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Abstract

We demonstrate a multiscale pedestrian detector operating in near real time (∼6 fps

on 640x480 images) with state-of-the-art detection performance. The computational bot-

tleneck of many modern detectors is the construction of an image pyramid, typically

sampled at 8-16 scales per octave, and associated feature computations at each scale. We

propose a technique to avoid constructing such a finely sampled image pyramid without

sacrificing performance: our key insight is that for a broad family of features, includ-

ing gradient histograms, the feature responses computed at a single scale can be used to

approximate feature responses at nearby scales. The approximation is accurate within

an entire scale octave. This allows us to decouple the sampling of the image pyramid

from the sampling of detection scales. Overall, our approximation yields a speedup of

10-100 times over competing methods with only a minor loss in detection accuracy of

about 1-2% on the Caltech Pedestrian dataset across a wide range of evaluation settings.

The results are confirmed on three additional datasets (INRIA, ETH, and TUD-Brussels)

where our method always scores within a few percent of the state-of-the-art while being

1-2 orders of magnitude faster. The approach is general and should be widely applicable.

1 Introduction

Significant progress has been made in pedestrian detection in the last decade. While both de-

tection and false alarm figures are still orders of magnitude away from human performance

and from the performance that is desirable for most applications, the rate of progress is excel-

lent. False positive rates have gone down two orders of magnitude since the groundbreaking

work of Viola and Jones (VJ) [28, 29]. At 80% detection rate on the INRIA pedestrian

dataset [6], VJ outputs 10 false positives per image (fppi), HOG [6] outputs 1 fppi, and the

most recent methods [7, 14], through a combination of richer features and more sophisticated

learning techniques, output just .1 fppi (error rates as reported in [8]).

The increase in detection accuracy has been paid for with increased computational costs.

The VJ detector ran at roughly 15 frames per second (fps) on 384 × 288 video nearly a

decade ago, while the detectors recently evaluated on the Caltech Pedestrian dataset range

in time from 1-30 seconds per frame on 640×480 video on modern hardware [8]. In many

applications of pedestrian detection, including automotive safety, surveillance, robotics, and

human machine interfaces, fast detection rates are of the essence.
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Figure 1: In many applications, detection speed is as important as accuracy. (a) A standard pipeline

for performing modern multiscale detection is to create a densely sampled image pyramid, compute

features at each scale, and finally perform sliding window classification (with a fixed scale model).

Although effective; the creation of the feature pyramid can dominate the cost of detection, leading to

slow multiscale detection. (b) Viola and Jones [28] utilized shift and scale invariant features, allowing

a trained detector to be placed at any location and scale without relying on an image pyramid. Con-

structing such a classifier pyramid results in fast multiscale detection; unfortunately, most features are

not scale invariant, including gradient histograms, significantly limiting the generality of this scheme.

(c) We propose a fast method for approximating features at multiple scales using a sparsely sampled

image pyramid with a step size of an entire octave and within each octave we use a classifier pyramid.

The proposed approach achieves nearly the same accuracy as using densely sampled image pyramids,

with nearly the same speed as using a classifier pyramid applied to an image at a single scale.

We present a method (Figure 1) for significantly decreasing the run-time of multiscale

object detectors that utilize multiple feature types, including gradient histograms, with very

minor decreases to their detection accuracy. Specifically, we show an application to multi-

scale pedestrian detection that results in nearly real time rates on 640x480 images: about 6

fps for detecting pedestrians at least 100 pixels high and 3 fps for detecting pedestrians over

50 pixels. The resulting method achieves state-of-the-art results, being within 1-2% detec-

tion rate of the highest reported results across four datasets (Caltech Pedestrians [8], INRIA

[6], ETH [11], and TUD-Brussels [33]).

