
Incident wavefront Reflected wavefront

Snapshot of complete wavefront Ray paths

1st order scheme

2nd order scheme 2nd order scheme with
source grid refinement
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250 m

125 m

1000 m

500 m

250 m
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wavefront
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source grid refinement

Fig. 5. Tracking of a single reflection 
arrival through a medium containing 
a single interface. Wavespeed varies 
linearly with depth within a layer, so 
each ray path segment is described by a 
circular arc. Wavefronts are plotted at 
0.4 s intervals in all cases. Receivers are 
denoted by grey triangles and the source 
by a dark grey star. (a)–(d) Wavefronts 
and rays; (e)–(h) traveltime accuracy of 
four different schemes using four different 
grid sizes (1000 m, 500 m, 250 m, 125 m). 
See also Table 1.
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Although multiple reflection points can be found for each source-

receiver pair, the clear drawback is that a traveltime field must be 

computed for each source and each receiver. Hole and Zelt (1995) 

overcome this problem by using a local plane wave approximation 

and Snell’s Law in the neighbourhood of an interface to track 

the reflecting wavefront. However, strong wavefront or reflector 

curvature will degrade the accuracy of this scheme.

The tracking of later arrivals using eikonal methods has also 

been considered in the context of seismic migration. Zhao et al. 

(1998) generalise the approach of Podvin and Lecomte (1991), 

to improve Kirchhoff diffraction mapping using a limited class of 

later arrivals. Manuel and Uren (2000) perform pre-stack depth 

migration of seismic multiples by extending the work of Zhao et 

al. (1998) to permit the calculation of reflections. This is achieved 

by implementing the so-called generalised exploding reflector 

model or GERM (see also Manuel et al., 2001). The principle 

of GERM is to explode a series of equally spaced point sources 

along a reflector with explosion times equal to the incident time 

of the impinging wavefront. The correct shape of the reflected 

wavefront is then obtained by selecting only the first-arrival from 

all exploding sources using Huygens’ principle. Although the 

implementation of GERM is quite different to our multi-stage 

FMM scheme, the principle behind the evolution of a reflecting 

wavefront from an interface is similar.

Examples

Four examples are presented to assess the viability of FMM 

for predicting the traveltimes of phases comprising multiple 

reflection and transmission branches in complex 2D layered 

media. In these examples, the velocity fields and interfaces are 

described using cubic B-spline functions, which are controlled by 

separate sets of velocity and interface vertices. Discrete sampling 

of these functions, which are continuous in curvature, is easily 

accomplished for any specified resolution. When grid refinement 

in the source neighbourhood is applied, we use a refined grid that 

extends 10 coarse node points horizontally and vertically from the 

source and has a fivefold decrease in node spacing. We found that 

increasing the area of the refined grid and decreasing the node 

spacing has only a marginal effect on the accuracy of the computed 

traveltimes.

The first example (see Figure 5) consists of a single reflection 

from an undulating surface that lies within a velocity field with 

a constant vertical gradient of 0.04 s-1. This phase is tracked by 

invoking FMM twice: once for the incident wavefront (Figure 5a), 

and once for the reflected wavefront (Figure 5b). A snapshot of 

the complete wavefront, which is obtained by stitching together 

matching isochrons from both the incident and reflected traveltime 

fields, is shown in Figure 5c. Source receiver ray paths (Figure 

5d) are obtained a posteriori by following the direction of steepest 

descent from each receiver through the traveltime field to the 

source.

Because of the undulating interface, the velocity model of 

Figure 5 is too complex to allow analytic solutions. Therefore, in 

order to analyse the accuracy of FMM, highly accurate two-point 

traveltimes are obtained using a shooting method of ray tracing 

(Rawlinson et al., 2001). This scheme uses analytic solutions in the 

presence of constant velocity gradients, and allows the accuracy 

of ray-interface intersection points to be controlled, in addition to 

the distance between receiver and ray end-point. In the following 

comparison, the ray interface intersection points are accurate to 

0.5 mm and the ray-receiver intersection points are accurate to 

5 mm. Such small values will result in ray tracing traveltimes that 

for our purposes can be considered exact.

