
707

Prog. Theor. Phys. Vol. 114, No. 3, September 2005, Letters

The Fate of a Five-Dimensional Rotating Black Hole
via Hawking Radiation

Hidefumi Nomura,1,∗) Shijun Yoshida,1,∗∗) Makoto Tanabe1,∗∗∗) and
Kei-ichi Maeda1,2,3,†)

1Department of Physics, Waseda University, Tokyo 169-8555, Japan
2Advanced Research Institute for Science and Engineering, Waseda University,

Tokyo 169-8555, Japan
3Waseda Institute for Astrophysics, Waseda University, Tokyo 169-8555, Japan

(Received May 10, 2005)

We study the evolution of a five-dimensional rotating black hole emitting scalar field
radiation via the Hawking process for arbitrary initial values of the two rotation parameters
a and b. It is found that any such black hole whose initial rotation parameters are both
nonzero evolves toward an asymptotic state a/M1/2 = b/M1/2 = const( �= 0), where this
constant is independent of the initial values of a and b.

The conventional view of black hole evaporation is that, regardless of its initial
state, Hawking radiation will cause a black hole to approach an uncharged, zero
angular momentum state long before all its mass has been lost. For this reason, in
some works, it is assumed that as a black hole evaporates close to the Planck scale,
where quantum gravity is required to determine its evolution, the final asymptotic
state is described by Schwarzschild solution.

However, Chambers, Hiscock and Taylor1) investigated, in some detail, the evo-
lution of a Kerr black hole emitting scalar field radiation via the Hawking process,
and showed that the ratio of the black hole’s specific angular momentum to its mass,
ã = a/M , evolves toward a stable nonzero value (ã→ 0.555). This means that a ro-
tating black hole will evolve toward a final state with non-zero angular momentum if
there is a scalar field. In this Letter, we extend the analysis of Chambers, Hiscock and
Taylor to a higher-dimensional case for the reasons described below. Considering the
five-dimensional case specifically, we investigate the evolution of a five-dimensional
rotating Myers-Perry (MP) black hole2) with two rotation parameters through scalar
field radiation.

Recently, black holes in N (≥ 4) dimensions have attracted much attention. This
is due to interest in the brane world scenario.3),4) From a phenomenological point
of view, the most exciting possibility for the brane world scenario is that it might be
possible to produce higher-dimensional mini-black holes in particle colliders, such as
the CERN Large Hadron Collider (LHC), or to find them in cosmic ray events.5) A
black hole produced in this manner would evaporate rapidly and emit many stan-
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dard particles. Hence it would lose most of its mass and angular momenta through
Hawking radiation6) or superradiance, which is intrinsic to a rotating or charged
black hole.7),8) A few hot quanta emitted in the final Planck phase, which cannot be
treated semiclassically, would not consist of the main part of the decay products.9)

In most of the literature, the “spin-down” phase of black hole evolution, in which a
black hole loses its angular momenta, is simply ignored, and a Schwarzschild black
hole is assumed.

In generic particle collisions, however, the impact parameter will be non-zero.
Therefore, most black holes produced in a collider would be rotating and could be
described by a higher-dimensional MP solution,2) or other rotating objects, such as a
black ring.10) For this reason, we focus on a “spin-down” phase through scalar field
radiation. A five-dimensional rotating black hole possesses three Killing vectors: ∂t,
∂φ, and ∂ψ. Therefore a five-dimensional black hole has two rotation parameters.
For a five-dimensional MP black hole with one rotation parameter, Ida, Oda and
Park11) found the formulae for the black body factor in a low-frequency expansion
and the power spectra of the Hawking radiation. However, if a brane is not infinitely
thin but, rather, has a thickness in the order of a fundamental scale (∼ TeV), we
expect there to exist a second component of angular momentum. We therefore study
the case of two rotation parameters. Frolov and Stojković first derived expressions
for the energy and angular momentum fluxes from a five-dimensional rotating black
hole with two rotation parameters.12) In this work, we numerically evaluated the
quantum radiation from a five-dimensional rotating black hole with two rotation
parameters, a and b, which we assume to be positive, without loss of generality. We
found that such a black hole evolves toward an asymptotic state characterized by a
stable values a = b ∼ 0.1975 (8M/3π)1/2, where M is the mass of the black hole. We
also show that the asymptotic state can be described by a ∼ 0.1183 (8M/3π)1/2 and
b = 0 if one of the initial rotation parameters is exactly zero.

