

AGARD-R-713 AD-A208 359 **AGARD REPORT No.713** The Fatigue in Aircraft Corrosion **Testing (FACT) Programme** DISTRIBUTION STATEMENT A Approved for public releases Distribution Unlimited

A 194

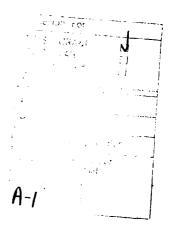
DISTRIBUTION AND AVAILABILITY ON BACK COVER

89 5 15 090

NORTH ATLANTIC TREATY ORGANIZATION ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT (ORGANISATION DU TRAITE DE L'ATLANTIQUE NORD)

AGARD Report No.713

THE FATIGUE IN AIRCRAFT CORROSION TESTING (FACT) PROGRAMME


by

R.J.H.Wanhill National Aerospace Laboratory NLR Emmeloord The Netherlands

J.J. De Luccia Naval Air Development Center Warminster, Pa USA

and

M.T.Russo Naval Air Development Center Warminster, Pa USA

This Programme was sponsored by the Structures and Materials Panel of AGARD.

THE MISSION OF AGARD

According to its Charter, the mission of AGARD is to bring together the leading personalities of the NATO nations in the fields of science and technology relating to acrospace for the following purposes:

- Recommending effective ways for the member nations to use their research and development capabilities for the common benefit of the NATO community;
- Providing scientific and technical advice and assistance to the Military Committee in the field of aerospace research and development (with particular regard to its military application);
- Continuously stimulating advances in the aerospace sciences relevant to strengthening the common defence posture:
- Improving the co-operation among member nations in aerospace research and development:
- Exchange of scientific and technical information;
- Providing assistance to member nations for the purpose of increasing their scientific and technical potential:
- Rendering scientific and technical assistance, as requested, to other NATO bodies and to member nations in connection with resear th and development problems in the aerospace field.

The highest authority within AGARD is the National Delegates Board consisting of officially appointed senior representatives from each member nation. The mission of AGARD is carried out through the Panels which are composed of experts appointed by the National Delegates, the Consultant and Exchange Programme and the Aerospace Applications Studies Programme. The results of AGARD work are reported to the member nations and the NATO Authorities through the AGARD series of publications of which this is one.

Participation in AGARD activities is by invitation only and is normally limited to citizens of the NATO nations.

The content of this publication has been reproduced directly from material supplied by AGARD or the authors.

Published February 1989 Copyright © AGARD 1989 All Rights Reserved

ISBN 92-835-0495-X

Printed by Specialised Printing Services Limited 40 Chigwell Lane, Loughton, Essex IG10 3TZ

PREFACE

In accordance with the mission of AGARD the Structures and Materials Panel (SMP) has always kept an open eye for the possibility of sponsoring collaborative programmes of research. AGARD is unique in its ability to realise the cooperation of laboratories in up to sixteen nations. In this way AGARD distinguishes itself from other international scientific and technical organisations.

In the 1970s the SMP decided to embark on collaborative research activities in the area of fatigue. One of the first activities was the Corrosion Fatigue Cooperative Testing Programme (CFCTP), the precursor to the Fatigue in Aircraft Corrosion Testing (FACT) programme. Both programmes are described in this report.

Failure by fatigue and degradation by corrosion continue to be major considerations in aircraft design. Environmental effects influence both initiation and propagation of fatigue cracks, and dynamic loading may cause more rapid deterioration of corrosion protection systems. Therefore the conjoint action of dynamic loading and environmental attack, i.e. corrosion fatigue, requires special attention.

Many corrosion fatigue tests have been done on aluminium alloys. However, few included critical structural details like joints, under realistic cyclic load histories and in service-like environments. Even fewer used practical corrosion protection systems. These aspects are specifically addressed by the CFCTP and FACT progammes. The results provide a significant contribution to the understanding of aircraft corrosion fatigue and should encourage further investigation in this difficult and challenging area of aerospace technology.

H.P. VAN LEEUWEN Chairman, Subcommittee on Fatigue in Aircraft Corrosion Testing (FACT)

Conformèment à la mission de l'AGARD, le Panel des Structures et Matériaux (SMP) a toujours veillé aux possibilités de parrainage de programmes collaboratifs de recherche.

La capacité d'AGARD de coordonner des programmes de coopération entre laboratoires dans les seize pays membres de l'OTAN est unique. Ainsi, AGARD se distingue de tous les autres organismes scientifiques et techniques internationaux.

Au cours des années 1970, le Panel SMP a pris la décision d'entreprendre des activités de recherche collaborative dans le domaine de la fatigue. L'une des premières initiatives dans ce sens a été le Programme Collaboratif d'Essais de Fatigue sous Corrosion (CFCTP), précurseur du Programme d'essais des interactions fatigue/corrosion des matériaux constitutifs des avions (FACT). Ce rapport donne la description des deux programmes.

La rupture de fatigue et la dégradation sous corrosion sont toujours des questions d'actualité dans la conception des aéronefs. Les conditions d'ambiance influent sur le début et la propagation de la fissure, et l'imposition des charges dynamiques peut conduire à la déterioration accelérée des systèmes de protection contre la corrosion. Il s'ensuit que l'action conjointe de charges dynamique et de conditions d'ambiance aggréssives, c'est à dire la fatigue sous corrosion, demande une attention particulière.

De nombreux essais de fatigue sous corrosion ont été effectués sur des alliages d'aluminium, mais très peur sur les éléments de structure critiques tels que les assemblages dans des conditions qui simulent les conditions réelles de service, en appliquant des séquences de charges réelles. L'emploi de systèmes pratiques de protection contre la corrosion s'avère même plus rare. Ce sont précisement ces aspects qui sont examinés par les programmes CFCTP et FACT. Les résultats obtenus représentent une contribution importante à l'effort consacré à l'analyse de la corrosion sous fatigue des matériaux aérospatiaux, et ils devraient conduire à des travaux de recherche plus approfondis dans ce domaine difficile et exigeant de la technologie aérospatiale.

STRUCTURES AND MATERIALS PANEL

Chairman: Professor Paolo Santini

Dipartimento Aerospaziale

Universita degli Studi di Roma "La Sapienza" Via Eudossiana. 16 00185 Roma, Italy

Deputy Chairman: Prof. Dr-Ing. H.Försching Direktor der DFVLR Institut

für Aeroelastik Bunsenstrasse, 10

D-3400 Göttingen, Germany

Sub-Committee on FATIGUE IN AIRCRAFT CORROSION TESTING

Chairman: Dr-Ir. H.P. van Leeuwen

Head of Structures & Materials Laboratory National Aerospace Laboratory-NLR P.O.Box 153 8300 AD Emmeloord, Netherlands

SMP Members

Wg Cdr D.M.F.Bright - UK Dr H.M.Burte - US

Dr-Ing. H.G.J.Carvalhinhos — Po Professor A.Deruyttere — Be Professor M.Doruk — Tu Mr D.A.Fanner — UK Professor W.G.Heath — UK Mr J.R.Lee — UK

Col Dr S.Signoretti - It Dr W.Wallace - Ca Mr P.R.Wedden - UK Mr H.Zocher - Ge

Mr R.Schmidt – US

 $Mr\ R.D.J.Maxwell - UK$

 $Mr\ W.G.Molyneux-UK$

PANEL EXECUTIVE

Mr M.C.McConnell

AGARD-OTAN 7, rue Ancelle 92200 Neuilly sur Seine

France

From USA and Canada AGARD-NATO Attn: SMP Executive APO New York 09777

Tel: (1) 4738 5790 & 5792 Telex: 610176F

CONTENTS

PREF.	ACF by H.P. van Leeuwen	Page iii
STRU	CTURES AND MATERIALS PANEL	iv
ACRO	NYMS AND TRADE NAMES	ix
PART	I: PROGRAMME OBJECTIVES AND DEFINITION	1
1.	INTRODUCTION	1
2.	OVERVIEW OF THE CURE PROGRAMME (CFCTP)	1
3.	OVERVIEW OF THE SUPPLEMENTAL PROGRAMME (FACT)	2
4.	REFERENCES	3
PART	II: REASSESSMENT OF THE CFCTP CORE PROGRAMME	7
1.	INTRODUCTION	7
2.	DESCRIPTION OF THE CFCTP CORE PROGRAMME	7
	2.1 Material and Specimen Configuration 2.2 Protection System and Specimen Assembly	7 7
	2.3 Mechanical Testing Conditions (Static Prestressing and Fatigue)	7
	 2.4 Environmental Conditions (Pre-exposure, Fatigue and Corrosion Fatigue) 2.5 Summary of the Test Procedure 	8 8
	2.6 Summary of the Statistical Methods for Data Analysis	8
3.	RESULTS	9
	3.1 Presentation of Fatigue Life Data 3.2 Statistical Analysis of Fatigue Life Data	9
	3.2.1 Checking for normality	9
	3.2.2 Checking for homogeneity of variances 3.2.3 Main statistical analysis: analysis of variance	9
	3.2.4 "Fine tuning" with the least significant difference test	n
	3.2.5 "Fine tuning" with Duncan's new multiple range test 3.2.6 Checking for adequate sample size and differences in data scatter	10
	3.3 Presentation of Primary Fatigue Origin Data	11
	3.3.1 Classification of all primary fatigue origins 3.3.2 Statistical analysis of primary fatigue origin data	11
	3.3.2 Statistical analysis of primary fatigue origin data 3.4 Correlation of Fatigue Lives and Primary Origins of Fatigue	12 12
4.	DISCUSSION	13
	4.1 Primary Purpose of the CFCTP Core Programme	13
	4.2 Environmental Effects 4.2.1 Dependence of environmental effects on stress level	13 14
	4.2.2 Environmental effects and fatigue life data scatter	14
	4.3 Primary Fatigue Origin Locations	14
5.	CONCLUSIONS	14
6.	ACKNOWLEDGEMENTS	14
7.	REFERENCES	15
PART	III: THE FACT SUPPLEMENTAL PROGRAMME	37
1.	INTRODUCTION	37
	1.1 Overview	37
	1.2 Recommended Specimen Configuration 1.3 Flight Simulation Fatigue Testing	37 37
	1.3.1 Short description of the manoeuvre spectrum FALSTAFF	37
	1.3.2 Short description of the gust spectrum MINITWIST 1.4 Establishment of Fatigue Stress Levels for the 1½ Dogbone Specimen	37
	1.5 References	38 38
2.	THE VOUGHT CONTRIBUTION TO THE FACT PROGRAMME	44
	2.1 Introduction 2.2 The Test Programme	44
	2.2.1 Material, specimen configuration and protection system	44
	2.2.2 Mechanical testing conditions	44
	2.2.3 Environmental conditions	44

١

	2.3	Results 2.3.1 Fatigue life and tatigue crack initiation and propagation life data 2.3.2 Fatigue crack growth rate data	45 45 45
	2.4		45
	2.5	Conclustons	45
	2.6		46
	2.7	References	46
3.	THE	SAAB CONTRIBUTION TO THE FACT PROGRAMME	53
	3.1		53
	3.2		53
		3.2.1 Materials, specimen configurations and protection systems	53
		3.2.2 Mechanical testing conditions (static prestressing and fatigue) 3.2.3 Environmental conditions (pre-exposure, fatigue and corrosion fatigue)	53 53
	3.3		54
	•••	3.3.1 Statistical methods for analysing the data	54
		3.3.2 Fatigue life data	54
		3.3.3 Primary fatigue origin data	54
	3.4		54
	3.5 3.6		55 55
	3.0		,,,
4.		NADC CONTRIBUTION TO THE FACT PROGRAMME	67
	4.1		67
	4.2	<u> </u>	67
		4.2.1 Protection systems and specimen assembly 4.2.2 Mechanical testing conditions (static prestressing and fatigue)	67 67
		4.2.3 Environmental conditions (pre-exposure, fatigue and corrosion fatigue)	67
	4.3	Results	67
		4.3.1 Statistical methods for analysing the data	67
		4.3.2 Fatigue life data	68
		4.3.3 Primary fatigue origin data	68
	4.4	Discussion Conclusions	68 68
	4.6		69
5.		AFWAL CONTRIBUTION TO THE FACT PROGRAMME. Introduction	77
	5.1 5.2	The Test Programme	77 77
	,,,	5.2.1 Fastener systems	7.7
		5.2.2 Mechanical testing conditions (static prestressing and fatigue)	77
		5.2.3 Environmental conditions (pre-exposure, fatigue and corrosion fatigue)	77
	5.3	Results	78
		5.3.1 Statistical methods for analysing the data 5.3.2 Fatigue life data	78
		5.3.2 Fatigue life data 5.3.3 Primary fatigue origin data	78 78
	5.4	Discussion	78
	5.5	Conclusions	79
	5.6	References	79
6.	THE	NDRE CONTRIBUTION TO THE FACT PROGRAMME	86
••	6.1		86
	6.2	The Test Programme	86
		6.2.1 Material properties	86
		6.2.2 Mechanical testing conditions (static prestressing and fatigue)	86
	6.3	6.2.3 Environmental conditions (pre-exposure, fatigue and corrosion fatigue) desults	86
	0.3	6.3.1 Statistical methods for analysing the data	87 87
		6.3.2 Fatigue life data	87
		6.3.3 Primary fatigue origin data	87
	6.4	Discussion	88
	6.5	Conclusions References	83
	0.0	reterences	88
7.		NLR AND LRTH CONTRIBUTION TO THE FACT PROGRAMME	97
	7.1	Introduction	97
	7.2	The Test Programme 7.2.1 Materials and specimen configuration	97
		7.2.2 Protection systems and specimen assembly	97 97
		7.2.3 Mechanical testing conditions (static prestressing and fatigue)	97
		7.2.4 Environmental conditions (pre-exposure, fatigue and corresion fatigue)	98
	7.3	Results	98
		7.3.1 Statistical methods for analysing the data 7.3.2 Constant amplitude fatigue life data	98
		7.3.2 Constant amplitude ratigue life data 7.3.3 Gust spectrum (MINITWIST) fatigue life data	98 99
		7.3.4 Manoeuvre spectrum (FALSTAFF) fatigue life data	99
		7.3.5 Primary fatigue origin data	100
		7.3.6 Fatigue lives and primary fatigue origins	100
	7.4	Discussion	101
		7.4.1 Fatigue lives at higher stress levels 7.4.2 Fatigue lives at lower stress levels	101
		7.4.3 Primary fatigue origins	101 101
			101

	7.5 Conclusions	101
	7.6 References	102
8.	THE LABG CONTRIBUTION TO THE FACT PROGRAMME	124
	8.1 Introduction	124
	8.2 The Test Programme	124 124
	8.2.1 Materials and properties 8.2.2 Protection systems and specimen assembly	124
	8.2.3 Mechanical testing conditions (static prestressing and fatigue)	124
	8.2.4 Environmental conditions (pre-exposure, fatigue and corrosion fatigue)	gue) 125
	8.3 Results	125
	8.3.1 Statistical methods for analysing the data	125 125
	8.3.2 Fatigue life data 8.3.3 Primary fatigue origin data	126
	8.4 Discussion	126
	8.5 Conclusions	126
	8.6 References	127
9.	THE RAE CONTRIBUTION TO THE FACT PROGRAMME	138
٠.	9.1 Introduction	138
	9.2 The Test Programmes	138
	9.2.1 Materials and properties 9.2.2 Specimen configurations	138 138
	9.2.2 Specimen configurations 9.2.3 1) dogbone protection systems and specimen assembly	138
	9.2.4 Mechanical testing conditions (static prestressing and fatigue)	139
	9.2.5 Environmental conditions (pre-exposure, fatigue and corrosion fati	
	9.2.6 Statistical methods for analysing the data	140 140
	9.3 Results of the Fatigue Strength Test Programme 9.3.1 Constant amplitude fatigue tests	140
	9.3.2 Manoeuvre spectrum (FALSTAFF) fatigue tests	140
	9.4 Results of the Fatigue Crack Growth Resistance Test Programme	141
	9.4.1 Constant amplitude fatigue crack growth tests	141
	9.4.2 Manoeuvre spectrum (FALSTAFF) fatigue crack growth tests 9.5 Results of the Programme on the Effect of Chromate in Primers	141 141
	9.5 Results of the Programme on the Effect of Chromate in Primers 9.5.1 Fatigue life data	141
	9.5.2 Primary fatigue origin data	142
	9.6 Discussion	142
	9.6.1 Fatigue in air/fatigue in salt spray	142 142
	9.6.2 Comparisons of materials 9.6.3 Effect of chromate in primers	142
	9.7 Conclusions	143
	9.7.1 Conclusions for the fatigue strength programme	143
	9.7.2 Conclusions for the fatigue crack growth resistance programme	143
	9.7.3 Conclusions for the programme on the effect of chromate in primers 9.7.4 Additional conclusions	143 143
	9.8 References	144
	The second secon	160
10.	. THE NRC CONTRIBUTION TO THE FACT PROGRAMME 10.1 Introduction	162 162
	10.2 The Retrogression and Reageing (RRA) Process	162
	10.3 The Test Programme	162
	10.3.1 Materials, heat treatments and specimen configurations	162
	10.3.2 Fatigue testing conditions 10.4 Results	163
	10.4.1 Effects of RRA on microstructure, mechanical properties and	163
	electrical conductivity	163
	10.4.2 Stress corrosion crack growth rates	164
	10.4.3 Fatigue and corrosion fatigue crack growth rates for centre cracked tension (CCT) specimens	144
	10.4.4 Fatigue and corrosion fatigue crack growth rates for	164
	compact tension (CT) specimens	164
	10.5 Discussion and Conclusions	165
	10.6 References	165
PAR	RT IV: EVALUATION OF THE CACTA AND FACT PROGRAMMES	175
1.	INTRODUCTION	175
2.	THE CFCTP CORE PROGRAMME	175
3.	3.1 Inter-Participant Comparisons of Materials, Protection Systems and Fastene	175 ers 176
	3.2 Inter-Participant Comparisons of Environmental Fatigue Effects	176
4.	CONCLUSIONS AND RECOMMENDATIONS	, , , ,
		177
5.	REFERENCES	177

APPE	NDIX 1: LOAD TRANSFER AND SECONDARY BENDING IN THE 1: DOGBONE SPECIMEN	187
1.	INTRODUCTION	187
2.	OVERVIEW OF THE LOAD TRANSFER AND SECONDARY BENDING RATIO PAGRAMME	187
3.	RESULTS	187
4.	ESTIMATION OF LOAD TRANSFER AND SECONDARY BENDING RATIO IN THE CFCTP AND FACT SPECIMENS	187
5.	REFERENCES	188
APPE	NDIX II: STATISTICAL METHODS	193
1.	INTRODUCTION	193
2.	CHECKING FOR NORMALITY 2.1 Graphical Procedure for Test of Normality 2.2 χ^2 Test for Goodness of Fit	193 193 193
3.	TESTING FOR HOMOGENEITY OF VARIANCES	194
4.	ANALYSIS OF VARIANCE	194
5.	"FINE TUNING" WITH THE LEAST SIGNIFICANT DIFFERENCE TEST	195
6.	"FINE TUNING" WITH DUNCAN'S NEW MULTIPLE RANGE TEST	196
7.	LIPSON AND SHETH METHOD FOR ADEQUATE SAMPLE SIZE	Iav
8.	χ² TEST OF INDEPENDENCE, YATES' CORRECTED χ² TEST AND FISHER'S EXACT TEST 8.1 χ² Test of Independence 8.1.1 Analysis of primary fatigue origin data 8.2 Yates' Corrected χ² Test 8.2.1 Correlation of fatigue lives and primary fatigue origins 8.3 Fisher's Exact Test	197 197 197 197 197
9.	REFERENCES	198

ACRONYMS AND TRADE NAMES

AFWA! : Air Force Wright Aeronautical Laboratories Advisory Group for Aerospace Research and Development AGARD ALCOA Alluminium COmpany of America chromate conversion coating on aluminium, produced by caemical reaction Alodine AMLGUARD water displacing corrosion preventive compound Aramid Reinforced Aluminium Laminates AKALL ASTM American Society for Testing and Materials Centre Cracked Tension (type of fatigue specimen) CCT Celloseal sealant for corrosion protection Corrosion Fatigue Cooperative Testing Programme Deutsche Forschungs- und Versuchsanstalt für Luft-und Raumfahrt CECTE DEVLE Directorate of Technical Development (U.K.) 010 Effective Flaw GROwth (computer program for tatigue crack gr will predict;) EFFGRO FACT Fatigue in Aircraft Corrosion Testing Fighter Aircraft Loading STAndard For Fatigue (manneagre spectrum load sequence FALSTAFF Flygtekniska Försöksanstalten Eidgenössisches Flugzeugwerk FFA F+W aircraft fastener system aircraft fastener system Hi-Lok Hi-Tigue 1480 Industrieanlagen-Betriebsgesellschaft 1.A.C.S. International Annealed Copper Standard International Committee on Aeronautical Fatigue ICAF Korotlex flexible, clastomeric primer coating Laboratorium für betriebsfestigkeit 1 BF LKTH Luchtvaart- en Ruimtevaarttechniek, Technische Hogeschool, Delit Load Transfer Ling-Temco-Vought (see VOCGHT) Messerschmitt-bolk@w-Blohm Shh MIDAS Magnetic tape input Digital-to-Analogue Signal (controller for weeds todayalis litting) machines) MIL-A-83444 Military Specification Airplane Damage Iclerance Requirements (F.S. Military Specification Chemical Conversion Coatings (C.S.) Military Specification Coatings, Polyorethane, Aliphatic (L.S.) $MII = C = p \cdot 5 + i$ MIL-C-817730 MIL-P-20377 Military Specification Primer Coating, Epoxy Polyamide (P.S.) Military Specification Scaling and Coating Compound (F.S.) MIL-S-817338 MINITWIST shortened version of Transport Wing Standard (gust spectrum I ad so meta-Mult: Role Combat Aircraft Materials Testing Systems MRCA MT 5 Naval Air Development Centre National Aeronautical Establishment NADO NAE NATO North Atlantic Treaty Organisation Sorwegian Defence Research Establishment NDRE SIVE Nederlands Instituut voor Vliegtuigontwikkeling en Suimtevaart NER Nationaal Lucht- en Ruimtevaartlaboratorium National Research Council NRC non-hardening scalant Royal Aircraft Establishment Permagum KAI. Royal Air Force (U.K.) Retrogression and Reage (metallurgical heat treatment SAF KKA SAAB Svenska Aeroplan Aktien Bolaget SBR Secondary Bending Ratio SCANIA originally independent automobile manufactures Structural Integrity, Fatigue and Fracture Research Laboratories interference fit aircraft fastener system SIFFRI SLEEVbolt SMP Structures and Materials Panel of AGARD Stress Pattern Analysis by measurement of Thermal Emission SPATE Special Technical Publication of the American Society for Testing and Materia.s Terms Of Reference for setting up an AGARD activity STP TOR VOUGHT division of the Ling-Temco-Vought Aerospace and Defence Company

PROGRAMME OB ECTIVES AND DEFINITION

1. INTRODUCTION

Afteraft structures are susceptible to corrosion and fatigue. Corrosion can occur under both static conditions and during missions. Thus the conjoint action of corrosion and cyclic loading i.e. corrosion fatigue, is possible. Corrosion begins when the applied protection systems become degraded and damaged. Degradation occurs owing to exposure, e.g. to eltraviolet light and ozone, and moisture-induced leaching of inhibitors from primers and sealants. Damage may be incidental, for example as a consequence of impact by foreign objects, or may occur as cracking due to service loads or because the underlying metal has cracked.

torrosion and fatigue damage tend to concentrate at joints, which in conventional aluminium ally structures possess most or all of the following detrimental features:

- stress concentrations and faving surface contacts that crack and wear away the protection systems
- · crevices for moisture entrapment
- possible galvanic couples when steel or titanium fasteners are used
- fatigue critical locations, e.g. fastener holes and their vicinities.

In the past a variety of corrosion fatigue tests have been conducted with aluminium alloys. Nearly always the results have indicated environmental effects to be significant. However, few investigations have included the testing of critical structural details, such as joints, under realistic cyclic load histories and in simulated service environments. Even fewer have considered the effectiveness of various corrosion protection systems. Consequently, a data base for assessing the influence of corrosion on the fatigue life of aircraft structures has not been acquired.

In recognition of this state of affairs it was decided at the 44th Meeting of the AGAKD Structures and Materials Panel in April 1977 to form a Sub-Committee and appoint European and North American coordinators for a cooperative programme on corrosion latigue of aerospace materials of particular interest to the NATI-countries. At that time the objectives of the programme were formulated as follows:

- assessment of the effectiveness of state-of-the-art protection schemes for aluminium alloys with respect to corrosion fatigue and corrosion f fatigue
- · stimulation of the development of new protection products, procedures and techniques
- bringing together researchers on both sides of the Atlantic in a common testing effort that would result in a better understanding of the corresion tatigue phenomenon and the means of mitigating it for aerospace structural materials.
- enabling participating laboratories to add to their latigue testing capabilities by using a controlled atmospheric corresion environment.

The cooperative programme was planned to be carried out in two stages. The first stage was to be a core programme of round-robin testing to establish whether participants could obtain confidence in one another's fatigue testing capabilities. At the same time this core programme was designed to be sufficiently straightforward to encourage participation, particularly by those with relatively little experience of correspon fatigue testing.

Originally there were eight participants to the core programme, which was completed in 1981 and published as an AGARD report, reference (1). However, since that time two more participants have carried out core programme testing. The results, together with "fine tuning" of the statistical methods used to analyse the core programme data, warrant a reassessment of the core programme. This reassessment is presented in Part II of this report.

The second stage of the cooperative programme was to consist of supplemental testing directed to the requirements of individual participants but still with much commonality. This second stage also involved ten participants, four of whom had not taken part in the core programme, and was completed in 1985. The results, in the form of contributions by the participants, are presented in Part lit of this report.

A summary evaluation of the entire programme is given in Part IV. In this part the coordinators have endeavoured to establish common trends from the results in order to place them in a broader context. Recommendations for further investigation are made also.

2. OVERVIEW OF THE CORE PROGRAMME (CFCTP)

The core programme of round-robin testing was entitled the Corrosion Fatigne Cooperative Testing Programme, hereinafter referred to as the CFCTP. An overview of the CFCTP is given in table 1. The CFCTP specified identical conditions for the following parameters:

- material and heat treatment: 7075-T76 aluminium alloy sheet
- specimen configuration: 11 dogbone joint
- protection system: chromate conversion, primer and topcoat
- mechanical testing: static prestressing and fatigue (constant amplitude only)
- environments: pre-exposure, fatigue and corrosion fatigue.

To achieve these identical conditions it was necessary to obtain a batch of 7075-T76 aluminium allow from one heat, to manufacture all prior-to-assembly specimen parts at one location, to apply the protection system and assemble the specimens at one location, and to prepare a technical manual for mechanical and environmental testing.

The technical manual was published in reference (1). An impression of its scope and the kind of detail necessary to try and ensure identical testing conditions is provided by the summary in table 2. Most of the chapter headings are self-evident, but the cold box requires some explanation. This is an environmental chamber for statically loading the specimens at low temperature in order to crack the protection system (paint) near the fasteners.

As indicated in the introduction, the main purpose of the CFCTP core programme was to establish whether participants could obtain confidence in one another's fatigue testing capabilities, with the added dimension of a controlled atmosphetic corrosion environment. That is to say, results from all participants were to be analysed to determine whether one or more laboratories had obtained data significantly different from those of the remaining laboratories.

OVERVIEW OF THE SUPPLEMENTAL PROGRAMME (FACT)

The supplemental programme was entitled Fatigue in Aircraft Corrosion Testing (FACT). This programme was included so that individual participants could investigate corrosion fatigue problems of particular relevance to their own interests and yet within a broader context. To achieve this it was emphasized that testing should be done with as much commonality as possible. In particular, it was recommended that

- the same specimen configuration (1) dogbone joint) be used as for the CFCTP core programme
- mechanical testing conditions be identical
- environmental conditions (pre-exposure, fatigue and corrosion fatigue) be identical to those for the CECTP
- \bullet efforts be made to obtain materials of mutual interest from one heat.

Concerning the first three points the technical manual required for the CFCTP also included supplemental testing guidelines for specimen manufacture, application of protection systems, specimen assembly, pre-exposure, and fatigue and corrosion fatigue under flight simulation loading, see table 2.

An overview of the FACT programme is given in table 3. There were ten participants. Four had not taken part in the CFCTP core programme, namely

- (1) SAAB-SCANIA Aerospace Division, Linköping, Sweden.
- (2) Delft University of Technology LRTH, Delft, The Netherlands.
- (3) Industricaplagen-Betriebsgesellschaft IABG, Ottobrunn, Germany.
- (4) National Research Council NRC, Ottawa, Canada.

Table 3 shows similarities and commonalities in the individual programmes. Most participants tested 13 dogbone specimens under nominally identical mechanical and environmental conditions. The ratigue loadings were constant amplitude, as in the CFCTP, the manoeuvre spectrum FALSTAFF (references 2-4) and the gust spectrum MINITWIST (reference 5). The environmental conditions generally included two or more of those in the CFCTP. Notable exceptions were in the SAAB and NRC programmes.

The main interest of several participants was to compare - in their individual programmes - the environmental fatigue properties of a number of aluminium lloys in various tempers. However, owing to the calibratory function of the CFCTP and the participants' active cooperation in obtaining the many similarities and commonalities within the FACT programme, it was possible to make inter-participant comparisons of materials, protection systems and fasteners as well. Furthermore, the total testing effort provided many data for comparing environmental fatigue effects under constant amplitude and FALSTAFF loading, the latter being a realistic cyclic load history for tactical aircraft.

In retrospect we consider the objectives of the CFCTP and FACT programmes to have been achieved, though much remains to be done to increase the understanding of aircraft corrosion fatigue and the effectiveness of protection systems. We hope this report will encourage further investigation in this difficult and challenging area of aerospace technology.

4. REFERENCES

- R.J.H. Wanhill and J.J. De Luccia, "An AGARD-coordinated corrosion fatigue cooperative testing programme", AGARD report No. 695, February 1982.
- G.M. van Dijk and J.B. de Jonge, "Introduction to a fighter aircraft loading standard for fatigue evaluation "FALSTAFF" ", Paper 3.61, Problems with Fatigue in Aircraft, Proceedings of the Eighth ICAF Symposium, compiled and edited by J. Branger and F. Berger, Swiss Federal Aircraft Establishment (F+W) 1975: Emmen, Switzerland.
- "Description of a Fighter Aircraft Loading STAndard For Fatigue evaluation", Combined Report of the F+W, LBF, NLR and IABG, March 1976.
- 4. J.B. de Jonge, "Additional information about FALSTAFF", NLR Technical Report TR 79056 U, June 1979.
- H. Lowak, J.B. de Jonge, J. Franz and D. Schütz, "MINITWIST. A shortened version of TWIST", Combined Report of the LBF and NLR, NLR Miscellaneous Publication MP 79018 U, May 1979.

