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The Fast Multipole Method (FMM) for Electromagnetic Scattering Problems

Abstract

The fast multipole method (FMM) was developed by Rokhlin to solve acoustic scattering problems very
efficiently. We have modified and adapted it to the second-kind-integral-equation formulation of
electromagnetic scattering problems in two dimensions. The present implementation treats the exterior
Dirichlet (TM) problem for two-dimensional closed conducting objects of arbitrary geometry. The FMM

reduces the operation count for solving the second-kind integral equation (SKIE) from O(n3) for Gaussian

elimination to O(n4/3) per conjugated-gradient iteration, where nis the number of sample points on the
boundary of the scatterer. We also present a simple technique for accelerating convergence of the
iterative method: "complexifying” k, the wavenumber. This has the effect of bounding the condition
number of the discrete system; consequently, the operation count of the entire FMM (all iterations)

becomes O(n4/3). We present computational results for moderate values of ka, where a is the
characteristic size of the scatterer.
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The Fast Multipole Method (FMM) for
Electromagnetic Scattering Problems

Nader Engheta, Senior Member, IEEE, William D. Murphy, Vladimir Rokhlin, and
Marius S. Vassiliou, Senior Member, IEEE

Abstract—The fast multipole method (FMM) was developed
by Rokhlin to solve acoustic scattering problems very efficiently.
We have modified and adapted it to the second-kind-integral-
equation formulation of electromagnetic scattering problems in
two dimensions. The present implementation treats the exterior
Dirichlet (TM) problem for two-dimensional closed conducting
objects of arbitrary geometry. The FMM reduces the operation
count for solving the second-kind integral equation (SKIE) from
O(n®) for Gaussian elimination to O(n*/%) per conjugate-gradi-
ent iteration, where n is the number of sample points on the
boundary of the scatterer. We also present a simple technique
for accelerating convergence of the iterative method: ‘‘com-
plexifying”’ k, the wavenumber. This has the effect of bounding
the condition number of the discrete system; consequently, the
operation count of the entire FMM (all iterations) becomes
O(n“/s). We present computational results for moderate values
of ka, where a is the characteristic size of the scatterer.

1. INTRODUCTION

LECTROMAGNETIC scattering represents an impor-

tant class of problems in physics and engineering. It is
desirable to have efficient technigues to compute scattering
accurately. In this paper we present the first application of
Rokhlin’s fast multipole method (FMM) to the problem of
electromagnetic scattering from two-dimensional closed con-
ducting objects of arbitrary geometry.

In many two-dimensional scattering problems, it is custom-
ary to reduce the scalar Helmholtz equation to a second-kind
integral equation. The resulting integral equation can gener-
ally be treated using various numerical techniques [1], [2].
One of the standard methods for the numerical treatment of
scattering problems is to discretize the second kind integral
equation using an appropriate quadrature formula (Nystrom’s
method) [1], [3]. Such discretization leads to systems of
linear algebraic equations that may be solved by Gaussian
elimination or iterative methods such as conjugate-gradient or
generalized conjugate residual (GCR) [4]. These iterative
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methods require the full dense matrix to operate on a se-
quence of recursively generated vectors. Consequently, the
operation count is O(n*) where n is the dimension of the
matrix. There have been many successful efforts to reduce
the operation count and storage requirements and to introduce
‘“fast’’ algorithms [5]-[8]. The FMM is a particularly
promising method among these. In the FMM, the operation
count for each iteration is reduced to O(n*®), which is
significantly smaller than O(n?), especially for large n(>
10000). This algorithm can be further improved to one that
has an operation count of O(n log n) per iteration. However,
we have not yet implemented the fastest algorithm. When
these algorithms are combined with a GCR or conjugate-
gradient algorithm, the resulting procedure only requires a
small number of iterations to converge to a solution of the
scattering problem. This is the case even at resonance fre-
quencies, if the method of ‘‘complexification”” is applied (see
discussion below). In addition, the O(n*®) and O(n log n)
algorithms are attained without any significant restriction on
the shape of the scatterer other than that it be closed.

The purpose of the present paper is to explain this algo-
rithm intuitively in simple terms and to explore its application
to electromagnetic scattering. Rokhlin’s FMM, which was
first employed for Poisson’s equation [5] and acoustic scatter-
ing [6] in two dimensions has been extended to three dimen-
sions for Poisson’s equation [9] and is currently being ex-
tended for Helmholtz’s equation.