We show that it is possible to create high fidelity approximations of multiscale gradient

histograms using gradients computed at a single scale in §2, and develop a more general

theory applicable to various feature types in §3. In §4 we show how to effectively utilize

these concepts for fast multiscale detection, and in §5 we apply them to pedestrian detection,

resulting in speedups of 1-2 orders of magnitude with little loss in accuracy.

1.1 Related Work

One of the most successful approaches for object detection is the sliding window paradigm

[23, 28]. Numerous other detection frameworks have been proposed [2, 15, 20, 30], and al-

though a full review is outside the scope of this work, the approximations we develop could

potentially be applicable to such approaches as well. For pedestrian detection [8, 10], how-

ever, the top performing methods are all based on sliding windows [6, 7, 14, 22, 31], and each

of these methods utilizes some form of gradient histograms. Through numerous strategies,

including cascades [28], coarse-to-fine search [17], distance transforms [13], branch and

bound search [19], and many others, the classification stage can be made quite fast. Nev-

ertheless, even when highly optimized, just constructing gradient histograms over a finely

sampled image pyramid takes a minimum of about one second per 640×480 image [7, 14];

thus this becomes a major bottleneck for all of the pedestrian detectors listed above.
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One of the earliest attempts to create real time detectors that utilize gradient histograms

was the method of [36] (based on integral histograms [25]). However, the proposed system

was real time for single scale detection only (recent methods [7, 14] achieve similar speeds

and with higher accuracy); in this work we are interested in real time multiscale detection.

Another recent approach used a fast coarse-to-fine detection scheme but sacrificed detection

of small pedestrians [35] (which are of crucial importance in many applications [8, 10]). A

number of fast systems have been proposed [3, 12]; however, a detailed overview is outside

of the scope of this work. Finally, a number of groups have recently ported HOG to a parallel

implementation using GPUs [4, 32, 34]; such efforts are complementary to our own.

Significant research has also been devoted to scale space theory [21], including real time

variants [5, 9]. Although only loosely related, a key observation is that half octave pyramids

are often sufficient for accurate approximations of various types. This suggests that fine scale

sampling may also be unnecessary for object detection.

2 Approximating Multiscale Gradient Histograms

We seek to answer the following question: given gradients computed at one scale, is it

possible to approximate gradient histograms at a different scale? If so, then we can avoid

computing gradients over a finely sampled image pyramid. Intuitively, one would expect

this to be possible as significant image structure is preserved when an image is resampled

(even if the gradients themselves change). We begin with an in depth look at a simple form

of gradient histograms below and develop a more general theory in §3.

A gradient histogram measures the distribution of the gradient angles within an image.

Let I(x,y) denote an m×n discrete signal, and ∂ I/∂x and ∂ I/∂y denote the discrete deriva-

tives of I (typically 1D centered first differences are used). Gradient magnitude and orien-

tation are defined by: M(i, j)2 = ∂ I
∂x
(i, j)2 + ∂ I

∂y
(i, j)2 and O(i, j) = arctan

(

∂ I
∂y
(i, j)/ ∂ I

∂x
(i, j)

)

.

To compute the gradient histogram of an image, each pixel casts a vote, weighted by its gra-

dient magnitude, for the bin corresponding to its gradient orientation. After the orientation

O is quantized into Q bins so that O(i, j) ∈ {1,Q}, the qth bin of the histogram is defined by:

hq = ∑i, j M(i, j)1 [O(i, j) = q], where 1 is the indicator function. Local histograms with rect-

angular support are frequently used, these can be defined identically except for the range of

the indices i and j. In the following everything that holds for global histograms also applies

to local histograms.