CFCTP CORE PROGRAMME

MATERIAL

• 3.2 mm thick 7075-T76 aluminium alloy sheet

SPECIMEN

PRESS FIT HI-LOK FASTENERS 0 0 6 300 mm

PROTECTION SYSTEM

• Chromate conversion + inhibited epoxy polyamide primer (except fastener holes) + aliphatic polyurethane topcoat

PROTLCTION SYSTEM

 \bullet . Two stress cycles at low temperature (209 \pm 10 K) to crack primer and paint around the fastener heads

FATIGUE LOADING

• Constant amplitude, $S_{min}/S_{max} = 0.1$

FATIGUE ENVIRONMENTS

• Laboratory air; 5 % aqueous NaCl salt spray with pH 4 at 295 K

STATIC PRE-EXPOSURE

• 72 hours in 5 % aqueous NaCl + SO₂ at 315 K

SCHEDULES	NUMBER OF	SPECIMENS	GYCLE
SCHEDULES	S _{max} - 210 MPa	S _{max} = 144 MPa	FREQUENCY
Fatigue in air	4	4	
Pre-exposure + fatigue in air	4	4	2 на
Fatigue in salt spray	4	4	
Pre-exposure + facigue in salt spray	4	4	6.5 Ha

TEST PROGRAMME

- ${\tt STATISTICAL\ ANALYSIS} \qquad \bullet \qquad {\tt Fatigue\ lives\ and\ primary\ fatigue\ origins}$
 - Naval Air Development Centre NADC, Warminster, Pennsylvania USA.
 - (2)

- University of Saskatchewan, Saskatoon, Canada. Vought Corporation, Dallas, Texas, USA. Air Force Wright Aeronautical Laboratories AFWAL, Dayton, Ohio, USA. (4)
- (5) (6) National Aerospace Laboratory NLR, Emmeloord, The Netherlands PARTICIPANTS Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt DFVLR. Cologne, Germany.
 - Norwegian Defence Research Establishment NDRE, Kjeller, Morway, Royal Aircraft Establishment RAE, Farnborough, United Kingdom, University of Toronto SIFFRL, Toronto, Canada, University of Pisa, Pisa, Italy. (7)

 - (9) (10)

TABLE 2: SUMMARY OF THE TECHNICAL MANUAL FOR THE CFCTP CORE PROGRAMME AND ALSO SUPPLEMENTAL TESTING

TABLE OF CONTENTS

- 1. INTRODUCTION
- 2. PROGRAMME OVERVIEW
 - 2.1 Core Programme
 - 2.1 1 Core programme phases 2.1.2 Test schedules
 - 2.2 Supplemental Testing
 2.2.1 Mechanical test conditions
 2.2.2 Pilot tests
 - 2 3 Milestones
- 3. SPECIMEN
 - 3.1 Configuration
 3.2 Fastener Holes
 3.3 Fasteners

 - 3.4 Corrosion Protection and Assembly 3.4.1 Core programme specimens
 3.4.2 Supplemental testing specimens
 3.5 Sealing of Edges and Hi-Lok Collars
- 4. CLAMPING-IN

 - 4.1 Grips
 4.2 Bushings in Specimen Clamping Holes
 4.3 Glamping-in Procedure

 - 4.4 Alignment Guidelines for Electrohydraulic Machines
- 5. ADDITIONAL GUIDELINES FOR ELECTROHYDRAULIC MACHINES
 - 5.1 Performance
 - Static Calibration
 - 5.3 Dynamic Calibration5.4 Hydraulic Shut-off Effects

 - 5.5 Electromagnetic Interference Effects
- 6. COLD BOX
 - 6.1 Schematic of NLR Cold Box
 - 6.2 Configuration for the CFCTP
 - Specimen
 - 6.3 Calibration of Cold Boxes

- 7. PRE-EXPOSURE CHAMBERS AND PROCEDURE
 - 7.1 Core Programme Chamber
 - 7.2 Core Programme Pre-exposure Procedure
 - 7.3 Supplemental Testing Programme Chamber 7.4 Supplemental Testing Programme
 - Pre-exposure Procedure
- 8. CORROSION FATIGUE SALT SPRAY CABINET
 - 8.1 Schematic of Salt Spray Equipment for the CFCTP
 - 8.2 Salt Spray Cabinet with Internal Reservoir
 - 8.3 Attachment of Specimens + Grips
 - Assembly
 - 8.4 Clamping Head Extension for Salt Spray Fatigue Testing

 - 8.6 Sealing of the Salt Spray Cabinet 8.6.1 Access door / front frame 8.6.2 Cabinet / bellows 8.7 Sealing of Clamping Heads to Bellows
- 9. SPECIMEN STORAGE AND CLEANING
 - 9.1 Storage 9.2 Cleaning
- TEST PROCEDURE
 - 10.1 Establishment of Stress Levels
 10.2 Summary of Test Procedure

 - 10.3 Data Recording
- 11. REPORTING

 - 11.1 Progress Reports
 11.2 Final Reports
 11.3 Specialists' Meeting
- 12. APPENDIX: FLIGHT SIMULATION TESTING
 - 12.1 The Manoeuvre Spectrum FALSTAFF
 12.2 The Gust Spectra TWIST and MINITWIST
 - 12.3 Verification of Flight Simulation
 - Loading

TABLE 3: OVERVIEW OF THE FACT SUPPLEMENTAL PROGRAMME

	_	CFCTP CORE		Z 1 4 E	ASPECTS OF	THE INDIVIOUS			
PARTICIPANTS	MATERIALS	PROCRAMME		NATERIAL COMPANICANE			0 H E E C H O O C .		
		SYSTEM	100000000000000000000000000000000000000	١ د	PROTECTION SYSTEM	FASTENER	COMPARTSONS	ENVIRONMENTS OTHER	20000
			VI FENENT MALEKIALS	DIFFERENT HEAT TREATMENTS		COMPARISONS	(C A - CONSTANT)	THAN THOSE IN THE CFCTP CORE PROGRAMME	TESTS
WOOGHI		•					C.A. With marker loads	salt spray at various temperatures	single dogbone fatigue life and crack propagation
SAAB	9/1/9/2	•	●70/5.T6 clad		7075-T6 clad with and without anodising		C.A. only	pre-exposure outdoors for 1035-T6; farigue with trepested condensation or alternate impersion in detillad asserts in	unnotched and 14 degbone fatigue life
NADC	● 7075-776	•			Standard and flexible primers	• press and interference	C. A. emily		
AFVAL	9/1-5/0/	•			Bit Loks with and	press fit HI laks,	and create		
NDRE	91-5/0/ 🛈	•		7,075 in 176 and	1107000	- Substitution of the subs			
			3030 71 61-1	e line in the second			C. A. PAUSIAIT		
NLR/LRTH	O 7475-T761 clad		2024-13/stranid fibre laminates, 1075-76, 1475-7761 clad		F 28, NF-5 systems; F:16 system with and without seniort		HINITAIST		In dogbone fatigue fe
IABG	● 7075-176 ● 7075-176 ● 7075-176 ○ 7475-1761 clad	•	07075-T6, 7075-T76, 7475-T761 clad		GECTP core programme and		FALSTAFF only		
	1 075-T6				Inhibited and non-		C A only		
RAE				7010 in 17651 and 17451 conditions			C A., FALSTAFF		fatigue
			7010-17851. • 7475-17351. 7050-17451	7019 in 77651 and 17451 conditions			C A PAISTAFF		attength
MRC				7075 in T651, T688A and 77351 conditions			C A unity	47 FOOD 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	crack propagation
					_	_			

PART II

REASSESSMENT OF THE CECTP CORE PROGRAMME

1. INTRODUCTION

The CFCTP core programme consisted of round-robin testing whose primary purpose was to establish whether participants could obtain confidence in one another's fatigue testing capabilities with the added dimension of a controlled atmospheric corrosion environment. The programme was designed to be sufficiently straightforward to encourage participation, particularly by those with relatively little experience of corrosion fatigue testing.

Originally there were eight participants to the CFCTP. The results were published in an AGARD report in 1982 (reference 1). Since then two more participants completed the core programme. The results have been included in a reassessment of the CFCTP. This reassessment involves "fine tuning" of the statistical methods originally used to analysed the CFCTP data and is presented here.

2. DESCRIPTION OF THE CFCTP CORE PROGRAMME

An overview of the CFCTP core programme is given in table 1. The CFCTP specified identical conditions for the following parameters: material and heat treatment, specimen configuration, protection system, mechanical testing and environmental conditions. These parameters are discussed in more detail in sections 2.1 - 2.4. Summaries of the test procedure and statistical methods for analysing the results are given in sections 2.5 and 2.6.

2.1 Material and Specimen Configuration

The material was 3.2 mm thick 7075-T76 bare aluminium alloy sheet from one heat and supplied by ALCOA especially for the CFCTP. The engineering properties were specified as follows:

0.	2 % YIELD STRESS	UTS	ELONGATION	CONDUCTIVITY
1	79 MPa (max) 55 MPa (min)	550 MPa (max) 541 MPa (min)	11.0 %	38 % I.A.C.S.

Figure 1 shows the specimen configuration. This was recommended for the FACT supplemental programme also. The specimen is a 1½ dogbone mechanically fastened by cadmium plated steel Hi-Loks. It was designed to simulate the load transfer and secondary bending characteristics of runouts of stiffeners attached to the outer skin of an airframe structure. The design goals were a load transfer of 40 % and a secondary bending ratio of 0.5 (reference 2). These characteristics have been checked and the actual values are generally lower, see Appendix I.

All prior-to-assembly specimen blanks for the CFCTP were manufactured in one batch by the U.S. Air Force Wright Aeronautical Laboratories AFWAL. The fastener holes of all specimens for the first eight participants listed in table I were drilled to press fit dimensions in one batch at the U.S. Naval Air Development Centre NADC. However, to enable the remaining two participants to complete the core programme it was necessary to disassemble some interference fit supplemental programme specimens, redrill to press fit dimensions and reassemble. It turned out that this procedure significantly influenced the fatigue results, as will be discussed in section 3.2.

2.2 Protection System and Specimen Assembly

Application of the CFCTP protection system and specimen assembly were done by the NADC as follows:

- ullet chromate conversion coating on all surfaces
- inhibited epoxy polyamide primer on all surfaces except fastener holes
- ullet assembly of fatigue specimen -l and half plate -2 with Hi-Lok fasteners and collars, see figure l
- inhibited epoxy polyamide primer on fastener head and collar areas
- aliphatic polyurethane topcoat on all exterior surfaces.

The specimens were then wrapped individually and shipped in batches to the participants.

2.3 Mechanical Testing Conditions (Static Prestressing and Fatigue)

All stresses were defined in terms of the total cross-section of the fatigue specimen -1 at the location of the centreline between the Hi-Lok fasteners, i.e. the fastener holes were included in the cross-sectional area.

Before environmental exposure and fatigue testing the CFCTP specimens were prestressed in cold boxes at 209 ± 10 K by applying two quasi-static load cycles up to a maximum stress of 215 MPa. The purpose was to crack the primer and paint realistically in the fastener head areas.

Fatigue testing was done using constant amplitude sinusoidal loading with a stress ratio R = S_{min}/S_{max} of 0.1. It was decided to test at two stress levels giving nominal fatigue lives of 20,000 and 100,000 cycles for uncorroded specimens fatigued in laboratory air. From pilot tests (reference I) the following fatigue stress levels were established for the CFCTP:

NOMINAL UNCORRODED FATIGUE LIFE	Smax	Smin
20,000 cycles	210 MPa	21 MPa
100,000 cycles	144 MPa	14.4 MPa

2.4 Environmental Conditions (Pre-exposure, Fatigue and Corrosion Fatigue)

There were four testing schedules for the CFCTP, see also table 1:

- fatigue in air, cycle frequency 2 Hz
- pre-exposure + fatigue in air at 2 Hz
- fatigue in salt spray, cycle frequency 0.5 Hz
- pre-exposure + fatigue in salt spray at 0.5 Hz.

Specimens to be pre-exposed and/or fatigued in salt spray were sealed at faying surface side edges and Hi-Lok collars in order to prevent corrosion except in the fastener head areas. Pre-exposure was for 72 hours in 5.% aqueous NaCl salt solution to which a predetermined amount of SO_2 gas was added by reacting Na_2SO_3 pellets with H_2SO_4 . This reaction was accomplished in vented test tubes suspended above the salt solution, which was maintained at a temperature of 315 \pm 2 K.

For fatigue testing all specimens were electrically insulated from the loading grips and bolts by polymeric liners and bushings. The environments were laboratory air and 5% aqueous NaCl salt spray acidified with $\rm H_2SO_4$ to pH 4, both at a nominal temperature of 295 K. The salt spray tests were done in specially constructed cabinets, fully described in reference (1).

2.5 Summary of the Test Procedure

A schematic summary of the CFCTP test procedure is shown in figure 2. This gives some idea of the complexity of even a fairly straightforward programme, which is why a technical manual was prepared as already mentioned in Part I of this report. The technical manual is published in reference (1).

One part of the test procedure was modified after analysis of results from the original eight participants. The technical manual had specified fatigue testing as soon as possible after pre-exposure and cleaning, with desiccator storage only if delay were unavoidable. However, this was later amended to require desiccator storage for at least one week after cleaning, in order to ensure the specimens were completely dry before fatigue testing.

2.6 Summary of the Statistical Methods for Data Analysis

A detailed description of the statistical methods used to analyse the CFCTP fatigue life and primary fatigue origin data is given in Appendix II. Statistical analysis was done with the primary purpose of checking whether participants could have confidence in one another's fatigue testing capabilities, i.e. the results were analysed primarily to determine whether one or more laboratories had obtained data significantly different from those of the remaining laboratories. The statistical analysis also had several secondary purposes, namely to determine

- whether pre-exposure was significant for subsequent fatigue life in air or salt spray
- whether the effect of fatigue in salt spray, with or without pre-exposure, was significant compared to fatigue in air with or without pre-exposure
- whether there were significant differences between laboratories in the relative effects of preexposure and/or fatigue in salt spray (this is part of the primary purpose)
- whether the sample size (4 specimens per test condition per participant) was sufficient and whether there were noticeable differences in data scatter between laboratories and fatigue testing schedules
- whether there were relationships between the locations of primary fatigue origins, fatigue stress levels, environmental conditions and fatigue lives.

A survey of the statistical methods and procedure is given in figure 3. The fatigue life data were first checked for normality and homogeneity of variances (approximate compliance with these conditions is sufficient) as a prerequisite to further treatment. The main statistical analysis was multiple factor analysis of variance. This was followed by "fine tuning" using the least significant difference test or Duncan's new multiple range test (references 3, 4). To avoid possible misuse the least significant difference test was applied only when analysis of variance indicated significant effects. In addition, scatter in the data was used to check for adequate sample size (four specimens per test condition per participant) according to a method described in reference (5).

The primary fatigue origin data were analysed using the χ^2 test of independence, Yates' corrected χ^2 test or Fisher's exact test, whichever was appropriate. For these tests it is sufficient to assume only that the data constitute a random sample (reference 6). These tests were also used (as appropriate) to check whether there were significant correlations between fatigue lives and primary origins for each test condition.

RESULTS

The CFCTP core programme fatigue life and primary fatigue origin results are compiled in table 2, which also indicates the originally interference fit specimens that were disassembled, redrilled to press fit dimensions and reassembled. The primary fatigue origin data are those obtained by one of the programme coordinators (R.J.H.W.), who also supplied the remarks concerning fatigue fracture surfaces of pre-exposed specimens tested in air.

The fatigue life results are presented and statistically analysed in sections 3.1 and 3.? respectively. This is followed by presentation and statistical analysis of the primary fatigue origin data in section 3.3. Correlations between fatigue lives and primary fatigue origins are discussed in section 3.4.

3.1 Presentation of Fatigue Life Data

The fatigue life data are presented in figures 4 and 5 in terms of log mean life and data range for each fatigue testing schedule and for each participant. There is a clear separation of the data with respect to stress level, as expected. Figure 5 shows a general tendency for shorter lives owing to fatigue in salt spray with or without pre-exposure, though individual trends vary.

3.2 Statistical Analysis of Fatigue Life Data

3.2.1 Checking for normality

In checking for normality the CFCTP core programme data were considered to belong to eight different populations corresponding to each of the four fatigue testing schedules in combination with each of the two stress levels. The χ^2 test for goodness of fit (references 6, 7 and see Appendix II) showed that data for six of the populations were log-normally distributed and data for the other two (fatigue in air with S_{max} = 210 MPa and pre-exposure + fatigue in air with S_{max} = 144 MPa) were approximately log-normal. A subjective impression of these results is provided by the logarithmic normal probability plots in figure 6. Because of the log-normal distributions all further statistical treatment of the data used the logarithms of the fatigue lives.

3.3.2 Checking for homogeneity of variances

As shown in figure 3, the Box test (reference 8) was used to check for interlaboratory differences in variances. To do this the data from different laboratories were considered to come from different populations. This resulted in eighty populations corresponding to data from each of the ten participants for each of the four fatigue testing schedules in combination with each of the two stress levels. The Box test results are summarised in table 3. There were two very slight violations and one moderate violation of the criterion for homogeneity of variances.

The Bartlett test (reference 8) was used to check for differences in variances between fatigue test conditions. To do this the data for each fatigue testing schedule and stress level were treated as coming from the same population, i.e. no distinction was made between the data from different laboratories. In view of the Box test results this assumption is not strictly correct. However, it is considered justified. The Barlett test results are summarised in table 4. There were three moderate violations of the criterion for homogeneity of variances.

As mentioned in section 2.6, approximate compliance with the requirement of homogeneity of variances is sufficient for further statistical analysis. In the present work the main technique of statistical analysis was multiple factor analysis of variance. This is a very robust, i.e. "forgiving", technique. Thus the results summarised in tables 3 and 4 were considered sufficient for continuing the statistical treatment of the farigue life data.

3.2.3 Main statistical analysis: analysis of variance

Multiple factor (three-way) analysis of variance was used to compare the CFCTP core programme fatigue life data in terms of the experimental variables of stress level, fatigue testing schedule (environmental effects) and laboratory. The results are shown in table 5.

According to the analysis the main variables of stress level, fatigue testing schedule and performing laboratory all had significant effects on the fatigue lives of the specimens. The significant effect attributable to stress level and fatigue testing schedule were anticipated from the way the CFCTP core programme was planned. However, determination of whether there were significant effects attributable to differences between laboratories was the primary purpose of the core programme.

A significant effect was also indicated for the interaction between stress level and fatigue testing schedule. This means that the stress level and fatigue testing schedule significantly affected the fatigue lives.

3.2.4 "Fine tuning" with the least significant difference test

As shown in figure 3, significant effects indicated by analysis of variance were investigated in more detail ("fine tuning") using the least significant difference test. However, this was not necessary for the effect of stress level: since there were only two stress levels it is obvious that the significant

difference is between them. Thus the significant effects investigated were

- e environment
- laboratory
- e stress: environment.

In the first instance the fatigue life data from all ten participants were analysed. This showed that data from two participants (SIFFRL and the University of Pisa) were significantly different from the rest. Because SIFFRL and the University of Pisa were the only participants to have tested specimens that had been disassembled, redrilled to press fit dimensions and reassembled (see table 2) it was decided to conduct an additional analysis omitting the data for these specimens. The results are given in table 6. Note that omission of data for reassembled specimens resulted in unequal sample sizes, so that a modified version of the least significant difference test had to be used. This modified version of the test is also discussed in Appendix II.

Table 6 shows the following:

- The effects of different fatigue testing schedules (environmental effects) were significant and consistent at both stress levels. The effect of pre-exposure was similar to that of changing the fatigue environment from air to salt soray.
- (2) The SIFFRL and University of Pisa data were significantly different from the other participants' data.
- (3) A significant interlaboratory difference was also found between the AFWAL data and those for the University of Saskatchewan, Vought, DFVLR and NDRE.
- 3.2.5 "Fine tuning" with Duncan's new multiple range test

As shown in figure 3, Duncan's new multiple range test was used to investigate in more detail the experimental variables (in the present case their interactions) that were not found to be significant by analysis of variance. These interactions were

- stress: laboratory
- environment: laboratory
- stress: environment: laboratory.

As before, it was found that the SIFFRL and University of Pisa data were significantly different from the rest. Thus the fatigue life data were analysed both with and without data for specimens that had been disassembled, redrilled to press fit dimensions and reassembled (see table 2). Table 7 lists significant differences indicated by Duncan's test, which in the case of omitting data for reassembled specimens was modified because of unequal sample sizes. This modified version of the test is also discussed in Appendix II.

Table 7 shows the following:

(i) A clear indication that the SIFFRL and University of Pisa data were significantly different from the other participants' data.

Excluding the SIFFRL and University of Pisa data,

- (2) At S = 144 MPa there were significant differences between the AFWAL total log mean fatigue life and those for the DFVLR and NDRE.
- (3) There were some significant differences in log mean fatigue lives for the fatigue testing schedules of pre-exposure + fatigue in air and fatigue in salt spray. In more detail these significant differences were found only for $S_{max} = 210 \text{ MPa}$.
- 3.2.6 Checking for adequate sample size and differences in data scatter

Scatter in the CFCTP core programme fatigue life data was used to check for adequacy of sample size (four specimens per test condition per participant). The method used is due to Lipson and Sheth (reference 5) and involves selecting an acceptable error level, usually 5 % or 10 %, and finding the required sample size for a particular confidence level. The sample size check has two purposes, namely

- ullet to find the combination of error and confidence levels for which the actual sample size was sufficient
- to give an indication of differences in data scatter between laboratories and fatigue test conditions.

The actual sample size was sufficient for the combination of 10 % error and 90 % confidence levels except for one case: pre-exposure + fatigue in air at $S_{max} = 144$ MPa by the University of Pisa. There was thus a generally low scatter in the data and high reproducibility of the specimens and testing conditions for each participant.

To indicate differences in data scatter the required sample sizes were determined for the combination of 5 % error and 90 % confidence levels and are shown in table 8. The shaded regions denote exceedance of

the actual sample size, and since a larger required sample size reflects greater scatter the results indicate

- (1) More persistent scatter for the RAE data.
- (2) The amount of scatter tended to increase with complexity of testing. This is particularly noticeable for pre-exposure + fatigue in salt spray.
- (3) For pre-exposure + fatigue in air there was much more scatter at the higher maximum stress level of 210 MPa.

3.3 Presentation of Primary Fatigue Origin Data

As mentioned at the beginning of section 3, the primary fatigue origin data are compiled in table 2. In the last column of this table there are remarks concerning specimens pre-exposed and fatigued in air. Some of these specimens had corroded fracture surfaces near and at the primary latigue origins. This indicated that an aqueous solution was present inside the specimens during fatigue testing, even though a detailed cleaning and drying procedure was specified to follow pre-exposure (reference 1).

Table 9 classifies the fatigue life and primary fatigue origin data for all specimens pre-exposed and fatigued in air. For both stress levels the log mean fatigue lives of corroded specimens were significantly shorter than those for uncorroded specimens. This was confirmed by statistical analysis that omitted the data for interference fit specimens disassembled, redrilled to press fit dimensions and reassembled. The statistical techniques used were a variance-ratio test to check for homogeneity of variances and the t-statistic evaluation to compare two means. These tests are described in references (9, 10).

It is concluded that an aggressive aqueous solution was present inside the specimens with corroded fracture curfaces. Most probably this was acidified aqueous NaCl remaining from pre-exposure. Information on time delays between cleaning and drying pre-exposed specimens and fatigue testing in air was supplied by the participants. There was no strong correlation between time delays and subsequent fatigue lives and corroded fracture surfaces. However, from the NLR and AFWAL information it appeared that storing the specimens for several days in desiccators resulted in relatively long fatigue lives and uncorroded fracture surfaces, see table 2. This was considered sufficient ground for amending the cleaning procedure to require desiccator storage for at least one week, as mentioned in section 2.5 and specified in detail in reference (1). This amendment was made only after CFCTP core programme data had been received from the original eight participants. Of the remaining two, SIFFRL included desiccator storage but the University of Pisa fatigue tested the specimens immediately after cleaning. Table 2 shows that corroded fracture surfaces were not found for the SIFFRL specimens but were present in four of the University of Pisa specimens. This is additional evidence that desiccator storage was effective in drying the specimens completely.

Despite the significant effect of insufficient drying on the fatigue lives of specimens pre-exposed and fatigued in air, table 9 shows there was no essential difference in the locations of primary fatigue origins in specimens with corroded and uncorroded fracture surfaces. Thus it was felt that all the fatigue origin data in table 2 could be classified together.

3.3.1 Classification of all primary fatigue origins

The primary fatigue origin data are classified in table 10. The table has four sub-divisions, which will be discussed consecutively:

- (1) Listing the total numbers of each type of primary fatigue origin shows
 - most failures began in the bores (E/Q) or at the bore/faying surface corners (F/R) of fastener holes: there was no evident preference with respect to outer (E,F) or inner (Q,R) sides of the holes
 - failures at faying surfaces (G/S) occurred mainly to the outside of fastener holes (G) probably because the proximity of free edges facilitated relative displacements between the fatigue specimen -1 and half plate -2 (see figure 1), thereby promoting fretting fatigue initiation
 - very few failures initiated in the countersink areas: most were at the surface edges to the outsides of fastener holes (B).
- (2) Listing the primary fatigue origins for specimens tested by each participant reveals some interlaboratory differences. Possibly the most significant difference is that specimens tested by SIFFRL and the University of Pisa had more bore/faying surface corner (F/R) primary origins than specimens from other participants.
- (3) The third part of table 10 gives a complete breakdown of the locations of primary fatigue origins with respect to stress level and fatigue testing schedule.
- (4) The last part of table 10 adds up the total numbers of primary fatigue origins per stress level and fatigue environment.

The data distribution in parts (3) and (4) of table 10 reveals a predominant effect of stress level on the locations of primary fatigue origins. Thus stress level has been treated as the primary variable in preparing figure 7, which supplements table 10. The table and figure show that

- stress level had a major effect:
- for S_{max} = 210 MPa the primary fatigue origins were mainly in the bores of fastener holes
- for S_{max} = 144 MPa the primary fatigue origins were mainly at the bore/faying surface corners and the faying surfaces
- the effect of fatigue environment was significant: changing from fatigue in air to fatigue in salt spray promoted initiation in the bores or at the bore/faying surface corners of fastener holes and reduced the number of failures initiating at the faying surfaces
- pre-exposure resulted in several effects:
- relatively more primary fatigue origins in the bores of fastener holes
- a few primary fatigue origins at the surface edges of countersinks
- slightly fewer primary fatigue origins at the bore/faying surface corners of fastener holes
- reduction of the number of failures initiating at the faying surfaces.

The effects of pre-exposure and/or fatigue in salt spray may be summarised as especially promoting failure initiation in the bores of fastener holes.

3.3.2 Statistical analysis of primary fatigue origin data

The χ^2 test of independence and the Yates' corrected χ^2 test were used to determine whether there was a significant association between the locations of primary fatigue origins and the experimental variables of stress level and fatigue testing schedule (environmental effects). The SIFFRL and University of Pisa data were omitted because they were considered non-representative. The results are summarised in table 11. This confirms the impression gained from table 10 and figure 7 that both stress level and fatigue testing schedule had significant effects on the primary fatigue origin locations.

Note that for S max = 210 MPa there is no significant association between environmental effects and primary fatigue origin locations. This is because the higher stress level and changing from fatigue in air to pre-exposure and/or fatigue in salt spray had similar effects on the primary fatigue origin locations, i.e. promotion of failure initiation in the bores of fastener holes.

3.4 Correlation of Fatigue Lives and Primary Origins of Fatigue

Owing to the results of the statistical analysis of fatigue lives, section 3.2, it was decided to omit the SIFFRL and University of Pisa data from the correlation of fatigue lives and primary origins of fatigue.

Correlations of the fatigue lives and primary fatigue origins for the original eight participants in the CFCTP core programme are given in table 12 and figures 8 and 9. Note that the two failures at the surface edges of countersinks (B) for pre-exposure + fatigue in air at $S_{max} = 210 \ \text{MPa}$ have been omitted from figure 8 since there were no similar failures for other fatigue testing schedules at the same stress level. The correlations indicate the following:

- (1) From figure 8 it is seen that there are no generally consistent relations between primary fatigue origin locations and the fatigue lives for each test condition. However,
 - for fatigue in air and pre-exposure + fatigue in air at $S_{nax} = 210$ MPa the initiation of failures in the bores and at the bore/faying surface corners of fastener holes tended to result in shorter lives than failure initiation at other locations.
 - for fatigue in salt spray and pre-exposure + fatigue in salt spray at S = 144 MPa the initiation of failures at the bore/faying surface corners of fastener holes tended to result in shorter lives than failure initiation at other locations.
- (2) From figure 9 it is seen that for S = 144 MPa the effect of pre-exposure and/or fatigue in salt spray in reducing fatigue life was more pronounced for specimens in which failure initiated at the bore/faying surface corners of fastener holes as compared to other locations.

Yates' corrected χ^2 test (reference 11) and fisher's exact test (reference 12) were used to determine whether there were statistically significant associations between the locations of primary fatigue origins and the fatigue lives for each test condition, i.e. each combination of stress level and fatigue testing same dute. The results are summarised in table 13. A significant association between primary fatigue origin locations and fatigue lives was found only for fatigue in salt spray at $S_{max} = 144$ MPa. This agrees with one of the trends noted from figure 8. It is concluded that the other three trends, namely an association between primary fatigue origin locations and fatigue lives for fatigue in air and pre-exposure + fatigue in air at $S_{max} = 100$ MPa and pre-exposure + fatigue in salt spray at $S_{max} = 144$ MPa, are not sufficiently well-founded.

4. DISCUSSION

4.1 Primary Purpose of the CFCTP Core Programme

As mentioned at the beginning of this Part of the report, the primary purpose of the CFCTP core programme was to establish whether participants could obtain confidence in one another's fatigue testing capabilities with the added dimension of a controlled atmospheric corrosion environment.

Statistical analysis showed that the SIFFRL and University of Pisa fatigue life results were significantly different from those of the original eight participants. A partial explanation is available. To supply the University of Pisa with CFCTP-type specimens it was necessary to disassemble interference cit specimens, redrill to press fit dimensions and reassemble. This procedure apparently caused significant reductions in the fatigue lives, especially at the lower stress level of S = 144 MPa. These fatigue life reductions may well be related to an increased tendency for failure to initiate at bore/faying surface corners of fastener holes in the University of Pisa specimens, see table 10.

In the case of the SIFFRL specimens, only six had been disassembled, redrilled and reassembled. The rest should have been nominally identical to the first batch of specimens delivered to the striginal eight participants, but it appears they were not. It is worth noting that the SIFFRL fatigue life data were significantly different from those of the original eight participants mainly on the basis of straightforward fatigue testing in air, see figure 4 and tables 2 and 7. This means that the source of the difference is unlikely to have been different environmental conditions (pre-exposure and/or fatigue in salt spray).