We start with the quantum radiation of a massless scalar field Φ, which is min-
imally coupled, for a five-dimensional MP black hole with two rotation parame-
ters,12) (see also Ref. 13) for details). To quantize the scalar field, we expand it
as Φ = R(r)Θ(θ)eimφeinψe−iωt. For the vacuum state, we adopt the (past) Unruh
vacuum state |U−〉, which mimics the state of collapse of a star to a black hole.7)

Calculating the vacuum expectation value of the energy-momentum tensor of the
scalar field, we can evaluate the emission rates of the total energy and angular mo-
menta, which give the changes of the black hole mass M and angular momenta Jφ
and Jψ as

Ṁ = −π
∑
lmn

∫ ∞

0
dω

ω2

ω+

Γlmn
e2πω+/κ − 1

, (1)

J̇φ = −π
∑
lmn

∫ ∞

0
dω

mω

ω+

Γlmn
e2πω+/κ − 1

, (2)

J̇ψ = −π
∑
lmn

∫ ∞

0
dω

nω

ω+

Γlmn
e2πω+/κ − 1

, (3)
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where ω+ = ω − mΩφ − nΩψ, κ = (r2+ − r2−)/2Mr+, l is the eigenvalue of the
angular function Θ(θ), and Γlmn is the greybody factor, which is identical to the
absorption probability of the incoming wave of the corresponding mode. The values
r+ and r− represent the event horizon and the inner horizon of the black hole,
respectively. The quantities Ωφ = a/(r2+ + a2) and Ωψ = b/(r2+ + b2) are the two
angular velocities at the horizon r+. The superradiance modes are given by the
condition 0 < ω < mΩφ + nΩψ. From this condition, we find the interesting feature
that a counter-rotating particle can be created by superradiance (i.e. if Ωφ � Ωψ
and m ≥ 1) because the superradiance condition is satisfied for a counter-rotating
particle (n < 0) (see Ref. 13) for details).

Using the above formula for the quantum creation of a scalar field, we investigate
the evolution of a five-dimensional MP black hole with two rotation parameters.
From the condition for the existence of horizon(s), we obtain the condition a+b ≤ rs
constraining the angular momenta, where rs is a typical scale length which is related
to the gravitational mass M of the black hole as r2s = 8M/3π.

As shown by Page,14) it is convenient to introduce scale invariant rates of change
for the mass and angular momenta of an evaporating black hole as

f ≡ −r2sṀ, ga ≡ − rs
a∗
J̇φ, and gb ≡ −rs

b∗
J̇ψ, (4)

where a∗ = a/rs and b∗ = b/rs. In terms of the scale invariant functions f , ga, and
gb, the time evolution equations for a∗ and b∗ are given by

ȧ∗
a∗

= − 8
3π

fha
r4s

and
ḃ∗
b∗

= − 8
3π

fhb
r4s

, (5)

where the dimensionless functions ha and hb are defined as

ha ≡ d ln a∗
d lnM

=
3
2

(
ga
f

− 1
)

and hb ≡ d ln b∗
d lnM

=
3
2

(
gb
f

− 1
)
. (6)

We now discuss the evolution of a∗ and b∗, as determined through the numerical
evaluation of f , ga and gb. Henceforth, we use units such that rs = 1. In the
dynamical system (5), a fixed point plays an important role. It is defined by ha = 0
and hb = 0. Note that f is positive definite. If ha (hb) is positive, then a∗ (b∗)
decreases, while if ha (hb) negative, then a∗ (b∗) increases. Because ha (hb) depends
not only on a∗ (b∗) but also on b∗ (a∗), ha = 0 (hb = 0) gives a curve in the a∗-
b∗ plane. Since there is symmetry between a∗ and b∗, the fixed point should be
symmetrical, too.

We first discuss the behavior of the mass and angular momentum loss rates in
the case a = b (and hence a∗ = b∗). Figure 1 displays the mass loss rate f(a∗) in
terms of a∗ (= b∗). The mass loss rate through the scalar radiation is more effective
at smaller values of a∗. We depict the angular momentum loss rate ga(a∗) (= gb(a∗))
in Fig. 2. The function ga(a∗) has a maximum at a∗ = a

(max)
∗ ≈ 0.3844. We plot

the function ha(a∗) (= ha(a∗)) in Fig. 3. We find ha(a∗) = 0 at a∗ = a
(cr)
∗ ≈ 0.1975,

which is a fixed point in the present dynamical system. An important property of
the function ha(a∗) is that ha(a∗) < 0 [ha(a∗) > 0] for a∗ < a

(cr)
∗ [a∗ > a

(cr)
∗ ].
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Fig. 1. The scale invariant quantity f , which

represents the mass loss rate, as a function

of a∗ for the case a∗ = b∗. The function f

is positive definite by definition.

Fig. 2. The scale invariant quantity ga, which

represents the loss rate of the angular mo-

mentum Jφ, as a function of a∗ for the case

a∗ = b∗, for which ga = gb. The function

ga is positive definite by definition.

Fig. 3. The scale invariant quantity ha, which

represents the change rate of a∗, as a func-

tion of a∗ for the casef a∗ = b∗, for which

ha = hb. The function ha(a∗) has a zero at

a∗ = a
(cr)
∗ � 0.1975 (a black spot).