2.1 Gradient Histograms in Upsampled Images

Intuitively the information content of an upsampled image is the same as that of the original
image (upsampling does not create new image structure). Assume I is a continuous signal,
and let Ik denote an upscaled version of I by a factor of k: Ik(x,y) ≡ I(x/k,y/k). Using the

definition of a derivative, one can show that
∂ Ik
∂x

(i, j) = 1
k

∂ I
∂x
(i/k, j/k), and likewise for

∂ Ik
∂y

,

which simply states the intuitive fact that the rate of change in the upsampled image is k
times slower the rate of change in the original image. Under mild smoothness assumptions,

the above also holds (approximately) for discrete signals. Let Mk(i, j) ≈ 1
k
M(⌈i/k⌉,⌈ j/k⌉)

denote the gradient magnitude in the upsampled discrete image. Then:
kn

∑
i=1

km

∑
j=1

Mk(i, j)≈
kn

∑
i=1

km

∑
j=1

1

k
M(⌈i/k⌉,⌈ j/k⌉) = k2

n

∑
i=1

m

∑
j=1

1

k
M(i, j) = k

n

∑
i=1

m

∑
j=1

M(i, j)

Thus, the sum of gradient magnitudes in the pair of images is related by a factor of k. Gradi-

ent angles are also preserved since
∂ Ik
∂x

(i, j)
/ ∂ Ik

∂y
(i, j)≈ ∂ I

∂x
(i/k, j/k)

/

∂ I
∂y
(i/k, j/k). Therefore,
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Figure 2: Behavior of gradient histograms in resampled images, see text for details.

according to the definition of gradient histograms given above, the relationship between hq

(computed over I) and h′q (computed over Ik) is simply: h′q ≈ khq. We can thus approximate

gradient histograms in an upsampled image using gradients computed at the original scale.

Experiments: We demonstrate that the quality of the approximation h′q ≈ khq in real

images, upsampled using a standard bilinear interpolation scheme, is quite high. We used

two sets of images for these experiments. First, we used the 1237 cropped pedestrian im-

ages from the INRIA pedestrians training dataset. Each image was 128×64 and contains a

pedestrian approximately 96 pixels tall. The second set of images contains 5000 128× 64

windows cropped at random positions from the 1218 images in the INRIA negative training

set. We refer to the two sets of images as ‘pedestrian images’ and ‘natural images’, although

the latter set is biased toward windows that may (but do not) contain pedestrians.

In order to measure the fidelity of this approximation, we define the ratio rq = h′q/hq,

quantizing orientation into Q = 6 bins. Figure 2(a) shows the distribution of rq for one bin

on the 1237 pedestrian (top) and 5000 natural (bottom) images given an upsampling of k = 2

(results for other bins were similar). In both cases the mean is µ ≈ 2, as expected, and the

variance is fairly small, meaning the approximation is unbiased and reasonable.

2.2 Gradient Histograms in Downsampled Images

While the information content of an upsampled image is roughly the same as that of the

original image, information is typically lost during downsampling. Below, we demonstrate

the nontrivial finding that the information loss is relatively consistent, and furthermore show

that we can compensate for it to a large extent in a straightforward manner.

If I contains little high frequency energy, then the approximation h′q ≈ khq should apply.

In general, however, downsampling results in loss of high frequency content and its gradient

energy. Let Ik now denote I downsampled by a factor of k. We expect the relationship

between hq (computed over I) and h′q (computed over Ik) to have the form h′q ≤ hq/k. The

question we seek to answer here is whether the information loss is consistent.

Experiments: As before, define rq = h′q/hq. In Figure 2(b) we show the distribution of

rq for a single bin on the pedestrian (top) and natural (bottom) images given a downsampling

factor of k = 2. Observe that the information loss is consistent: rq is normally distributed

around µ = .32 < .5. This implies that h′q ≈ .32hq could serve as a reasonable approximation

for gradient histograms in images downsampled by k = 2. We seek to understand how this

relation arises and extend the above to all values of k.