Excluding the SIFFRL and University of Pisa fatigue life data does not remove all the significant differences found by statistical analysis. However, the remaining significant differences were few and not consistently found:

- (1) The least significant difference test indicated a significant interlaboratory difference between the AFWAL data and those for the University of Saskatchewan, Vought, DFVLR and NDRE, table 6.
- (2) Duncan's new multiple range test indicated a significant interlaboratory difference between the AFWAL data with $S_{max} = 144$ MPa and those for the DFVLR and NDRE, table 7.
- (3) In more detail, Duncan's test (table 7) indicated significant differences for
 - pre-exposure + fatigue in air at S $_{max}$ = 210 MPa between Vought and the NADC and DFVLR; and between the NLR and the NADC, University of Saskatchewan, DFVLR, NDRE and RAE
 - fatigue in salt spray at S $_{max}$ = 210 MPa between Vought and the University of Saskatchewan, DFVLR and RAE.

An important factor in the significant differences found for pre-exposure + latigue in air at S = 210 MPa was insufficient drying of some specimens after pre-exposure, resulting in shorter fatigue lives and corroded fracture surfaces. The relevant data have been re-analysed by separating out the specimens with corroded fracture surfaces. The results are given in table 14. All of the previously indicated significant differences have been eliminated.

In view of there being only a very few unexplained significant differences found by statistical analysis and the generally low data scatter (see section 3.2.6) it is concluded that

- with the exception of the unamended cleaning and drying procedure after pre-exposure, the first batch of CFCTP core programme specimens and the mechanical and environmental testing conditions were highly reproducible
- the original eight participants in the CFCTP cure programme can have confidence in each other's results.

In other words, with the exception of the two later participants, SIFFRL and the University of Pisa, the primary purpose of the CFCTP core programme has been achieved.

It is most unfortunate that the SIFFRL and University of Pisa results were significantly different from the rest. However, on the positive side these later results emphasize how important and necessary it was to do the OFCTP core programme, to provide a detailed technical manual for mechanical and environmental testing, and to supply the original eight participants with Specimens from one batch.

4.2 Environmental Effects

Statistical analysis of the CFCTP core programme fatigue life data showed that the effects of different fatigue testing schedules (environmental effects) were significant and consistent at both stress levels. Both pre-exposure and fatigue in salt spray significantly reduced the fatigue lives, especially in combination. An overall impression of these results is provided by figure 10, which also separates out the data for specimens found to have uncorroded fracture surfaces after pre-exposure + fatigue in air. Figure 10 shows two additional trends:

- (1) Environmental effects were relatively greater for the higher S_{max} of 210 MPa; many environmental fatigue data in the literature show that the reverse trend would be expected.
- (2) The statistical result that the effect of pre-exposure was similar to that of changing the fatigue environment from air to salt spray (see table 6) is a consequence of including data for specimens that had corroded fracture surfaces after pre-exposure + fatigue in air.

4.2.1 Dependence of environmental effects on stress level

In sections 3.3.1 and 3.3.2 it was shown that stress level was a major variable controlling the locations of primary fatigue origins, see figure 7 and tables 10 and 11. For $S_{max} = 210$ MPa most failures began in the bores of fastener holes. On the other hand, for $S_{max} = 144$ MPa most failures began at bore/faying surface corners and the faying surfaces.

Fre-exposure and/or fatigue in salt spray especially promoted failure initiation in the bores of fastener holes. It is most likely that environmental effects will be greater when they promote characteristic failure modes. This explains why the observed environmental effects were relatively greater for $S_{max} = 210 \text{ MPa}$.

There is an important conclusion to be drawn from this explanation of why the environmental effects were relatively greater for a higher stress level, in contrast to many other data in the literature. Correct assessment of environmental effects requires the specimens to be realistic. The CFCTP core programme specimens were designed to closely simulate a fatigue critical structural joint and their behaviour is more likely to be representative than that of simple coupons, which constitute the majority of specimens used in environmental fatigue testing.

4.2.2 Environmental effects and fatigue life data scatter

As table 8 shows, there was a general trend for fatigue life data scatter to increase with complexity of testing, i.e. when the environmental variables of pre-exposure and fatigue in salt spray were included in the testing schedules.

For pre-exposure + fatigue in air there was much more scatter in the fatigue life data at the higher S_{\max} of 210 MPa. This is an unusual result, since scatter usually decreases with increasing stress level. The explanation lies in the variable effect of insufficient drying of some specimens after pre-exposure. Insufficient drying caused significantly reduced fatigue lives and corroded fracture surfaces, and there were many more such specimens fatigue tested at S_{\max} = 210 MPa, see table 9.

4.3 Primary Fatigue Origin Locations

As discussed previously, stress levels and fatigue testing schedules (environmental effects) had significant effects on the locations of primary fatigue origins in the CFCTP core programme specimens. This is shown in figure 7 and tables 10 and il. Also, there were some indications that for a given fatigue testing schedule the initiation of failures in the bores and at the bore/faying surface corners of fastener holes resulted in shorter fatigue lives than failure initiation at other locations, see figure 8 and table 13.

It is evident that examination with respect to primary fatigue origins and fracture surfaces was essential for understanding the fatigue behaviour of the CFCTP core programme specimens. In fact, such examination should always be done when investigating the fatigue behaviour of realistic specimens.

5. CONCLUSIONS

The CFCTP core programme of round-robin testing has demonstrated that

- The original eight participants may be confident in one another's environmental fatigue testing capabilities.
- (2) With the exception of the unamended cleaning and drying procedure after pre-exposure, the first batch of CFCTP core programme specimens and the mechanical and environmental testing conditions were highly reproducible. (The amended cleaning and drying procedure is reproducible and should be adopted in further tests).
- (3) Environmental effects on fatigue lives were significant and consistent.
- (4) Realistic s_r^2 rimens are necessary for correct assessment of environmental effects.
- (5) Examination with respect to fatigue origins and fracture surfaces is essential.

Finally we conclude that, for at least the original eight participants, supplemental testing programmes directed to the requirements of individual participants may be carried out with confidence that the results from different labora ories can be compared.

6. ACKNOWLEDGEMENTS

We thank ALCOA for supplying the aluminium alloy sheet and the VOI-SHAN corporation for supplying the Hi-Lok fasteners used in the CFCTP core programme. We also thank all the CFCTP participants for their efforts.

7. REFERENCES

- R.J.H. Wanhill and J.J. De Luccia, "An AGARD-coordinated corrosion fatigue cooperative testing programme", AGARD Report No. 695, February 1982.
- D. Schütz and J.J. Gerharz, "Schwingfestigkeit von Fügungen met Sonderbefestigungselementen", Fraunhofer-Institut für Betriebsfestigkeit Technische Mitteilungen TM 69/73, 1973.
- R.G.D. Steel and J.H. Torrie, Principles and Procedures of Statistics, McGraw-Hill Book Company, Inc., pp. 106 - 109 (1960): New York.
- 4. J.C.R.Li, Statistical Inference I, Edwards Brothers, Inc., pp. 265 273 (1964): Ann Arbor, Michigan.
- C. Lipson and N.J. Sheth, Statistical Design and Analysis of Engineering Experiments, McGraw-Hill Book Company, Inc., pp. 265 - 270 (1973): New York.
- G.M. Smith, A Simplified Guide to Statistics, Twelfth Printing, Rinehart and Company, Inc., pp. 86 - 96 (1958): New York.
- E. Kreyszig, Advanced Engineering Mathematics, Third Edition, John Wiley and Sons, Inc., pp. 779 781 (1972): New York.
- 8. J.C.R.Li, Statistical Inference I, Edwards Brothers, Inc., pp. 552 556 (1964): Ann Arbor, Michigan.
- 9. J.C.R.Li, Statistical Inference I, Edwards Brothers, Inc., pp. 122 124 (1964): Ann Arbor, Michigan.
- 10. J.C.R.Li, Statistical Inference I, Edwards Brothers, Inc., pp. 142 144 (1964): Ann Arbor, Michigan.
- W.J. Dixon and F.J. Massey, Jr., Introduction to Statistical Analysis, Fourth Edition, McGraw-Hill Book Company, Inc., p. 278 (1983): New York.
- 12. R. Langley, Practical Statistics, Dover Publications, Inc., pp. 292 313 (1971): New York.

TABLE 1: OVERVIEW OF THE CFCTP CORE PROGRAMME

CFCTP CORE PROGRAMME

MATERIAL

• 3.2 mm thick 7075-T76 aluminium alloy sheet

SPECIMEN

PRESS FIT HI-LOK FASTENERS 6 300 mm

PROTECTION SYSTEM

Chromate conversion + inhibited epoxy polyamide primer (except fastener holes) + aliphatic polyurethane topcoat

PROTECTION SYSTEM DAMAGE

 \bullet Two stress cycles at low temperature (209 ± 10 K) to crack primer and paint around the fastener heads

FATIGUE LOADING

• Constant amplitude, $S_{min}/S_{max} = 0.1$

FATIGUE ENVIRONMENTS

• Laboratory air; 5 % aqueous NaCl salt spray with pH 4 at 275 F

STATIC PRE-EXPOSURE

• 72 hours in 5 % aqueous NaCl + SO, at 315 K

SCHEDULES	NUMBER OF	SPECIMENS	CYCLE
SCHEDULES	S _{max} - 210 MPa	S _{max} - 144 MPa	FREQUENCY
Fatigue in air	4	4	
Pre-exposure + fatigue in air	4	4	2 Hz
Fatigue in salt spray	4	4	
Pre-exposure + fatigue in salt spray	4	4	0.5 Hz

TEST PROGRAMME

STATISTICAL ANALYSIS • Fatigue lives and primary farigue origins

- (1) Naval Air Development Centre NADC, Warminster, Pennsylvania USA
- (2)
- (4)
- University of Saskatchewan, Saskatoon, Canada. Vought Corporation, Dallas, Texas, USA Air Force Wright Aeronautical Laboratories AFWAL, Dayton, Ohio. USA.

PARTICIPANTS

- (5) (6) National Aerospace Laboratory NLR, Emmeloord. The Netherlands Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt DFVLR, Cologne, Germany.
- Norwegian Defence Research Establishment NDRE, Kjeller, Norway Royal Aircraft Establishment RAE, Farnborough, United Kingdom, University of Toronto SIFFRL, Toronto, Canada, University of Pisa, Pisa, Italy. (7)

TABLE 2: FATIGUE LIFE AND PRIMARY ORIGIN DATA FOR THE CECTP CORE PROGRAMME

			FAILURE (CYCLES	AND LOG MEAN CY	CLES)/LOCATIONS				
E-STITIEANTS		S _{max} -	210 MPa			S _{max} =	144 MPa		REMARKS CONCERNING FATIOUS FRACTURE SUPFACES OF
	fatigue in air	pre-exposure + fatigue in air	fatigue in salt sprav	pre-exposure + fatigue in salt spray	fatigue in air	pre-exposure + fatigue in air	fatigue in salt sprav	jte +spomere , + fotigue in alt sprav	PRE-EXPOSED SPECIMENS TESTED IN AIR
٠.	18,705 Q 25,606 F 25,894 Q 28,134 S	4,997 ± 6,33° 0 10,970 ¥ 16,478 F 8,975 F	11.737 E 11.360 Q 7.935 E 7.563 E	16.770 Q 8.015 Q 4.603 E 8.354 E	76,186 F 133,611 R 147,107 F 199,893 G	96,085 C 106,206 S 109,712 S 239,237 F 127,752	1181114 ¹¹	10 (4.18 R 11 + 11 + 1 F 1 - 8 + 1	corroded fracture surfaces for three specimens tested at 71.0 MPa
T - G-WAN	9,180 Q 13,800 Q,R 21,850 Q,R 26,950 R		12,626 E.F 18,577 F 17,893 Q 10,298 E	8 841 F 5,352 Q 5,006 E 8,129 Q 5,624	107,050 S 139,869	111(i) S + 122.3 (i) F + 82.483 S + 116(ii) R	18,588 0 104,040 E 46,046 F 145,818 E 65,911	#1.042 E 31.62 C 69.121 C 1.4.743 C	corroded tractore sortaxes for three specimens (ested at 210 MHz)
:	12,165 R 25,841 Q 20,444 E 2+,235 E	28,562 6 20,108 8 5,3-1 8 21,377 1	7,163 E -,913 0 -,373 E -,5442 R	3,769 E 2,791 E 9,395 0 2,938 E 7,158	176,247 R 170,750 H 181,450 S 174,000 S 176,184	119.00 0 5.012 P 1.000 E 1000.005	107,468 / 54,400 P 141,330 I 35,331 E 83,864	\$1, 9, 6, 13 1, 11, 12, 13, 13, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15	costoded fractore sustance for one specimen tested a 110 MMs and one at 14. MMs
	22,300 Q 32,500 E 14,500 C 26,400 S	12 100 F 15 100 F 15 100 F 15 100 F 15 100 F	13 5.0 F.R 1,460 R 5,160 E 2,480 E	6.120 E 4.350 E 9.890 R 2.590 Q	1 7.75.0 244,600 154,76 293,800 F	12.5 fm = 5 + 11.5 fm = 6 1 + 10.9 fm = 6 12.4 fm = F 175 fm	68 170 222 400 5 28,530 113,270 117,877	Trace B E Trace B Trac	- verv olivin corresses rear primary orivio far one specimen restad at 710 MHa
	19,713 0 24 812 E 11 714 G 72,312 E	1 · 8 · 3 · B	10.825 0 11.356 8 11.356 8	5.715 E 10.030 E.K 11.393 E 16.186 E	114, 216 (114, 216) 173, 175 (114, 216) 162, 947 (6) 197, 137 (7)	81.70 P 110.75 P 180.76 F 170.71 N	317 F 1 1 1 3 4 4 F 8 2 10 0 8 F 2 6 1 8 2 8 F 7 2 1 1 1 7	7 12 8 7 119 E 31,110 R 11,13 U	Boundstropped on the Mark Western
	2	9:393 F 16:254 C 6:268 E 9:419 C	11.37 E 18.970 E 122.546 F 19.571 F	5 652 9 15,777 E 5,782 E 6,898 E	103,4.3 ci 111,862 ci 181,364 ci 169,660 ci 123,117	86 867 E 134 577 7 1 97 773 E 24 48 8	1 + 1 + 1 + 9 1 + 1 + 1 + 2 + 4 1 + 1 + 2 + 4 2 + 3 + 1 + 2 2 + 3 + 1 + 2	11.5 (1 R 1.6 (1 F 1.6 (1 F 1.6 (1 G	corroded fracture suffices for two sportmens tested at 210 MEs, were slight corrected near primary origin for wrother corroded fracture surfaces for two specimens toyled at 1.4 MEs
	11 ER 1 21 ER 1 21 E	2+,551 B,Q 18-670 R 12,200 F 3,330 Q 12-176	13,626 E.F 9,166 Q 11,626 F 10,131 F	10,100 0 11,426 E 2,093 Q 8,794 E 9,211	175,510 R 81,173 R 111,500 G 146,249 G		97.439 F 82.361 d 45.243 d 121.584 -	1.6.7.00 R 1.27.608 E 26.447 R 1.1.027 =	corroded fracture contact for one specimen tested at 210 MBa. Slight correction team primary origins for two specimens tested at 144 MBa.
	20 477 R 21 2 3 4 2 2 4 3 2 2 4 3 2 3 4 7 7 2	13,492 Q 18,552 E 4,565 F 8,768 E	11,040 E 11,105 R 12,047 E 26,799 R	10,272 F 6,330 F 19,523 F 11,345 Q 10,955	153,788 S 96,362 G 68,216 G 135,889 S	78,828 P 118,805 N 102,326 U 38,1935 S 138,855	! 139,186 G	1 1.5 (5) G 36,573 F 6 347 B 6 18 B	corrected fructure scattages for three specimens tested at 210 MBs, correction than rightary origin for one speciments at d at 174 MBs.
	38 194 S 9, 403 F 14, 431 E 9, 793 F	10,290 F 11,425 E 8,000 F 12,230 Q	9,570 9 7,310 E,F 6,830 E 14,670 E	1.840 F 2.200 E.F 8.900 F 11.450 E	125,340 G 59,740 R 115,630 F 69,390• S 84,519	91,380 G 107,880 G 60,350• F 57,850• F 82,410	54,040 3 20,380 0 48,970 8 76,780 8	(23 124) (1 1 × (1×4 +2) 40 5 × (1 P 41 124 P - 1 1 × (1 P	no correston on tracture surface.
7. T. T.	F.92 • B 1 3-2 • E.Q 11 • F 826 • R	3,104+ F 3,342+ F 4,896+ R 12,758+ F	17,549 E 20,470 R 12 8 8 E 7,586 R	8.139 Q 8.413 F 9.000 E 72.629 E	84,870+ R 181,310+ F 68,490+ F 67,020+ R 91,675	87,920	33,013+ B 45,558+ F 26,479+ F 35,044+ F	F-18-72* P 28-73-74 P 38-73-74 B 41-32-74 S 30-73-6	correded fracture surfaces for three specimens tested at 210 MPa and one at low MPa

ofference fit specimens disassembled, redrilled to press fit dimensions and reassembled

⁻ the surfaces unavailable for examination

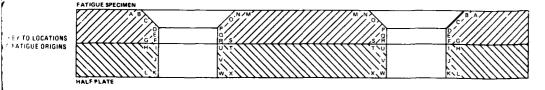


TABLE 3: SUMMARY OF BOX TEST RESULTS (95 % CONFIDENCE)

FATIGUE TESTING SCHEDULES	S _{max} (MPa)	F _o	HOMOGENEITY OF VARIANCES (Fo < F0.05;9;739 - 1.880)	REMARKS
fatigue in air	210 144	1.925 1.984	no no	very slight violation very slight violation
pre-exposure + fatigue air	210 144	1.249 3.795	yes no	moderate violation
fatigue in salt spray	210 144	0.736 0.816	yes yes	
pre-exposure + fatigue in salt spray	210 144	0.655 0.836	yes yes	

TABLE 4: SUMMARY OF BARTLETT TEST RESULTS (95 % CONFIDENCE)

COMPARISONS OF DATA FROM DIFFERENT FATIGUE TESTING SCHEDULES	S max (MPa)	χ <mark>2</mark>	HOMOGENEITY OF VARIANCES $(\chi_0^2 < \chi_{0.05;1}^2 - 3.841)$	REMARKS
fatigue in air/	210	5.151	no	moderate violation
pre-exposure + fatigue in air	144	0.366	yes	
fatigue in air/	210	-0.021	yes	
fatigue in salt spray	144	2.459	yes	
fatigue in air/pre-exposure +	210	0.066	yes	
fatigue in salt spray	144	2.189	yes	
pre-exposure + fatigue in air/	210	5.403	no	moderate violation
fatigue in salt spray	144	0.921	yes	
pre-exposure + fatigue in air/	210	6.495	no	moderate violation
pre-exposure + fatigue in salt spray	144	0.757	yes	
fatigue in salt spray/pre-exposure +	210	0.040	yes	
fatigue in salt spray	144	0.012	yes	

TABLE 5: SUMMARY OF ANALYSIS OF VARIANCE RESULTS (95 % CONFIDENCE)

	SOURCE OF VARIATION	F DISTRIBUTION VALUE	F _o	SIGNIFICANT EFFECTS OF EXPERIMENTAL VARIABLES (F > F DISTRIBUTION VALUE)
•	MAIN EFFECTS			
	- stress	3.89	1572.877	yes
	- environment	2.65	45.055	
	- laboratory	1.93	5.763	yes
•	2-WAY INTERACTIONS			
	- stress:environment	2.65	2.662	yes
	- stress:laboratory	1.93	1.637	
	- environment:laboratory	1.54	1.397	no
•	3-WAY INTERACTIONS			
	- stress:environment:laboratory	1.54	1.478	no

TABLE 6: RESULTS OF THE LEAST SIGNIFICANT DIFFERENCE TEST (95 % CONFIDENCE)

			FATICUE LIFE DATA	FATICUE LIFE DATA FROM ALL TEN PARTICIPANTS	OM1551	ON OF FATIGUE LIFE DATA	OMISSION OF FATICUE LIFE DATA FOR REASSEMBLED SPECINENS
	COMPARISONS OF DATA FROM DIFFERENT FATICUE TESTING SCHEDULES	T FATIGUE TESTING SCHEDULES	DIFFERENCE BETWEEN LOC MEAN FATIGUE LIVES	SIGNIFICANT DIFFERENCE (DIFFERENCE > LSD _{0.05} = 0.061)	.061)	נ	SIGNIFICANT DIFFERENCE (t > t _{0.025,210} = 1.972)
● ENVIROPMENTS	fatigue in ait/pre-exposuce + fatigue in air estigue in aff/fatigue in sait spray fatigue in ait/pre-exposuce + fatigue in sait spray pre-exposuce - fatigue in sait spray pre-exposuce - fatigue in ait/fatigue in sait spray pre-exposuce - fatigue in ait/fatigue in sait spray pre-exposuce - fatigue in ait/fatigue in sait	fatigue in air/pre-exposure + fatigue in air satigue in air/catigue in air/catigu	0.182 0.227 0.354 0.045	yes yes yes no	<u> </u>	5.156 7,279 11.650 2.026	yes yes yes
	fatigue in sait spray/pre-exposure + tarigue in sait spray	e + fatigue in sait spray	0.127	yes	·	4.412	yes
	PATICUE	FATIGUE LIFE DATA FROM ALL TEN PARTICIPANTS	NTS	101821H0	OF FATIGUE LI	OMISSION OF FATIGUE LIFE DATA FOR REASSEMBLED SPECIMENS	SPECIMENS
	SIGNIFICANT DIFFERENCE BETWE	CANT DIFFERENCE BETWEEN LOG MEAN FATIGUE LIVES (DIFFERENCE > LSD	ENCE > LSD 0.05 0.096)	\$10	HFICANT DIFFER	SIGNIFICANT DIFFERENCE (t > t0.025,210 - 1.972)	(272)
■ LABORATORIES			۰ د	SIFFRL/NADC SIFFRL/SASK		SIFFR	
	SIFFRL/NIR 0.171		 H	SIFFRL/VOUGHT SIFFRL/AFVAL		AFUAI	AFWAL/VOUGHT : 2.361
	SIFFRL/DEVLR : 0.109 SIFFRL/NDRE : 0.102	PISA/AFWAL 0.269 PISA/NLR 0.233	AFVAL/DEVLR 0.098 AFVAL/NDRE 0.105	SIFFRL/NLR SIFFRL/DFVLR	2.655	AFVAL	AFVAL/DEVLR : 2 066 AFVAL/NDRE : 2.214
			FATIGUE LIFE DATA FI	FATIGUE LIFE DATA FROM ALL TEN PARTICIPANTS	ONISSI	ION OF PATIGUE LIFE DATA	DMISSION OF PATIGUE LIFE DATA FOR REASSEMBLED SPECIMENS
			S = 210 MPa	S = 144 MPa		S = 210 MPa	S = 144 MPs
STRESSES - ENVIRONMENTS	COMPARISONS OF DATA FROM DIFFERENT PATICUE TESTING SCHEDULES		DIFFERENCE SIGNIFICANT BETWEEN DIFFERENCE LOG MEAN (DIFFERENCE > FATIGUE LIVES LSD _{0.05} = 0.086)	DIFF BE LO FATIC	ţ	SIGNIFICANT DIFFERENCE (E > t ₀ 025,210 ft 972)	SIGNIFICANT DIFFERENCE (t > t _{0.025;210} = 1.972)
	fatigue in afr/pre-exposure + fatigue in air fatigue in alf/fatigue in salt pray	igue in air ray	0.268 yes 0.271 yes	0.095 yes	5.55.6 9.999	yes 3	3.619 yes
	nanchorant in the exposure realigue in salt spray pre-exposure + farigue in air/ate exposure + farigue in air/pre-exposure + farigue	pre-reprover e catigue in sait spray attigue in air/fatigue in sait spray fatigue in air/fatigue in sait spray fatigue in sait pre-exposure + fatigue in sait spray	0.003	0.086 no	1.256		11.587 no 11.587 no
	indigue in sait spray/pre-exposure + tatigue in sait spray	e + tarigue in sait spray	0.122 yes	0.132	2.745		3.175 yes

TABLE 7: SIGNIFICANT DIFFERENCES INDICATED BY DUNCAN'S NEW MULTIPLE RANGE TEST (95 % CONFIDENCE)

		FATIC	GUE LIFE DATA	FATIGUE LIFE DATA FROM ALL TEN PARTICIPANTS	PARTICIPANTS			OHISSION	OF FATIGUE L	DHISSION OF FATIGUE LIFE DATA FOR REASSEMBLED SPECIMENS	EASSEMBLED SPEC	CIMENS
	S 210 MPa			S	S = 144 MPa			Smax - 210 MPs	KPa	S	Smax - 144 MPa	
STRESSES: LABORATORIES	SIFFRLANIR PISA/AFVAL PISA/NIR PISA/RAE	SIFFRL/SASK. SIFFRL/SASK. SIFFRL/VOUCHI	. .	SIFFEL/NLR SIFFEL/RAE PISA/NADC PISA/SASK.	PISA/VOUGHT PISA/AFWAL PISA/NIR PISA/DFVIR		PISA/NDRE PISA/RAE AFWAL/DFVLR AFWAL/NDRE	SIFFRL/NL3	SIR SIR SIR SIR	SIFFRL/NADC SIFFRL/SASK. SIFFRL/VOUGHT SIFFRL/AFWAL	SIFFRL/NLR SIFFRL/RAE AFWAL/DFVLR AFWAL/NDRE	LR VLR E
	<u>.</u>	FA.	TICUE LIFE DAT	FATICUE LIFE DATA FROM ALL TEN PARTICIPANTS	PARTICIPANTS			OMISSION	OF FATIGUE L	DMISSION OF FATIGUE LIFE DATA FOR REASSEMBLED SPECIMENS	EASSEMBLED SPE	CIMENS
	fatigue in air		pre-expos	pre-exposute + fatigue in air fatigue in salt spray	in air fatig	gue in sait sp	ray	fatigue in air		pre-exposure + fatigue in air	fatigue in salt spray	in **
ENVIRONMENTS: LABORATOR I ES	SIFFRL/AFWAL SIFFRL/OUGHT SIFFRL/NYR SIFFRL/DFVLR PISA/NADC PISA/VOUGHT PISA/AFWAL	PISA/NIR PISA/DFVLR PISA/KDRE PISA/RAE	SIFFRL/NIR PISA/NADC PISA/SASK PISA/VOUGH PISA/NIR PISA/NIR PISA/RAE	LR AFWAL/DFVLR NLR/MADC K. NLR/MADC NLR/DFVLR NLR/NDRE	<u> </u>	SIFFRL/DFVLR VV SIFFRL/RAE NI PISA/AFVAL PISA/DFVLR PISA/RAE VOUGHT/AFVAL	VOUGHT/RAE NLR/RAE	SIFFR,/NADC SIFFR,/VOUGHT SIFFR,/AFMAL SIFFR,/NLR SIFFR,/DFVLR SIFFR,/NDRE SIFFR,/NDRE	AFA NIA NIA NIS	APVAL/DEVLR NLR/RADG NLR/DEVLR NLR/NDRE	SIFRL, DEVLR SIFRR, FRAE VOUGHT/AFBAL VOUGHT/BFVLR VOUGHT/RAE NLR/RAE	FVLR NE FVAL FVLR NE
			ATICUE LIFE DA	FATIGUE LIFE DATA FROM ALL TEN PARTICIPANTS	EN PARTICIPANTS	s		OMISSI	ON OF FATICUE	DMISSION OF FATICUE LIFE DATA FOR REASSEMBLED SPECIMENS	REASSEMBLED S	PECIMENS
		S	- 210 MPa			S - 144 MPa		s	S = 210 MPa		S 144 MPa	44 MPa
	fatigue in particular	pre-exposure + fatigue in air		facigue in salt spray	fatigue in air	fatigue in salt spray	pre-exposure + fatigue in salt apray	fatigue in + air	pre-exposure + farigue in air	fatigue in sait spray	fatigue in salt spray	pre-exposure + fatigue in salt spray
STRESSES: ENVIRONHENTS: LABORATORIES	SI FFRL/AFWAL PISA/NADC PISA/NACL PISA/NACL PISA/NACL PISA/NACL PISA/NACL PISA/NACL PISA/RAC	SIFFIL/NLR SIFFIL/PISA PISA/SASK. PISA/VOUGHT PISA/NOUGHT PISA/NUR PISA/NUR PISA/NUR PISA/NUR PISA/NUR PISA/NUR PISA/NUR	NLR/NADC NLR/SASK. NLR/DEVLR NLR/NRE NLR/RAE	VOUCHT/SASK. VOUCHT/DEVLR VOUCHT/RAE VOUCHT/PISA	SIFFEL/VOUGHT PISA/NANC SIFFEL/VOUGHT PISA/NANC PISA/NANC PISA/NANC PISA/NANC PISA/NANC PISA/NANC PISA/NANC PISA/NANC PISA/NANC PISA/NANC	SIFFRL, RAE PISA, NADC PISA, SASK. PISA, SASK. PISA, AFWAL PISA, AFWAL PISA, DFUR PISA, NDRE PISA, NDRE PISA, NARE	SIFFRL/NADC SIFFRL/AFWAL PISA/NADC PISA/AFWAL	SIFFRL/AFWAL V	VOUCHT/NADC VOUGHT/DEVLR NLR/NADC NLR/SASK. NLR/DEVLR NLR/NDRE NLR/NDRE	VOUGHT/SASK.	SIFFRE/RAE	SIFFRL/NADC SIFFRL/AFWAL

TABLE 8: REQUIRED SAMPLE SIZES FOR 5 % ERROR AND 90 % CONFIDENCE LEVELS

		S - 2 max	210 MPa			S = 1	44 MPa	
PARTICIPANTS	fatigue in air	pre-exposure + fatigue in air	fatikue in salt spray	pre-exposure + fatigue in salt spray	fatigue in air	pre-exposure + fatígue in aír	fatue in sai spray	pre-exposure • fatigue in salt spray
NADC	3	6	3	6	4	4	3	4
UNIVERSITY OF SASKATCHEWAN	5	4	3	4	7	2	4	6
VOUGHT	4	5	2	5	2	2	6	4
AFWAL	3	3	5	4	4	2	5	3
NLR	3	3	4	5	3	4	4	6
DFVLR	3	5	3	5	3	4	5	5
NDRE	3	10	3	3	3	2	4	7
RAE	3	7	5	5	3	6	5	5
SIFFRL	8	3	4	3	4	3	3	7
UNIVERSITY OF PISA	3	8	4	5	4	12	3	2

