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Is there a short and fast program that can compute the precise history of
our universe, including all seemingly random but possibly actually deter-
ministic and pseudo-random quantum fluctuations? There is no physical
evidence against this possibility. So let us start searching! We already
know a short program that computes all constructively computable uni-
verses in parallel, each in the asymptotically fastest way. Assuming ours
is computed by this optimal method, we can predict that it is among the
fastest compatible with our existence. This yields testable predictions.

Note: This paper extends an overview of previous work51–54,58,59 presented

in a survey for the German edition of Scientific American.61

1. Introduction

In the 1940s, Konrad Zuse already speculated that our universe is com-

putable by a deterministic computer program (Horst Zuse, personal com-

munication, 2006), like the virtual worlds of today’s video games. In 1967

he published the first scientific paper on this idea,77 soon to be followed

by his book Calculating Space,78 focusing on cellular automata as com-

putational devices. We shall see that contrary to common belief, Zuse’s

hypothesis is compatible with all known observations of quantum physics.

Since computable universes are much simpler than non-computable ones,

and since one should prefer simple explanations over complex ones, we shall

accept his hypothesis as long as there is no evidence to the contrary.

Somewhat surprisingly, there must then exist a very short and in a sense

optimally fast algorithm that not only computes the entire history of our

own universe, but also those of all other logically possible universes. If

the computation of our world indeed is indeed based on such an optimal
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method, then we may derive non-trivial predictions about its future. I will

also briefly discuss some philosophical and theological consequences of this

view.

2. Simplicity and Complexity

An object is simple if it has a short description that can be quickly

transcribed into the object. For example, the image of a fractal struc-

ture42 may seem complex due to its wealth of detail. But in reality it

is simple, as it can be completely generated by a very short and fast

program. Therefore it has low algorithmic information or Kolmogorov

complexity, defined as the length of the shortest program that computes

it.2,14–16,18,24,25,34–36,38,39,53,66,70,71,76,79 This length hardly depends on the

chosen programming language, since programs written in one language can

be translated into equivalent programs of another language through a com-

piler26,75 of constant, program-independent size.

Is the past and future history of our entire universe simple or complex

in this sense? Is there perhaps a very short program that calculates it,

including us as observers? This program would have to yield not only the

known physical laws but also determine and explain every single seemingly

random elementary event. The noblest goal of physics would be to find it.

3. No Problems with Non-Computable Real Numbers

Or is the universe perhaps not computable at all, because it somehow con-

tains or depends on non-computable numbers? As of today there is no

compelling reason whatsoever to assume that.

Most physicists are indeed convinced that the universe is quantized by

smallest discrete units of time and space and energy. On the other hand,

they like to predict macroscopic phenomena using calculus based on the

axioms of real numbers, and most real numbers are not even computable

(because there are uncountably many real numbers,12 but only countably

many finite programs, such as the non-halting program computing all digits

of π). Even quantum physicists who are ready to give up the assumption of

a continuous universe usually do take for granted the existence of continuous

probability distributions on their discrete universes, and Stephen Hawking

explicitly said: “Although there have been suggestions that space-time may

have a discrete structure I see no reason to abandon the continuum theo-

ries that have been so successful.” Note, however, that all physicists in fact
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have only manipulated discrete symbols, thus generating finite, describable

proofs of their results derived from enumerable axioms. That real num-

bers really exist in a way transcending the finite symbol strings used by

everybody may be a figment of imagination52 — compare Brouwer’s con-

structive mathematics3,7 and the Löwenheim-Skolem Theorem41,68 which

implies that any first order theory with an uncountable model such as the

real numbers also has a countable model. As Kronecker put it: “Die ganze

Zahl schuf der liebe Gott, alles Übrige ist Menschenwerk” (“God created

the integers, all else is the work of man”10). Kronecker greeted with scep-

ticism Cantor’s celebrated insight12 that there are uncountably many real

numbers, mathematical objects Kronecker believed did not even exist.

Anyway, calculus does yield very good macro-level approximations of

whatever discrete computable processes may really be happening on the

microscopic level.