Figure 3 shows the quality of the above approximations on example images.
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Figure 3: Approximating gradient histograms in resampled images. For each image set, we take the original

image (cyan border) and generate an upsampled (blue) and downsampled (yellow) version. Shown at each scale

are the image (center), gradient magnitude (right), and gradient orientation (bottom). At each scale we compute a

gradient histogram with 8 bins, normalizing each bin by .5 and .32−1 in the upsampled and downsampled histogram,

respectively. Assuming the approximations developed in §2 hold, the three normalized gradient histograms should

be roughly equal. For the first three cases, the approximations are fairly accurate. In the last case, showing a highly

structured Brodatz texture with significant high frequency content, the downsampling approximation fails entirely.

3 Approximating Multiscale Features

In order to understand more generally how information behaves in resampled images, we turn

to the study of natural image statistics [16, 27]. While we analytically derived an expression

for predicting gradient histograms in upsampled images, there is no equivalent derivation for

downsampled images. Instead, an analysis of natural images statistics allows us to approxi-

mate gradient histograms and numerous additional features in resampled images.

We begin by defining a broad family of features. Let Ω be any shift-invariant function

that takes an image I(i, j) and creates a new channel image C = Ω(I), where C is a registered

map of the original image. Output pixels in C are typically computed from corresponding

patches of input pixels in I (thus preserving overall image layout). We define a feature as

the weighted sum of a channel C: f (I) = ∑i j wi jC(i, j). Numerous local and global features

can be written in this form including gradient histograms, linear filters, color statistics, and

countless others [7]. For simplicity, we assume f (I) = ∑i j C(i, j) is the global sum of a

channel and refer to the result as the channel energy; in the following everything that holds

for the channel energy also holds for local weighted features. Finally, we write f (I,s) to

denote the channel energy computed over I after downsampling by a factor of 2s.

3.1 Exponential Scaling Law

Ruderman and Bialek [26, 27] showed that various statistics of natural images are indepen-

dent of the scale at which the images were captured, or in other words, the statistics of an

image are independent of the scene area corresponding to a single pixel. In the context of

our work, we expect that on average, the difference in channel energy between an image and

a downsampled version of the image is independent of the scale of the original image and

depends only on the relative scale between the pair of images. In other words the expecta-

tion over natural images of f (I,s1)/ f (I,s2) should depend only on s1 − s2. We can formal-

ize this by assuming there exists a function r(s) such that f (I,s1)/ f (I,s2) ≈ r(s1 − s2) and

E[ f (I,s1)/ f (I,s2)] = E[ f (I,s1)]/E[ f (I,s2)] = r(s1 − s2) for all s1,s2. One can then show

that r(s1 + s2) = r(s1)r(s2); if r is also continuous and non-zero, then it must take the form

r(s) = e−λ s for some constant λ [18]. Therefore, E[ f (I,s1)/ f (I,s2)] must have the form:

E[ f (I,s+ s0)/ f (I,s0)] = e−λ s (1)

Each channel type has its own corresponding λ , determined empirically. In §3.2 we show

that (1) provides a remarkably good fit to our data for multiple channel types and image sets.
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Figure 4: Behavior of channel energy in downsampled images. Top: E[r(I,s)] as a function of s; in each case

ae−λ s provides an excellent fit for both pedestrian and natural images. Bottom: standard deviation of r∗(I,s) =
r(I,s)/ae−λ s increases slowly as a function of s. The channel types plotted are: (a) gradient histogram channels

computed over locally L1 normalized gradients M′(i, j) = M(i, j)/(E[M(i, j)]+ .1) (with E computed over a 9×9

image neighborhood); (b) standard deviation of intensity values computed in each local 9×9 neighborhood C(i, j)=
E[I(i, j)2]−E[I(i, j)]; and (c) HOG [6] (each channel is a single gradient orientation at one of four normalizations).

Although (1) holds for an ensemble of images, the equivalent relation should also hold

for individual images. Given f (I,0), we propose to approximate f (I,s) by:

f (I,s)≈ f (I,0)e−λ s (2)

Experiments in §3.3 indicate that the quality of the approximation in (2) is very good, for

both natural and pedestrian images. Although the quality of the approximation degrades

with increasing value of s, it does so only gradually and proves effective in practice.