II. PROBLEM STATEMENT

Consider a two-dimensional conducting body whose axis is
aligned with the z coordinate axis. A monochromatic electro-
magnetic wave incident on this structure with an electric field
vector parallel to the axis of the body is referred to as the
transverse magnetic (TM) case. The incident and scattered
fields both satisfy the following Helmholtz equation:

V?E,+ k’E,=0

(1)
where k is the wavenumber equal to 27 /N with \ the
wavelength of the incident field in the exterior region. The
boundary condition for (1) is that the total E field vanish on
the surface of this conductor, i.e.,

Ef=0 onC

)

or more explicitly

EM + ES* =0 onC.

®3)
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Here C is the boundary of the scatterer. The above Helmholtz
equation can be reduced to the following second-kind integral
equation

¥(r) +2/

and the scattered field in the exterior region is computed by

watry [ 9G(k|r—r])
Ez (l‘) - /C an(r’)

where r and r’ are both on the boundary C, and G is the
free-space Green’s function in two dimensions, i.e.,

G(klr—v|) = iH"(k|r - v |)/4 )

with H{"(k|r — r'|) being the Hankel function of the first
kind of order zero, where we are employing the exp (—iw?)
time convention. See [10] for a derivation of (4). Equation
(4), the TM case, is often referred to as the Dirichlet problem
in the mathematical literature [1], [10]. If we discretize the
boundary into n points, then the above integral equation (4a)
is converted to the following linear system (via Nystrom’s
method [1]):

AG(k|r—r|)

8n(r Y(r)dl =

2E7°(r) (42)

Y(r)dl  (4b)

Ey*(r) (6)

n
V() +23 A,¥(r;) = -2

j=1
where the matrix A = (A4, ) is n X n and the vectors
(¥(r;)) and (E”‘“(r )) are column vectors having n rows.
Applying normal matrix multiplication, AV requires O(n?)
operations. The FMM algorithm reduces this to O(n*/) or

ultimately to O(nlog n).

Although most practitioners in electromagnetics are famil-
iar with the method of moments for solving integral equa-
tions, fewer have used Nystrom’s method. The main differ-
ence is that in moment methods (or finite element techniques),
the currents are expanded in a series of basis functions
(pulse, hat, B-splines, etc.), and the unknowns are the weights
multiplying these basis functions. In Nystrdm’s method, the
integrals are discretized using convergent quadrature formu-
las for a given kernel, and the unknowns are the current
values at the sample points on the surface of the scatterer.
Nystrom’s method has the advantage that it is easier to
develop higher order quadrature formulas [3] than it is to
employ higher order basis functions (as done in moment
methods). In addition, matrix fill is more efficient with
Nystrom’s method than with moment methods. See [1] and
[3] for more details.

III. RAPID SoLUTION OF INTEGRAL EQUATIONS

The detailed mathematics behind the FMM is presented in
[5] and [6]. The development is quite complex. Below, we
offer a simplified version, with more physical intuition rele-
vant to electromagnetic scattering.

Consider n nodes on the boundary of the scatterer. Divide
the boundary into p equal segments, where 2 < p < n. In
each segment, there are n/p nodes. Fig. 1 illustrates a
scatterer with # nodes on its boundary. The figure shows the

635

Nodes of Segment /

Nodes of Segment Nodes Pf Segment

Fig. 1. Ilustration of scatterer. Scatterer boundary is sampled by n nodes
equispaced in arc length. The nodes are grouped into p segments, with each
segment containing n/p nodes. In this figure, n = 32 and p = 8, for the
sake of illustration. The figure shows the nodes in the ith segment (black)
and its nearest-neighbor segments (white). Nodes shaded in grey belong to
segments that are not near neighbors of segment i.

ith segment and its two nearest neighbor segments. If the
length of the boundary is L, each segment has length L/ p.
The center of each segment is located at zi(i=1,2,--+, p).
In scattering problems, each node can be treated conceptually
as if it were a source of radiation.

If we have sources within a finite region of space, the
radiation emitted from these sources in the far zone can be
approximated using a collection of multipoles located at the
center of the region [5], [6], [11]. The multipole approxima-
tion converges rapidly outside any circle D containing all
sources and separated from D by at least one wavelength. In
fact, once a sufficiently large number of multipoles is in-
cluded, the accuracy of the approximation increases superal-
gebraically (faster than any negative power of N, where N
is the number of multipoles employed) [6].