As a result, the fixed point
(a∗, b∗) = (a(cr)

∗ , a
(cr)
∗ ) is stable along

the line a∗ = b∗. Hence, a black hole
formed with equal rotation parameters,
a∗ = b∗ 	= 0, will eventually reach
an asymptotic state characterized by a∗
(= b∗) = a

(cr)
∗ , through scalar field radi-

ation.
In order to investigate the more

generic case (a 	= b), we have to ana-
lyze Eq. (5). For this purpose, we de-
pict the contour plots of f and ga in
Figs. 4 and 5, respectively. (gb is ob-
tained by exchanging the axes for a∗ and
b∗ in Fig. 5.)

In the a∗-b∗ plane, the region in
which a∗ + b∗ > 1 is forbidden, because

there is no horizon (the black region in Figs. 4 and 5). In Fig. 4, there are two bright
regions (one for large a∗ and small b∗, and one for small a∗ and large b∗), where f
becomes large. This means that the creation rate is high in these regions. In Fig. 5,
there is only one bright region (for large a∗ and small b∗). Therefore, the angular
momentum Jφ is emitted effectively only in this region. This is the superradiance
effect. For the angular momentum Jψ, if b∗ is large, we find effective emission. This
means that the superradiance modes give a dominant contribution to the particle
creation.

There is one interesting observation here: If the two rotation parameters are
equal (i.e. a∗ = b∗), the emission rates are suppressed even if the black hole is in
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Fig. 4. The contours of f in the a∗-b∗ plane.

The darkest and brightest regions cor-

respond to zero and fmax (the maxi-

mum of f), which is given by fmax �
f(0.85, 0.05) = 4.349, respectively. The

difference between two contours is fmax/10.

The black region is forbidden, because

there is no horizon in this region.

Fig. 5. The contours of ga in the a∗-b∗ plane.

The black and white regions correspond

to zero and ga,max (the maximum of ga),

which is given by ga,max � f(0.85, 0.05) =

5.92467, respectively. The difference be-

tween two contours is ga,max/10. The black

region is forbidden, because there is no

horizon in this region.

a maximally rotating state (a∗ = b∗ = 0.5). In the case a = b, something strange
seems to happen, and the system behaves like a “spherically symmetric” black hole.
In fact, the angular equation for Θ(θ) in this case is exactly the same as that for
the Schwarzschild black hole.12) This may suppress the superradiance effect. This is
consistent with the result given in Ref. 15), the efficiency of energy extraction for a
MP black hole is very small in the case that the rotation parameters are equal.

Fig. 6. The vector field describes the direction

in which a∗ and b∗ evolve, i.e. (ȧ∗, ḃ∗). For

any initial values of a∗ and b∗, the system

evolves toward a∗ = b∗ = 0.1975 (the black

spot), which is a stable fixed point. The

shaded region is forbidden.

In order to see the evolution of a
black hole in the a∗-b∗ plane, we plot
the vector field (ȧ∗, ḃ∗) with arrows in
Fig. 6. From this figure, we see how
the values of a∗ and b∗ evolve toward
the fixed point. We can also prove that
the fixed point is a stable attractor (see
Ref. 13) for details).

In Fig. 6 the arrows far from the
symmetry line of a∗ = b∗ are very large.
Then, if the initial value of a∗ (b∗) is
large, while that of b∗ (a∗) is small, a∗
and b∗ first approach the same value.
Near the fixed point (a(cr)

∗ , a
(cr)
∗ ), the ar-

rows are very small, which means that
the evolution toward the fixed point is
slow. We thus find that after reaching a
state with a∗ = b∗, a∗ and b∗ eventually
evolve together toward the fixed point
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(a(cr)
∗ , a

(cr)
∗ ) ≈ (0.1975, 0.1975). This means that any rotating black hole with two

non-zero rotation parameters will evolve toward a final state with the same specific
angular momenta, a∗ = b∗ = a

(cr)
∗ ≈ 0.1975. For a black hole with only one non-

trivial rotation parameter, i.e. a 	= 0 and b = 0 exactly, we obtain the stable fixed
point from the equation ha(a∗, 0) = 0, which yields a∗ ≈ 0.1183.

Finally, consider the evaporation time of the black hole. In the above analysis, we
showed that our dynamical system (5) has one stable attractor, which can be reached
through quantum particle production. However, the black hole may evaporate away
before this fixed point is reached. Whether this happens depends on the evaporation
time and the evolution time in the a∗-b∗ plane. We can evaluate the evaporation
time scale τM using the emission rate of the black hole mass as τM = −M/Ṁ , and
we can evaluate the evolution time scale τa∗ using the evolution equation (5) as
τa∗ = a∗/|ȧ∗|.

We thus find that τM/τa∗ = 8|ha|/(3π) ∼ O(1). However, this does not mean
that the black hole will evaporate away before reaching the fixed point. If the
integrated evaporation time, which depends on the initial mass of the black hole,
is much longer than the evolution time, we have enough time to realize the final
state described by the fixed point. Therefore, we conclude that if a black hole has a
mass that is larger than the fundamental Planck mass scale, its two specific angular
momenta will eventually become equal when it evaporates away.
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