Figures 5e–5h show error plots for four different FMM schemes 

with velocity grid spacings of 1000 m, 500 m, 250 m and 125 m. 

The error estimates are equal to the difference between the FMM 

solution and the ray tracing solution at each of the 21 receivers. 

Table 1 shows the RMS errors for the four different schemes 

with the four grid sizes that are plotted, but also includes grid 

sizes of 62.5 m and 31.25 m (not included in Figures 5e–5h for 

clarity). CPU times (on a 1.6 Ghz Opteron PC, running Linux) 

for each of these calculations are also shown. The first-order 

scheme (Figure 5e) exhibits first-order convergence; the only slight 

increase in accuracy achieved by including grid refinement about 

the source (Figure 5f) suggests that near-source errors are not 

principally responsible for overall error. The second-order scheme 

(Figure 5g) is significantly more accurate than both of the first-

order schemes. With the addition of local grid refinement about 

the source (Figure 5h), the scheme becomes much more accurate 

again and the convergence improves. This suggests that errors in 

the source neighbourhood dominate the overall error of the second-

order scheme. A comparison of errors and CPU times (Table 1) 

clearly suggest that the most efficient scheme is the second order 

scheme with grid refinement about the source. In fact, to achieve 

the same accuracy with a first-order scheme, approximately three 

orders of magnitude more computation time is required.

The second example (Figure 6) shows a multiple tracked 

through a structure composed of two layers overlying a half-space; 

unlike the previous example, both the interfaces and the layer 

velocities vary laterally. In order to track this multiple, FMM is 

invoked four times, as suggested by the schematic of Figure 6a. 

Each component of the wavefield is shown in Figures 6b–6e. A 

Grid 

spacing

(m)

Number of

grid points

RMS error (ms) CPU time (s)

1st O. 1st O.R. 2nd O. 2nd O.R. 1st O. 1st O.R. 2nd O. 2nd O.R.

1000 4141 243.1 181.3 48.7 10.1 0.01 0.02 0.01 0.02

  500 16281 142.2 111.4 23.2 3.5 0.04 0.05 0.03 0.05

  250 64561 81.3 65.9 11.4 1.5 0.17 0.17 0.18 0.19

  125 257121 45.7 38.0 5.5 0.5 0.70 0.71 0.76 0.79

    62.5 1026241 25.3 21.5 2.7 0.2 3.15 3.23 3.41 3.59

 31.25 4100481 13.9 12.0 1.3 0.1 13.67 14.22 15.09 15.58

Table 1. Summary of results involving a single reflection from an undulating interface and no lateral velocity variations within each layer (see 
Figure 5). 1st O. = first order scheme; 1st O.R. = first order scheme with local grid refinement in the source neighbourhood; 2nd O. = second order 
scheme; 2nd O.R. = second order scheme with local grid refinement in the source neighbourhood. CPU times are for a 1.6 GHz Opteron PC, running 
Linux.
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snapshot of the complete wavefield is shown in Figure 6f, and ray 

paths to all 21 receivers are shown in Figure 6g. It is interesting to 

note that discontinuities in wavefront curvature pose no problem 

to the multi-stage FMM. For example, the wavefield in Figure 6d 

exhibits an evolving discontinuity at about x = 65 km, with no 

sign of instability. In Figure 6e, the same discontinuity has been 

reflected, and again, there are no apparent signs of instability. 

Earlier schemes for solving the eikonal equation would have 

difficulty with this complexity of wavefront evolution.