4. No Problems with Uncertainty Principle

Obviously the universe at least partially obeys simple program-like rules:

apples fall to the ground again and again in similar ways; all electrons ap-

parently act the same. Many quantum physicists, however, believe that the

history of the universe also includes an incredible number of principally un-

predictable, random events on the quantum level.58 If that were true, then

it would not have a short description, since truly random, irregular data

has maximal Kolmogorov complexity, being incompressible by definition.

Here physicists like to refer to Werner Heisenberg (1901-1976), whose

famous uncertainty principle31 says that an observer cannot simultaneously

precisely determine impulse and location of a physical object. For example,

to measure the state of an electron, one needs to shoot other particles at

it, thus changing its state. To mathematically quantify the resulting un-

certainty, quantum mechanics replaces precise deterministic predictions by

probabilistic ones. Many physicists believe this uncertainty to be not only

a practical measurement problem, but a fundamental property of nature,

claiming that God does not obey Albert Einstein’s famous quote: Gott

würfelt nicht (God does not play dice). According to this view, history

would not be pre-determined, and neither compactly describable nor pre-

cisely predictable, not even in principle.

It is possible, however, to imagine a computer-generated, pseudo-

random,20 totally deterministic world that makes its inhabitants believe

that it is partially random and only partially observable, thanks to
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Heisenberg-like observation limits.58 A hypothetical programmer of this

world could interrupt the computation at any time, dump the current stor-

age into a file, and analyze every little detail, including precise impulse

and location of every bitstring-encoded elementary particle.51 Later he

could continue the program’s execution, without any internal observer even

noticing the pause.

5. No Problems with Bell’s Inequality

Quantum physics seems weird. Two entangled particles may be separated

by light years, but they somehow seem to immediately “feel” whether one of

them is measured, yielding a correlated measurement. Einstein viewed this

spooky action at a distance as a proof of quantum physics’ incompleteness.

A famous inequality of John Stewart Bell (1928-1990) shows that if

observers and observations are statistically independent in a certain sense,

then there is no local physical rule to explain such spooky effects, even if

each particle had unknown internal variables to store information about

events that occurred when its entangled particle was still close.4

In deterministically computable universes, however, Bell’s assumption of

independent observers and observations is void and irrelevant. Bell himself

was well aware of this.58

6. Occam and the Search for the Shortest Program

Most scientists appreciate the rule of William Occam (1280-1347): Among

all hypothesis explaining the observations, favor the simplest one. In

modern terms: Among all programs reproducing or compressing the ob-

servations, favor the shortest one. The principle is widely accepted not

only in the inductive sciences such as physics,34,39 but even in the fine

arts.50 I will later sharpen it a bit, taking into account not only program

size2,14–16,18,24,25,34–36,38,39,53,66,70,71,76,79 but also computation time.54

7. What Can be Computed Constructively?

So far we have seen that no physical observations contradict Zuse’s hy-

pothesis of a computable universe. Even prominent physicists such as 1999

Nobel laureate Gerard ‘t Hooft take it seriously.73 Now we have to clarify,

however, what exactly is constructively computable at all.
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Let us consider traditional computers that take a binary input program

such as 10011010100..., process it by an internal mechanism, and produce a

growing number of output bits. The output could encode the evolution of

some universe, for example, the total space-time of ours, or even an entire

multiverse (many parallel, partially interacting universes) in the sense of

Everett.21,22

Note that a computed universe history does not have to correspond to

incrementally computed local time steps like in certain examples provided

in my previous publications51–54—maybe our standard concepts of time do

not even make sense in a given computable universe. But we insist that

the output yields a complete representation of every detail of the universe

or multiverse in question, without any loss of information.

An additional “viewer program” may facilitate the interpretation of out-

put bitstrings, reminiscent of video games that come with a computer

graphics interface to visualize bitstrings in the computer’s memory which

encode game states.

In traditional computer science, each output bit is viewed as being final

and unmodifiable. It turns out, however, that many possible output bit-

strings (and thus universes) are compactly describable only if we relax this

view, and allow non-halting programs8,9,23,27,30,32,46,48 to edit their former

outputs on occasion52,53 (compare functions in the arithmetic hierarchy48

and the concept of ∆0
n-describability, e.g., [39, p. 46-47]).