Consider each segment on the boundary as a cluster of
n/p sources. The sources in each segment are treated as a
single aggregate source, and the radiation field of that equiva-
lent source is approximated using the first N multipoles
located at the center of the segment. For each pair of
sufficiently separated segments, the radiation of the N multi-
poles of one segment can be represented as an analytical
partial field expansion around the center of the other seg-
ment. Then from this information, the field at the other nodes
of that segment can be evaluated using (16). For nearby
segments, the direct contribution must be calculated to evalu-
ate the radiation field. The radiation field at any particular
node on the boundary is the sum of the contributions of N
multipoles of each of the far-away segments and the direct
contribution of the nearby segments. The precise mathemati-
cal description of the process is considered in [6].

To illustrate the above verbal description mathematically,
let us consider the scattered electric field in the exterior. In
the TM case, according to (4b), the scattered field can be
expressed in terms of a double-layer potential from a source
on the boundary [10], which can be regarded as a fictitious
source K(p), where p = (p, 8), a point on C. For the 2-D
case, this fictitious K has only a component in the xy plane
tangent to C, i.e., K(p) = K(p)é, where ¢ is a unit vector



636 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 40, NO. 6, JUNE 1992

tangent to C. The current satisfying (4a) radiates the scat-
tered field in the exterior region so that on the outside surface
of C, Ef* = —EY. It must be noted that this current does
not make the total electric field vanish in the interior region,
which is not of interest here. The scattered electric field is
given by

E<(3) = =V x [ G(k|F -5 )K(Z) dr. ()
c
In two dimensions, (7) can be written as

O L ®)

which is identical to (4b) if K(p") is taken to be ¥(p’).
Substituting (5) into (8), we get

(i | 22 k'”_ D gyar. o

Consider a subsegment of C defined as C’. On this C’ the
Hankel function H{"(k|p — o’ |) can be expanded in terms
of higher order Hankel and Bessel functions:

( = dl/

E scat

oo

> HP(kp)J,

m= —oo

HgP(k |5 - 5]) = m(k0')

~exp (im(6 — 6%)) (10)

where p’ < p. The scattered electric field from C’ can be
written as

E=(p,0) = Y. HY(ke)exp (imd)

. 0J,(kp")exp (—im8’)
'/ﬁ”“ an(p, 0

This can be regarded as one form of a multipole expansion of
the source K(p’,8’). For a discretized source at r points
located at x; = (0}, 0)(J =1,2,-++,r) over C’, (11) re-
duces to

K(p,0)dr. (11)

(k) exp (—imé))
an(x;)

HP(kp) exp (im) K (x}) Al; (12)

Ms

Ex*(p,6) =

m

é(m

where Al is the discretized element of arc length containing
the source K(x}). For a given accuracy, we can truncate the
infinite sum in (12) at N, and thus calculate the first N
multipoles of the source. This TM problem can be also
formulated using an ‘‘equivalent” physical electric surface
current.

The FMM algorithm was first applied to Poisson’s equa-
tion for n point charge lines at locations x;(i = 1,2, -, n)
with strengths «;. This is mathematically equivalent to solv-
ing the equation

Vig = zj: 8(x — x;)k; (13)

where 8(x) is the Dirac delta function and x and Xx; are
points in two dimensions. The solution to (13) is

n
¢(x) = Zlkilog(IX-xil)/(ZW)- (14)
i=
If we evaluate (14) at each point x(i=1,2,---,n), then

this computation requires O(n?) operations. However, if
large numbers of particles are combined into single computa-
tional elements, then this operation count can be reduced if
an approximate answer (to a specified accuracy) is desired.
When a cluster of particles is ‘‘far away’’ from a particular
point, then the potential of the cluster is approximated by the
potential induced by a single computational element located
inside the cluster [8], [12]). In the FMM algorithm the
computational element is a multipole expansion centered at a
circle containing the cluster of particles. Given a cluster of
charges located at points z,(i = 1,2,-- -, n,), the expansion
is given by

#(z) = Re (12::1 log (z — z,-))

p

Z a/(z - zo)