The accuracy of the multi-stage scheme for the Figure 6 

example cannot be analysed in the same way as Figure 5, because 

the ray-tracing scheme cannot track multiples. In addition, the 

presence of laterally varying velocity layers means that any ray-

tracing scheme would have difficulty achieving high accuracy and 

guaranteeing the location of the first arrival of the multiple that is 

tracked. Instead, we appeal to the numerical stability of FMM, as 

exhibited in the first example, and use the solution calculated with 

the second-order scheme with grid refinement about the source 

on a 31.25 m grid as a proxy for the exact solution. As Figures 

6h–6k and Table 2 show, the four different schemes exhibit similar 

behaviour to the Figure 5 example as the grid size is reduced, and 

it is clear that the second order scheme with grid refinement in 

the source neighbourhood offers the best compromise between 

computational speed and accuracy.

One of the classical problems in seismic refraction and wide-

angle reflection analysis is the prediction of observed refraction 

and reflection branches in the presence of undulating interfaces 

separating layers containing lateral variations in wavespeed. 

Although shooting and bending methods of ray tracing are often 

used to solve this class of problem (e.g., Zelt and Smith, 1992), 

they can encounter difficulties even when lateral variations are 

small. For example, refracted rays near the critical angle can be 

difficult to compute because the variation in ray take-off angle with 

the location of the ray end-point is highly non-linear. Additional 

difficulties include the accurate tracking of head waves, and 

consistent identification of the same branch of a triplicated reflection 

caused by variations in interface topography. The multi-stage FMM 

scheme overcomes all of these problems because it computes the 

complete traveltime field, always tracks the first arrival within each 

computational domain, and is unconditionally stable.

Fig. 6. Tracking a multiple through a layered medium with laterally varying interface structure and velocity. Wavefronts are plotted at 0.4 s intervals 
in all cases. (a) Structure of the multiple that is tracked; (b)–(e) each of the four branches of the wavefield; (f), (g) snapshot of complete wavefront 
and corresponding ray paths; (h)–(k) traveltime accuracy of four different schemes using four different grid sizes (1000 m , 500 m, 250 m, 125 m). 
See also Table 2.
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Figure 7 shows an example using a similar velocity model to 

Figure 6, except that the lateral variations in structure are slightly 

more muted and the velocity contrasts across the interfaces are 

slightly larger. This has been done simply to make the plotting 

of different traveltime curves easier to understand. For the given 

model, the phases that are typically identified from a refraction 

section are P (direct arrival), P
1
 (refraction from below first 

interface), P
2
 (refraction from below second interface), P

1
P 

(reflection from top interface) and P
2
P (reflection from bottom 

interface), as shown in Figure 7a. The multi-stage FMM scheme 

can be used to track each of these phases, and construct their 

complete traveltime curves, as shown in Figure 7b. Note the 

Fig. 7. Predicting the traveltime curves of five different crustal phases. 
(a) An example ray of each of the five phases; (b) traveltime curves for 
the five phases shown on a reduced traveltime plot.

Grid 

spacing

(m)

Number of

grid points

RMS error (ms) CPU time (s)

1st O. 1st O.R. 2nd O. 2nd O.R. 1st O. 1st O.R. 2nd O. 2nd O.R.

 1000 4141 278.4 218.1 53.12 15.4 0.02 0.02 0.03 0.04

   500 16281 170.3 135.8 18.9 5.4 0.07 0.08 0.08 0.10

   250 64561 98.5 81.0 8.8 2.2 0.28 0.29 0.31 0.33

   125 257121 55.7 47.0 4.5 0.6 1.14 1.15 1.26 1.31

      62.5 1026241 30.7 26.4 2.2 0.3 5.11 5.30 5.73 5.99

 31.25 4100481 16.8 14.6 1.2 *** 23.48 24.23 26.36 26.90

Table 2. Summary of results involving a four-fold multiple in a medium containing two interfaces and lateral velocity variations within layers (see 
Figure 6). 1st O. = first order scheme; 1st O.R. = first order scheme with local grid refinement in the source neighbourhood; 2nd O. = second order 
scheme; 2nd O.R. = second order scheme with local grid refinement in the source neighbourhood. CPU times are for a 1.6 GHz Opteron PC, running 
Linux. 