Equations (1) and (2) also hold for upsampled images (details omitted). However, λ for

upsampling and downsampling will typically be different even for the same channel type

(as in the case of gradient histograms, see §2). In practice, though, we want to predict

channel energy in higher resolution images (to which we may not have access) as opposed

to (smooth) upsampled images. For this one should use the same λ as for downsampling.

3.2 Estimating λ

We perform a series of experiments to verify (1) and estimate λ for four different chan-

nel types. Define r(I,s) ≡ f (I,s)/ f (I,0). To estimate λ , we first compute µs = E[r(I,s)]
for s = 1

8
, 2

8
, . . . , 24

8
. For the gradient histogram channels defined previously as C(i, j) =

M(i, j)1[O(i, j) = q], the 24 resulting values µs for both pedestrian and natural images are

shown in Figure 2(c), top. Observe that µs does not start near 1 as expected: bilinear in-

terpolation smooths an image somewhat even when using a single pixel downsampling rate

(s = ε), in which case E[r(I,ε)]≈ .88. We thus expect µs to have the form µs = ae−λ s, with

a ≈ .88 as an artifact of the interpolation. To estimate λ and a we use a least squares fit of

λ s = ln(a)− ln(µs) to the 24 means computed over natural images, obtaining λ = 1.099 and

a = .89. The agreement between the resulting best-fit curve and the observed data points

is excellent: the average squared error is only 1.8× 10−5. The best-fit curve obtained from

natural images was also a very good fit for pedestrian images, with average error 3.2×10−4.

We repeat the above experiment for the three additional channel types, results are shown

in Figure 4, top. For every channel type (1) is an excellent fit to the observations µs for

both natural and pedestrian images (with a different λ for each channel). The derivation

of (1) depends on the distribution of image statistics being stationary with respect to image

scale; that this holds for pedestrian images in addition to natural images, and with nearly an

identical constant, implies the estimate of λ is robust and generally applicable.
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3.3 Approximation Accuracy

We have shown that (1) is an excellent fit for numerous channel types over an ensemble

of images; we now examine the quality of the approximation in (2) for individual images.

To do so, we define the quantity r∗(I,s) = r(I,s)/ae−λ s, with a and λ set to the estimates

obtained previously. r∗(I,s) is normalized such that E[r∗(I,s)]≈ 1; for an individual image,

r∗(I,s) ≈ 1 implies the approximation (2) is accurate. In Figures 2(c) and 4, bottom, we

plot the standard deviation σ∗ of r∗(I,s). Low standard deviation implies low average error,

and for s ≤ 1 (downsampling by at most two), σ∗ < .2 for all channel types studied. In

general, σ∗ increases gradually and not too steeply as a function of s. The best evidence for

the validity of the approximation, however, is that its use does not significantly degrade the

performance of pedestrian detection, as we will show in §5.

4 Fast Multiscale Detection

In numerous tasks, including sliding window detection, the same features are computed at

multiple locations and scales. In the context of the channel features discussed in §3, this can

be performed efficiently assuming C = Ω(I) is shift and scale invariant, respectively. Ω is

shift invariant if computing Ω on a translated version of an image I is the same as translating

the channel Ω(I); likewise Ω is scale invariant if computing Ω on a resampled version of I

is the same as resampling Ω(I). Shift invariance allows for fast single scale detection; scale

invariance allows for fast multiscale detection. Most Ω used in computer vision are shift

invariant but not scale invariant; nevertheless, the approximations developed in §3 can give

us nearly the same speed as true scale invariance.