=1

.,Re(aOMg(z——zo + (15)
Here p is the order of the multipole and the a, are coeffi-
cients chosen so that the truncated series is an accurate
approximation of the potential. The coefficients are deter-
mined from the Laurent expansion of log (z — z,). For (15),
the computational effort is only O( p) operations and is much
lower than O(n,) for the direct approach. The region must
now be organized into well-separated points and very near
points. For near points, the direct evaluation of (14) is used.
See [5], [6], and [12] for details of decomposing the regions
into boxes of different sizes. When applying the FMM to
Helmholtz’s equation instead of Poisson’s equation the ex-
pansion (15) is replaced by the standard Hankel function
expansion, which is then truncated to obtain a given accuracy
requirement. That is,

+o

> a,HP(kp)exp(imf),
m=—o

. 16a)

if p>a (

EF(p,0) = ,a

Y BuJu(kp)exp(imb),
m=—o

ifp<a (16b)

depending on whether the calculations are to be done outside
or inside the circle of radius a [6]. Obviously, any prescribed
accuracy in the series can be guaranteed by taking more
terms in the expansion at the expense of more CPU time.

IV. OpPErRATION COUNT

We illustrate intuitively the computational work required
for the FMM algorithm using a simple example. For more
details see [6]. Consider p segments around the boundary of
the scatterer. Assume that for each segment, the two adjacent
segments are ‘‘nearby,’’ and thus require direct calculation
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of the radiation field. All other segments are considered ‘‘far
away’’ for this example and the multipole expansion can be
used. The following steps are taken:

Step 1: Find the first N multipoles of sources in each
segment. Since to evaluate each multipole, all the sources are
involved, the first N multipoles of sources in each segment
require Nn /p operations. For p segments, we have

N(n/p)p = Nn. (17)

As mentioned earlier, the number of multipoles used is a
function of the accuracy needed in the calculation. This
number is typically proportional to kd where k = 27 /X and
d is the length of the source region. Thus, N = kL /p.
Substituting this value of N into (17) gives

Nn=k(L/p)n

(18)
as the operation count for this step.

Step 2: For each pair of ‘‘far-away’’ segments, evaluate
the radiation fields of N multipoles of one segment at the
center of the other. This is an O(N) operation for each pair.
The number of pairs is almost p2. In actuality, for each
segment, the number of far-away segments is p — 3. There-
fore, the number of far-away pairs is p(p — 3), which for
large p is almost p?. Therefore, the operation count for this
step is

Np* = k(L /p)p* = kLp.

(19)
Step 3: In this step, for each segment, add the contribution
of N multipoles of any one of the far-away segments evalu-
ated at the center of the chosen segment. For any chosen
segment, the number of far-away segments is p — 3, or
approximately p, for large p. This step requires

Np=k(L/p)p = kL (20)

operations for all p segments.

Step 4: Here, the radiation field is known at the center of
each segment. The field at the other nodes in the segment can
be evaluated using a partial field expansion [6]. For each
neighboring node, this is an O(N) operation. Thus, for n/p
nodes in each segment, the number of operations is

Nn/p.

(21)

For p — 3 segments, we have
(Nn/p)(p —3) = Nn=k(L/p)n. (22)

Step 5: Finally for the nearby (neighboring) segments, the
direct contributions must be evaluated. For g sources, the
number of operations is g°. Here, in each segment there are
n/p sources. For a particular segment in question and its
two near-neighbors, the work is

(3n/p)* = n?/p2. (23)
For p segments, the count is
(n?/p*)p = n*/p. (24)

Adding the above five steps and optimizing with respect to
p the resulting expression for total operation count (as in

[6]), the optimal-count 7 is

T = O(n*?). (25)

The operation count can be further reduced by applying the
above procedure recursively, with each of the segments
subdivided with appropriately chosen p’. The new estimate
so obtained shows that the FMM algorithm is O(n*/*). Our
current FMM code implements the O(n*/) algorithm. In [5)
the above subdivision is used recursively to obtain an O(n)
algorithm when applied to Poisson’s equation (13). By repro-
ducing the construction of Section VII in [5] for Helmholt’z
equation an O(n log n) algorithm is theoretically achievable.

The essential feature of the FMM algorithm is that it
performs the matrix-vector operation

AY (m=0,1,2,--+) (26)

in O(n*) operations. Here the superscript m is the iteration
counter. Note that A is never computed, so that the
algorithm only requires vector storage! The storage re-
quirement is O(n*?), as is the operation count [6]. The
actual solution to the system (6) is obtained using a conju-
gate-gradient or GCR [4] algorithm in which the most com-
putationally extensive step is that of forming the vector
expression (26) by the FMM technique. GCR must be used
on the matrix / + 2 A or conjugate-gradient on the normal
equation because I + 2 A is nonsymmetric.