*** = Reference traveltime used for error estimate

Fig. 8. Tracking a 10-fold multiple through a complex layered medium. 
(a) Structure of the multiple; (b) snapshot of the complete wavefront 
(plotted at 0.4 s intervals); (c) ray paths from the source to 21 receivers 
located on the surface.
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complexity of each of the two triplications formed by P, P
1
 and 

P
1
P, and P

1
, P

2
 and P

2
P; ray tracing schemes would be hard 

pressed to accurately predict the traveltime curves in these regions. 

Additional phases, such as multiples, can easily be added to the 

traveltime curve plot, and increasing the complexity of the medium 

poses no difficulty to the multi-stage FMM scheme.

The final example (Figure 8) demonstrates that FMM is capable 

of tracking phases composed of any number of refraction and 

reflection branches in media of virtually any complexity. Figure 

8a schematically illustrates the 10 branches of a complex phase 

that we attempt to track. Figures 8b and 8c show the almost 

pathological variations in interface structure (up to 15 km changes 

in relief over horizontal distances of 10 km) and wavespeed (lateral 

velocity contrasts as great as 8:1) that the multi-stage FMM has to 

deal with. Figure 8b shows a snapshot of the evolving wavefront, 

which exhibits many propagating gradient discontinuities. Source-

receiver ray paths are shown in Figure 8c; it would be safe to say 

that conventional ray tracing schemes would be unable to locate 

such complex two-point paths. The trade-off between accuracy and 

CPU time for this example using different schemes and grid sizes 

is not shown, but exhibits similar behaviour to the two previous 

examples. An important point to note in Figure 8c is that the ray 

paths tend to favour the fast region of the model; this is because 

only the first arrival is tracked within a single computational 

domain. This means that the energy carried by the wavefront 

decreases monotonically with time, and that in practice, phases 

such as the one tracked in Figure 8 would probably not be visible 

on any seismic record.

The above examples illustrate that FMM can be successfully 

applied in the presence of complex layered media to track phases 

composed of any number of reflection and transmission branches. 

The second order scheme with source grid refinement clearly 

offers the optimum trade-off between CPU time and accuracy. The 

computational efficiency and robustness of the multi-stage FMM 

makes it a valuable tool for the analysis of refraction or coincident 

reflection data; for instance, to remove multiples or in the forward 

step of a traveltime inversion for crustal structure.

APPLICATION TO 3D SEISMIC TRAVELTIME 

TOMOGRAPHY

FMM in Spherical Coordinates

The following example images a region of Tasmania at a scale 

that requires the Earth’s sphericity to be accounted for. Therefore, 

the scheme for updating grid points defined by equations (2) and 

(3) needs to be modified for spherical coordinates. In practice, this 

can be done most simply by reformulating the operators defined 

in equation (3) and keeping equation (2) unchanged. In spherical 

coordinates, the first-order upwind difference operators for D
i
–r, 

D
j
–θ, D

i
–ϕ are:

(4)

                                    

where δr, δθ, δϕ are the grid spacing in depth, co-latitude and 

longitude, respectively. The equivalent expressions for the second 

order upwind operators are:

(5)

                           

Use of these operators makes converting from Cartesian to 

spherical coordinates a relatively straightforward task, as the 

remainder of the scheme remains essentially unchanged.

Example

The following example makes use of TIGGER data (Rawlinson 

and Kennett, 2004) collected by the Seismology Group at the 

Research School of Earth Sciences, Australian National University. 