Most modern detectors utilize features which are not scale invariant, such as gradient

histograms. This includes all top performing pedestrian detectors [6, 7, 14, 22, 31] evaluated

on the Caltech Pedestrian dataset [8]. Without scale invariance, the standard approach is to

explicitly construct an image pyramid [21] and perform detection at each scale separately,

see Figure 1(a). To detect objects larger than the model scale the image is downsampled;

conversely, to detect smaller objects the image is upsampled. At each resulting scale features

are recomputed and single-scale detection applied. Typically, detectors are evaluated on 8-16

scales per octave [8], and even when optimized, just constructing gradient histograms over a

finely sampled image pyramid can take over one second per 640×480 image [7, 14].

Given shift and scale invariance, fast multiscale detection is possible through the con-

struction of a classifier pyramid, which involves rescaling a single detector to multiple scales,

see Figure 1(b). The Viola and Jones detector (VJ) [28] was built using this idea. Utilizing

integral images, Haar like features (differences of rectangular sums) [24] at any position and

scale can be computed with a fixed number of operations [28]. To compute the detector at

different spatial locations, the support of the Haars simply needs to be shifted; to compute the

detector at different scales, the Haar features need to be shifted, their dimensions adjusted,

and a scaling factor introduced to account for their change in area, but otherwise no addi-

tional changes are needed. During detection the integral image needs to be computed only

once at the original scale, and since the classifier is fast through the use of integral images

and cascades, so is the resulting overall multiscale detection framework.

Viola and Jones demonstrated a detection framework using scale invariant features that

achieves real time multiscale detection rates; however, scale invariant features tend to be

quite limited. On the other hand, using richer features, such as gradient histograms, leads

to large increases in accuracy but at the cost of much slower multiscale detection. Instead,
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Figure 5: Performance under various parameter choices in the construction of FPDW; evaluated using 25 trials

on the INRIA full image dataset using. The vertical gray lines denote default parameter values used in all other

experiments (scale step of 1, λ = 1.129 as predicted in §3.2, 8 scales per octave). (a) Detection rate decreases very

slowly as the scale step size for the image pyramid increases up to 2 octaves, demonstrating the applicability of

(2) over a wide scale range. (b) Sub-optimal values of λ for the normalized gradient channels causes a decrease in

performance. (c) At least 8 scales per octave are necessary in the classifier pyramid for good performance.

we propose to construct a classifier pyramid using features which are not scale invariant,

utilizing the approximation given in (2). As the quality of the approximation degrades with

increasing distance in scale, we utilize a hybrid approach: we construct a sparsely sampled

image pyramid with a step size of one octave and within each octave we use a classifier

pyramid, see Figure 1(c). In essence, the proposed approach achieves the speed of a classifier

pyramid with the accuracy of an image pyramid. Implementation details are given in §5.

4.1 Complexity Analysis

The computational savings of using the hybrid approach over a densely sampled image pyra-
mid can be significant. Assume the cost of computing features is linear in the number of
pixels in an n×n image (as is often the case). Typically the image pyramid is sampled using
a fixed number of m scales per octave, with each successive image in the pyramid having

side length 21/m times that of the previous image. The cost of constructing the pyramid is:

∞

∑
k=0

n22−2k/m = n2
∞

∑
k=0

(4−1/m)k =
n2

1−4−1/m
≈

mn2

ln4
(3)

The second equality follows from the formula for a sum of a geometric series; the last ap-

proximation is valid for large m (and follows by a subtle application of l’Hôpital’s rule). In

the hybrid approach we use one scale per octave (m = 1). The total cost is 4
3
n2, which is only

33% more than the cost of computing single scale features. Typical detectors are evaluated

on m = 8 to 16 scales per octave [8], thus according to (3) we expect an order of magnitude

savings by using the proposed hybrid approach (more if upsampled images are used).