I defined52,53 the set of formally describable or constructively limit-

computable bitstrings x: those x that have a (possibly non-halting) finite

program converging towards x — after some time each bit of x has to stop

changing, that is, each prefix of x becomes fixed after finite (but in general

unknowable) time.

For example, let us us assume the n-th output bit is 1 if the n-th program

in a list of all possible programs halts, where n is a natural number. This

output sequence has a very compact input program which systematically

enumerates all possible programs and runs them in interleaving fashion;

whenever a program in the list (say, the m-th) halts, the m-th output bit

(initialized by 0) becomes 1. Every prefix of the infinite output will converge

at some point. But we do not know when, otherwise we could solve the

generally unsolvable halting problem.26,75

It turns out that a given universe such as ours might have a very short

explanation or description on a machine that can edit its former outputs,

but not on a traditional machine. In fact, there are more or less powerful

variants of output-editing machines which vary in their expressiveness, some
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being able to compactly encode certain universes that need long codes on

others. For example, the enumerable “number of wisdom” Ω11,16,69,72 can-

not be compressed on traditional Turing Machines,75 but on so-called Enu-

merable Output Machines.45,52,53 These distinctions are technically very

important, but not central to the present overview; the interested reader is

referred to.52,53

8. No Problem with Talk About Incomputable Things

Observers inhabiting a computable universe may talk about mathematical

paradoxons and things that are incomputable in a sense, such as the halt-

ing probability of a universal Turing machine, which is closely related to

Gödel’s incompleteness theorem.11,16,26,69,72,75 This does not involve any

inconsistencies.51 For example, the processes that correspond to our brain

firing patterns and the sound waves they provoke by controlling our voices

may still correspond to computable substrings of our universe’s evolution.

The same holds for talk about inconsistent worlds in which, say, time travel

is possible.

9. The Fastest Way of Computing All Universes

In 1996 I pointed out that there is a very short algorithm that computes all

possible universes, as long as they are computable.51 In a certain sense this

(non-halting) algorithm is also extremely fast, as I emphasized in 2000.52,54

Let me write down a variant that does not consume excessive storage space

(here l(p) denotes the length of program p, a bitstring):

Algorithm 1 Algorithm FAST

for i := 1, 2, . . . do

Run each program p with l(p) ≤ i for at most 2i−l(p) steps and reset

storage modified by p

end for

That is, in phase i, FAST generates all universes computable by some

program p satisfying l(p) + log t(p) ≤ i, where t(p) is the runtime of p, and

log denotes the binary logarithm. True, phase i + 1 will repeat everything

done in phase i, but that is not an essential efficiency problem: every phase

costs roughly as much as all previous phases taken together, that is, we lose

only a factor of 2 or so of computation time, but gain a lot by not having to
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store all intermediate results of previously executed, only partially finished

programs, which would cost exponentially growing storage space.

It is easy to see that FAST will generate the n-th bit of each universe as

quickly as if it were computed by this universe’s fastest program, save for

a constant factor that does not depend on n. Following standard practice

of theoretical computer science, we may therefore call FAST the asymptot-

ically fastest way of computing all computable universes. For any God-like

Great Programmer,51 FAST offers a natural, optimally efficient way of com-

puting all logically possible worlds.

If our universe is one of the computable ones, then FAST will eventually

produce a detailed representation of its first few billion years of local time

(note that nearly 14 billion years have passed since the big bang).

10. The Fastest and Truest Version of Our World?

Since there are many programs computing one and the same universe (his-

tory), our optimal algorithm FAST (Section 9) will generate many copies

of ours, and many histories that start like ours (but possibly continue in

different ways). At any given time in the execution of FAST, the most ad-

vanced copies will be those computable by short and fast programs. Since

we exist, we already know that at least one of the programs has computed

enough to enable our existence, following the weak anthropic principle.1,13

But which of the many? A little bit of thought shows: With high probabil-

ity it will be one of the shortest and fastest compatible with our existence!