TABLE 9: FATIGUE LIFE AND PRIMARY ORIGIN DATA FOR CFCTP CORE PROGRAMME SPECIMENS PRE-EXPOSED AND FATIGUE TESTED IN AIR

Surface Particule Life Particule Life Life Particule Life Particular Life Particular Life Life Particular Life Life Life Particular Life Life Life Life Life Life Life Life			016 - 3	- QM										
10 10 10 10 10 10 10 10			max						1	max 144 m	ra a			
1.104	FRACTURE	FATIGUE LIFE	LOCAT	TONS OF P	RIMARY ORIC	SINS	FRACTURE	FATIGUE LIFE			TIONS OF PR	NIMARY ORIG	INS	
3.104	CONDITION	(CYCLES)	E/4	F/R	s/3	B/N	CONDITION	(CYCLES)	£/4	F/R	c/s	В/В	0,70	D/P
3.942 x		3,104 .		×				22.116 •		×				
1,930 x x x x corroded 72,111 x x 4,585 x x x x x x x x x x x x x x x x x x		3,342 •		×				867,44		×				
4, 1967 4, 1967 5, 1967 8, 1978 8, 1978 8, 1978 8, 1978 8, 1978 8, 1978 8, 1978 8, 1978 8, 1978 8, 1978 8, 1978 8, 1978 8, 1978 8, 1978 8, 1978 8, 1978 10, 1970 11, 2070 12, 1970 12, 1970 13, 1970 14, 1970 15, 1970 18, 1970 19, 1971 19, 1971 19, 1972 19, 1973 19, 1		3,930	×				,	72,111	_	×			_	
6.397		4,363		× ;			corroded	76,120	×				_	
6.286			×					85 912	_	,			_	×
6.268		5,393	•	×				86.862	×	ĸ				
6.317 x x x x x 17.820		6,268	×					45,564 •		×				
1,980	corroded	6,337	×					57,850 +		×				
8,783 x		7,980	×					71,820				×		
1,470 2,476 2,47		6,555		×	_			71,920				×		
10.093		8,4/8	× >		_			80,350		×				
1,023		10.093	« »	_				83 2463		,	×			
13,023		10,970	,	×				83.273	×	۲			_	
14,492		13,023	×								.,			
15,600		14.492	×					91,980			×			
8,000		15,600	×		Ī			95,243			×			
11,420		• 000.8		×				96,085	_	_	×			
12.730		10,290	× ;					102,326			×			
12.230		12 200	×	,				105,261		×			_	
12.330			×	•			uncorroded	_			× >			
12 758 + 110, 280 111, 470 116, 280 16, 458		12,300		×					_		× ×		_	
15.700		12.758 •		×				110,280			×			
11, 15, 15, 15, 16, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18		15.700	×					111.470			×			
18.110		16,234	« »					116,596	_	,	×			
18 5/2	uncorroded	_		×				118,805		٠		*		
18 6.70 18 6.70 18 6.70 18 6.70 18 6.70 19 6.00 19 6.00 19 6.00 19 6.00 19 6.70 10 6.70 10 6			×					119,047			×	,		
15,000 19,000 1,		18,670		×				122,390		×				
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,		19,000		×				122,800					×	
20.332		20.168	×			٠		134.522	×	<				
24 521		20,332	×					153,600			×			
24.751 x x x x 24.515 24.427 2		20,628	×					186,964				×		
28.567 28.587 28.587 LOG HEAN NUMBERS OF EACH TYPE OF PRIMARY ORIGIN FRACTURE FATIOUE LIFE (CYCLES) 6.987 11 7 0 0 0 0 0 0 0 0 0 0 0 0		24,551	×			×		196,915				×		
12,887 X		28 562	×		,			234.42/		×	,	_		
LOG HEAN NUMBERS OF EACH TYPE OF PRIMARY ORICIN FRACTURE LOG HEAN		32,887			×			387,955			« ×			
SURFACE FALTOUR LIFE E/Q F/R G/S B/N CONDITION (CYCLES) E/Q F/R G/S B/N CONDITION (CYCLES) E/Q F/R G/S B/N CONDITION (CYCLES) E/Q F/R G/S B/N CYCLES) CYCLES F/R G/S B/N CYCLES F/R G/S B/N CYCLES F/R G/S B/N CYCLES CYCLES F/R G/S B/N CYCLES	FRACTURE	LOG MEAN	NUMBERS OF	EACH TYPE	E OF PRIMA!	RY ORICIN	FRACTURE	LOC MEAN		NUMBERS OF	F EACH TYPE	OF PRIMAR	ry ORIGIN	
6,987 11 7 0 0 corroded 61,096 2 4 0 0 0 16,928 12 7 2 2 uncorroded 112,726 2 9 16 5	CONDITION	(CYCLES)	E/4	F/R	s/o	8/N	CONDITION	(CYCLES)	E/Q	F/R	c/s	B/N	0/0	a/0
16,928 12 7 2 2 uncorroded 112,726 2 9 16 5	corroded	6,987	11	,	0	0	corroded	61,096	7	4	ŀ	o	0	_
C 01 6 7 07:710 0900110000 7 7 1 10 07:01		L	-	_	,	,		1_	,					,
	uncorroded		1.2	,	7	7	uncorroded		7	~	2	^	-	0

Interference fit specimens disassembled, redrilled to press fit dimensions and reassembled

TABLE 10: CLASSIFICATION OF CFCTP CORE PROGRAMME PRIMARY FATIGUE ORIGINS

•	TOTAL NUMBERS OF
	EACH TYPE OF
	PRIMARY ORIGIN

BORE OF FASTENER HOLE E/Q	BORE/FAYING SURFACE CORNER F/R	FAYING SURFACE G/S	SURFACE EDGE OF COUNTERSINK B/N	COUNTERSINK C/O	COUNTERSINK/ BORE TRANSITION D/P
68/59	58/60	48/20	9/2	3/0	2/1

NUMBERS OF PRIMARY ORIGINS PER PARTICIPANT

PARTICIPANTS	E/Q	F/R	G/S	B/N	C/0	D/P
NADC	14	9	7	1	1	0
SASKATCHEWAN	14	12	9	0	0	0
VOUCHT	16	10	5	1	0	0
AFWAL	11	10	10	0	2	1
NLR	15	8	7	3	0	0
DFVLR	15	12	6	0	0	0
NDRE	15	11	/,	3	0	0
RAE	8	8	11	3	0	1
SIFFRL	12	16	6	0	0	0
PISA	7	22	3	0	0	1

NUMBERS OF
PRIMARY ORIGINS
PER STRESS LEVEL
AND FATIGUE
TESTING SCHEDULE

FATIGUE TESTING		s _{max} -	210 MP	a			s _{max} -	144 MI	Pa	
SCHEDULES	E/Q	F/R	G/S	B/N	E/Q	F/R	G/S	B/N	C/0	D/P
fatigue in air	23	14	8	0	0	15	25	0	0	0
pre-exposure + fatigue in air	23	14	2	2	4	13	16	5	1	1
fatigue in salt spray	28	16	0	0	7	19	10	0	1	1
pre-exposure + fatigue in salt spray	33	9	0	0	9	18	7	4	1	1
all schedules	107	53	10	2	20	65	58	9	3	3

NUMBERS OF PRIMARY ORIGINS PER STRESS LEVEL AND FATIGUE ENVIRONMENT

FATIGUE ENVIRONMENT		s _{max} -	210 MP	a .			s _{max} -	144 M	Pa	
	E/Q	F/R	G/S	B/N	E/Q	F/R	G/S	B/N	C/0	D/P
fatigue in air (with and without pre-exposure)	46	28	10	2	4	28	41	5	1	1
fatigue in salt spray (with and without pre-exposure)	61	25	0	O	16	37	17	4	2	2

TABLE 11: SUMMARY OF χ^2 TEST OF INDEPENDENCE AND YATES' CORRECTED χ^2 TEST FOR THE CFCTP CORE PROGRAMME PRIMARY FATIGUE ORIGINS (95 % CONFIDENCE) OMITTING THE SIFFRL AND UNIVERSITY OF PISA DATA

SOURCE OF ASSOCIATION	FATIGUE TESTING SCHEDULES	x0.05:(r-1)(c-1)	χ ^a OR χ ^a c	SIGNIFICANT ASSOCIATION BETWEEN STRE LEVEL AND PRIMARY FATIGUE ORIGINS $(\chi_0^2 \text{ OR } \chi_c^2 > \chi_{0.05;(r-1)(c-1)}^2)$
	fatigue in air	$x_{0.05;2}^{2} = 5.99$	x2 - 28.40	yes
STRESS	pre-exposure + fatigue in air	x2.05:2 - 5.99	$\chi_0^2 = 10.80$	yes
LEVEL	fatigue in salt spray	x0.05:2 - 5.99	$\chi_0^2 = 17.48$	yes
	pre-exposure + fatigue in salt spray	x2,05:1 - 3.84	$\chi_0^2 = 10.27$	yes

SOURCE OF ASSOCIATION	S _{max} (MPa)	X _{0.05} ;(r-1)(c-1)	X _o ²	SIGNIFICANT ASSOCIATION BETWEEN ENVIRONMENT AND PRIMARY FATIGUE ORIGINS $(x_0^2 > x_0^2.05; (r-1)(c-1))$
ENVIRONMENT (FATIGUE	210	x _{0.05;3} = 7.81	7.18	по
TESTING SCHEDULE)	144	x _{0.05;6} = 12.59	28,56	yes

TABLE 12: CFCTP CORE PROGRAMME PRIMARY FATIGUE ORIGINS CORRELATED WITH FATIGUE LIVES, OMITTING THE SIFFRL AND UNIVERSITY OF PISA DATA

Smax	LOCATIONS OF	NUMBERS OF PRIMARY FATIGUE ORIGINS AND LOG MEAN FATIGUE LIFE (CYCLES)					
(MPa)	PRIMARY ORIGINS	fatigue in air	pre-exposure + fatigue in air	fatigue in salt spray	pre-exposure + fatigue in salt spray		
210	E/Q F/R G/S B/N	20 : 22,606 9 : 21,207 7 : 29,699 0 : -	20 : 12,219 9 : 10,914 2 : 30,648 2 : 22,089	22 : 10,563 13 : 13,342 0 : - 0 : -	28 : 8,153 5 : 8,937 0 : - 0 : -		
144	E/Q F/R G/S B/N C/O D/P	0 : - 9 : 162,489 23 : 129,873 0 : - 0 : -	4 : 92,770 9 : 100,472 12 : 119,938 5 : 117,704 1 : 122,800 1 : 78,828	6 : 124,192 13 : 65,701 10 : 116,807 0 : - 1 : 122,092 0 : -	8: 76,019 13: 55,010 5: 80,906 4: 84,035 1: 73,840 1: 73,840		

TABLE 13: SUMMARY OF χ^2 TESTS FOR COMPARISON BETWEEN CFCTP CORE PROGRAMME PRIMARY FATIGUE ORIGINS AND FATIGUE LIVES (95 % CONFIDENCE) OMITTING THE SIFFRL AND UNIVERSITY OF PISA DATA

FATIGUE TESTING SCHEDULES	S max (MPa)	TYPE OF TESTS	SIGNIFICANT ASSOCIATION BETWEEN PRIMARY FATIGUE ORIGINS AND FATIGUE LIVES
fatigue in air	210 144	x _C Fisher's exact test	no no
pre-exposure + fatigue in air	210 144	Υ _C Υ _C	no
fatig in salt spray	210 144	χ ² Fisher's exact test	no yes
pre-exposure + fatigue in salt spray	210 144	Fisher's exact test	no no

TABLE 14: RE-ANALYSIS OF SIGNIFICANT DIFFERENCES INDICATED BY STATISTICAL ANALYSIS OF FATIGUE LIFE DATA FOR PRE-EXPOSURE + FATIGUE IN AIR AT S = 210 NPa

	FRACTURE		FATIGUE 1	LIFE TO FAIL	FATIGUE LIFE TO FAILURE (CYCLES AND LOG MEAN CYCLES)	AND LOG MEAL	N CYCLES)	
	CONDITION	NADC	SASK.	VOUCHT	NLR	DFVLR	NDRE	RAE
FATIGUE LIFE DATA	corroded	4,997 6,337 10,970 7,030	7,980 10,093 13,023 10,160	8,353	ŀ	5,393 6,268 8,478 6,593	3,930 3,930	14,492 4,565 8,768 8,340
	uncorroded	16,458	18,310 18,310	28,562 20,168 20,332 22,710	19,873 20,628 24,778 32,887 24,041	16,254 16,254	24,551 18,670 12,200 17,750	18,542 18,542
SUMMARY OF	COMPARISONS		DIFFERENCE BETWEEN LOG MEAN FATIGUE LIVES X	$x\sqrt{\frac{2n_1n_j}{n_1+n_j}}$	SHORTEST SIGNIFICANT RANGE (SSR)	GNIFICANT SSR)	$\begin{array}{l} \text{SIGNIFICANT DIFFERENCE} \\ (\tilde{x}_i \! - \! \tilde{x}_j) \ \sqrt{\sum_{n_1 + n_j}} \ > \ \text{SSR} \end{array}$	DIFFERENCE
DUNCARYS NEW MULTIPLE RANGE TEST FOR UNCORROBED	VOUGHT/NADC VOUGHT/DFVLR NLR/NADC	AADC)FVLR	0.171 0.178 0.209		0,411 0,413 0,413		on ou	
Srecimens (95 % CONFIDENCE)	NLR/SASK. NLR/DFVLR NLR/NDRE NLR/RAE	; 4	0.149 0.215 0.244 0.143	— · -	0.408 0.415 0.411 0.398		000000000000000000000000000000000000000	

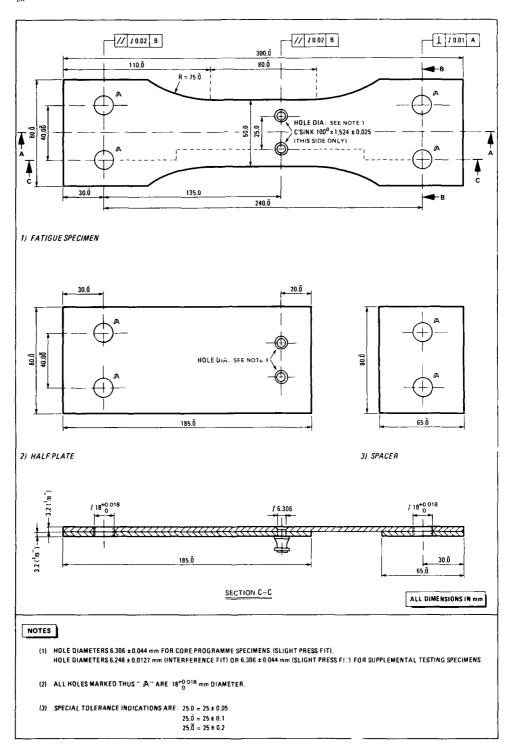


Fig. 1 The CFCTP core programme and recommended FACT supplemental programme specimens

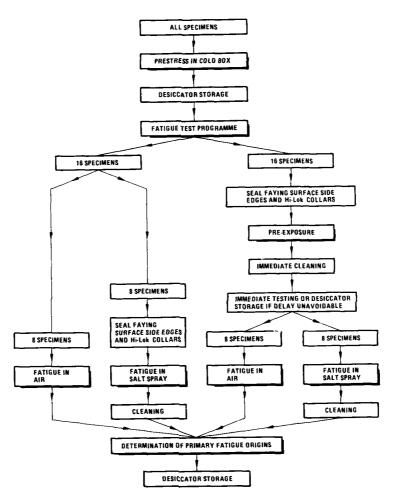


Fig. 2 Schematic summary of the CFCTP test procedure

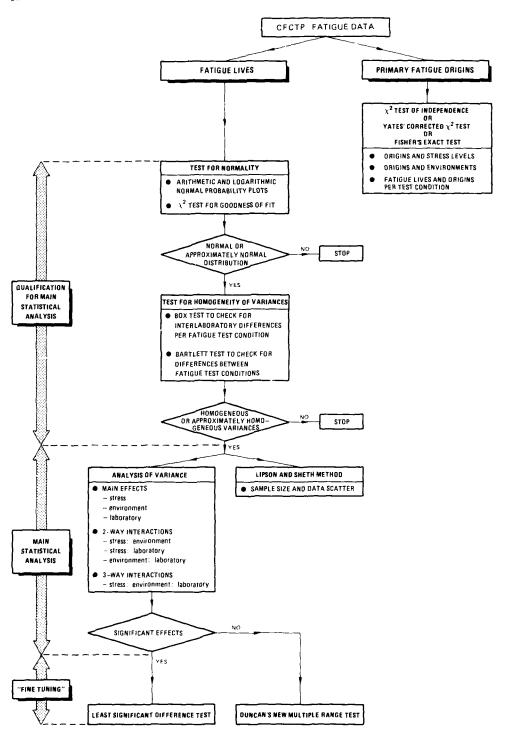


Fig. 3 Survey of statistical methods for analysing the CFCTP fatigue life and primary fatigue origin data

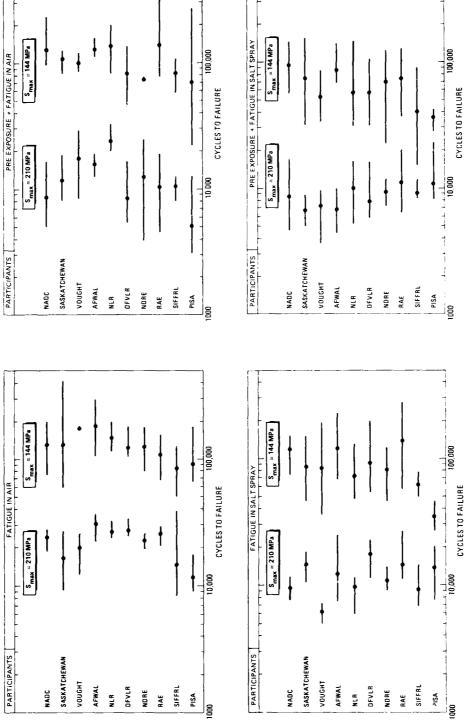


Fig. 4 CPCTP core programme fatigue life data per testing schedule and participant

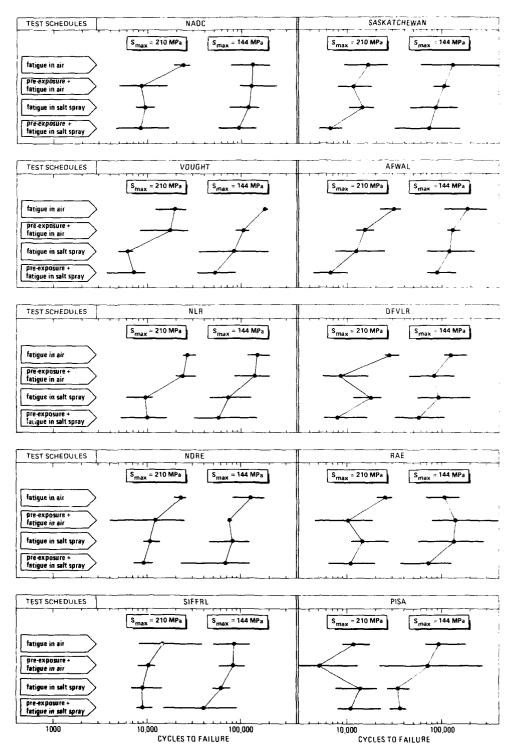


Fig. 5 CFCTP core programme fatigue life data per participant and testing schedule

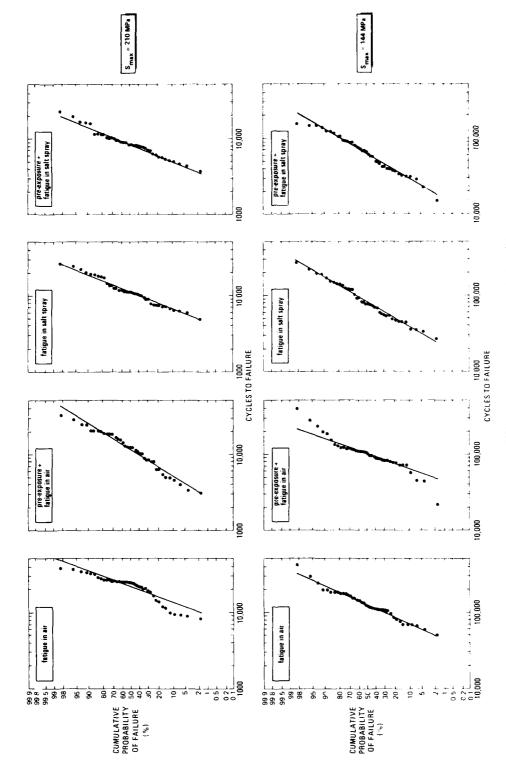
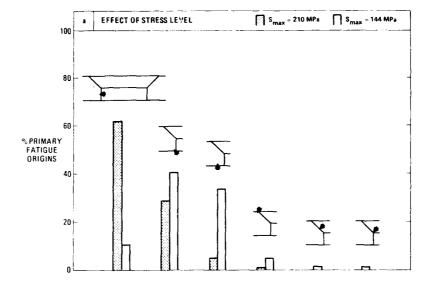



Fig. 6 Logarithmic normal probability plots of fatigue life for the CFCTP core programme specimens per test condition

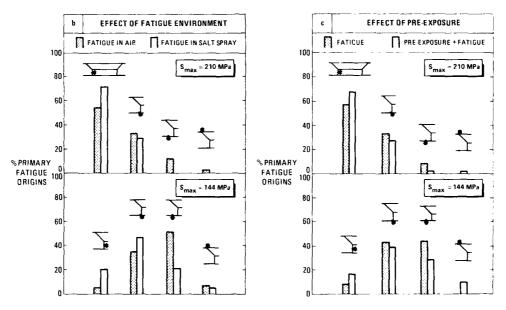


Fig. 7 Effects of stress level, fatigue enviro.ment and pre-exposure on locations of CFCTP core programme primary fatigue origins

Fig. 8 CFCTP core programme fatigue life data per testing schedule and primary fatigue origin, omitting the SIFFRL and University of Pisa data

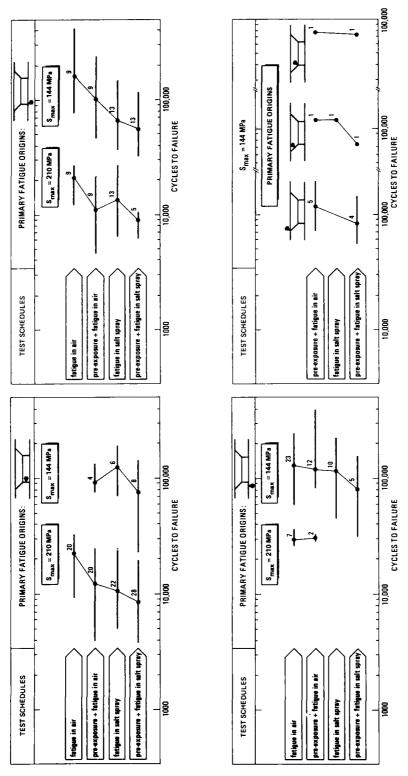


Fig. 9 CFCTP core programme fatigue life data per primary fatigue origin and testing schedule, cantting the SIPFRL and University of Pisa data

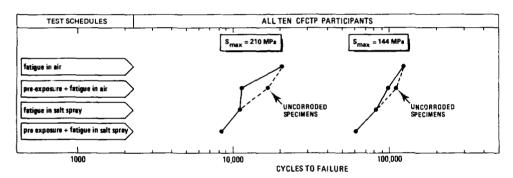


Fig. 10 Summary of the CFCTP core programme fatigue life data per testing schedule

PART III

THE FACT SUPPLEMENTAL PROGRAMME

1. INTRODUCTION

1.1 Overview

The FACT supplemental programme of fatigue testing followed on from the CFCTP core programme. The FACT programme was included so that individual participants could investigate corrosion fatigue problems of particular relevance to their own interests and yet within a broader context. To achieve this the individual programmes were set up with a high degree of commonality. This is shown in the overview in table 1.1. Most participants tested 1½ dogbone specimens (the same type of specimen used in the CFCTP) under nominally identical mechanical and environmental conditions. Concerning these aspects the technical manual required for the CFCTP (reference 1) also included supplemental testing guidelines for specimen manufacture, application of protection systems, specimen assembly, pre-exposure, and fatigue and corrosion fatigue under flight simulation loading (FALSTAFF and MINITWIST, references 2 - 5).

The individual contributions to the FACT programme will be presented in this part of the report in the same order as in table 1.1. These contributions also include summaries of the statistical methods used to analyse the results. A detailed description of these statistical methods is given in Appendix II.

It can be seen from table 1.1 that the main interest of several participants was to compare the environmental fatigue properties of a number of aluminium alloys in various tempers. However, owing to the calibratory function of the CFCTP and the participants' active cooperation in obtaining the many similarities and commonalities within the FACT programme, it has also been possible to make interparticipant comparisons of materials and the effects of different protection systems and fasteners. These inter-participant comparisons are the subject of Part IV of this report.

1.2 Recommended Specimen Configuration

The recommended specimen configuration for the FACT programme was the 1½ dogbone used in the CFCTP core programme. The specimen configuration is illustrated in figure 1.1. As mentioned in Part II of this report, the specimen was designed to simulate the load transfer and secondary bending characteristics of runouts of stiffeners attached to the outer skin of an airframe structure. The design goals were a load transfer of 40 % and a secondary bending ratio of 0.5 (reference 6). These characteristics have been checked and the actual values are generally lower, see Appendix I.

1.3 Flight Simulation Fatigue Testing

1.3.1 Short description of the manoeuvre spectrum FALSTAFF

The manoeuvre spectrum FALSTAFF (Fighter Aircraft Loading STAndard For Fatigue evaluation) was developed by several European laboratories (references 2-4). The spectrum is illustrated in figure 1.2. It is divided into 32 load levels. The load sequence consists of blocks of 200 different flights classified into three groups of mission types:

- flights with repetitive patterns of severe manoeuvring
- flights with severe manoeuvring
- flights with mainly moderate manoeuvring.

The sequence of flights and flight loads is random. Owing to the spectrum characteristics there are many flights containing high loads, although level 32 is reached only twice, in flights 32 and 173. An illustration of the flight-by-flight loading pattern is given in figure 1.3.

1.3.2 Short description of the gust spectrum MINITWIST

The gust spectrum MINITWIST (reference 5) is a shortened version of TWIST (<u>Transport Wing ST</u>andard) that was developed by two European laboratories (reference 7). The spectrum is approximated for testing purposes by the stepped function shown in figure 1.4. Stresses are expressed non-dimensionally by dividing them by the stress pertaining to undisturbed cruising flight ($S_{\rm mf}$). There are ten gust load levels and one ground load level.

MINITWIST consists of blocks of 4000 different flights. There are ten flight types, ranging from storm (A) to calm (J) conditions. Basic properties of the load sequence are:

- the flights and loads for each flight are applied in a random sequence except that clustering of severe flights has been avoided
- the loads within each flight are applied as a random sequence of half-cycles in such a way that a
 positive half-cycle is followed by a negative half-cycle of arbitrary magnitude
- load sequences have been generated individually for each flight. This means that flights of the same type generally have different load sequences.

The severest flights are 1656 (type A), 2856 (type B) and 501, 2936 and 3841 (type C). An illustration of the flight-by-flight loading pattern is given in figure 1.5.

1.4 Establishment of Fatigue Stress Levels for the 11 Dogbone Specimen

Characteristic fatigue stress levels for the FACT programme were established on the basis of nominal target fatigue lives and pilot tests. This is illustrated in figure 1.6. The established fatigue stress levels were as follows (reference 8):

TYPE OF FATIGUE LOADING	NOMINAL UNCORRODED	FATIGUE LIFE	CHARACTERISTIC STRESS LEVEL
constant amplitude, R = 0.1	100,000	cycles	S = 144 MPa
FALSTAFF	4,000	flights	S _{max} = 289 MPa
	10,000	flights	S = 238 MPa
MINITWIST	10,000	flights	S _{mf} = 101 MPa
	40,000	flights	S _{mf} = 89 MPa

There are two important points to note:

- all stresses are defined in terms of the total cross-section of the fatigue specimen -l at the location of the centreline between the fasteners, i.e. the fastener holes are included in the cross-sectional area
- the pilot tests used representative specimens but did not take place under exactly the same conditions as definitive tests. This is because the definitive tests included prestressing the specimens at low temperature to crack the paint (if possible) around the fastener holes.

1.5 References

- R.J.H. Wanhill and J.J. De Luccia, "An AGARD-coordinated corrosion fatigue cooperative testing programme", AGARD Report No. 695, February 1982.
- G.M. van Dijk and J.B. de Jonge, "Introduction to a fighter aircraft loading standard for fatigue evaluation "FALSTAFF"", Paper 3.61, Problems with Fatigue in Aircraft, Proceedings of the Eighth ICAF Symposium, compiled and edited by J. Branger and F. Berger, Swiss Federal Aircraft Establishment (F + W) 1975: Emmen, Switzerland.
- "Description of a Fighter Aircraft Loading STAndard For Fatigue evaluation", Combined Report of the F + W, LBF, NLR and IABG, March 1976.
- 4. J.B. de Jonge, "Additional information about FALSTAFF", NLR Technical Report TR 79056 U, June 1979.
- H. Lowak, J.B. de Jonge, J. Franz and D. Schütz, "MINITWIST. A shortened version of TWIST", Combined report of the LBF and NLR, NLR Miscellaneous Publication MP 79018 U, May 1979.
- D. Schütz and J.J. Gerharz, "Schwingfestigkeit von Fügungen met Sonderbefestigungselementen", Fraunhofer-institut für Betriebsfestigkeit Technische Mitteilungen TM 69/73, 1973.
- J.B. de Jonge, D. Schütz, H. Lowak and J. Schijve, "A standardised load sequence for flight simulation tests on transport aircraft wing structures", Combined report of the LBF and NLR, NLR Technical Report TR 73029 U, March 1973.
- R.J.H. Wanhill, "Establishment of CFCTP stress levels for NLR core and supplemental testing programme", NLR Memorandum SM-80-034, March 1980.