The FMM algorithm is in no way restricted to the TM case
(4). In fact, an almost identical algorithm can be applied to
the TE case (exterior Neumann problem in the mathematical
literature [1], [10]) or to the combined field integral equation
(CFIE), which does not have a resonance problem (see, e.g.,
[3]). Rather than solve the CFIE, we use a technique that
employs the method of ‘‘complexification’” on (4) directly.
The “‘trick,”’ the reader will soon see, works remarkably
well and allows us to avoid dealing with the more compli-
cated CFIE. Although ‘‘complexification’” has been used
before in electromagnetics to satisfy the radiation condition,
here it is used for the purpose of reducing the condition
number of the matrix A, thereby reducing the number of
iterations for convergence of the conjugate-gradient algo-
rithm.

V. CoMPUTATIONAL RESULTS

In Fig. 2, we show the comparison of the FMM algorithm
with the analytic solution for the scattering of a plane wave
incident on a circular cylinder for the case ka = 80. We
present our computational results in a form often used in
electrical engineering: that is, as plots of differential scatter-
ing cross section or radar cross section (RCS) versus obser-
vation angle, for a given angle of incidence. The RCS is
related to the magnitude of the electric field in the far zone.
In two dimensions, RCS is something of a misnomer: the
more proper term is ‘‘scattering width’’ or ‘‘echo width,”’
but the label RCS is commonly applied anyway. The two-
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Fig. 2. RCS for a circular cylinder of unit radius. Incident field is a plane
wave with wavenumber k& = 80. Solid line shows solution from the FMM
code, while dotted line is that from the series solution.

dimensional definition is [13]

I scat | 2
RCS = 0 =27 lim r———
oo | B

(27)

where E* is the scattered field and E;“C is the incident
field. The quantity we plot is the ratio of o to the wavelength
of the incident wave, expressed in decibels.

In Fig. 2 the agreement of the RCS between the two
solutions is better than 0.001 dB for observation angles ¢
between 0° and 40°, where most of the rapid changes occur.
In this example, we have used 10 points per wavelength on
the scatterer boundary, so n = 800. In Table I, we list some
results from the FMM code for various values of & and n for
scattering from two-dimensional conducting circular and el-
liptical cylinders (a = semimajor axis, b = semiminor axis).
The expansions (16) were truncated to give an accuracy of
10™* and the convergence tolerance for the conjugate gradi-
ent algorithm was set to 1073, In the table, N,,, denotes the
actual number of iterations in the conjugate-gradient algo-
rithm to achieve an error tolerance of 1073, ERR = || A¥™
— b|, (where b here is the right-hand side of the linear
system), and CPU is the average CPU time in seconds on a
VAX 6410 computer for one iteration of the conjugate-gradi-
ent FMM algorithm using double precision arithmetic. In
most cases, for ‘‘complexified’’ k-values an error tolerance
of 107* instead of 10~ would only add one or two more
iterations to V... However, for ‘‘noncomplexified”’ k-val-
ues, an error tolerance of 10~* would require many more
iterations because of the large condition number involved in
those cases. Since the matrix A is never explicitly calculated
in the FMM algorithm, the total CPU time for one incident
angle is roughly equal to the product of N, and CPU. To
calculate the number of points 7, per incident wavelength in
Table I, we have used an approximate formula for the
perimeter of an ellipse, obtaining

n

k/(a* + b*)/2

Note that for some of the cases in Table I, we have used
values of k, the wavenumber, that have imaginary parts.

“e

n, (28)

TABLE 1
FAsT MULTIPOLE RESULTS FOR SCATTERING FROM TwO-DIMENSIONAL
CoNDUCTING CIRCULAR AND ELLIPTICAL CYLINDERS
(DEC VAX 6410 CoMPUTER, DOUBLE PRECISION)