5 Experiments

For the following experiments, we use the ChnFtrs detector described in [7]. The detector

is relatively fast and achieves good performance across a number of pedestrian datasets and

scenarios, as described on the Caltech Pedestrian Dataset website [1, 8]. ChnFtrs spends

most of its computation constructing the feature pyramid, making it an excellent candidate

for our fast detection scheme. No re-training was necessary for this work; instead, we rescale

a pre-trained detector [7] using the approximation in (2) (details below). We refer to our fast

multiscale variant of ChnFtrs as the ‘Fastest Pedestrian Detector in the West’ (FPDW).

The ChnFtrs detector is a generalization of VJ: instead of constructing an integral image

and extracting Haar-like features over just the original intensity image I, multiple channels

C = Ω(I) are used, including gradient magnitude, normalized gradient histogram and LUV

color channels. For additional details see [7]. To resample the detector the Haars need
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(a) Caltech Pedestrian Data (peds. ≥ 100 pixels)
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(b) Caltech Pedestrian Data (peds. ≥ 50 pixels))
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Figure 6: Time versus detection rate at 1 false positive per image on 640×480 images from the Caltech Pedes-

trian Dataset [8]. Timing methodology and code may be obtained from [1]. Run times of all algorithms are

normalized to the rate of a single modern machine, hence all times are directly comparable. (Note that the VJ

implementation used did not utilize scale invariance and hence its slow speed). FPDW obtains a speedup of about

10-100 compared to competing methods with a detection rate within a few percent of best reported performance.

to be repositioned, their dimensions adjusted accordingly, and finally, according to (2), the

output of each Haar must be multiplied by a channel specific scaling factor eλ s (s > 0 for

downsampling, s < 0 for upsampling). For features computed over the gradient channels,

which were L1 normalized, λ = 1.129 is used (see Figure 4(a)). Color channels, like intensity

channels, are scale invariant and λ = ln(4) is used to compensate for the change in feature

area during resampling. Finally, as most Haars can’t be resized exactly (due to quantization

effects), a multiplicative factor can also used to compensate for changes in area.

As the approximation (2) degrades with increasing scale offsets, our hybrid approach is

to construct an image pyramid sampled once per octave and use the classifier pyramid within

half an octave in each direction of the original detector. Details of how this and other choices

in the construction of FPDW affect performance are shown in Figure 5. We emphasize that

re-training was not necessary and all other parameters were unchanged from ChnFtrs.

Overall, FPDW is roughly 5-10 times faster than the ChnFtrs detector; detailed timing

results are reported in Figure 6. Computing the feature pyramid is no longer the bottleneck

of the detector; thus, if desired, additional speedups can now be achieved by sampling fewer

detections windows (although at some loss in accuracy). Finally, in Figure 7 we show full-

image results on three datasets [6, 8, 33]. In all cases the detection rate of FPDW is within 1-

2% of the top performing algorithm, and always quite close to the original ChnFtrs classifier,

all while being 1-2 orders of magnitude faster than competing methods.
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(a) INRIA Results
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(b) Caltech ‘Reasonable’ Results
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(c) TUD-Brussels Results

Figure 7: The ‘Fastest Pedestrian Detector in the West’ (FPDW) is obtained by rescaling ChnFtrs to multiple

target scales. Results on three datasets are shown (plot legends are ordered by miss rate at 1 false positive per image

– lower is better). In all cases the detection rate of FPDW is within a few percent of ChnFtrs while being 1-2

orders of magnitude faster than all competing methods. Evaluation scripts, detector descriptions, additional results

(including on the ETH dataset [11] and under varying conditions) are all available online at [1].
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6 Conclusion
The idea motivating our work is that we can approximate features, including gradient his-

tograms, at nearby scales from features computed at a single scale. To take advantage of this,

we proposed a hybrid approach that uses a sparsely sampled image pyramid to approximate

features at intermediate scales. This increases the speed of a state-of-the-art pedestrian de-

tector by an order of magnitude with little loss in accuracy. That such an approach is possible

is not entirely trivial and relies on the fractal structure of the visual world; nevertheless, the

mathematical foundations we developed should be readily applicable to other problems.
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