TABLE 1.1: OVERVIEW OF THE FACT SUPPLEMENTAL PROGRAMME

		CFCTP CORE		NIVH	ASPECTS OF THE	INDIVIBUAL PRO	PROGRAMMES		
PARTICIPANTS	IDENTICAL	PROCRAMME PROTECTION	MATERIAL C	MATERIAL COMPARISONS	PROTECTION SYSTEM	FASTENER	FATIGUE LOADING COMPARISONS	ENVIRONMENTS OTHER	TYPES OF
		SYSTEM	DIFFERENT MATERIALS	DIFFERENT HEAT TREATMENTS	COMPARISONS	COMPARISONS	C.A CONSTANT C.A AMPLITUDE	CPCTP CORE PROCRAME	TESTS
Vought		•					C A. with marker loads	salt spray at various temperatures	single dogbone fatigue life and crack propagation
SAAB	971-5707	•	• 7075-T6 clad		• 70/5 T6 clad with and without anodising		CA only	pre-exposure outdoors for 705-76; farigue with prepared contensation or alternate lamersion in distilled water	unnotched and ly dogbone fatigue life
NADC	971-5707	•			• standard and flexible primers	• press and interference fit Hi Joks	C A only		
AFVAL	972-5797	•			Hi-Loks with and without sealenr	press fit Hr-Loks, SLEEVbolts	C.A., FALSTAFF		
NDRE	1 075.16	•		Tight in Tie and Tight conditions			● C.A , FALSTAFF		
NIR/LRTH	@ 70/5.T6 O 7475-T761 clad		2024-T3 Alclad 2024-T3/al-mid fibre laminates, 7075-T6, 7475-T/61 clad		F-28, NF-5 systems; F-16 system with and without sealant		C.A., FALSTAFF, HINITUIST		14 dogbone farigue life
IABG	0 7075-T76 0 7075-T6 0 7475-T761 clad	•	● 7075-T6, 7075-T76, 7475-T761 clad		CECTP core programme and MRCA systems		FALSTAFF only		
	91-5707 🕕				inhibited and non- inhibited primers		C.A. naly		
RAE				• 7010 in T/651 and T/451 conditions			C A . FULSTAFF		fatigue strength
	•		2010-[7851] • 7475-[7351] 2050-[7451	• 7010 in T/651 and T/451 conditions			• C.A., FALSTAFF		fatigue
NRC				• 7075 in T651, T6RRA and T/351 conditions			C.A. only	argon, 3.5 t aqueous NaCl	propagation
	(1) LTV Aerospace and Def (2) SAAB-SCANIA Aerospace (3) Naval Air Development (4) Air Force Wilght Aero (5) Norwegian Defence Res	and Defence V erospace Divis Plopment Centr ght Aeronautic	(1) ITT Accoppage and Defence VOUCHT, Dallax, Texas, USA, SAME-SCAPE, Developme University Limitation, Swedings, Sweding Namel Att Dawnschaufter Communication of the Communicati	A. sylvania, USA ayton, Ohio, USA ler, Norway.		(a) National Aerospac Laboratory M.E. Emeloned. The Netherlands. (b) English and an experience of the Metherlands. (c) Industrial and an experience of the Metherlands of the Metherland	ratory NIK, Emmeloord, The hoology 18TH, Delft, The bsgesellschaft 148G, Ottubert RAE, Farnborough, II NRC, Ottawa, Ganada.	ie Netherlands. Netherlands. obrunn. Germany United Kingdom.	

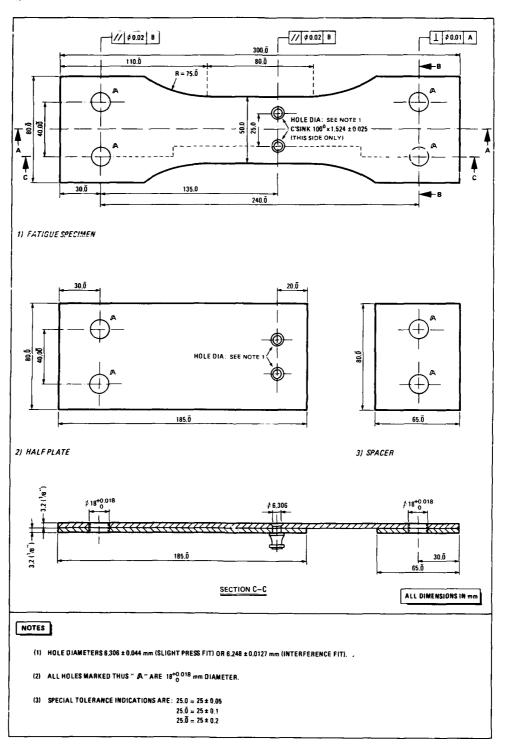


Fig. 1.1 The recommended FACT supplemental programme specimen

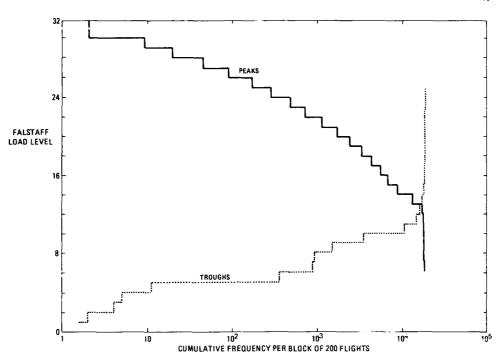


Fig. 1.2 The manoeuvre spectrum FALSTAFF

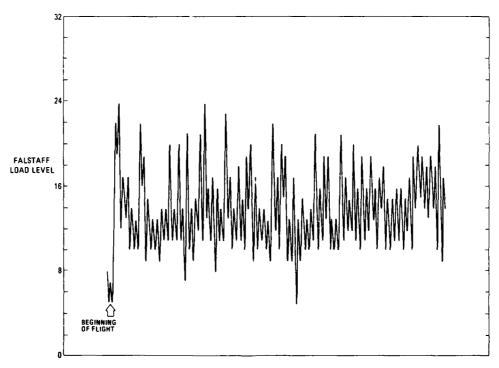


Fig 1.3 Part of FALSTAFF flight 183

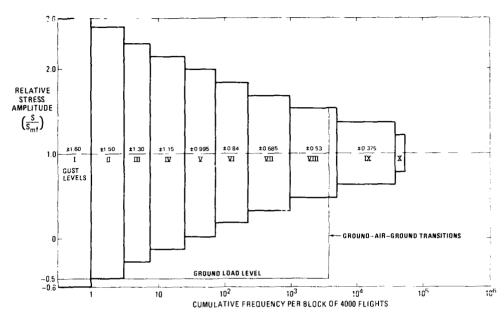


Fig. 1.4 The gust spectrum MINITWIST

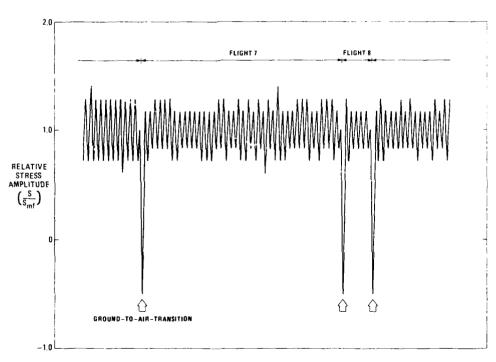


Fig. 1.5 Part of MINITWIST

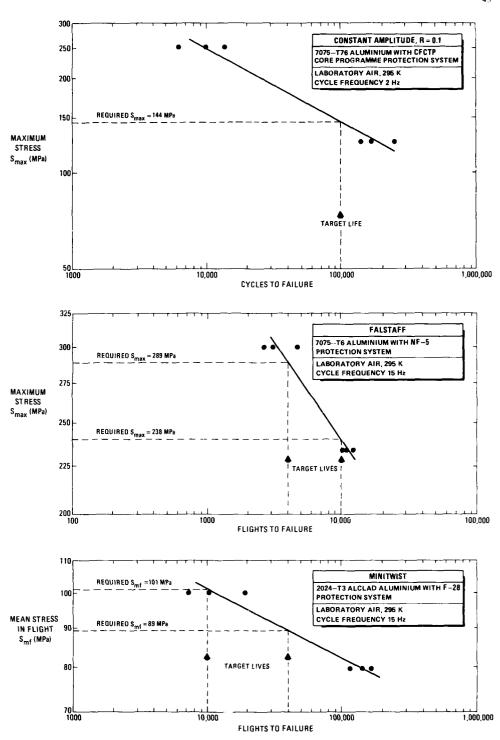


Fig. 1.6 Establishment of FACT supplemental programme fatigue stress levels for the $1\frac{1}{2}$ dogbone specimen from pilot tests (a)

2. THE VOUGHT CONTRIBUTION TO THE FACT PROGRAMME

K.E. Duval and A.E. Hohman, LTV Aerospace and Defence Company, Vought Missiles and Advanced Programmes Division, Dallas, Texas, USA.

2.1 Introduction

Experience has shown that metal fatigue is a major cause of structural failures in aircraft. Also it has been known for a long time that fatigue properties of structures can be greatly influenced by the nature of the environment in which they are operating. In the past these effects were accounted for by applying safety factors to designs based on data developed in non-aggressive environments. However, increasing emphasis on lower weight, higher performance and longer lasting aircraft makes it imperative that future designs take more accurate account of the effects of adverse operating environments.

Because of the relatively short time available during the design and development of an aircraft, long term corrosion exposure to simulate the service environment is not practical. Accelerated testing procedures must be employed to provide the necessary data in a timely manner. To obtain corrosion fatigue data severe environments language from total immersion to salt fog have been used. However, even with these severe environments considerable testing time is required because of the slow rates of cycling that must be used.

An even greater acceleration of corrosion effects is desirable. One possible way to achieve this is to raise the temperature of the environment so that reaction rates increase. At present there is little information on temperature effects in corrosion fatigue. The primary objective of the VOUGHT contribution to FACT was to obtain a limited amount of elevated temperature corrosion fatigue data as part of a continuing investigation of corrosion fatigue testing methods.

2.2 The Test Programme

An overview of the test programme is given in table 2.1. This programme was preceded by pilot tests to check marker load characteristics predicted using the brFGRO computer program, which is a crack growth analysis program developed at Rockwell International. Further information about the prediction of marker load characteristics and EFFGRO is given in references (i, 2).

2.2.1 Material, specimen configuration and protection system

The material was 6.35 mm thick 7075-T7651 aluminium alloy plate. Average engineering properties were as follows:

0.2 % YIELD STRESS	urs	ELONGATION	CONDUCTIVITY
484 MPa	536 MPa	15 7	37.4 7 I.C.A.S.

The specimens were of the single dogbone configuration shown in figure 2.1. T^6 e dogbones were notched by central holes with a K_t value $\simeq 2.7$. Note that mill finish was retained on all surfaces, i.e. including the central holes. The protection system was a standard U.S. Navy paint scheme:

• chromate conversion coating type 2 class 2 (MIL-C-5541)

• inhibited epoxy polyamide primer (MIL-P-23377)

• aliphatic polyurethane topcoat. MIL-C-81773C

This system was applied to all surfaces except the central holes.

2.2.2 Mechanical testing conditions

All stresses were defined in terms of loads on the central cross-section of the specimen and including the central hole in the cross-sectional area. The characteristic fatigue stress levels (S_{-}) for the fest programme have been given already in table 2.1. These levels were based on the results of pilot tests and the CFCTP core programme.

The fatigue load history is illustrated in figure 2.2. It consisted of blocks of 200 damage cycles (R = 0.1) and 100 marker cycles (R = 0.5) with a constant $S_{\rm max}$ in order to avoid crack growth retardation. The intention of this load history was to provide clearly visible marker bands which, however, should have a minimal contribution to overall crack growth. All tests were carried out with a cycle frequency of 0.5 Hz.

2.2.3 Environmental conditions

The fatigue tests were done in laboratory air at a nominal temperature of 297 K and in 5.7 aqueous NaCl salt spray acidified with ${\rm H_2SO_4}$ to pH 4. The tests in salt spray were done at several temperatures in the range 297 - 339 K, see table 2.1. The salt spray cabinet met the requirements in reference (3) but with the addition of a hot air inlet and baffles for mixing hot air with salt spray to produce elevated temperature fog. The environmental temperature was monitored by a thermistor temperature control probe located 25 mm from the specimen test section. The specimen temperature was monitored by a thermocouple, and it was found that the temperature could be maintained to within \pm 0.5 K.

During testing at elevated temperatures the air pressure in the salt spray cabinet was increased to try to compensate for evaporation. However, it was found that the solution collection rates specified in ASTM standard Bill ~ 73 (Standard Method of Salt Spray (Fog) Testing) could not be maintained at temperatures above about 316 K. Furthermore the salt fog became only a slight mist at 325 K and was not observed at 339 K.

2.3 Results

2.3.1 Fatigue life and fatigue crack initiation and propagation life data

Fatigue life and fatigue crack initiation and propagation life data are compiled in table 2.2. The fatigue crack initiation and propagation life data were obtained by correlating marker load bands on the fracture surfaces with numbers of cycles and tracing the markers back to crack dimensions less than 0.3 mm.

The data for fatigue in salt spray at different temperatures are presented in figure 2.3. These data were analysed statistically according to the procedure shown in figure 2.4. Owing to the limited number of data and unequal sample sizes it had to be assumed that they at least approximated to random samples from log-normally distributed populations with equal variance. Unequal sample sizes also meant that a modified version of Duncan's new multiple range test had to be used for "fine tuning" the analysis of variance results. More details of the statistical methods are given in Appendix 11.

Results of the statistical analysis are summarised in tables 2.3 and 2.4. According to the analysis the temperature of the salt spray environment had no significant effect on the fatigue life and fatigue crack initiation and propagation lives.

2.3.2 Fatigue crack growth rate data

The fatigue crack growth rate data are shown in figure 2.5. Most of the data fall into two broad bands which indicate that the aggressiveness of salt spray first increased and then decreased with increasing temperature, eventually becoming no more aggressive than room temperature air.

The data for tests in salt spray at 316 K appear to represent a transition in the aggressiveness of salt spray. At high crack growth rates the environmental contribution to crack growth decreases with respect to mechanically-induced crack growth. However, this effect had a negligible effect on crack propagation life and total life.

2.4 Discussion

Owing to insufficient data for some test conditions and to data scatter the statistical analysis did not indicate a significant effect of salt opray temperature on the fatigue life and fatigue crack initiation and propagation lives. However, the data in figures 2.3 and 2.5 show the following trends:

- (1) Increasing the salt spray temperature from 297 K to 316 K tended to decrease the fatigue crack initiation and propagation lives and hence total life.
- (2) Further increasing the salt spray temperature from 316 K to 339 K resulted in an increase in fatigue crack initiation and propagation lives and a decrease in fatigue crack growth rates to values similar to those for fatigue in room temperature air.

In view of these trends and also the observations on collection rates and appearance of the salt spray at elevated temperatures (section 2.2.3) it seems reasonable to conclude that acceleration of salt spray corrosion fatigue testing is possible by raising the temperature of the salt spray, but only as long as the experimental set-up permits the production of a proper salt log.

For the test set-up in this investigation it appears that the critical temperature at which a proper salt fog can still be maintained is 316 K. At this temperature the average fatigue life decreased by about 35 % compared to the room temperature fatigue life, mainly because the crack initiation life decreased. This represents a considerable reduction in testing time which, however, must be weighed against the increased complexity of salt spray fatigue testing at elevated *emperatures and greater difficulty in obtaining reproducible test conditions.

2.5 Conclusions

Although statistical analysis did not indicate a significant effect of salt spray temperature on the fatigue life and fatigue crack initiation and propagation lives of notched 7075-T651 plate specimens, the following conclusions are drawn:

- (i) Increasing the sait spray temperature from 297 K to 310 K tended to decrease the fatigue crack initiation and propagation lives and hence total life.
- (2) Further increasing the salt spray temperature resulted in an increase in latigue crack initiation and propagation lives and a decrease in fatigue crack growth rates because a proper salt fog could not be maintained above 316 K.
- (3) Raising the salt spray temperature can result in a considerable reduction in testing time. This must be weighed against the experimental problems of obtaining and maintaining a proper salt feg at elevated temperatures.

2.6 Recommendations for Further Investigation

The effects of temperature on corrosion fatigue should be investigated for other materials and heat treatment conditions and also for specimen configurations representing typical aircraft structural joints. Other fatigue load histories should be considered, especially spectrum loading representing service usage and preferably giving marker bands that allow tracing crack growth back to small flaw sizes.

2.7 References

- R.E. Duval, "Effect of temperature on corrosion fatigue life of 7075-T7651 aluminium alloy plate", LTV Aerospace and Defence Company, Vought Missiles and Advanced Programmes Division Report 3-41300/4R-115, 1984.
- J.B. Chang, M. Szamossi and K.-W. Liu, "Random spectrum fatigue crack life predictions with or without considering load interactions", Methods and Models for Predicting Fatigue Crack Growth under Random Loading, ASTM STP 748, edited by J.B. Chang and C.M. Hudson, American Society for Testing and Materials, pp. 115 - 132 (1981): Philadelphia.
- R.J.H. Wanhill and J.J. De Luccia, "An AGARD coordinated corrosion fatigue cooperative testing programme", AGARD Report No. 695, February 1982.

TABLE 2.1: OVERVIEW OF THE VOUGHT TEST PROGRAMME FOR FACT

MATERIAL • 6.35 mm thick 7075-T7651 aluminium alloy plate 6.03 mm DIAMETER UNPROTECTED OPEN HOLE 0 SPECIMEN 0 PROTECTION SYSTEM Chromate conversion + inhibited epoxy polyamide primer + aliphatic polyurethane topcoat (except central hole) • Blocks of constant amplitude damage cycles (s_{min}/s_{max} = 0.1) FATIGUE LOADING and marker cycles ($S_{min}/S_{max} = 0.5$); cycle frequency 0.5 Hz Laboratory air; 5 % aqueous NaCl salt spray with pH 4 at various temperatures $% \left(1\right) =\left(1\right) ^{2}$ FATIGUE ENVIRONMENTS ENVIRONMENTAL S (MPa) SCHEDULES TEMPERATURE 152 148 144 Fatigue in air 297 297 TEST PROGRAMME 311 Fatigue in salt spray at various 316 temperatures 325 • 339 STATISTICAL ANALYSIS • Fatigue lives and fatigue crack initiation and propagation lives SPECIAL CONSIDERATIONS • Fractographic determination of fatigue crack growth data from

TABLE 2.2: FATIGUE LIFE AND FATIGUE CRACK INITIATION AND PROPAGATION LIFE DATA FOR THE VOUGHT CONTRIBUTION TO FACT

			TOTAL DAMAGE	TOTAL DAMAGE + MARKER CYCLES PER SPECIMEN AND LOG MEAN VALUES	ER SPECIMEN AND LO	C MEAN VALUES	
ARAMETERS	CHARACTERISTIC STRESS LEVEL	fatigue in air		fatigue in sal	fatigue in salt spray at various temperatures:	temperatures:	
		at 297 K	297 K	311 K	316 K	325 K	339 K

	S = 152 MPa	64,874 41,388 51,817					
FATIGUE LIFE	S = 148 MPa	42,830					
	M 771 - 5		63,550 53,756	34,600	33,547	676'97	50,105 61,375
	пах		34,450 49,005	$\frac{29,716}{35,110}$	31,631		55,454
AD A CO. STRUCTURE	S = 152 MPa	29,346 12,663 19,277					
INITIATION LIFE TO A	S = 148 MPa	16,884					
0.3 mm CRACK			35,376	14,673	13,488	15,000	21,839
	max - 144 MPa		17,803 25,096	14,873			19,876

		28,266 43,285 34,978
		31,949
		16,337
		19, 927 14, 641 17,081
		28,174 16,647 21,657
35,528 28,725 31,946	25,946	
S max = 152 MPa	S = 148 MPa	S - 144 MPa
FATIGUE CRACK	PROPAGATION LIFE FROM A	0.3 mm CRACK

TABLE 2.3: SUMMARY OF ANALYSIS OF VARIANCE RESULTS (95 % CONFIDENCE)

SOURCE OF VARIATION	FATIGUE LIFE PARAMETERS	F DISTRIBUTION VALUE	F _o	SIGNIFICANT EFFECT OF TEMPERATURE (F > F DISTRIBUTION VALUE)
MAIN EFFECT	TOTAL LIFE	4 53	2.573	no
 temperature 	LIFE TO A O 3 mm CRACK	9.12	1.270	fio
	LIFE FROM A 0.3 mm CRACK	9.12	2.058	no

TABLE 2.4: SUMMARY OF RESULTS USING DUNCAN'S NEW MULTIPLE RANGE TEST (95 % CONFIDENCE)

		LOG MEAN F	ATTGUE LIVES AND SAM	PLE SIZES n	
SALT SPRAY TEMPERATURE	297 K	311 K	316 K	325 K	339 K
TOTAL LIFE	4 690 . 3	4,545 ; 3	4 500 - 2	4 5'? 1	4 144 2
LIFE TO A O. 3 main CRACK	4 400 . 2	4.172 . 2	4 130 : 1	4-116 1	4 298 - 2
LIFE FROM A G.3 mm GRACK	4 336 . 2	4 233 2	4.213 1	. 50- 1	- 5-a-a 2

	р	COMPARISONS OF DATA FOR EATHGRE TESTING IN SALT SPRAY AT DIFFERENT TEMPERATURES	DIFFERENCE BETWEEN LOG MEAN FATIGUE LIVES X $\sqrt{\frac{2n_in_j}{n_i^{+n_j}}}$	SSR	Significant difference $(x_1,x_2) \sqrt{\frac{2n_1n_1}{n_1+n_2}} \approx SSR$
a.	5 4 3 2	339 K/316 K* 339 K/311 K 339 K/325 K 334 K/297 K	0 345 0 308 0 083 0 083	0.350 0.341 0.329	100 (20 (10 (00
TOTAL LIFE	3 2	297 K7316 K 297 K7111 K2 291 K7325 K	0.299 0.7 (1 0.074	0.347 0.64 0.624	000 fee f 10
 	3 2	325 K/316 K 325 K/311 K	0 148 0 145	9 341 1 324	tio tio
1	2	311 K/316 K	6 620	0.373	to
nm CRACK	5 ia 3	297 K/316 K 291 K/316 K 291 K/325 F 297 K/329 K	0.311 0.321 0.758 0.153	51 56.4 61 56.9 0 56.7	766 (10 (10 (10
A 0.3	4 3 2	339 K/316 K 330 K/331 K+ 339 K/325 K	0 195 0 178 0 171	3 54.9 13 54.4 15 56.5	110 540 110
LIFE TO	3 2	325 K/316 KM 325 K/311 K	11 (Fa); D. Office	0-564 0-567	no no
	2	311 K/316 K	0.0.9	0.767	ter
TEN CRACK	5 4 3 2	339 K/316 K 339 K/311 K+ 139 K/277 K+ 339 K/225 K	0 382 0 440 0 234 0 045	0 596 0 596 0 596 0 594	tio no no
A 0.5	3 2	325 K/316 K* 325 K/311 K 325 K/297 K	0 791 0 314 0 195	0 595 6 595 6 595	100 150 100
LIFF FROM	3 2	297 K/316 K 297 K/311 K*	0 141 0 146	0-5% 0-5%	na tio
Ē	2	311 K/316 K	0.922	0.594	ne

^{*}Owing to equal sample size these comparisons can also be made using the unmodified version of Duncan's test. The same result is obtained

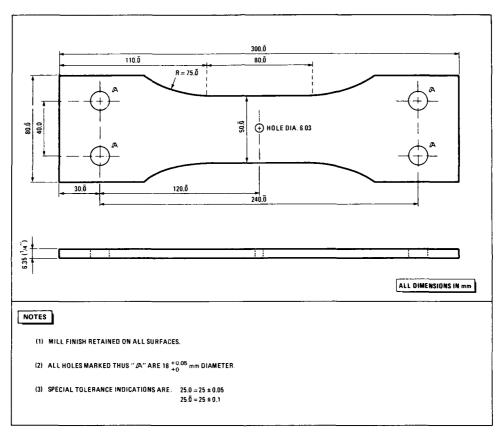


Fig. 2.1 Specimen configuration for the VOUGHT contribution to the FACT programme

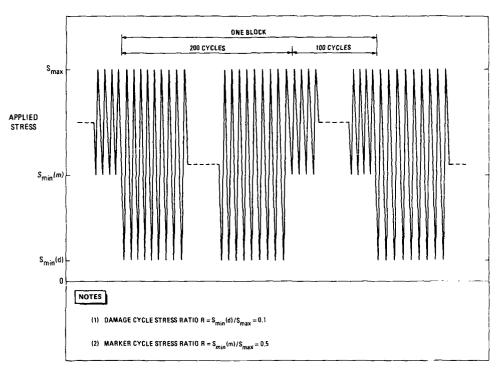


Fig. 2.2 Fatigue load history for the VOUGHT contribution to the FACT programme

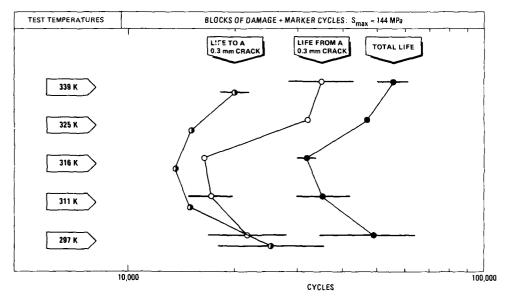


Fig. 2.3 VOUGHT salt spray fatigue life and fatigue crack initiation and propagation life data for 7075-77651 single dogbone specimens with unprotected open holes

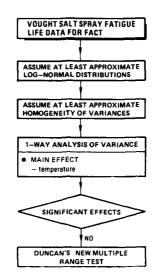


Fig. 2.4 Survey of statistical methods for analysing the VOUGHT sait spray fatigue life and fatigue crack initiation and propagation life data for FACT

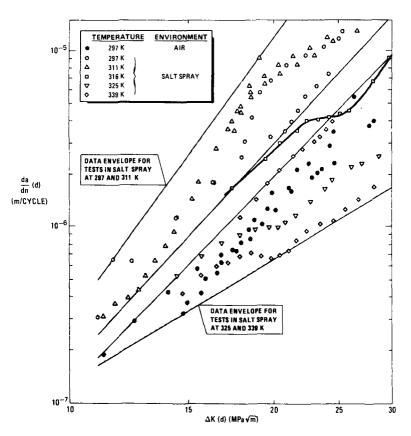


Fig. 2.5 Fatigue crack growth rate data for the VOUGHT contribution to FACT: da/dn and ΔK were calculated as though the tests were done with damage cycles only

3. THE SAAB CONTRIBUTION TO THE FACT PROGRAMME

L.E. Jarfall, SAAB-SCANIA Aerospace Division, Linköping, Sweden

3 | Introduction

The Aerospace Division of SAAB-SCANIA participated in the FACT supplemental programme with the assistance of the Structures Department of the Aeronautical Research Institute of Sweden FFA (references 1, 2). The main objectives of the SAAB contribution to FACT were to develop fatigue testing facilities for comparison of different corrosion protection systems and to compare results with those of the CFCTP core programme.

3.2 The Test Programme

An overview of the test programme is given in table 3.1. There were two types of specimen. The unnotched coupon specimens were used in an introductory study of the effects on fatigue life of outdoor pre-exposure and/or environmental fatigue in chambers specially constructed by the FFA. The 1½ dogbone specimens were from the same batch as the CFCTP core programme specimens and provided a basis for comparing the effects of environmental fatigue in the FFA chambers and the CFCTP salt spray cabinets.

3.2.1 Materials, specimen configurations and protection systems

The material for the unnotched coupon specimens was 3 mm thick clad sheet of aluminium alloy 7075-T6 from two batches (I and II). The specimen configuration is shown in figure 3.1. This has a parallel sided gauge section 25 mm x 20 mm at the centre of the specimen. Half the specimens were left as machined. The remainder were chromic acid anodised, without hot water sealing, according to SAAB-SCANIA specifications.

The 7075-T76 aluminium alloy $1\frac{1}{2}$ dogbones were from the same batch as the CFCTP core programme specimens and with the same fastener hole size (press fit) and protection system, as discussed in detail in reference (3) and Part II of this report.

3.2.2 Mechanical testing conditions (static prestressing and fatigue)

All stresses were defined in terms of loads on the total cross-sections of the specimens in the gauge sections, i.e. including cladding layers (unnotched coupons) and fastener holes $(1\frac{1}{2})$ dogbones).

Before environmental exposure and fatigue testing the $1\frac{1}{2}$ dogbone specimens were prestressed at 209 \pm 10 K by applying two local moles up to 215 MPa. The procedure for this is discussed in reference (3). The purpose of this low temperature prestressing was to ensure that the paint and primer layers were brittle and would crack around the Hi-Lok fastener holes, thereby simulating service damage that enables corrosion and corrosion fatigue to occur.

The fatigue testing of the $1\frac{1}{2}$ dogbone specimens was done using an FFA-designed 50 kN load frame with MTS electrohydraulic equipment and load cell. Static calibration showed the load cell error to be within \pm 1 % and \pm 50 N. A strain gauged dummy coupon was used to check alignment. Bending and axial strains were determined at a tensile load of 5 kN. The in-plane bending strain was 2.3 % of the axial strain and therefore well within the 3 % limit specified in reference (3).

The fatigue load history was constant amplitude sinusoidal loading with a stress ratio R = $S_{\rm min}/S_{\rm max}$ of 0.1. The characteristic stress levels for the test programme have been indicated already in table 3.1. The stress level for the $\frac{1}{2}$ dogbone specimens was chosen to be the same as the lower stress level for the CFCTP core programme, i.e. $S_{\rm max}$ = 144 MPa. The tests were carried out at cycle frequencies of 1.4 Hz for the unnotched coupons and 0.5 Hz for the $\frac{1}{2}$ dogbone specimens.

3.2.3 Environmental conditions (pre-exposure, fatigue and corrosion fatigue)

Unnotched coupons scheduled for static exposure before fatigue testing (batch I) were placed on a roof in a light industry area 5 km from the centre of Stockholm for 8 months (June 1977 to January 1978). Thereafter they were wrapped and stored in a freezer until required for fatigue testing.

Half of the 1½ dogbone specimens were pre-exposed by the U.S. Naval Air Development Centre NADC before shipment to SAAB-SCANIA. The pre-exposure conditions were the same as in the CFCTP core programme, i.e. sealing of faying surface side edges and Hi-Lok collars to prevent corrosion except in the fastener head areas, followed by immersion for 72 hours in 5 % aqueous NaCl acidified by a predetermined amount of SO₂ gas and maintained at 315 ± 2 K.

Before fatigue testing all 1½ dogbone specimens were sealed at the faying surface side edges and Hi-Lok collars. The fatigue tests on unnotched coupons and 1½ dogbone specimens were done in specially constructed environmental chambers capable of being stacked to enable tests in series in the load frame. Drawings of the environmental chambers are shown in figure 3.2 and their parameters during testing are given in table 3.2.

Environmental influences on fatigue were studied by instituting alternating "wet" and "dry" phases. The wet phases started every 12 minutes and consisted of fatigue in humid air with condensation, and fatigue during immersion in distilled water. These phases were terminated when a dew point hygrometer sensed condensation on the surfacts of the coupons or specimens exposed to humid air. Thus in one case the wet phase corresponded to a continuous increase in humidity until condensation occurred, while in the other there was immediate and continuous wetting.

The dry phase was fatigue in low humidity air. In fact this was a drying phase, whereby it is unlikely that a relatively complicated specimen like the ld dogbone would dry out completely after immersion in water.

The conditions for fatigue in wet and dry air were established in the following way. Both chambers were open ended and filtered laboratory air was pumped through. This air was heated in the environmental chambers with or without water injection:

- water injection resulted in wet phase testing with humid air that caused condensation on coupons and specimens and maintained their temperatures
- straightforward heating resulted in low humidity air that provided a reference environment for unnotched coupons, see table 3.2, and also dried and maintained the temperatures of coupons and specimens during dry phase testing.

3.3 Results

The complete set of fatigue life and primary fatigue origin data for the SAAB contribution to FACT is given in table 3.3. The way in which the test programme was set up and the results had consequences for the statistical methods used to analyse the data. This will be discussed in section 3.3.1.

The fatigue life results are presented and statistically analysed in section 3.3.2. This is followed by statistical analysis of the primary fatigue origin data in section 3.3.3.

3.3.1 Statistical methods for analysing the data

A survey of the statistical methods for analysing the SAAB data is given in figure 3.3. Owing to the limited number and unequal sample sizes of the data it had to be assumed that they at least approximated to random samples from log-normally distributed populations with equal variance. Unequal sample sizes also meant that modified versions of the least significant difference test and Duncan's new multiple range test had to be used for "fine tuning" the analysis of variance results. More details of the statistical methods are given in Appendix II.