kb a b n ny Nyer CPU Err

50 1 1 500 10 66 11.99  0.441(-3)
80 1 1 800 10 79 22.35  0.856(-3)
80 + 1.6/ I 1 800 10 13 22.43  0.200(-3)
80 +2.4i 1 1 800 10 9 21.73  0.655(—3)
80 + 3.2i 1 1 800 10 8 21.89  0.198(-3)
80 + 4.8/ 1 1 800 10 6 21.27  0.750(-3)
80 + 6.4i 1 1 800 10 6 21.22  0.223(-3)
150 + 6.4i I 1 1500 10 6 51.94  0.633(-3)
100 2 1 1600 10.12 184  34.89 0.992(-3)
100 + 2i 2 1 1600 10.12 11 35.57 0.293(-3)
100 + 3/ 2 1 1600 10.12 9 36.53  0.478(-3)
100 + 4i 2 1 1600 10.12 8 35.84  0.494(-3)
100 + 61 2 1 1600 10.12 6 35.35  0.998(-3)
50 3 1 1200 10.73 95 32.61 0.950(-3)
50 + 2i 3 1 1200 1073 10 3398 0.863(-3)
100 + 2i 3 1 2237 10 12 86.93  0.639(-3)

k = wavenumber.

a = semimajor axis.

b = semiminor axis.

n = total number of unknowns (sample points on scatterer boundary).
n, = number of unknowns per wavelength of incident radiation.

Ny, = number of iterations to convergence.

CPU = CPU time per iteration, in seconds.

Err = relative error.

Notation: 0.441 (—3) means 0.441 x 1073

This was done to test the method of ‘‘complexification.”’
Equation (4) has resonances [10] only at real distinct values
of k and as k increases, root clusters become more dense; at
these resonance frequencies, the condition number of the
matrix A becomes large and iterative methods require many
more iterations to converge to a given tolerance. We have
shown in [3] that by moving k slightly into the complex
plane (‘‘complexifying’” k) the condition number can be
reduced by four or five orders of magnitude and conse-
quently, the convergence rate of most iterative methods can
be greatly improved. This is clearly demonstrated in Table I.
Furthermore, by using two complex values of k (say K =
100 + 0.1/ and k& = 100 + 0.2/) we have shown in [3] that
the extrapolated values of the RCS to the real axis are
accurate to a value in decibels roughly equal to the amount of
movement into the complex plane (in this case 0.1 dB). Of
course, parabolic extrapolation would be even more accurate,
but would require computations for three complex values of
k. However, this is not a severe problem when using iterative
methods because the iteration scheme for the second value of
k can be started with the final solution from the first value of
k and so on. Thus two solutions for two close values of &
require less than two times as much CPU time as does one
case. Complexification is hence a viable and relatively inex-
pensive method for accelerating convergence in such prob-
lems.

Parabolic extrapolation is done in the following way.
Suppose the imaginary parts of three ‘‘complexified’’ k-val-
ues are kg, k,, and k, and the corresponding RCS values
for one observation angle are o,, o,, and o,, respectively.
We compute the Lagrange interpolation polynomial through
the points (k,, 0,), (k,, 0;) and (k,, 0,) and set the imagi-
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nary k equal to zero in this quadratic polynomial in k (i.e.,
we extrapolate to the real axis) obtaining

a(0) = Doy + pyoy + py0, (29)

where po = kk, [[(ko — k) (ko — k)], py = kok, /I(k,
- ko)ky = k)1, and p, = kok, [[(k, — ko)(ky — k)]
Parabolic extrapolation is second-order accurate provided the
function o(k) is ‘‘sufficiently smooth’’ (has three continuous
derivatives). This means that for uniform spacing (Ak = k,
-k, = k, — k) the error in o due to the extrapolation is
O((Ak)?). Linear extrapolation is only O(Ak) if o has two
continuous derivatives in k. In practice, we have found that
the accuracy of the extrapolation procedure is even better
than these estimates would suggest.

In Fig. 3, we show some RCS plots for scattering from a
two-dimensional conducting circular cylinder for linear ex-
trapolation from ‘‘complexified”’ k-values. To remove the
effect of the *‘complexification’” in computing the RCS in the
far field, we must rescale E}™"(rpz) where rgp is the value
of r in the far field, typically about 10000. If k = k,, + ik,
where k; is the imaginary term added to k to accelerate
convergence of the iterative procedure, then we rescale
E*(rgg) by multiplying it by exp (K, rg) from the asymp-
totic expansion of H"(k,,rgs). The RCS is then computed
using (27) and the rescaled values of E*(rgg). Extrapola-
tion of the RCS to the real axis is also done using the rescaled
values. In Fig. 3, the linearly extrapolated values (from
k =80 + 0.5/ and k = 80 + 1.0/) of the RCS give agree-
ment to 0.001 dB with the unextrapolated ones (for k = 80).
The parabolically extrapolated values give the same excellent
agreement. The number of iterations required to converge to
an error tolerance of 10~3 for these three cases are 79, 26,
and 16, respectively, and again we see that for faster conver-
gence it pays to ‘‘complexify.’’ Note also that large condition
numbers not only imply slow convergence but also poor
accuracy, giving another reason to ‘‘complexify.”” Of course,
one could always solve the CFIE rather than (4) and avoid
the problem of large condition numbers due to resonance.
Unfortunately, solving the CFIE for TE polarization requires
dealing with the second derivative of the free space Green’s
function, which has a difficult singularity. ‘‘Complexifica-
tion’’ is easier!