The TIGGER experiment is a multifaceted seismic experiment, 

the field component of which was carried out in Tasmania and 

southern Victoria in 2001/2002. As part of this experiment, an 

array of 64 short period and 8 broadband seismometers with a 

15 km spacing was deployed in northern Tasmania for a period 

of 5 months to record distant (teleseismic) earthquakes. To date, 

relative traveltime residuals (Rawlinson and Kennett, 2004) from 

100 events from regions such as Indonesia, Japan, the Philippines, 

Papua New Guinea, New Zealand, Fiji, South Sandwich Islands 

etc. have been picked. The complete data set comprises nearly 

6000 P-wave traveltime residuals.

3D teleseismic traveltime tomography involves mapping the 

traveltime residuals as lateral variations in seismic wavespeed 

in the Earth’s crust and upper mantle. Usually, this is done by 

specifying a model region beneath the seismic array within which 

3D variations in wavespeed are permitted (e.g., Humphreys and 

Clayton, 1990; Steck et al., 1998; Graeber et al., 2002); outside 

this region, the Earth is assumed to be spherically symmetric. 

This allows traveltimes for any of the major global phases to be 

rapidly computed to the edge of the model region using a reference 

model such as ak135 (Kennett et al., 1995). However, traveltimes 

within the local model beneath the array are usually computed 

using 3D ray tracing (e.g., vanDecar et al., 1995). This can be 

very time consuming for large datasets involving many source-

receiver pairs, and if iterative non-linear inversion methods are 

used to adjust the model parameters to satisfy the data, then the 

forward problem of predicting traveltime residual patterns must be 

repeated many times. In addition, methods such as ray tracing are 

not robust, and in the presence of even mild lateral heterogeneities, 

it is possible that a small but significant subset of traveltimes will 

not be predicted.

Here, for the first time, we examine the use of FMM in 3D 

seismic traveltime tomography. By combining computational 

stability and robustness, FMM guarantees the rapid prediction 

of all observed traveltimes. Unlike the previous examples which 

examined refraction and reflection phases in crustal models, 

FMM is not initiated from a point source, because distant 

Local
3−D model

Receiver array

Distant earthquake
1−D Earth structure

Fig. 9. Illustration of the teleseismic tomography principle. A local 
model volume containing 3D variations in velocity is defined beneath 
the receiver array. Outside this region, the Earth is assumed to be 
spherically symmetric.
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where d
obs

 are the observed traveltime residuals, g(m) are the 

predicted residuals, m
0
 is the reference model (ak135), C

d
-1 is 

the a priori data covariance matrix, C
m

-1 is the a priori model 

covariance matrix, and ε is the damping parameter. The first 

term on the right-hand side of equation (6) aims to find a model 

which satisfies the data; the second term is a regularisation term 

which penalises models which differ too greatly from the initial or 

reference model (see Rawlinson and Sambridge, 2003, for more 

details). We minimise equation (6) using an iterative non-linear 

approach, which successively uses a second order FMM scheme 

to solve the forward problem of predicting traveltime residuals, 

and a subspace inversion method (Kennett et al., 1988) to solve the 

inverse problem of adjusting the model parameters to satisfy the 

data and regularisation constraints.

The 3D tomographic imaging scheme outlined above is used 

to construct a preliminary image of the lithosphere beneath 

northern Tasmania from 5938 traveltime residuals. The 3D 

model is parameterised using 9996 velocity nodes (approximately 

15 km separation in each dimension), and six iterations of a 10-D 

subspace inversion method are used to minimise the objective 

function. The complete calculation takes only 8.5 minutes on a 

1.6 GHz Opteron workstation, running Linux. This is extremely 

rapid for the iterative non-linear solution of a 3D tomographic 

imaging problem, and makes practical the detailed analysis of 

solution robustness based on repeated tests.

Figures 10 and 11 show two slices through the solution model. 

In addition to the model derived from the TIGGER observations, 
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Fig. 10. Horizontal slices through (a) the synthetic checkerboard 
model; (b) recovered checkerboard model; (c) the TIGGER solution 
model, at 20 km depth. Velocity variations are plotted as perturbations 
from ak135.