3.3.2 Fatigue life data

The SAAB fatigue life data are shown in figure 3.4. The 1½ dogbone specimen data are compared with CFCTP core programme data in figure 3.5. From these figures the following trends are observed:

- (1) Unnotched coupons:
 - \sim wetting by repeated condensation or alternate immersion in distilled water reduced the fatigue lives
 - the fatigue lives of as machined and chromic acid anodised specimens were similar.
- (2) 1 dogbones:
 - the SAAB fatigue testing in air with repeated condensation or alternating immersion in distilled water was as severe as the CFCTP fatigue testing in salt spray.

The two trends for unnotched coupons were confirmed by two-way analysis of variance (table 3.4) and "fine tuning" using the least significant difference test (table 3.5) and Duncan's new multiple range test (table 3.6).

The SAAB 1½ dogbone data were analysed using one-way analysis of variance (table 3.4) and Duncan's new multiple range test (table 3.7). The analysis showed that there were no significant differences in fatigue lives, i.e. the four fatigue testing schedules were equivalent in severity. These data were also compared with CFCTP data using one-way analysis of variance (table 3.4) and the least significant difference test (table 3.8). This statistical comparison confirmed the forementioned trend, namely the surprising result that fatigue testing in air with repeated condensation or alternate immersion in distilled water was as severe as fatigue testing continuously in salt spray.

3.3.3 Primary fatigue origin data

The primary fatigue origin data for the SAAB l_2^4 dogbone tests were analysed using Fisher's exact test, table 3.9. Changing the environment (fatigue testing schedule) had no significant effects on the locations of primary fatigue origins.

3.4 Discussion

The results for both the unnotched coupons and 1½ dogbone specimens showed that repeated condensation or alternate immersion in distilled water reduced the fatigue lives. On the other hand, pre-exposure either outdoors for 8 months (unnotched coupons) or for 72 hours in acidified aqueous NaCl (1½ dogbones) had no significant effect.

As mentioned in section 3.3.2, comparison of SAAB and CFCTP 1½ dogbone fatigue life data gave the surprising result that fatigue testing in air with repeated condensation or alternate immersion in distilled water was as severe as fatigue testing continuously in salt spray. A contributing factor is the likelihood that the "dry" phases during the SAAB tests may not have been sufficient to dry out the specimens, especially for fatigue in air with alternating immersion.

Albrit, this result is still remarkable: in fact it is positive. The SAAB fatigue testing schedules are relevant to the flight-by-flight transpiration of aircraft structures, whereby alternate wetting by condensation and drying take place (reference 4). The humid air with repeated condensation is difficult to control in a laboratory test. Salt spray testing is also complicated and rather unpleasant to use in the proximity of expensive laboratory equipment. However, the repeated immersion test is easy to control. The similar effect on fatigue lives of all three environments means that the repeated immersion test is an attractive and convenient alternative for the more complicated testing procedures.

3.5 Conclusions

- (1) Repeated condensation or alternate immersion in distilled water reduced the fatigue lives of unnotched coupons and $l\frac{1}{2}$ dogbone specimens.
- (2) Pre-exposure outdoors (unnotched coupons) or in acidified salt spray (l_2^1 dogbones) had no significant effect on fatigue lives.
- (3) For each fatigue testing schedule (environment) the lives of unnotched coupons in the as machined or chromic acid anodised conditions were similar.
- (4) Comparison of the SAAB and CFCTP l½ dogbone fatigue life data showed that fatigue testing in air with repeated condensation or alternate immersion in distilled water was as severe as fatigue testing continuously in salt spray.
- (5) Changing the environment (fatigue testing schedule) had no significant effects on the locations of primary fatigue origins in the SAAB $1\frac{1}{2}$ dogbone specimens.

3.6 References

- L.E. Jarfall, "Comparison of corrosion fatigue in gaseous and liquid environments", SAAB-SCANIA Progress Report FKHU-80.21 (April 1980) plus Enclosures A-D (March 1981). The final report (in Swedish) was Aeronautical Research Institute of Sweden Technical Note FFA TN 1982-10, 1982, and the afficer by a. Naguusson.
- L.E. Jarfall and A. Magnusson, "Fatigue testing of bolted joints in humid air and alternating immersion", Aeronautical Reseach Institute of Sweden Technical Note FFA TN 1982-34, 1982.
- R.J.H. Wanhill and J.J. De Luccia, "An AGARD-coordinated corrosion fatigue cooperative testing programme", AGARD Report No. 695, February 1982.
- W.E. Anderson, "Fatigue of aircraft structures", International Metallurgical Reviews, Vol. 17, pp. 240 - 263 (1972).

MATERIALS	3 mm thick 7075-T6 clad aluminium alloy sheet	00 mm
AND SPECIMENS	PRESS FIT HI-Lok FASTENERS	
	3.2 mm thick 7075-T76 aluminium alloy sheet (CFCTP core programme specimens)	300 mm
DD company of the	7075-T6 (batches I and II): none and chromic acid anoc	lising
PROTECTION SYSTEMS	* 7075-T76: chromate conversion + inhibited epoxy polyam (except fastener holes) + aliphatic polyurethane topox	
PROTECTION SYSTEM DAMAGE	7075-T76: two stress cycles at low temperature to crace primer around the fastener heads	ck paint and
FATIGUE LOADING	• Constant amplitude, S_{\min}/S_{\max} = 0.1	
FATIGUE ENVIRONMENTS	Low humidity air; air with repeated condensation: alto in distilled water	ernating immersio
STATIC PRE-EMPOSURE	7075-T6 clad (batch I): 8 months outdoors near Stockho (light industry area) 7075-T76: 72 hours in 5 % aqueous NaCl + SC ₂ at 315 K	olm
	UNNOTCHED COUPONS S max - 150 MPa	15 DOGBONES S = 144 MP
•	SCHEDULES CYCLE FREQUENCY 1.4	Hz CYCLE FREQUEN
	7075-T6 7075-T6 (BATCH iI) (BATCH :	
	fatigue in low humidity air	
	pre-exposure + fatigue in low humidity air	
TEST PROGRAMME	fatigue in air with repeated condensation	•
	pre-exposure + fatigue in air With repeated condensation	•
	fatigue with alternating immersion in distilled water	•
	pre-exposure + fatigue with alternating immersion in	•

TABLE 3.2: ENVIRONMENTAL CHAMBER PARAMETERS FOR THE SAAB CONTRIBUTION TO FACT

TYPE OF TEST	SPECIMEN	PARAMETERS	UNVOTCHED COUPONS	14 DOGBONE SPECIMENS

REFERENCE	low humidity air	airflow air temperature near specimen relative humidity near specimen specimen temperature	100 ml/s 300 - 311 10 - 30 % 299 ± 0.5	100 ml/s 300 - 311 K 10 - 30 % 299 ± 0.5 K		
			REPEATED CONDENSATION	ALTERNATING IMMERSION	REPEATED CO. DENSATION	ALTERNATING IMMERSION
ENVIRONMENTAL INFLUENCE	<pre>"wet": wuid air with condensation distilled water "wet" and "dry" "dry": drying by</pre>	duration airflow water injection in air stream in evaporatur water temperature specimen temperature air temperature near specimen duration airflow humidiru near specimen	- 150 s 100 m1/s 0.005 m1/s 299 ± 0.5 K 302 - 309 K 570 s 100 m1/s	150 s 100 ml/s 299 ± 0.5 K 299 ± 0.5 K 392 - 305 K 570 s 100 ml/s 15 - 40 %	- 150 s 150 ml/s 0.067 ml/s 303 ± 1 K 305 - 309 K 570 s 150 ml/s 570 s	- 150 s 150 ml/s 303 ± 1 K 304 - 311 K 570 s 150 ml/s 5 30 %
	humidity air	specimen temperature	299 ± 0.5 K	299 ± 0.5 K	303 ± 1 K	303 ± 1 K

TABLE 3.3: FATIGUE LIFE AND PRIMARY FATIGUE ORIGIN DATA FOR THE SAAB CONTRIBUTION TO FACT

				FATIGUE LIFE TO	FATIGUE LIFE TO FAILURE (CYCLES AND LOG MEAN VALUES)/LOCATIONS OF PRIMARY ORICINS OF FATIGUE	AND LOG MEAN VAI	UES)/LOCATIONS C	OF PRIMARY ORIGIN	IS OF FATICUE *
TYPE OF SPECIMEN	CHARACTERISTIC STRESS 'EVEL	MATERIALS AND CORROSION PROTECTION SYSTEMS	AND COTECTION IS	fatigue in low humidity air	pre-exposure + fatigue in low humidity air	fatigue in air With repeated condensation	pre-exposure + fatigue in air with repeated condensation	fatigue with alternating immersion in distilled water	pre-exposure + fatigue with alternating immersion in distilled water
		p	as machined	200' 697 000' 757 000' 987 000' 987		383,000 317,000 358,000 284,000 333,000		296,000 215,000 258,000 191,000 237,000	
unnotched	93.03	(batch II)	chromic acid anodised	456,000 349,000 373,000 347,000 379,000		308,000 177,000 308,000 295,000 265,000		235,000 293,000 265,000 254,000 261,000	
uodnoo	a a a a a a a a a a a a a a a a a a a	7075.T6 clad	as machined		340,000 425,000 366,000 378,000 389,000 379,000		277,000 199,000 362,000 321,000		267,000 218,000 235,000 243,000
		(batch I)	chromic acid anodised		408,000 301,000 681,000 414,000 371,000 419,000		298,000 249,000 336,000 308,000		294,000 239,000 198,000 302,000
GFCTP core programme 14 dogbone	S 144 MPa	7075-T76 with U.S. Navy protection system	on system			153,000 R 112,000 E 91,400 F 57,300 R 97,300	201,000 C 32,800 F 46,300 F	62,900 S 56,800 F 55,400 R 105,000 F 67,500	51,900 R 93,700 E 34,000 E 101,000 Q,R 63,900

TABLE 3.4: SUMMARY OF ANALYSIS OF VARIANCE RESULTS (95 % CONFIDENCE)

TYPE OF SPECIMEN AND SOURCE	CHARACTERISTIC STRESS LEVEL	SHIR E HE VARIATION	F DISTRIBUTE N VALLE	F	EXPERIMENTAL VARIABLES F. F. DISTRIBUTION VALUE
unnotched coupun	S - 1 - Maa	MARY BASE TO exvit meet t andd.org	2 m² + 1	11.	***
	-+	environment andistry			•
In deglure (SAAB)	Name - Transfer	MAIN BRIE. T environment		45	
in degbone -SAAB and (F.IP)	Twax - 1.0 Miles				

TABLE 3.5: LEAST SIGNIFICANT DIFFERENCE TEST RESULIS (95 % CONFIDENCE) FOR THE EFFECT OF ENVIRONMENT ΘN FATIGUE LIFE OF UNNOTCHED COUPONS

PATIBUE TESTING SCHEMULE	fartywak in bow Biwnistarian	precesporate to stanzala in illu- Shamitiny air	factions in acr with repeated entermative	pter expression e tetaine as easi wath respective conduction	fatigme with automating page page at taking and war	fat all imm	megins for the graph with a structure with a structure with a structure for the structure of the structure o
USE MEAN FATIULE LIFE							
SAMPLE 917E n		•- ::	4				•
	1107 13		•	Market and Market		_ : -	
	MPAPES No HE GATA FE	M CIPPLEANT FALLS	FILE STORE IN LEGEL OF	5			CERREIN F
atigue in low humidity air pre exp	posente * fatigos in Lo	v to≠idits aid	F DESTINATION OF BERT SE	·			CREARIN TO
atigne in low humidity and pre-exp anigue in low humidity and farigue atigue in low humidity altopee exp atigue in low humidity altofee exp atigue in low humidity altofee farigue atigue in low humidity altopee.	posite + fatigue In La e in all with repeated posite + fatigue in al e with alternating imm posite + fatigue with.	w homitif, air onder, attent r with repeated to excion in distille alternating tomers	obecusty ont 1 water t 1 mail Endustry Cediw			1 +1 1 +1 1 +1 1 +1	The second secon
atique in low hundriv and pre-exposer in low hundriv and pre-exposer in low hundriv and tarique in low hundriv and tarique in low hundriv and pre-exposer in largue in	posite + fatigue in language and all with reported the in all exists in all exists with alternating immosure + fatigue with alternatifatigue in a dity alt fatigue with.	w town dirk and orders at lower r with repraired to existe in discille affects at its grown of twinth repeated to fatigue in air w after matting immore	odenousis one diwarene aren broductivaled wi oden warson statiste pewated ounde was to distrible by	outer* Ossafini Oter		11 44 13 43 1 44 1 44 1 44 1 45 1 46 1 47	**************************************
(atigue in low hundriv and ye extrapolatival interpretation in low hundriv and the interpretation in low hundriv and the interpretation in low hundriv and the interpretation in low hundriv affigure your efficiency facing in low hundriv affigure yourself affigue in a fixture in a f	posite + fatigue In luc - In all with England In - with Alternating im- posite + fatigue iti al- - with Alternating im- posite + fatigue with Alty alternating with - Alty alternating with alternating with - Alty alternating with alternating with alternating with - Alty alternating with al	w town into air or derivations r with repeated to existing in distiller alternating immers i with repeated to fatigue in air w alternating immer- tatingue with air latting in air w	ndenistium d warere im distribution be preferation ith repeated order including 1 Service children 1 Service children 2 Service children 3 Service	later* Holafice Miles List Survivos Sile I Hares Sarisons		11	The second secon
atique in low humidity ast type ex- atique in low humidity altituding atique in low humidity aft pre-ex- atique in low humidity aft-fatique atique in low humidity aft-fatique pre-exposite i fatique in low humidity pre-exposite i fatique in low humidity pre-exposite i fatique in low humidity pre-exposite i fatique in low humidity	Describe a fitting of the fitting of	w townist, and one-position of relative permanent of existing and internation, nomers in with repeated to festing a most of existing a most of existing and in the permanent of existing and in the permanent of existing and internation, name of the permanent of existing and internation and with the permanent of t	edenisticat 1 water 4 1 water 4 note in distribut oder outson this repeated conde- country that is not in- country in description on in darking of anders on in darking of anders country in darking of anders	water* Heating takes List discribed water there there less the tweeter les		11 43 12 43 13 43 14 44 15 44 17 44	man and man an

Owing to equal sample size these comparisons can also be made using the unandified least significant difference test. The vame result is obtained

TABLE 3.6: SUMMARY OF DUNCAN'S NEW MULTIPLE RANGE TEST RESULTS (95 % CONFIDENCE) FOR UNNOTCHED COUPONS

FATIGUE TESTING SCHEDULE	fatigue in low	humidity air	pre-exposure humidity air	• fatigue in low	fatigue in air repeated conde		pre-exposure + with repeated	fatigue in air condensation	fatigue with a immersion in d		pre-exposure + alternating im distilled wate	mersion in
CORROSION PROTECTION SYSTEM	as machined	chromic acid	as machined	chromic acid	as machined	chromic acid anodised	as machined	chromic acid amodised	as machined	chromic acid anodised	as wachined	chromic acid anodised
LOG HEAN FATICUE LIFE	5 672	5.578	5 578	5.622	5.523	5 424	5.430	5 471	5 374	5 417	5 380	5 406
SAMPLE SIZE n	4	4	,	5	4	4	4	4	4	4	4	4

COMPARISONS OF DATA FOR TEST PARAMETER	TEST PARAMETER	Į.	DIFFERENCE BETWEEN LOG MEAN FATIGUE LIVES X $\sqrt{\frac{2n_1n_j}{n_i+n_j}}$	SSR	Significant difference $(\hat{x}_1,\hat{x}_j) = \sqrt{\frac{2n_1c_1}{n_1+n_j}} > \text{SSP}$
	as machined	2	0.198	0 220	no
fatigue in low humildity mir/pre-exposure + fatigue in low humidity mir	chromic acid anodised	2	0.093	0 220	ti-)
	as machined	3	0.278	0 231	yes
fatigue in low humidity mit/futigue in mir with repeated condensation	chromic acid anodised	3	0-308	0.231	yes
tatigue in low humidity air/pre-exposure + fatigue in air with repeated condensation	as machined	4	9 484	0.239	yes
racigue in the numbranty antypre-exposite + tacigue in air with repeated condensation	chromic acid anodised	:	0 214	0.220	no.
fatigue in low humidity mir/fatigue with alternating immersion in distilled water	as machined	h	0.596	0.748	ves
raction in the industrict all visit time attended and interesting in discitling and i	chromic acid anodised		y 427	0.239	ves
fatigue in low humidity air/pre-exposure + fatigue with alternating immersion in distilled water	as machined	5	1.)84	0.244	ves
accine to the manners attypic exposure a facilities with afternating maners on the districts water	chromic acid acodised		(- 3	0.244	. ves
pre-exposure * fatigue in low humidity air/fatigue in air with repeated condensation	as machined		- 11t	5 229	50
	chromic acid acodised			1 9 234	V+-5
pre-exposure • fatigue in low humidity air/pre-exposure • tatigue in air with repeated condensation	as machined	3	6 312	1 2 231	ves
yet exposure that you manners arrypreventione a taking in air with repeated condensation	chromic acid acodised	3	0.319	0.231	Ves
pre-exposure + fatigue in low humidity air/fatigue with alternating immersion in distilled water	as machined	, ,	/ 43m	0.244	**5
the same of the sa	I chromic acid anodised	5.	0 -42	0.254	ye s
pre-exposure + fatigue in low humidity air/pre-exposure + fatigue with alternating immersion in distilled water	as machined		h	j 6 239	V#8
per capability and provide a particular and a provide a particular and a provide a particular and a particul	i chromic acid anodised	ħ	0.459	0.248	V+ 5
fatigue in air with repeated condensation/pre-exposure + futigue in air with repeated condensation	as michined	1	1	6 220	to
The state of the s	.bromic acid anodised	2) n 19.	0.225	no
takingue in air with repeated condensation/fatigue with alternating immersion in distilled water	as marhined		9 793	0.239	505
See and the state of the state	chromic acid anodised	2_	0.01.	0.220	f,3
fatigue in air with repeated condensation/pre-exposure + fatigue with alternating lemension in distilled water	as machined	3	4 ,86	< 251	: L
Total State Control of the Control o	chromic acid anodised	1	i	9.231	i
pre-exposure + fatigue in mir with repeated condensation/fatigue with alternating immersion in distilled water	as machined	3	- 11	0.731	59
- The representation plantique with attendent, numeration in distilled water	stromic and anodised	1		0.231	
pre-exposure + fatigue in air with repeated condensation/pre-exposure + fatigue with alternating immersion in disfilled witer	as marbined		0.340	5 5 220	fin-
	eldomic acid anolised			6-233	40
fatigue with alternating immersion in distilled water/pre-exposure + fatigue with alternating immersion in distilled water	as an hined			0.120	70
	choosic actd as stood	:	0.72	9 229	710

Swing to equal sample size these comparisons can also be made using the unmodified version of Duncan's lest. The same result is obtained

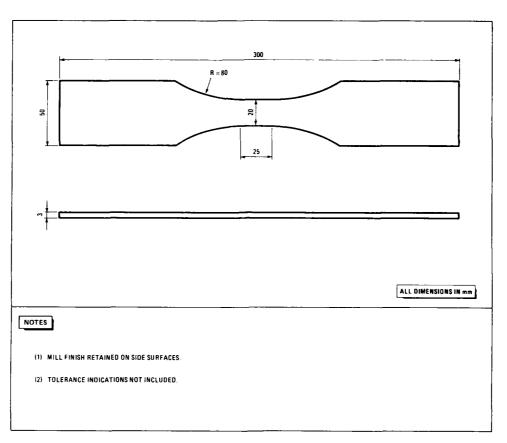
COMPARIS NO OF DATA FER TEST PARAMETER	TEST PARAMETER		DIFFERENCE BETWEEN LOG MEAN FATLUE LIVES	1SP	SIGNIFICANT DIFFERENCE DIFFERENCE V SSR
	fatigue in low humidity air	, i	0.09,	0 (11	no
ĺ	pre-exposure + fatigue in low humidity mir	1	0.044	0 100	nu
As man'ined/chromic acid anodised	farigue in air with repeated condensation	1	0.099	0.111	tio
As mile their thronte at 10 anotised	pre-exposure • fatigue in air with repeated condensation] ;	0.041	0.111	no
	farigue with alternating immersion in distilled water	1	0.043	0 111	no
	pre-exposure + fatigue with alternating immersion in distilled water	1 2	0.626	9.111	no

TABLE 3.7: SUMMARY OF DUNCAN'S NEW MULTIPLE RANGE TEST RESULTS (95 % CONFIDENCE) 10k SAAB 11 DOGBONES

FATIGUE TESTING SCHEDULE	fatigue in air with tepeated condensation	pre-exposure + fatigue in air with repeated condensation	tatigue with alternating immersion in distilled water	pre-exposure + fatigue with alternating immersion in distilled water
LOG MEAN FATICUE LIFE	4 988	4 818	4 829	u 806
SAMPLE SIZE n		3	4	

COMPARISONS OF DATA FROM DIFFERENT FATIGUE TESTING SCHEDULE	Р	DIFFERENCE BETWEEN LUX: MEAN FATIGUE LIVES X $\sqrt{\frac{2n_1n_2}{n_1+n_2}}$	55	- 1	SIGNIFICANT DIFFERENCE $(\hat{x}_1 - \hat{x}_3) / \sqrt{\frac{2n_1n_3}{n_1 + n_3}} > SSR$
fatigue in air with repeated condensation/pre-exposure + fatigue in air with repeated condensation	3	0 296	u,	88	no
fatigue in air with repeated condensation/fatigue with alternating immersion in distilled water*	2	0.318	0 7	> 1	ne
fatigue in air with repeated condensation/pre exposure + fatigue with alternating immersion in /distilled water*	4	0 364	0.8	09	no
pre-exposure + fatigue in air with repeated condensation/fatigue with alternating immwrsion in /distilled water	2	0 002	0 2	53	no
pre-exposure + fatigue in air with repeated condensation/pre-exposure + fatigue with alternating /immersion in distilled water	2	0 041	0 ?	53	tio
fatigue with alternating immersion in distilled water/pre-exposure + fatigue with alternating //immersion in distilled water*	3	0 046	0.7	88	no

^{*(}Wing to equal sample size these comparisons can also be made using the unmodified version of Duncan's test. The same result is obtained


TABLE 3.8: LEAST SIGNIFICANT DIFFERENCE TEST RESULTS (95 % CONFIDENCE) FOR THE EFFECT OF ENVIRONMENT ON FATIGUE LIFE OF SAAB AND CFCTP 1½ DOGBONES

	1	CF	CTP			SA	AB	
FATICUE TESTING SCHEDULE	fatigue in air	pre-exposure + fatigue in air	fatigue in salt spray	pre-exposure • fatigue in salt spray	fatigue in air with repeated condensation	pre-exposure + fatigue in air with repeated condensation	fatigue with alternating immersion in distilled wate	pre-exposure + fatigue with alternating immersion in distilled wate
LOG MEAN FATIGUE LIFE	5.125	5 072	4 962	4.819	4.988	4.828	4.829	4 806
SAMPLE SIZE n	35	28	36	35	4	3	4	4
		¢ _{0.025,141} - 1.9	В			HS residual - C	045	
pre-exposure + fat pre-exposure + fat fatigue in salt sp fatigue in salt sp fatigue in salt sp fatigue in salt sp pre-exposure + fat pre-exposure + fat pre-exposure + fat pre-exposure + fat pre-exposure + fat	igue in air/tatigu igue in air/fatigu igue in air/fatigu igue in air/fatigu ray/fatigue in air ray/pre exposure + ray/pre exposure + igue in salt spray igue in salt spray	posure + fatigue e with alternati posure + fatigue with repeated c fatigue in air lternating immer fatigue with al /fatigue in air /pte-exposure + /fatigue with al /pre-exposure +	in air with r ng immersion i with alternat ondensation with repeated sion in distill ternating imme with repeated fatigue in air fernating imme tarigue with a	epeated condensati n distilled water ing immersion in c condensation led water resion in distiller condensation with repeated con- resion in distiller liternating immersion	distilled water 1 water Indensation 1 water 1 on in distilled	water	9 74 1 89 2 14 2 15 0 23 1 10 1 19 1 40 1 1 1 9 07 6 09 1 12	po yes yes no no
fartone in air wir	h repeated condens h repeated condens	ation/pre-exposu	re · fatigue i	n at, with repeate	ed condensation	•	fa 49 41 06	110

Owing to equal sample size these comparisons can also be made using the unmodified least significant difference test. The same result is obtained

TABLE 3.9: FISHER'S EXACT TEST FOR ANALYSING THE SAAB 11 DOCBONE PRIMARY FATIGUE ORIGIN DATA (95 % CONFIDENCE)

		PRIM	PRIMARY FATIGUE ORIGINS VERSUS ENVIRONMENT	VERSUS ENVIRONMENT		
			COLUMNS, c (FATIGUI	COLUMNS, c (FATIGUE TESTING SCHEDULES)		
 CONSTRUCTION OF INITIAL CONTINGENCY TABLE 	ROWS, r (LOCATIONS OF PRIMARY FATIGUE ORIGINS)	farigue in air with repeated condensation	pre-exposure + fatigue in air with repeated	fatigue with alternating immersion in distilled water	pre-exposure + fatigue with alternating immersion in distilled water	ROW TOTALS, R
	E/Q	1	0	0	3	4
	F/R	3	2	3	2	10
	5/9	0	0	1	0	1
	0/0	0	-	0	0	1
	COLUMN TOTALS, C	7	3	7	5	16 - N
		PRIM	PRIMARY FATIGUE ORIGINS VERSUS ENVIRONMENT	VERSUS ENVIRONMENT		
		COLUMNS,	COLUMNS, c (COMBINATIONS OF FATICUE TESTING SCHEDULES)	FATICUE TESTING SCH	EDULES)	
MODIFICATION OF THE CONTINGENCY TABLE	ROWS, r (LOCATIONS OF PRIMARY pre-exposure and/or fatigue FATICUE ORIGINS) in air with repeated condens	pre-exposure and/or fatigue in air with repeated condensation	r fatigue ed condensation	pre-exposure and/or fatigue with alternating immersion in distilled water	r fatigue with ion in distilled	ROW TOTALS, R
(SEE TEXT)	E/Q or C/0		2		3	\$
	F/R or G/S		2		9	11
	COLUMN TOTALS, C		7		6	16 - N
● CALCULATION OF P AND		1 C.	P 51 X 111 X 71 X 91	$\frac{1}{x} = \frac{1}{6!} - 0.6346$		
COMPARISON WITH $\alpha = 5 \ 8$	SINCE P = 0.6346 IS GREATER THAN a = 0.05 IT MAY BE CONCLUDED WITH 95 % CONFIDENCE THAT THERE IS NO SIGNIFICANT ASSOCIATION BETWEEN PRIMARY FATIGUE ORIGINS AND ENVIRONMENTS (FATIGUE TESTING SCHEDULES).	GREATER THAN α = 0.(ION BETWEEN PRIMARY	05 IT MAY BE CONCLU FATIGUE ORIGINS AN	DED WITH 95 % CONFI D ENVIRONMENTS (FAT	DENCE THAT THERE IS	S NO ULES).

 $^{\tau}\text{ig. 3.1}$. Unnotched specimen configuration for the SAAB programme

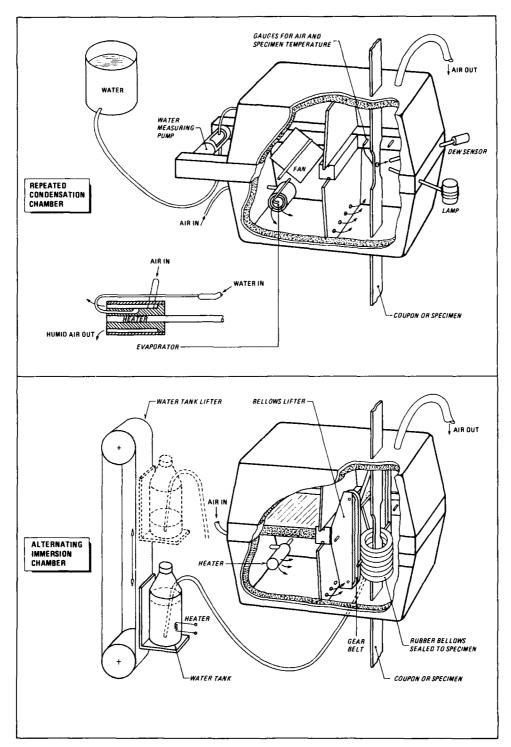


Fig. 3.2 The FFA environmental chambers used in the SAAB contribution to the FACT programme

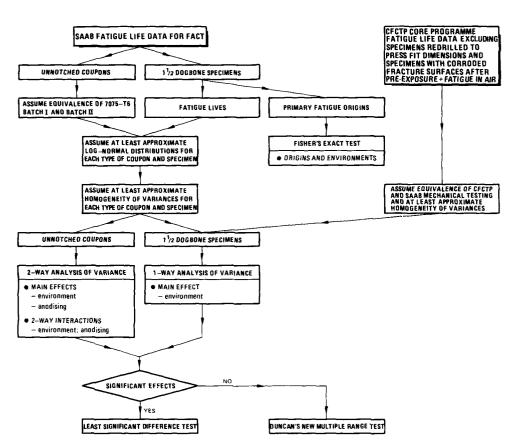


Fig. 3.3 Survey of statistical methods for ...alysing the SAAB fatigue life data for FACT

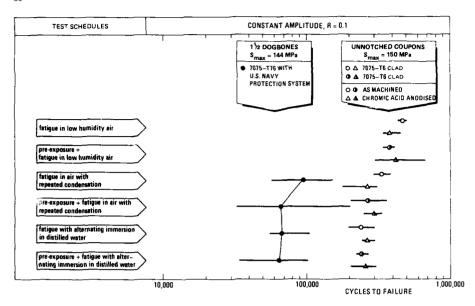


Fig. 3.4 SAAB fatigue life data contribution to the FACT programme

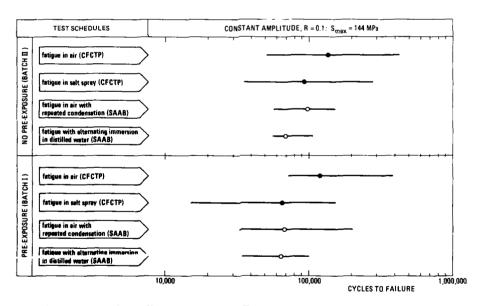


Fig. 3.5 Comparison of SAAB FACT contribution and CFCTP core programme data. The CFCTP core programme data are for all specimens except those redrilled to press fit dimensions and those with corroded fracture surfaces after pre-exposure + fatigue in air, see tables 2 and 9 in Part II of this report

4. THE NADC CONTRIBUTION TO THE FACT PROGRAMME

J.J. De Luccia, Naval Air Development Centre NADC, Aeronautical Materials Laboratory, Warminster, Pennsylvania, USA

4.1 Introduction

The NADC contribution to FACT examined the effect of fastener fit (interference versus press fit) and the use of a flexible, elastomeric primer instead of the standard non-flexible primer selected for the CFCTP core programme. The advantage of using flexible paint systems to improve the corrosion protection of aircraft has been known for many years. However, there appear to be no data comparing flexible and non-flexible paint systems with respect to fatigue and corrosion fatigue of aircraft structural joints.