In Fig. 4, we plot the RCS for scattering from a conduct-
ing elliptical cylinder using linear extrapolation (a = 2, b =
I, k=100 + 0.5i, k =100 + 1.0/) with a plane wave
incident at 90°. As can be seen in Table I, n = 1600 for
these cases. The agreement between extrapolated values and
unextrapolated values of the RCS is better than .001 dB. We
only show the extrapolated values in the figure, to avoid too
much congestion. Parabolic extrapolation using k = 100 +
0.3, 100 + 0.6/, 100 + 0.9/ gives the same excellent re-
sults.

As we have stated, the FMM algorithm of this paper is
O(n*/?) per conjugate-gradient iteration. This means that the
CPU time for a given scatterer is proportional to 7/, i.e.,

T = ayaxn®? (30)
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Fig. 3. RCS for a circular cylinder of unit radius. Incident fields are plane
waves with wavenumbers k = 80, k = 80 + 0.5/, and k = 80 + 1.0i.
Solid line shows solution from the FMM code with no extrapolation (k =
80). Dotted line shows solution of the linearly extrapolated RCS from
k =80+ 0.5/ and k = 80 + 1.0i.
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Fig. 4. RCS results from the FMM code for an elliptical cylinder with
semimajor axis @ = 2 and semiminor axis b = 1 linearly extrapolated from
solutions for incident field plane waves at 90° with wavenumbers & = 100
+ 0.5/ and &k = 100 + 1.0i.

where we have emphasized that the proportionality constant
a is a function of the computer being used (in this case a
VAX 6410 in double precision). Using (30) and some of the
data in Table I, we can obtain a rough estimate for the value
of ay,x. In this case

ayax = 0.003. (31)

Suppose now we would like to estimate the CPU time
required on our VAX to compute the electromagnetic scatter-
ing problem for an example having 10000 unknowns. We
assume that with some reasonable level of ‘‘com-
plexification,”” convergence occurs in 10 iterations or less.
Thus, for this example

T* = ay,x (10)7%7 = 0.03(10000)*° = 1.8 h. (32)

Although this last CPU time may seem large, we are only
using a VAX in double precision, and a vectorized version of
this code on a CRAY computer would do the same calcula-
tion in minutes. Furthermore, ordinary Gaussian elimination
for a matrix of order 10 000 would require about (10 000)3/3
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operations and would use considerable more CPU time than
that in (32).

For m incident fields, Gaussian elimination would require
O(n® + mn?) operations, and the FMM would have to be
repeated m times requiring O(mn*/?) operations. If m < n,
clearly the FMM is superior. However, even in the very
worst case when m = O(n), the FMM beats Gaussian elimi-
nation because O(n’/?) is better than O(#*). Furthermore, in
either case for m incident fields Gaussian elimination re-
quires O(n?) storage allocations while the FMM only re-
quires O(n*%), and in many large problems, storage require-
ments on a given computer may be a more limiting factor
than CPU requirements.

Finally, the most important statement about the FMM and
our approach to ‘‘complexification’” and extrapolation of the
RCS values for complex k-values to the real axis is that for
complex k(Re (k) > 0 and Im (k) > 0), the solution to (4),
a second-kind integral equation, is unique for sufficiently
smooth scatterers, and consequently, the condition number of
A is asymptotically bounded and independent of n. A proof
of this result is given in [14]. This means, when we use our
extrapolation procedure (either linear or parabolic), N,., is
small (say, Ny, =< 10) and independent of n for error
tolerances of 1073, Of course, if the accuracy requirements
are increased, so will N, , but in either case the FMM is

ter

globally O(n**) and we can write

Ttot = Mter acomputern4/3 (33)
where N, is only a function of ¢, the error tolerance, and
not a function of n. o e, is a function of the computer
speed for arithmetic operations, and is also independent of #n.
We present more evidence for this in Table II, where we
have set the ‘‘complexification’ to 5/ in all cases and main-
tained approximately 10 points per wavelength for various
geometries. Note the small number of iterations to conver-
gence, indicating a bounded condition number independent of
n. Finally, in Table III, we list some preliminary results of
the FMM code on the CRAY-2. This code is not yet fully
vectorized, so we do not give CPU times.