For a more detailed analysis, see previous work.52,54

Following this argumentation, we are already part of one of the simplest,

fastest, non-random worlds compatible with our very being, simply because

even the optimal FAST needs much more time to compute truly random

events as parts of any universe’s history. Computationally, randomness is

extremely expensive in terms of both time and space. It does not fit the

Occam’s razor criterion at all.

But even if our universe’s history included a huge number of truly ran-

dom quantum events, one question would arise immediately: Besides the

physical laws, which is the simplest and fastest pseudo-random generator

needed to compute a similar, less random world? In a philosophical sense,

wouldn’t this world be the truest version of our world, reflecting its true

essence, thanks to its lack of arbitrariness?
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11. Predictions Based on the Fastest Way

If whoever is generating our universe is using algorithm FAST (Section 9)

to deal with computational resource constraints in an optimal way, we can

make non-trivial predictions.

For example, all seemingly random events (such as beta decay of neu-

trons) actually must follow some pseudo-random rule, waiting to be dis-

covered by some grad student at CERN or elsewhere. Perhaps current

physicists are like observers seeing the second billion digits in the decimal

expansion of π, which at first glance look very random (for example, every

3 digit sequence occurs roughly once in a thousand 3 digit subsequences)

but is actually highly regular, since it can be computed by a short program.

One somewhat depressing prediction is that quantum computation, a

subject of much current excitement,5,19,40,44 will never work well and never

scale to large problems. Sure, FAST will run many programs that compute

multiverse-like universes, obeying known laws of quantum mechanics and

allowing for quantum computers (which can be fully simulated on tradi-

tional computers). However, the FAST-generated programs that compute

our history so far and permit the expected effects of quantum computing

will cost much more computational effort than others that are also com-

puting our history in a less computationally expensive way. That is, under

FAST they are very unlikely. That is, it is very unlikely that we are in-

habiting a multiverse where quantum computation will be able to solve

non-trivial problems. A pity!

I first made this prediction a decade ago.52 Since then, nobody has

been able to make quantum computation scale. For example, the biggest

number to be factored by any existing quantum computer is still 15.

12. How to Find our Universe’s Program

Algorithm FAST (Section 9) computes all universes, not just ours. But

what we’d really like to know is the program that computes ours and noth-

ing else. That would be the world’s essential formula, the holy grail of

theoretical physics. How to find it? It turns out that the optimal way of

searching for it is closely related to FAST. It goes like this:

Take any sequence of physical observations, and run FAST until one

of the executed programs (written in a universal programming language)

reproduces the data.

This is essentially Levin’s universal search algorithm37 applied to
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physics. Since it is only asymptotically optimal, it can be greatly accel-

erated under certain conditions by methods such as the Optimal Ordered

Problem Solver,56 which may use partial, incomplete reproductions of the

data as intermediate subgoals, and then continue the search by re-using

previous subgoal-achieving programs, thus possibly dramatically reducing

the constant slowdown ignored by the asymptotic notion of optimality.56

13. Always Slower Than the Universe Itself

Note that if somebody indeed found the shortest and fastest program of

our world, this would not necessarily help to figure out the future faster

than by waiting for it happen. The computer on which to run this program

would have to be built within our universe, and as a small part of the latter

would be unable to run as fast as the universe itself.

14. Math v Computation?

Rather than pursuing the computability-oriented path layed out in,51

Tegmark (back then at LMU Munich) suggested what at first glance seems

to be an alternative ensemble of possible universes based on an informally

defined set of “self-consistent mathematical structures”74 — compare also

Marchal’s and Bostrom’s theses.6,43 It is not quite clear whether Tegmark

wanted to include universes that are not formally describable according

to our definition mentioned in Section 7. It is well-known, however, that

for any set of mathematical axioms there is a program that lists all prov-

able theorems in order of the lengths of their shortest proofs encoded as

bitstrings. Hence Tegmark’s view74 seems in a certain sense encompassed

by the algorithmic approach.51 The latter offers several conceptual ad-

vantages though: (1) It provides the appropriate framework for issues of

information-theoretic complexity traditionally ignored in pure mathemat-

ics, and imposes natural complexity-based orderings on the possible uni-

verses and subsets thereof.51–53 (2) It taps into a rich source of theoretical

insights on computable probability distributions relevant for establishing

priors on possible universes. Such priors are needed for making proba-

bilistic predictions concerning our own particular universe.51–53 Although

Tegmark suggests that “... all mathematical structures are a priori given

equal statistical weight” (Ref. 74, p. 27), there is no way of assigning equal

nonvanishing probability to all (infinitely many) mathematical structures.