4.2 The Test Programme

An overview of the test programme is given in table 4.1. All specimens were $1\frac{1}{2}$ dogbones from the same material as the CFCTP core programme specimens but drilled to interference fit dimensions, as discussed in detail in reference (1). Cadmium plated steel Hi-Lok fasteners were used. The diameter of the holes for the fasteners was 6.248 \pm 0.0127 mm, see figure 1.1 of the introduction to this part of the report.

4.2.1 Protection systems and specimen assembly

Half the specimens had the same U.S. Navy paint scheme as in the CFCTP core programme, see reference (1) and Part II of this report. The remaining specimens were painted and assembled in the same way except that a flexible, elastomeric primer "Koroflex" was used instead of the standard primer. Koroflex is a strontium chromate inhibited polyurethane primer that retains flexibility even at low temperatures (209 K).

4.2.2 Mechanical testing conditions (static prestressing and fatigue)

All stresses were defined in terms of loads on the total cross-section of the fatigue specimen dopbone at the location of the centreline between the fasteners, i.e. the fastener holes were included in the cross-sectional area. Before environmental exposure and fatigue testing the specimens were prestressed at 209 \pm 10 K by applying two load cycles up to a stress of 215 MPa. The procedure for this is discussed in reference (1). The purpose of this low temperature prestressing was to ensure that intact non-flexible paint and primer layers would crack around the Hi-Lok fasteners holes, thereby simulating service damage that enables corrosion and corrosion fatigue to occur.

The fatigue load history was constant amplitude sinusoidal loading with a stress ratio $R = S_{min}/S_{max}$ of 0.1 and a maximum stress of 210 MPa. Detailed procedures for fatigue testing are given in reference (1).

4.2.3 Environmental conditions (pre-exposure, fatigue and corrosion fatigue)

Specimens scheduled for static exposure to an aggressive environment before fatigue testing were sealed at the faying surface side edges and Hi-Lok collars to prevent corrosion except in the fastener head areas. The procedure for static pre-exposure is described in detail in reference (1). The specimens were immersed for 72 hours in 5 % aqueous NaCl acidified by a predetermined amount of SO_2 gas and maintained at 315 ± 2 K. The specimen cleaning procedure after pre-exposure followed the amendment in section 4.4 of Part 2 of reference (1).

For fatigue testing all specimens were electrically insulated from the loading grips and bolts by polymeric liners and bushings. Specimens to be fatigued in salt spray were also sealed at the faying surface side edges and Hi-Lok collars. The fatigue environments were laboratory air and 5 % aqueous NaCl salt spray acidified with $\rm H_2SO_4$ to pH 4, both at a nominal temperature of 295 K. The salt spray tests were done in a specially constructed cabinet, fully described in reference (1). The cyclic loading frequencies were as follows:

- fatigue in air. 2 Hz
- fatigue in salt spray, 0.5 Hz.

4.3 Results

The complete set of fatigue life and primary fatigue origin data for the NADC contribution to FACT is given in table 4.2. The way in which the test programme was set up had consequences for the statistical methods used to analyse the data. This will be discussed in section 4.3.1.

The fatigue life results are presented and statistically analysed in section 4.3.2. This is followed by presentation and statistical analysis of the primary fatigue origin data in section 4.3.3.

4.3.1 Statistical methods for analysing the data

A survey of the statistical methods for analysing the NADC data is given in figure 4.1. Owing to the limited number of data it had to be assumed that they at least approximated to random samples from log-normally distributed populations. Also, comparison of the data with CFCTP core programme data meant that equal variances had to be assumed and that for some "fine tuning" of analysis of variance results modified versions of the least significant difference test and Duncan's new multiple range test had to be used. More details of the statistical methods are given in Appendix II.

4.3.2 Fatigue life data

The fatigue life data are shown in figure 4.2. The data indicate the following trends:

- (1) For specimens with interference fit Hi-Loks the use of Koroflex instead of a standard U.S. Navy primer appears to have been beneficial in all three environments.
- (2) The use of interference fit Hi-Loks instead of press fit Hi-Loks did not improve fatigue life. (Interference fit fasteners are usually considered to have a beneficial effect on fatigue life.)
- (3) The salt spray environment was particularly detrimental to fatigue life.

As will be discussed, statistical analysis confirmed trend (2) and showed trends (1) and (3) to be partly true.

The Box test was used to check for homogeneity of variances of the NADC data, see table 4.3. The variances were not all equal. However, analysis of variance is a very robust statistical technique, such that approximate compliance with the criterion of homogeneity of variances is sufficient for continuing the statistical treatment of the fatigue life data.

Analysis of variance was carried out separately for the complete set of NADC data and a combination of NADC and CFCTP core programme data for specimens using the standard U.S. Navy primer. The results are summarised in table 4.4. The main effects of environment, primer and fastener fit were found to be significant. Since there were only two types of primer and fastener fit, it is obvious that the significant differences were between the standard and Koroflex primers and the press and interference fit Hi-Loks. Thus it was not necessary to "fine tune" these results using the least significant difference test. However, this test was used to investigate the effect of environment (fatigue testing schedule). The results are given in table 4.5. Significant differences in fatigue lives were found mainly as a consequence of fatigue in sait spray.

According to the analysis of variance the other potential sources of variation (environment : primer and environment : fastener fit interactions) were not significant. These were further investigated using Duncan's new multiple range test. The results are listed in tables 4.6 and 4.7, and show the following:

- for specimens with interference fit Hi-Loks the use of Koroflex instead of the standard primer was significantly beneficial only for pre-exposure + fatigue in salt spray
- use of interference fit Hi-Loks instead of press fit Hi-Loks was either detrimental or had no significant effect on fatigue life
- the salt spray environment was particularly detrimental to fatigue life for specimens using the standard primer but not for specimens using Koroflex.

4.3.3 Primary fatigue origin data

The χ^2 test of independence, Yates' corrected χ^2 test and Fisher's exact test were used to analyse the primary fatigue origin data for the NADC contribution to FACT and the relevant CFCTP core programme specimens. The results are given in table 4.8. Neither environment (fatigue testing schedule), type of primer nor fastener fit had significant effects on the locations of fatigue origins for the rest conditions selected.

4.4 Discussion

The present test results show that use of the flexible, elastomeric primer "Koroflex" was significantly beneficial to the fatigue life of 1½ dogbone specimens assembled with interference fit Hi-Loks and fatigued in salt spray. Overall the use of Koroflex appears to have been beneficial as compared to the use of a standard, non-flexible U.S. Navy primer.

Use of interference fit Hi-Loks instead of press fit Hi-Loks did not improve fatigue life. The reason is that under load the 1½ dogbone specimen exhibits secondary bending that increases when the clearance between fasteners and holes is reduced, see references (2, 3) and Appendix 1. This characteristic behaviour tends to nullify the usually beneficial effect on fatigue life of using interference fit fasteners.

Changing from fatigue in air, with or without pre-exposure, to pre-exposure + fatigue in salt spray resulted in significantly shorter fatigue lives for specimens using the standard primer, irrespective of fastener fit. The use of Koroflex resulted in the detrimental effect of salt spray becoming statistically insignificant.

4.5 Conclusions

- (1) Use of the flexible, elastomeric primer "Koroflex" instead of a standard, non-flexible U.S. Navy primer was beneficial to fatigue life, notably in a salt spray environment.
- (2) Use of interference fit Hi-Loks instead of press fit Hi-Loks did not improve the fatigue life of light dopbone specimens.
- (3) Changing from fatigue in air, with or without pre-exposure, to pre-exposure + fatigue in salt spray resulted in significantly shorter fatigue lives for specimens using the standard U.S. Navy primer. However, the use of Koroflex resulted in statistically equivalent fatigue lives.
- (4) Neither environment (fatigue testing schedule), type of primer nor fastener fit had significant effects on the locations of primary origins of fatigue.

4.6 References

- R.J.H. Wanhill and J.J. De Luccia, "An AGARD-coordinated corrosion fatigue cooperative testing programme", AGARD Report No. 695, February 1982.
- 2. H.H. van der Linden, "Fatigue rated fastener systems", AGARD Report No. 721, November 1985.
- H.H. van der Linden, L. Lazzeri and A. Lanciotti, "Fatigue rated fastener systems in 11 dogbone specimens", NLR Technical Report TR 86082 U, August 1986.

TABLE 4.1: OVERVIEW OF THE NADC TEST PROGRAMME FOR FACT

MATERIAL	•	3.2 mm thick 7075-T76 aluminium alloy she material)	eet (CFCTP cor	e programme
SPECIMEN	•	3.2 mm		
PROTECTION SYSTEMS	•	Chromate conversion + inhibited epoxy policies) + aliphatic polyurethane topcoat; Chromate conversion + Koroflex elastomer; primer + aliphatic polyurethane topcoat		
PROTECTION SYSTEM DAMAGE	•	Two stress cycles at low temperature to and primer around the fastener heads	erack non-flex	tible paint
FATIGUE LOADING	•	Constant amplitude, S_{min}/S_{max} - 0.1, S_{max}	- 210 MPa	
FATIGUE ENVIRONMENTS	•	Laboratory air; 5 % aqueous NaCl salt sp	cay with pH 4	
STATIC PRE-EXPOSURE	•	72 hours in 5 % aqueous NaCl + SO ₂ at 31	5 К	
		SCHEDULES	STANDARD PRIMER	KOROFLEX PRIMER
TEST PROGRAMME		fatigue in air	•	•
Inconsult	•	pre-exposure + fatigue in air	•	•
		pre-exposure + fatigue in salt spray	•	•

TABLE 4.2: FATIGUE LIFE AND PRIMARY FATIGUE ORIGIN DATA FOR THE NADC CONTRIBUTION TO FACT

FATIGUE LOAD	CHARACTERISTIC	מטעד מאצו ממ	FATIGUE LIFE TO LOCATION:	FATIGUE LIFE TO FAILURE (CYCLES AND LOG MEAN VALUES) LOCATIONS OF PRIMARY ORIGINS OF FATIGUE*	1EAN VALUES) ATICUE*
HISTORY	STRESS LEVEL	rkinek iire.	fatigue in air	pre-exposuce + fatigue in air	pre-exposuce + fatigue pre-exposure + fatigue in air
constant amplitude	c	STANDARD U.S. NAVY (NON-FLEXIBLE)	7,833 R 15,326 E 15,127 F 19,129 Q 13,652	9, 128 Q 19, 2)7 F 12, 733 E 14, 739 F 13, 455	6,094 E 9,774 R 7,732 D 5,183 R 6,990
м 10.1	max - 210 nra	KOROFLEX (FLEXIBLE)	20,109 E 20,804 E.F 20,474 E 22,824 Q 21,027	9.8.2 E 17.1.3 D 20,947 Q 29,197 G 17,971	12.446 E 15.490 E.R 14.208 E 15.951 E 14.458

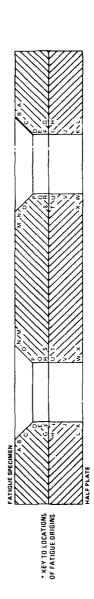


TABLE 4.3: BOX TEST FOR HOMOGENEITY OF VARIANCES OF NADC CONTRIBUTION TO FACT (95 % CONFIDENCE)

FATIGUE TESTING SCHEDULE	SAMPLE NUMBER	SAMPLE SIZE	SUM OF SQUARES SS = E(x _i ·x) ²	DEGREES OF FREEDOM v = n - 1	1/2	SAMPLE VARIANCE	log s²	log s'
	1 STANDARD 2 KOROFLEX	4	0.084 0.002	3 3	0.333 u.333	0.028 0.001	~ 1 552 - 3.224	- 4 655 - 9 671
	k = 2		i l					
	SUM	-	-		0 666	-		- 1+ 322
	POOLED	-	0 086	6	0 167	0.014	- 1 8	- 11 962
stigue in air	DIFFERENCE	-	-		D ₁ = 0.499	-		D ₂ = 3 260
	K = 2.3026	D ₂ = 7.506	$L = \frac{D_1}{3(k+1)} = 0$	166	k = 1 = 1	$v_2 = \frac{k+1}{L^2} - 1$	n-4	
	D + 1 - 1, 4	$\frac{12}{1+(2/v_2)} - K = 1$	20 376	F _{.0} -	$\frac{p_{1/2}}{p_{1/2}} = 6.747.8$	OTH 1 AND 109 DECP	EES OF FREEDOM	!
	FOR a = 5 t	AND 1 AND 109	DEGREES OF FREEDOM	1 F = 3 %, \$180	E 6 197 > 3 94	THE POPULATION VAR	IANGES ARE NOT	FOLAL.

	1 STANDARD 2 KOROFLEX	4	0 054 9 118	3	0.313	0 018 0 034	- 1 - 1	· 225		
	k = 2			ļ						
	SUM			-	n 666		-	- + 34		
	POOLED		0.172	6	0 167	6 6,99	- 1 5-1	+ / ·		
re-exposure +	DIFFERENCE	-	-	-	D ₁ = 0.497	-				
atigue in air	K ~ 2.3026 D ₂	- 0.421	$L + \frac{b_1}{3(k+1)} + 0$	166 - 1	- k - 1 - 1	$\tau_2 = \frac{k+1}{L^2} =$	109			
	D = 1 - L + (2/v2) - K -	127.461	F	$= \frac{K/v_{\parallel}}{D/v_{\parallel}} = 0.360 \text{ with}$	H 1 AND 109 DE	GREES OF FREEDOM	•		
	FOR a = 5 % AND 1 AND 109 DEGREES OF FREEDOM F = 3 94 SINCE 0 360 < 3 94 THE POPULATION VARIANCES ARE EDVAL									

	1 STANDARD 2 KOROFLEX	4	0.043 0.007	3 3	0 333 0 333	0-015 0-002	= 1 840 = 2 631	+ 3 -76 - 7 872
	k = 2		1					1
	SUM	-	-	-	U 566			- 11 -17
	POOLED	-	0.050	6	0 167	0.008	= 2.1514	- 12 4 5
pre-exposure + fatigue in	DIFFERENCE	-		-	D ₁ = 0.499			9, - + 931
salt spray	K = 2 3026 D ₂	- 2 158	$1. = \frac{D_1}{3(k+1)} = 0$	166 . 1	- k - 1 - 1	$\frac{1}{\sqrt{2}} = \frac{k+1}{L^4}$	109	
	$D = \frac{v_2}{1 + L + C}$	2/\2) - к - :	125 724	Fo	$=\frac{K/v_1}{D/v_2} = 1.871 \text{ W(T)}$	TH 1 AND 100 DE	REES OF FREEDOM	1
	FOR α = 5 % A!	ND 1 AND 109	DEGREES OF FREEDOM	(F = 3.94. SI	NCE 1.871 < 3.94 TH	E POPULATION V	ARIANCES ARE EQ	'AL

TABLE 4.4: STYMARY OF ANALYSIS OF VARIANCE RESULTS (OF TOOM DENOT)

	V j. B. Vyzati N	Products (A. C. A.	· .	ng kanggapan ang ang ang ang ang ang ang ang ang a
No. 14 Eur				
	•			

in the property of All Communication of the State of the State of the All Communication of the Communication of th

-		·	

TABLE 4.6: SUMMARY OF DUNCAN'S NEW MULTIPLE RANGE TEST RESULTS (95 % CONFIDENCE) FOR THE NADO FACT DATA

FATILICE TESTING SCHEDULE	fatigo	r in atr	pre-exposure .	tations to all	pre esposure + fa.	وفيوه بيفه وياهدون
PRIMER	standard	Entoties	st urdard	Forotles) standard	*arafle*
DOC MEAN FATINGE LIFE	• 11	. 3 :	- 1/4		1.544	4.149
SAMPLE SIZE E		•	• • • • • • • • • • • • • • • • • • • •			

TEST PARAMETER	CHRISTIAN I PATE NO THE DAMAGETER	DIFFERENCE BEIWEEN LOG HEAN FAILURE LIVEN	SSR	CONTRACT DIFFEREN
factgue in air	n	0 188	1-1-1	
pre-exposure + farigue in air	17	0.124	0.193	
pre-exposure + latigue in sait sp	TaV)	0 316	943	
	. S fatigue in air/pre-exposure - taligue in salt spray	0.74	2.203	
standard U.S. Navv primer	Afterique in air (reverposire + talique in air	0 204	19-193	10
	Uppre exposure + tarigue in all pre exposure + tatique in salt spino	or 285	9 144	(*)
	I fatigue in air pte exposure + fatigue in salt situy	J 163	1 (2.3	10
Foruties	Pitarigue in all pre-exposure + thisgue to air	0 11	9 193	
	Fire exposure + tarague in all the exposure + tatigue in sair optav	0.093	2 193	100

TABLE 4.7: SUMMARY OF DENCAN'S NEW MULTIPLE RANGE TEST RESULTS (95-7 CONFIDENCE) FOR THE NADC FACT DATA (STANDARD U.S. NAVY PRIMER) AND CFCTP* DATA ($S_{\rm max} = 210$ MPa)

FATISCE TESTING SCHEDULE	fatigo	e in air	pre exposure	tarigie in alt	nce expisite + fa	rigue in sair spras
FASTENER FIT	press	prefletene	pre 48	itterfeten e	press	tiresteren e
DiscHEAN FAILULE LIFE	13	145	4.75			
PAMELE NUTE (3×		1.4		- 4	

TENT PASAMPTES	Manage to the control of the Control	TIPEFFEN F BETWEEN IN MEAN FATITE A VENT	$\begin{array}{c} \text{Total ANT LIBERRAN S} \\ \text{North } & \sqrt{\frac{2\pi}{2}} \frac{1}{2} \frac{1}{2} \frac{1}{2} \\ & > 0 \end{array}$
tarigum in aus			
	Capter of Marchael Archaeter of the Archael Ar		
process of the state of the second		2.5	447
	Significant entre subspace expression in distriction on the Stockhold of		W
, ress for H. D.P.	fatigner in last gas leky (kips + furyver in led		
	Copper expression in fixtures as authorized by our infinitely and all of the contract of the c		

IN I HARAMATAN	:-	MEZET CAST BOOKER TO THE METER	The second of th	 ag jorge erzelesky s er getti
	P facus in	storage temperature of the garden to the following		
Constitute and the second second		straid at expensive of the agree to that		
L		wite in fativale as large leap coale in <u>fat</u> ivale i <u>n t</u> icks to spice		

The control of the section of the process of the control of the co

TARLE *** SPERAN OF A HER, YALLST CORRECTED A HIST AND FERHER'S EXACT TEST RESULTS FOR THE PRIMARY FATICUE ORIGIN DATA (95 2 CONFIDENCE)

DATA SOURCE	SOURCE OF ASSUCIATION	, 6.05; (r-1)(c-1)	x 0R x c	2 2
				(1.7)(6.1)
NADC FACT DATA	ENVIRONMENT (FATIGUE TESTING SCHEDULE)	x3.05;2 = 5.99	x _o ² = 0.04	ou
	(U. S. NAVY STANDARD VERSUS KOROFLEX) χ_0^2 (O. S. NAVY STANDARD VERSUS KOROFLEX)	x0,05;1 = 3.84	x 3 - 1.24	ou
MADO FACI BATA (STANDARD US NAVY FRIMER) CFTF* DATA (STATA STORMER)	FASTENER FIT (PRESS FIT VIPSUS INTERFERENCE FIT)	x0,05,1 = 3,84	\2 = 0.52	ott
Excluding specimens reduilled to press fit dimensions and specimens with corroded fracture surfaces after pre-exposure + fatigue in air.	imensions and specimens with corruded (fracture surfaces af	ter pre-expos	ure + fatigue in air.
		D	۵.	SIGNIFICANT ASSOCIATION (P < $\alpha = 0.05$)
MADE PACE DADA	STATE OF STATES STATES STATES STATES	a = 6 %	0.1076	no

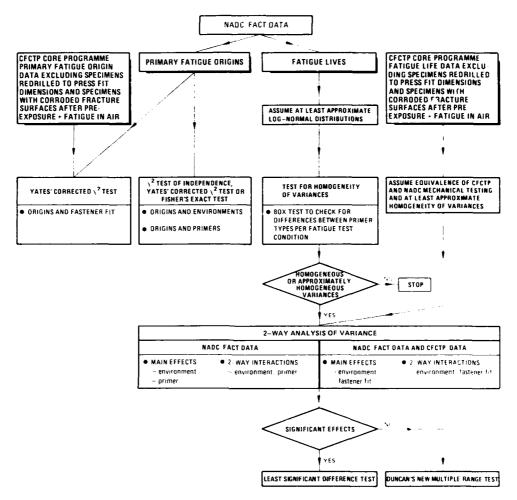


Fig. 4.1 Survey of statistical methods for analysing the NADC data for FACT

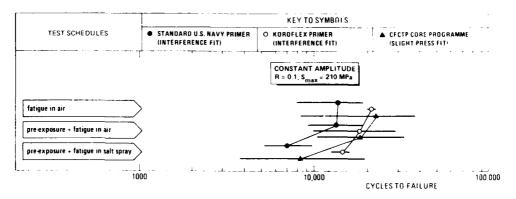


Fig. 4.2 NADC fatigue life data contribution to the FACT programme and CFCTP core programme fatigue life data. The CFCTP core programme data exclude specimens redrilled to press fit dimensions and specimens with corroded fracture surfaces after pre-exposure • fatigue in air

5. THE AFWAL CONTRIBUTION TO THE FACT PROGRAMME

N.R. Ontko, Air Force Wright Aeronautical Laboratories AFWAL, Materials Integrity Branch, Systems Support Division, Dayton, Ohio, USA

5 1 Introduction

The AFWAL contribution to FACT concentrated on the effects of using another fastener system (SLEEVbolt) to replace the HI-lok system chosen for the CFCTP core programme. The SLEEVbolt fastener system is of particular interest because it can be used to repair a structure. The system incorporates a tapered pin in an internally tapered/externally straight shanked sleeve.

In addition the effects of installing press fit Hi-Loks with or without polysulphide scalant in the fastener holes were investigated.

5.2 The Test Programme

An overview of the test programme is given in table 5.1. All specimens were lidebaths from the same batch as the CFCTP core programme specimens and with the same U.S. Navy paint scheme, as discussed in detail in reference (1) and Part II of this report. However, some of these specimens were altered by removing the press fit Hi-Loks and either reinstalling them with sealant or replacing them by SLEEVbolts.

5.2.1 Fastener systems

The specimens were supplied to the AFWAL containing press-fit Hi-Loks dry installed in chromate conversion coated fastener holes. For some of these specimens the Hi-Loks were removed and either reinstalled "wet", i.e. coated with sealant, or replaced by SLEEVbolts. Figure 5.1 illustrates the installation of both types of fastener system: installation details are given in references (1 - 4).

The sealant used in reassembling specimens with Hi-Loks was a polysulphide with added chromates for corresion inhibition and conforming to MIL-S-81733 B. Most of the sealant was squeezed out during Hi-Lok installation but some remained around the fastener head to seal off the countersink area.

To reassemble specimens with SLEEVbolts the fastener holes were redrilled from 6.396 mm to 7.7cm mm nominal diameter. The holes were left in the as-machined condition. The SLEEVbolt combination selected for installation was an aluminium coated steel bolt with an aluminium sleeve. The tasteners were pressed into place before installation of the Hi-Lok collars. Installation resulted in a typical interference of 0.064 mm.

5.2.2 Mechanical testing conditions (static prestressing and fatigue)

All stresses were defined in terms of loads on the total cross-section of the fatigue specimen dogbone at the location of the centreline between the fasteners, i.e. the fastener holes were included in the cross-sectional area. This meant that the net section stresses for the specimens with SIEEVbolts were approximately 8.7 higher than those for the specimens containing Hi-Loks.

Before environmental exposure and fatigue testing the specimens with Hi-loks were prestressed at 209 ± 10 K by applying two load cycles up to either the maximum stress occurring in the subsequent fatigue test or 215 MPa, whichever was the greater. The procedure for this is discussed in reference (1). The purpose of this low temperature prestressing was to ensure that any intact paint, primer and scalant layers were brittle and would crack around the Hi-lok fastener holes, thereby simulating service damage that enables corrosion and corrosion fatigue to occur.

The specimens containing SLEEVbolts were not prestressed at low temperature. This was considered unnecessary because the specimens had not been repainted after reassembly.

The characteristic fatigue stress levels for the test programme have been indicated already in table 5.1. These stress levels were obtained from the pilot tests described in section 1.3 of this part of the report. The fatigue load histories were constant amplitude sinusoidal loading with a stress ratio R = $\frac{S_{min}}{S_{max}}$ of 0.1 and the manoeuvre spectrum FALSTAFF (references 5, 6). A short description of this spectrum is given in section 1.3 of this part of the report.

5.2.3 Environmental conditions (pre-exposure, fatigue and corrosion fatigue)

Specimens scheduled for static exposure to an aggressive environment before fatigue testing were sealed at the faying surface side edges and Hi-lok collars to prevent corrosion except in the fastener head areas. The procedure for static pre-exposure is described in detail in reference (1). The specimens were immersed for 72 hours in 5.% aqueous NaCl acidified by a predetermined amount at 80, was and maintained at 315 ± 2 K. The cleaning procedure after pre-exposure followed the unamended procedure in section 7.4 of Part 1 of reference (1).

For fatigue testing all specimens were electrically insulated from the loading grips and bolts by polymeric liners and bushings. Specimens to be fatigued in salt spray were also scaled at the taving surface side edges and Hi-Lok collars. The fatigue environments were laboratory air and 5.7 aqueous NaCl salt spray acidified with ${\rm H_2SO_4}$ to pH 4, both at a nominal temperature of 295 K. The salt spray tests were done in a specially constructed cabinet, fully described in reference (1).

line nominal cycle trequencies for each combination of fatigue load history and environment were as follows:

FATINGE LOAD HISTORY	NOMINA	CYCLE EREQUENCY
FALLOUE LOAD HISTORY	tatigue in air	litigae in salt spray
constant amplitude, R = 0.1 FALSTAFF	z Hz 7 Hz	0.5 Hz 2 Hz

5.3 Results

The complete set of tatigue life and primary fatigue origin data for the AFWAL contribution to FACT is given in table 5.2. The way in which the test programme was set up and the results had consequences for the statistical methods used to analyse the data. This will be discussed in section 5.3.1.

The fatigue life results are presented and statistically analysed in section 5.3.3. This is followed by presentation and statistical analysis of the primary fatigue origin data in section 5.3.3.

5.3.1 Statistical methods for analysing the data

A survey of the statistical methods for analysing the AFWAL data is given in figure 5.2. Owing to the limited number and unequal sample sizes of the fatigue life data it had to be assumed that they at least approximated to random samples from log-normally distributed populations with equal variance. Unequal sample sizes also meant that modified versions of the least significant difference test and Durcan's new multiple range test would have to be used for "fine tuning" the analysis of variance results. More details of the statistical methods are given in Appendix 11.

5.3.2 Fatigue life data

The latigue life data are shown in figure 5.3. These data indicate that pre-exposure + fatigue in salt spray resulted in shorter lives than fatigue in air. This was contirmed by two-way analysis of variance, the results of which are summarised in table 5.3. Since there were only two test schedules representing the effect of environment (latigue in air, pre-exposure + fatigue in salt spray) it is obvious that the significant difference is between them. Thus it was not necessary to "fine tune" this result using the least significant difference test.

According to the analysis of variance the other potential sources of variation (fastener system, environment: lastener system interactions) were not significant. These were further investigated using bundan's new multiple range test. The results are given in table 5.4. For both constant amplitude and FALSTAFF loading and for a given test schedule (environmental condition) there were no significant differences in fatigue lives owing to different fastener instillations.

5.3.3 Primary fatigue origin data

Yates' corrected χ^2 test and Fisher's exact test were used to analyse the primary fatigue origin data listed in table 5.2. Owing to the limited number of data it was not possible to analyse separately for each combination of fatigue load history, environment and fastener system. Instead various "lumped" combinations were examined including combining data for constant amplitude and FALSTAFF leading. This is telt to be justified since off... results (see the NLR and LRTH contribution to FACT) show that the dependence of primary fatigue origin locations on stress level is similar for constant amplitude and FALSTAFF loading, such that the same trends are obtained for a constant amplitude $S_{\rm max}$ of 144 MPa and a FALSTAFF $S_{\rm max}$ of 238 MPa. The results of the tests are summarised in table 5.5. Both environment (Latique testing schedule) and fastener system had significant effects on the locations of primary latique origins, as follows:

- (1) Changing from fatigue in air to pre-exposure + fatigue in salt spray promoted failure initiation in the bores (E/Q) and countersink areas (B/N, C, D) of the fastener holes, especially for specimens with slight press fit Bi-Loks installed dry as per cFCTP core programme.
- (2) Use of SLEEVbolts promoted failure initiation in the countersink areas (C. D) of the fastener holes. This effect is especially noticeable for specimens fatigued in air, see table 5.2.

5.4 Discussion

Use of the 1½ dogbone specimen for this test programme is a fairly severe test of the efficacy of the SLEEVbolt fastener system. Under load the 1½ dogbone specimen exhibits secondary bending that increases when the clearance between fasteners and holes is reduced, see references (?, %) and Appendix I. This characteristic behaviour tends to nullify the usually beneficial effect on tatigue life of using interference fit fasteners.

On the other hand, the equivalent fatigue lives of specimens containing Bi-Loks and SEEFVbolts demonstrates the usefulness of SLEEVbolts for repairing a structure.

Changing from fatigue in air to pre-exposure + tatigue in salt spray resulted in significantly shorter fatigue lives. Wet installation of press fit Hi-Loks using inhibited polysulphide scalant made no difference.

5.5 Conclusions

- (1) The usefulness of SLEEVbolts for repairing aircraft structures has been demonstrated.
- (2) Wet installation of press fit Hi-Loks using inhibited polysulphide scalant was not beneficial to corrosion fatigue resistance.
- (3) Changing from fatigue in air to pre-exposure + fatigue in salt spray promoted failure initiation in the bores and countersink areas of fastener holes and reduced the number of failures commencing at faying surfaces.
- (4) Use of SLEEVbolts instead of press fit Hi-Loks promoted failure initiation in the bare countersink areas of fastener holes.