Although we have only considered circular and elliptical
cylinders for the test cases in this paper, our code can handle
any closed two-dimensional metal scatterer having a unique
outward normal at every point on C. Therefore, at present,
we cannot deal with the trailing edge of an airfoil that comes
to a point (nonexistence of dG/dn at the trailing edge);
currently, we must round out this region slightly. However,
replacing the current at this singular point with its asymptotic
expansion will allow us to alleviate this difficulty. We are
also considering thin coatings about metal scatterers using
higher order impedance boundary conditions, similar to our
treatment in [15].

For more examples of the FMM applied to more compli-
cated scatterers, and comparisons of the method with other
techniques, we refer the reader to [16], which considers a
variety of scattering problems. It explores the issue of how
much ‘‘complexification’” can be applied without unduly
sacrificing accuracy in the solution. As a rough ‘‘rule of

TABLE 11
Fast MuLtIPOLE METHOD: CPU TIME FOR FIXED ‘‘COMPLEXIFICATION’”
(ScATTERING FROM Two-DIMENSIONAL CONDUCTING CIRCULAR AND
ErripticaL CYLINDERS) (DEC VAX 6410 COMPUTER,
DOUBLE PRECISION)

kb a b n Nye  CPU Err

50 + 5i 1 1 500 6 1197  0.251(=3)
100 + 5i 1 1 1000 6 2246  0.973(-3)
150 + 5/ 1 1 1500 7 4228  0.313(-3)
200 + 5i 1 1 2000 7 51.90  0.686(—3)
50 + 5i 2 1 791 7 2222 0.998(—3)
150 + 5i 2 1 23712 8 78.59  0.408(—3)
100 + 5i 3 1 2237 9 86.28  0.999(—3)

k = wavenumber,

@ = semimajor axis.

b = semiminor axis.

n = total number of unknowns (sample points on scatterer boundary).
Ny = number of iterations to convergence.

CPU = CPU time per iteration, in seconds.

Err = relative error.

Notation: 0.251 (—3) means 0.251 x 1073,

TABLE III
Fast MuLTiPOoLE METHOD: CRAY RESsuLTs witH FIXED
*‘COMPLEXIFICATION’’ (SCATTERING FROM Two-
DIMENSIONAL CONDUCTING CIRCULAR AND
ErLipTicalL CYLINDERS) (CRAY-2 COMPUTER,
SINGLE PrECISION)

kb a b n Nier Err

200 + 5i 1 1 2000 7 0.686(—3)
300 + Si 1 1 3000 8 0.331(-3)
400 + 5i 1 1 4000 8 0.803(-3)
500 + 5i 1 1 5000 9 0.327(-3)
100 + 5i 2 1 1582 7 0.997(-3)
200 + 5§ 2 1 3163 6 0.995(—3)
300 + 5¢ 2 1 4744 6 0.991(-3)
100 + 5i 3 1 2237 8 0.995(-3)
200 + 5i 3 1 4473 7 0.997(-3)
100 + 5i 4 1 2916 9 0.998(-3)
50 + 5i 10 1 3554 8 0.996(—3)

k = wavenumber.

@ = semimajor axis.

b = semiminor axis.

n = total number of unknowns (sample points on scatter boundary).
N, = number of iterations to convergence.

Err = relative error.

Notation: 0.686 (—3) means 0.686 x 1073

thumb,’’ complexification at 1% of ka works well for many
problems. The readers should also note that the method of
complexification and extrapolation stands on firm mathemati-
cal ground. The book by Leis [17] provides a comprehensive
discussion of the principle of limiting absorption, which
forms the mathematical basis for the method.

Our closing observation is that in computational electro-
magnetic scattering, reasonable results can usually be ob-
tained if ka is small. It is much more difficult to get good
results for large values of ka, and it is doubly difficult to do
so efficiently. We hope that by choosing moderate values of
ka, we have demonstrated the robustness of the FMM algo-
rithm for effectively solving electromagnetic scattering prob-
lems.
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