Hence we really need something like the complexity-based weightings dis-
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cussed in in earlier papers.51–53 (3) The algorithmic approach is the obvious

framework for questions of temporal complexity such as those discussed

in this paper, e.g., “what is the most efficient way of simulating all uni-

verses?”52,54

15. Optimal Artificial Intelligence in Computable Universes

The fully self-referential26 Gödel machine63 is a Universal Artificial Intel-

ligence (AI)55,57,60,62,64 that is at least theoretically optimal in a certain

sense. It may interact with some initially unknown, partially observable

environment to maximize future expected utility or reward by solving ar-

bitrary user-defined computational tasks. Its initial algorithm is not hard-

wired; it can completely rewrite itself without essential limits apart from

the limits of computability, provided a proof searcher embedded within the

initial algorithm can first prove that the rewrite is useful, according to the

formalized utility function taking into account the limited computational

resources. Self-rewrites may modify / improve the proof searcher itself, and

can be shown to be globally optimal, relative to Gödel’s well-known fun-

damental restrictions of provability.26 To make sure the Gödel machine is

at least asymptotically optimal even before the first self-rewrite, we may

initialize it by Hutter’s non-self-referential but asymptotically fastest algo-

rithm for all well-defined problems Hsearch,33 which uses a hardwired brute

force proof searcher and (justifiably) ignores the costs of proof search. As-

suming discrete input/output domains X/Y ⊂ B∗, a formal problem spec-

ification f : X → Y (say, a functional description of how integers are

decomposed into their prime factors), and a particular x ∈ X (say, an inte-

ger to be factorized), Hsearch orders all proofs of an appropriate axiomatic

system by size to find programs q that for all z ∈ X provably compute f(z)

within time bound tq(z). Simultaneously it spends most of its time on exe-

cuting the q with the best currently proven time bound tq(x). Remarkably,

Hsearch is as fast as the fastest algorithm that provably computes f(z) for

all z ∈ X, save for a constant factor smaller than 1+� (arbitrary real-valued

� > 0) and an f -specific but x-independent additive constant.33 Given some

problem, the Gödel machine may decide to replace its Hsearch initialization

by a faster method suffering less from large constant overhead, but even if

it doesn’t, its performance won’t be less than asymptotically optimal.

All of this implies that there already exists the blueprint of a Universal

AI which will solve almost all problems almost as quickly as if it already

knew the best (unknown) algorithm for solving them, because almost all
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imaginable problems are big enough to make the additive constant negligi-

ble.

The only motivation for not quitting computer science research right

now is that many real-world problems are so small and simple that the

ominous constant slowdown (potentially relevant at least before the first

Gödel machine self-rewrite) is not negligible. Nevertheless, the ongoing

efforts at scaling universal AIs down to the rather few small problems are

very much informed by the new millennium’s theoretical insights57,60,62,64

mentioned above, and may soon yield practically feasible yet still general

problem solvers for physical systems with highly restricted computational

power, say, a few trillion instructions per second, roughly comparable to a

human brain power.