Fig. 11. Vertical E-W slices through (a) the synthetic checkerboard 
model; (b) recovered checkerboard model; (c) the TIGGER solution 
model, at 41.2° S. Velocity variations are plotted as perturbations from 
ak135.
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traveltimes are computed to the bottom face of the local model 

using a global reference model (ak135 in this case), as shown 

schematically in Figure 9. Therefore, the same principle that we 

used previously to initiate FMM from an interface can be applied, 

and no local grid refinement is required. We use cubic B-spline 

functions to parameterise the local model volume; discretisation 

of these continuous functions to a 3D mesh of points through 

which the traveltime field is calculated is straightforward and 

computationally efficient.

The inverse problem in tomography is to adjust the values 

of the model parameters in order to satisfy the data, subject 

to regularisation constraints. In our case, the data are relative 

traveltime residual patterns, and the unknowns are the grid of 

vertices that control the pattern of the B-spline velocity field. In 

order to solve this problem, we formulate the inverse problem as 

an optimisation problem, where an objective function S(m), where 

m is the vector of unknowns, is minimised. The objective function 

is defined in this case by:

               S(m) = (g(m) – d
obs

)C
d
–1(g(m) – d

obs
)T +

                         + ε(m – m
0
)C

m
–1(m – m

0
)T  , (6)



the results of a synthetic checkerboard test are also shown, 

which reflect the resolving power of the data. The test works by 

constructing a synthetic model, using FMM to predict the residual 

pattern for the distribution of events that produce the observed data, 

and then applying the tomographic imaging routine to the synthetic 

data in order to reconstruct the synthetic model. Figure 10a shows a 

slice through the synthetic checkerboard at 20 km depth, and Figure 

10b shows the reconstruction. At this depth, ray coverage outside 

the horizontal bounds of the array is not significant, which explains 

why the checkerboard is not recovered in this region. However, the 

recovery is excellent beneath the array, which both demonstrates 

that ray coverage is good and that the inversion scheme is working 

correctly. The solution model obtained from real data is shown 

in Figure 10c. A vertical E-W slice taken at 41.2° S through the 

synthetic checkerboard, recovered checkerboard, and TIGGER 

model are shown in Figures 11a, 11b, and 11c respectively. 

Although there is some smearing present in Figure 11b, the pattern 

of synthetic anomalies is generally well recovered.

Interpretation of the TIGGER model will be the subject of 

a future paper, as we only wish to demonstrate the viability of 

FMM in the forward step of a 3D tomographic inversion problem. 

However, the velocity distribution that is recovered shows promise 

in helping to unravel the deep geology and tectonic evolution of 

the Tasmanian region. Of particular significance is the distinct 

E-W pattern of fast – slow – fast anomalies in the deep crust 

(Figure 10c). Although we have demonstrated the viability of FMM 

in teleseismic tomography, our results are equally applicable to 

other classes of tomography, such as local earthquake tomography 

and refraction tomography.

CONCLUSIONS

FMM is a fast and unconditionally stable grid-based scheme 

for directly solving the eikonal equation using finite differences. 

Originally developed in the field of computational mathematics, it 

has only seen limited application in the seismology community to 

date. In this paper, we show it to be a highly effective method for 

determining the traveltimes of phases composed of any number 

of reflection and transmission branches in complex laterally 

heterogeneous velocity media. The use of grid refinement in 

the neighbourhood of a source point and higher order operators 

results in dramatic improvements in accuracy compared to the 

original first order scheme, and helps make the multi-stage 

FMM for layered media an extremely effective tool for seismic 

refraction and reflection analysis. We also show that the speed 

and robustness of FMM can be used to great effect in large 3D 

tomographic inversion problems. In particular, an iterative non-

linear teleseismic tomography problem involving nearly 10 000 

unknowns and 5938 ray paths is solved in less than 10 minutes on 

a standard workstation.
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