Simultaneously, our non-universal but still rather general fast deep /

recurrent neural networks have already started to outperform traditional

pre-programmed methods: they recently collected a string of 1st ranks

in many important visual pattern recognition benchmarks, e.g., IJCNN

traffic sign competition, NORB, CIFAR10, MNIST, three ICDAR hand-

writing competitions.17,29,65 Here we greatly profit from ongoing advances

in computing hardware, using GPUs (mini-supercomputers normally used

for video games) 100 times faster than today’s CPU cores, and a million

times faster than PCs of 20 years ago, complementing the recent above-

mentioned progress in the theory of mathematically optimal universal prob-

lem solvers.65

16. Potential Criticism

Philosophers tend to create theories inspired by recent scientific develop-

ments. For instance, Heisenberg’s uncertainty principle and Gödel’s incom-

pleteness theorem greatly influenced modern philosophy. Are algorithmic

Theories of Everything (TOEs) and the “Great Programmer Religion”51,52

just another reaction to recent developments, some in hindsight obvious by-

product of the advent of good virtual reality? (As they say: For a man with

a hammer, everything looks like a nail.) Will they soon become obsolete, as

so many previous philosophies? I find it hard to imagine so, even without a

boost to be expected for algorithmic TOEs in case someone should indeed

discover a simple subroutine responsible for certain physical events hitherto

believed to be irregular. After all, algorithmic theories of the describable do

encompass everything we will ever be able to talk and write about. Other

things are simply beyond description.
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17. Who Can Accept the Computable Real World?

Many researchers in the field of artificial life simulate the evolution of arti-

ficial beings adapting to their artificial environments, e.g.,.28,47,67 Most of

them do not have any problems with the idea of a computable real world in

Zuse’s sense. After all, a good simulation is not distinguishable from reality.

Children with experience in virtual realities and video games also tend to

find the idea of a computable universe more natural than their parents.

In our universe the raw computational power per cent will keep in-

creasing by a factor of 100-1000 per decade, with no end in sight. As a

consequence, realism and appeal of virtual realities will keep increasing dra-

matically, making the presented thoughts51–54 more and more acceptable

for the masses.

Remarkably, it is especially the quantum physicists who sometimes re-

ject such ideas,58 albeit without being able to justify their scepticism too

well by facts.

Einstein, perhaps the greatest of all physicists, did not believe in non-

determinism, as already mentioned. For a long time his view has been

unpopular among quantum physicists. But now it does not seem unreason-

able to predict that it will experience a rennaissance. First, because there

is no physical evidence against it. Second, because it greatly simplifies the

description of the world’s history in the framework of computability theory,

without necessitating a gigantic amount of information for describing a vast

number of truly random quantum-level events.

As long as nobody can show that the universe is indeed partially random,

scientists are obliged to search for a short program that computes all the

apparent randomness and therefore reveals it as pseudo-randomness.58 If

the process that calculates us makes optimally efficient use of the resources

of some higher-level universe, we should expect this program to be not only

short but also fast.52,54

18. Consequences for Philosophy and Theology

The theory of computable universes provides a purely rational and techno-

logically oriented access to basic questions of philosophy and theology.51

At least in principle, everybody could become some sort of God by pro-

gramming the algorithm FAST (Section 9) on a computer, systematically

creating all constructively computable universes, including ours.

In some of them, programmers occasionally will intervene in the worlds
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computed by their programs, reminiscent of well-known religious role mod-

els. In some, the computable contents of simulated brains will be occasion-

ally copied from one computable world to another, implementing variants

of heaven or hell.

Beings evolved in some of the simulated universes will again build com-

puters to simulate universes, in recursively nested fashion.51 This begs the

question: Where does the computer of the top universe in the hierarchy

come from? It must remain open for now.

The fact that there are mathematically optimal ways of creating and

computing all the logically possible worlds, however, opens a new and ex-

citing field hardly discussed in today’s mainstream philosophy and theology.
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24. P. Gács. On the symmetry of algorithmic information. Soviet Math. Dokl.,

15:1477–1480, 1974.



May 28, 2012 18:55 World Scientific Review Volume - 9in x 6in AComputableUniverse

The Fastest Way of Computing All Universes 397
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26. K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I. Monatshefte für Mathematik und Physik, 38:173–198,
1931.

27. E. M. Gold. Limiting recursion. Journal of Symbolic Logic, 30(1):28–46, 1965.
28. F. J. Gomez, J. Schmidhuber, and R. Miikkulainen. Efficient non-linear con-

trol through neuroevolution. Journal of Machine Learning Research JMLR,
9:937–965, 2008.
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