5.6 References

- R.J.H. Wanhill and J.J. De Luccia, "An AGARD-coordinated corrosion fatigue cooperative testing programme", AGARD Report No. 695, February 1982.
- N.R. Ontko, "Evaluation report: supplemental data in support of the NATO-AGARD coordinated corrosion fatigue cooperative testing programme (CFCTP)", AFWAL Report AFWAL/MLS 82 - 48, June 1982.
- "Hi-Lok and Hi-Lok/Hi-Tigue fasteners installation instructions", Hi-Shear Corporation, 2600 Skypark Drive, Torrance, California, USA.
- "SLEEVbolt interference fastening system", SLEEVbolt Systems Committee, 1700 West 132nd Street, Gardena, California, USA.
- "Description of a Fighter Aircraft Loading STAndard For Fatigue evaluation", Combined Report of the F + W, LBF, NLR and IABG, March 1976.
- 6. J.B. de Jonge, "Additional information about FALSTAFF", NLR Technical Report TR 79056 U. June 1979.
- 7. H.H. van der Linden, "Fatigue rated fastener systems", AGARD Report No. 721, November 1985.
- 8. H.H. van der Linden, L. Lazzeri and A. Lanciotti, "Fatigue rated fastener systems in 1½ dogbone specimens", NLR Technical Report TR 86082 U. August 1986.

TABLE 5.1: OVERVIEW OF THE AFWAL TEST PROGRAMME FOR PACT

• 3.2 mm thick 7075-T76 aluminium alloy sheet (CFCTP core programme mar:rial) MATERIAL PRESS FIT HI-LOK FASTENERS OR SLEEVBolts SPECIMEN 0 0 300 mm SLEEVbolt specimens: chromate conversion + inhibited epoxy polyamide primer (except fastener holes) + aliphatic polyurethane topcoat PROTECTION SYSTEMS Hi-Lok specimens: chromate conversion + inhibited epoxy polyamide primer (except fastener holes) + aliphatic polyurethane topcoat and with or without inhibited polysulphide sealant in the fastener holes Hi-Lok specimens: two stress cycles at low temperature to crack paint and primer around the fastener heads PROTECTION SYSTEM constant amplitude, $\rm S_{min}/S_{max}$ = 0.1, $\rm S_{max}$ = 144 MPa; FALSTAFF, $\rm S_{max}$ = 238 MPa FATIGUE LOADING FATIGUE ENVIRONMENTS • laboratory air; 5 % aqueous NaCl salt spray with pH 4 • 72 hours in 5 % aqueous NaCl + $$0_2$$ at 315 K STATIC PRE-EXPOSURE CECTP CORE PROGRAMME SPECIMENS SCHEDULES FATIGUE LOAD HISTORY Hi-Lok. Hi-Loks AS RECEIVED REINSTALLED REPLACED BY WITH SEALANT SLEEVBOLCS constant amplitude, cycle frequency 2 Hz * fatigue in air TEST PROGRAMME FALSTAFF. cycle frequency 7 Hz • pre-exposure constant amplitude, cycle frequency 0.5 Hz fatigue in salt sprzev • FALSTAFF, sait spray cycle frequency 2 Hz Previously tested in the CFCTP core programme STATISTICAL ANALYSIS • fatigue lives and primary fatigue origins

TABLE 5.2: FATICUE LIFE AND PREMARY FATICUE ORIGIN DATA FOR THE ALWAL CONTRIBUTION TO PACT

			FATIGUE LIFE TO FAILURE (CYCLES	FATICUE LIFE TO FAILURE (CYCLES OR FLIGHTS, AND LOG MEAN VALUES)
FASTENER SYSTEMS	FATIGUE LOAD HISTORY	CHARACTERISTIC STRESS LEVEL	A LOCATIONS OF PRIMARY	AND LOCATIONS OF PRIMARY ORIGINS OF FATIGUE*
			fatigue in air	pre-exposure + fatigue in salt spray
slight press fit HI-Loks	constant amplitude, R = 0.1	S max - 144 MPa	152,700 G 244,600 G 104,200 G 293,800 F 183,888	139,690 E 79,830 F 73,840 C,D 67,940 R 96,484
installed dry as per CFTP cere programme	FALSTAFF	S = 238 MPa	22,572 G 16,772 C 25,529 G 19,972 S 20,961	8,080 B 14,231 N 11,280 B
slight press fit Hi-Loks	constant amplitude, R - 0.1	S = 144 MPa		37,337 F 36,516 F 76,426 R 47,057
reinstalled with scalant.	FALSTAFF	S _{max} = 238 MPa		16.572 Q 10.880 13.428
SLEEVholts	constant amplitude, R = 0.1	S max = 144 MPa	441,410 C 266,360 F 706,070 C 174,20 C 346,837	39,410 D 107,150 D 30,650 Q 98,130 F 59,698
interference fit)	FALSTAPF	S _{max} = 238 MPa	23,231 D,F 28,729 S 16,112 D 72,072	12,031 E 6,529 D.E 7,231 D.E 11,772 N

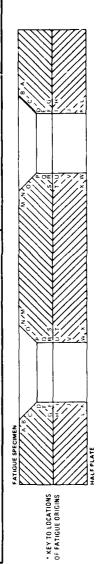


TABLE 5.3: SUMMARY OF ANALYSIS OF VARIANCE RESULTS (95 % CONFIDENCE)

FATIGUE LGAD HISTORY	CHARACTERISTIC STRESS LEVEL	SOURCE OF VARIATION	E DISTRIBUTION VALUE	F _o	SIGNIFICANT EFFECTS OF EXPERIMENTAL VARIABLES (F _B > F DISTRIBUTION VALUE)
constant amplitude, R = 0.1	S - 14+ MPa	MAIN EFFECTS - environment - fastener system	4 60 3 74	24-29 C 89	ves na
	Bax	2-WAY INTERACTIONS environment fastener system	. 60	3 88	tid
FALSTAFF	S - 738 MP4	HAIN EFFECTS environment fastener system	Au 3 +8	1 28 65	Ve.5 119
	Dax.	F-WAY INTERACTIONS environment fastener system	. 8.		tia .

TABLE 5.4: SUMMARY OF DUNCAN'S NEW MULTIPLE RANGE TEST RESULTS (95 % CONFIDENCE)

FATISTE LOAD HISTORY		gasta	un amplitie	P = . 1				FAL CAFE		
FATIGUE TESTING SCHEDULE	forward	e it air	pre-exposite spray	• tarky e	in salt	fatiga	- co acr	gie exploses opras	· trare	er - 127
PASTENER SYSTEM	dry Hi loks	SLEEVboits	ofer He Lors	sected Halloks	strey-olds	dry et 1945	degrades	dr. e. i.e.	service Excises	0.8808 0.50
LOW MEAN FATIGUE LIFE	5.265	3.9	T 1, 5,5	4.675	,	¥ 321		·		
SAMPLE SIZE n	1						•	•		•

FATIVUE DVAD HISTORY AND CHARACTERIST STRESS LEVEL	TEST PARAMETER	1	COMPARIZONS HE DATA FER TEST PARAMETER	TOTAL PROPERTY OF BEING THE NEW YORK BOOK BOOK BOOK BOOK BOOK BOOK BOOK B	. 548	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	fatigue in air	7	STEEN die die Britisks.	*		
constant amplitude R = 0 l	pre exposure * fatigue		dry Hi-Loks scaled Hi Loks dry Hi Loks SIEEVbol's*		•	
S = las MPa	in salt sprav		SLEEVboits sealed H' Loks	1.14	•	f +
	SLEEVholts		fatigue in all pre exposure .	1.4		20.5
	dry Hi Loks	17	Tarigue in sair spraz		•	1.5
	farigue in air		SLEEVBolts odry Hi Loks	+ +,+	34, *	ev.
	pre exposure + tatigue in salt sprav		Sealed Hi Loke SLEVboits sealed Hi Lors dry Hi Joks	100		7.1
FALSTAFF, S - 7:8 MF4	in ani spiar		dry Mi-Loks SiEE/holis	161	34.5	,
	SILEEVE-11: S		fatigue in air pre exposure	2.728	(- 14	Alexa.
	drv Hi-Loks		fatigue to sale sprav	0.329	in ter	Net s

Owing to equal sample size these comparisons can also be made using the unmodified version of funcations of the core result is obtained.

TABLE 5.5: SUPMARY OF VATES' CORRECTED (2 TEST AND FISHER'S EXACT TEST RESULTS FOR THE PRIMARY FATICUE ORIGIN DATA (95 % CONFIDENCE)

SOURCE OF ASSOCIATION	FATIGUE LOAD HISTORY	CHARACTERISTIC STRESS LEVEL	CRITICAL VALUE OF X _{0.05;1} OR a	xc or P	SIGNIFICANT ASSOCIATION $(\chi_c^2 > \chi_0^2, 05; 1)$ OR $(P < \alpha = 0.05)$
		•			
ENVIRONMENT (FATIGUE	constant amplitude, R - 0.1	S _{max} - 144 MPa	70 6 - 2.5	2 - 4 14	
TESTING SCHEDULE)	FALSTAFF	S _{max} = 238 MPa	x0.05;1 = 3.84	1 2 1.	sak
				:	
ENVIRONMENT (FATIGUE	constant amplitude, $R = 0.1$ $S_{max} = 144$ MPa	S = 144 MPa	α = 0.05	P = 0.465	no
FATIGUE LOAD HISTORY	FALSTAFF	S _{max} = 238 MPa	a = 0.05	P = 0.006	yes
FASTENER SYSTEM (SLEEVbolts	constant amplitude, R = 0.1 S _{max} = 144 MPa	S = 144 MPa	70 6 6	2 - 7 13	
VERSUS DRY Hi-Loks)	FALSTAFF	S _{max} = 238 MPa	χο.οs;1 - 3.84	χ <u></u> - τ. τ.	yes
FASTENER SYSTEM (SLEEVbolts	constant amplitude, R • 0.1	S = 144 MPa	σ = 0.05	P = 0.109	ou
FATIGUE LOAD HISTORY	FALSTAFF	S = 238 MPa	so:0 = p	P - 0.145	ou

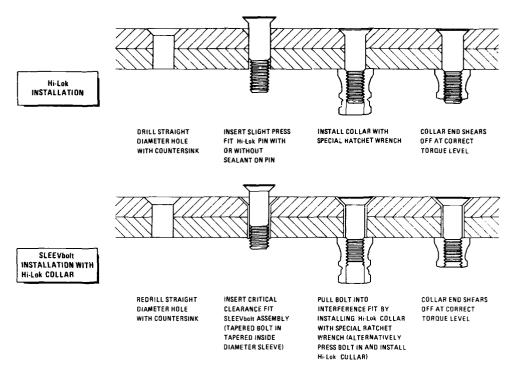


Fig. 5.1 Fastener systems used in the AFWAL contribution to FACT

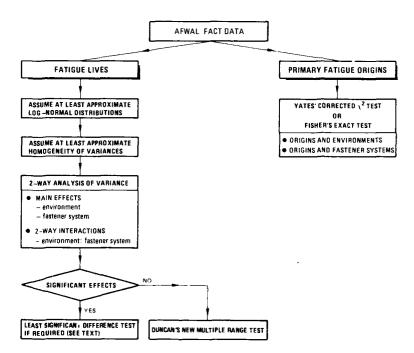


Fig. 5.2 Survey I statistical methods for analysing the AFWAL data for FACT

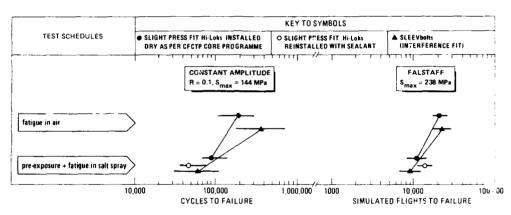


Fig. 5.3 AFWAL fatigue life data contribution to the FACT programme

6. THE NDRE CONTRIBUTION TO THE FACT PROGRAMME

L. Søvold, Norwegian Defence Research Establishment NDRE, Division for Weapon and Equipment, Kjeller, Norway

K. Asbøll, A/S Raufoss Ammunisjonsfabrikker, Metallurgy Division, Raufoss, Norway

6.1 Introduction

The NDRE contribution to FACT compared the fatigue and corrosion fatigue properties of 7075 aluminium alloy sheet in the T76 and RRA (retrogression and reage) conditions. As is well known, the T76 condition provides improved resistance to stress corrosion compared to the T6 temper but is accompanied by a strength reduction of 5-10 %. The RRA treatment was developed to avoid this strength loss (reference 1).

In the first instance 7075-T6 sheet was supplied to the NDRE from a common batch purchased by the NLR and also supplied to the IABG and RAE, see table 1.1 of the introduction to this part of the report. This sheet material was subsequently converted to the T76 and RRA conditions by the A/S Raufoss Ammunisjonsfabrikker.

Conversion to the T76 condition is achieved simply by overageing 7075-T6 for several hours (typically about 10 hours) at 463 ± 3 K. The RRA treatment is a more complex two-step process. 7075-T6 is first "retrogressed" at a temperature between 473 - 533 K for a short time (1 - 2 minutes at most). This is usually accomplished in a silicone oil bath in view of the short times involved. The material is then water quenched and reaged at 393 K for between 16 - 48 hours.

In the present work the RRA treatment consisted of retrogression in a salt bath at $513~\mathrm{K}$ for $35~\mathrm{s}$, followed by reageing at $393~\mathrm{K}$ for $24~\mathrm{hours}$.

6.2 The Test Programme

An overview of the test programme is given in table 6.1. All specimens were of the $1\frac{1}{2}$ dogbone configuration discussed in detail in reference (2) and recommended for the F CT programme. Cadmium plated steel Hi-Lok fasteners were used. The diameter of the holes for the fasteners was 6.306 ± 0.044 mm, which corresponds to a slight press fit, see figure 1.1 of the introduction to this part of the report.

After conversion of the sheet material to the T76 and RRA conditions the specimens were manufactured, painted and assembled by the U.S. Naval Air Development Centre NADC. The specimens had the same U.S. Navay paint scheme as in the CFCTP core programme, see reference (2) and Part II of this report.

6.2.1 Material properties

Engineering property data of the 7075 sheet as supplied in the T6 temper and after conversion to the T76 and RRA conditions are compared with data for the 7075-T76 sheet used in the CFCTP core programme as follows:

MATERIALS	0.2 % YIELD STRESS (MPa)	UTS (MPa)	ELONGATION %
7075-T6 7075-T76 (conversion) 7075-T6RRA (conversion)	547 485 562	582 537 582	11.2 17 16
7075-T76 (CFCTP coie	479 (max)	550 (max)	11.6
programme)	455 (min)	541 (min)	11.6

6.2.2 Mechanical testing conditions (static prestressing and fatigue)

All stresses were defined in terms of loads on the total cross-section of the fatigue specimen dogbone at the location of the centreline between the fasteners, i.e. the fastener holes were included in the cross-sectional area.

Before environmental exposure and fatigue testing all specimens were prestressed at 209 : 10 K by applying two load cycles up to either the maximum stress occurring in the subsequent fatigue test or 215 MPa, whichever was the greater. The procedure for this is discussed in reference (2). The purpose of this low temperature prestressing was to ensure that the paint and primer layers were brittle and would crack around the Hi-Lok fastener holes, thereby simulating service damage that enables corrosion and corrosion fatigue to occur.

The characteristic fatigue stress levels for the test programme have been indicated already in table 6.1. These stress levels were obtained from the pilot tests described in section 1.4 of this part of the report. Detailed procedures for fatigue testing are given in reference (2). The tatigue load histories were constant amplitude sinusoidal loading with a stress ratio R = S_{min}/S_{max} of 0.1 and the manoeuvre spectrum FALSTAFF (references 3, 4). A short description of FALSTAFF is given in section 1.3 of this part of the report.

6.2.3 Environmental conditions (pre-exposure, fatigue and corrosion fatigue)

Specimens scheduled for static exposure to an aggressive environment before fatigue testing were sealed at the faying surface side edges and Hi-Lok collars to prevent corrosion except in the fastener head areas. The procedure for static pre-exposure is described in detail in reference (2). The specimens were immersed for 72 hours in 5 % aqueous NaCl acidified by a predetermined amount of SO_2 gas and

maintained at 315 ± 2 K. The specimen cleaning procedure after pre-exposure followed the amendment in section 4.4 of Part 2 of reference (2).

For fatigue testing all specimens were electrically insulated from the loading grips and bolts by polymeric liners and bushings. Specimens to be fatigued in salt spray were also sealed at the faying surface side edges and Ni-Lok collars. The fatigue environments were laboratory air and 5 % aqueous NaCl salt spray acidified with $\rm H_2SO_4$ to pH 4, both at a nominal temperature of 295 K. The salt spray tests were done in a specially constructed cabinet, fully described in reference (2).

The nominal cycle frequencies for each combination of fatigue load history and environment were as follows:

PATTOUT LOAD HYOTODY		NOMINAL	CYCLE FREQUENCY
FATIGUE LOAD HISTORY	fatigue	in air	fatigue in salt spray
constant amplitude, R = 0.1	_	Hz	0.5 Hz
FALSTAFF	15	Hz	2 Hz

6.3 Results

The complete set of fatigue life and primary fatigue origin data for the NDRE contribution to FACT is given in table 6.2. The way in which the test programme was set up and the results had consequences for the statistical methods used to analyse the data. This will be discussed in section 6.3.1.

The fatigue life results are presented and statistically analysed in section 6.3.2. This is followed by presentation and statistical analysis of the primary fatigue origin data in section 6.3.3.

6.3.1 Statistical methods for analysing the data

A survey of the statistical methods for analysing the NDRE data is given in figure 6.1. Owing to the limited number of data it had to be assumed that they at least approximated to random samples from log-normally distributed populations. Also, unequal sample sizes for the FALSTAFF data and comparison of the constant amplitude data with CFCTP core programme data meant that equal variances had to be assumed for analysis of variance, and that for some "fine tuning" of analysis of variance results modified versions of the least significant difference test and Duncan's new multiple range test had to be used. More details of the statistical methods are given in Appendix II.

6.3.2 Fatigue life data

The fatigue life data are shown in figure 6.2. In a general way these data indicate that siress leve' (FALSTAFF), environment and material had significant effects on fatigue lives. As will be shown, this wa confirmed by statistical analysis.

The Box test was used to check homogeneity of variances of the NDRE constant amplitude data. The variances were found to be equal, see table 6.3. Analysis of variance was carried out separately for the constant amplitude and FALSTAFF data. The results are summarised in table 6.4. The main effects of stress level, environment and material were found to be significant. Because there were only two stress levels for the FALSTAFF tests and only two test schedules representing the effect of environment (fatigue in air, pre-exposure + fatigue in salt spray) it is obvious that the significant differences were between each stress level and each environment. For the FALSTAFF tests it is also evident that the significant effect of material is due to 7075-T6RRA specimens having longer average fatigue lives than 7075-T76 (conversion) specimens.

For the constant amplitude tests there were three material conditions. The least significant difference test was therefore used to "fine tune" the significant material effect indicated by analysis of variance. The results are given in table 6.5 and show that also for constant amplitude loading the 7075-T6RRA specimens had significantly longer average fatigue lives than 7075-T76 specimens.

The other potential sources of variation (2-way and 3-way interactions) were not found to be significant by analysis of variance. These were further investigated using Duncan's new multiple range test. Table 6.6 lists the results, which may be described as follows:

- (1) The effect of stress level (FALSTAFF) was significant for each environment and material.
- (2) The effect of environment depended on load history, stress level and material. Changing from fatigue in air to pre-exposure + fatigue in salt spray was especially significant in reducing the fatigue lives of 7075-T6RRA specimens tested under constant amplitude loading and FALSTAFF with $S_{max} = 289 \text{ MPa}$.
- (3) Although 7075-T6RRA specimens generally had significantly longer average fatigue lives than 7075-T76 specimens, this was not true for all combinations of load history, stress level and environment. Changing from fatigue in air to pre-exposure + fatigue in salt spray tended to reduce the differences between materials.

6.3.3 Primary fatigue origin data

Yates' corrected x^2 test and Fisher's exact test were used to analyse the primary fatigue origin data listed in table 6.2. The results are summarised in table 6.7. Only one significant effect was found,

namely the influence of environment (fatigue testing schedule) on the locations of primary fatigue origins in specimens tested with FALSTAFF. Specifically, changing from fatigue in air to pre-exposure + fatigue in salt spray promoted fatlure initiation in the bores (E/Q) and countersink areas (A/M, B/N) of the fastener holes, especially for S_{max} = 238 MPa.

6.4 Discussion

This test programme has shown that the retrogression and reageing (RRA) treatment for 7075 aluminium alloy sheet has two important advantages compared to the conventional T76 overageing treatment. The static yield and ultimate strengths of 7075-T6RRA are significantly higher, by about 15 % and 8 % respectively, and are equivalent to 7075-T6 values. This confirms the work of cina (reference 1). Secondly, when assembled into specimens representing realistic structural joints the fatigue and corrosion fatigue resistances of 7075-T6RRA are generally better than those of 7075-176.

6.5 Conclusions

- (1) Retrogression and reageing (RRA) enabled 7075 aluminium alloy sheet to retain T6 strength levels combined with generally better fatigue and corrosion fatigue properties than 7075-T76.
- (2) The effects of stress level and environment on fatigue lives were significant. Changing from fatigue in air to pre-exposure + fatigue in salt spray tended to reduce the differences between 7075-T6RRA and 7075-T76.
- (3) From the tests with FALSTAFF it was found that changing from facigue in air to pre exposure fatigue in said spray promoted failure initiation in the bores and countersink areas of fastener holes and reduced the number of failures commencing at faying surfaces.

6.6 References

- B.M. Cina, "Reducing the susceptibility of alloys, particularly aluminium alloys, to stress corrosion cracking", U.S. Patent 3,856,584, December 24 (1974).
- R.J.H. Wanhill and J.J. De Luccia, "An AGARD-coordinated corrosion fatigue cooperative testing programme", AGARD Report No. 695, February 1982.
- "Description of a Fighter Aircraft Loading STAndard For Fatigue evaluation", Combined Report of the F + W, LBF, NLR and IABG, March 1976.
- 4. J.B. de Jonge, "Additional information about FALSTAFF", NLR Technical Report TR 79056 U., June 1979.

TABLE 6.1: OVERVIEW OF THE NDRE TEST PROGRAMME FOR FACT

MATERIAL 3.2 mm thick 7075-T76 aluminium alloy sheet converted to the T76 and RRA conditions PRESS FIT HI-Lok FASTENERS SPECIMEN PROTECTION SYSTEM chromate conversion + inhibited epoxy polyamide primer (except fastener holes) + aliphatic polyurethane topcoat two stress cycles at low temperature to crack paint and primer around the fastener heads PROTECTION SYSTEM DAMAGE FATIGUE LOADING constant amplitude, $S_{min}/S_{max} = 0.1$; FALSTAFF FATIGUE ENVIRONMENTS laboratory air; 5 % aqueous NaCl salt spray with pH 4 STATIC PRE-EXPOSURE • 72 hours in 5 % aqueous NaCl + SO₂ at 315 K MATERIAL CONDITIONS FATIGUE LOAD CHARACTERISTIC SCHEDULES HISTORY STRESS LEVEL 7075-T76 70/5-T6RRA S_{max} - 144 MPa constant amplitude • fatigue S = 289 MPa in air TEST PROGRAMME FALSTAFF • S = 144 MPa constant amplitude • • pre-exposure + fatigue in S_{max} - 289 MPa • sali spray FALSTAFF S_{max} - 238 MPa • STATISTICAL ANALYSIS • fatigue lives and primary fatigue origins

TABLE 6.2: FATIGUE LIFE AND PRIMARY FATIGUE ORIGIN DATA FOR THE NDRE CONTRIBUTION TO FACT

			FATIGUE LIFE TO FAILURE (CYCLES OR FLIGHTS, AND LOG MEAN VALUES)	R FLIGHTS, AND LOG MEAN VALUES)
MATERIAL CONDITIONS	FATIGUE LOAD HISTORY	CHARACTERISTIC STRESS LEVEL	LOCATIONS OF PRIMARY ORIGINS OF FATIGUE*	ORIGINS OF FATIGUE*
			fatigue in air	pre-exposure + fatigue in salt spray
	constant amplitude, R - 0.1	S max - 144 MPa	104, 910 S 65, 660 E 100, 820 S 88, 557	53,250 Q 44,930 E 56,580 D 51,346
7075-176	71 77 17	S max = 289 MPa	3,131 E 3,578 E 1,731 E,Q 1,601 E	1,833 E,R 1,230 N 1,631 Q 1,544
		S max = 238 MPa	6,594 S 12,733 S 13,332 G 12,597 G	7,604 E 6,943 Q 11,623 N 8,498
	constant amplitude, R - 0.1	S max = 144 MPa	399,420 0 557,470 C 130,410 G 307,365	90,250 B 92,700 C 1103,730 A 95,384
7075-TERRA	7740	S max = 289 MPa	4,132 Q 10,256 S 7,996 G 4,001 E 6,068	2,633 Q 6,432 b 1,973 Q 3,221
	11110001	S max - 238 MPa	18, 396 G 11, 396 G 8, 233 G 15, 375 G	12,103 B 15,973 M 13,939 Q 13,916

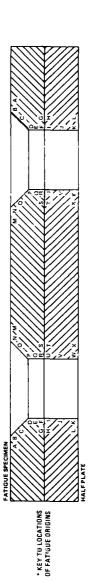


TABLE 6.3: BOX TEST FOR HONOGENEITY OF VARIANCES OF NDRE CONSTANT AMPLITUDE DATA (95 % CONFIDENCE)

vlog s²	
log s²	
SAMPLE VARIANCE S ² SS	
711.2	
DEGREES OF FREEDOM v = n - 1	
SUM OF SQUARES SS - E(x ₁ -x) ²	
SAMPLE SIZE n	
SAMPLE NUMBER	
FATIGUE TESTING SCHEDULE	

	1 7075-T76	m -	0.025	2	0.500	0.013	- 1.895	- 3.790
	2 /U/3-10KKA	^	0.7.0	7	00.300	601.0	10.362	1.923
	k – 2							
	MUS	1	1		1.000		1	- 5.713
	POOLED	ı	0.243	7	0.250	0.061	- 1.2:6	998.4 -
futigue in air	DIFFERENCE	ı	ı	,	D ₁ = 0.750	1	1	D ₂ = 0.847
	K - 2.3026 D ₂ - 1.950	D ₂ - 1.950	$L = \frac{D_1}{3(k-1)} = 0.250$		v ₁ - k - 1 - 1	$v_2 = \frac{k+1}{L^2} = 48$	87	
	D - 1 - 1 +	$-\frac{v_2}{1-L+(2/v_2)}-K-58.682$. 682	F _o	$F_o = \frac{K/v_1}{D/v_2} = 1.595 \text{ WITH 1 AND } 48 \text{ DEGREES OF FREEDOM}.$	TH 1 AND 48 DEGR	EES OF FREEDOM.	
	FOR α - 5 &	AND 1 AND 48 DE	GREES OF FREEDOM	F = 4.04. SINC	FOR a = 5 % AND 1 AND 48 DECREES OF FREEDOM F = 4.04. SINCE 1.595 < 4.04 THE POPULATION VARIANCES ARE EQUAL.	E POPULATION VAR	IANCES ARE EQUA	. ;

	1 7075-T76 2 7075-T6RRA	8 E	0.005	2 2	0.500	0.003	- 2.570 - 2.988	- 5.139 - 5.975
	k = 2							
	MUS	,	1	,	1.000	ı	1	- 11.114
	POOLED	1	0.007	7	0.250	0.002	- 2.757	- 11.028
prexposure +	DIFFERENCE	ı	1	1	D ₁ = 0.750	1	•	D ₂ = 0.086
fa igue in salt spray	K - 2.3026 D ₂ - 0.198	2 - 0.198	$1. = \frac{D_1}{3(k-1)} = 0.250$		v ₁ - k - 1 - 1	$v_2 = \frac{k+1}{1,^2} = 48$	87	
	$D = \frac{1}{1 - \frac{1}{1 + 2}}$	$\frac{\sqrt{2}}{1 - L + (2/\sqrt{2})} - K = 60.434$.434	٠ •	$F_o = \frac{K/v_1}{D/v_2} = 0.157 \text{ WITH 1 AND 48 DECREES OF IREEDOM.}$	TH 1 AND 48 DECR	EES OF PREEDOM.	
	70R a = 5 %	AND 1 AND 48 DE	FOR a = 5 % AND 1 AND 48 DEGREES OF FREEDOM F = 4.04, SINCE 0.157 < 4.04 THE POPULATION VARIANCES ARE EQUAL.	F - 4.04. SINCE	0.157 < 4.04 TH	E POPULATION VAR	IANCES ARE EQUAL	

TABLE 6.4: SUMMARY OF AMALYSIS OF VARIANCE RESULTS (95 % CONFIDENCE)

FATIGUE LOAD HISTORY	CHARACTERISTIC STRESS LEVEL	SOURCE OF VARIATION	F DISTRIBUTION VALUE	í.,°	SIGNIFICANT EFFECTS OF EXPERIMENTAL VARIABLES (F _o > F DISTRIBUTION VALUE)
constant amplitude, R = 0.1	S - 144 MPa	MAIN EFFECTS environment material	3.97	44.20	yes
	max	2-WAY INTERACTIONS - environment : material	3.12	0.72	OII
FALSTAFF	S - 289 MPa	MAIN EFFECTS - stress - environment - material	4.35 4.35 4.35	84.71 4.38 16.05	yes yes yes
	max AND S MPa max - 238 MPa	• 2-WAY INTERACTIONS - stress : environment - stress : material - environment : material	4.35 4.35 4.35	2.36 3.67 0.05	on 5 on
		3-WAY INTERACTIONS - stress : environment : material	4.35	0.87	υO

TABLE 6.5: LEAST SIGNIFICANT DIFFERENCE TEST RESULTS (95 % CONFIDENCE) FOR THE EFFECT OF MATERIAL ON CONSTANT AMPLITUDE FATIGUE LIFE

MATERIAL	7075-T76 (conversion)		7075-T6RRA	7075-T76 (CFCTP)
LOG MEAN FATIGUE LIFE	4.829	-	5.234	4,972
SAMPLE SIZE n	9	2	9	70
0,	t _{0.025;76} -1.99		MS residual - 0.046	9*0
COMPARISONS OF MATERIALS	4		SIGNIFICANT DIFFERENCE (t > t _{0.025,76})	t > t _{0.025;76})
7075-T6REA/7075-T76 (conversion)* 7075-T6REA/7075-T76 (CFCTP) 7075-T76 (conversion)/7075-T76 (CFCTP)	3.27 2.87 1.57		yes yes no	
4				

*
Owing to equal sample size this comparison can also be made using the unmodified least significant difference test. The same result is obtained.

TABLE 6.6: SURMARY OF DUNCAN'S NEW MULTIPLE RANGE TEST RESULTS (95 % CONFIDENCE)

-		The Branch of the Control of the Con											140,0349								
ਜ਼	, , , , , , , , , , , , , , , , , , ,	1 (N		•		, ē	* (M. 1	:			4				d de c	a Mb.e				Saan - 15 KPa	
٠	tattigue in atf	pre-exponent tradition is sail square	1			11 to 1 t				. i	-			Territoria seguina		100	01.1804.141	·		pre expueure - fatigue to	32111
	Personal construits and the fire	2. 2. 2. 107 2. 2. 2. 107	*##**			- Mary Jr.				A STATE OF THE STA	Jenny	- opportunition - Tables -		on contraction	Manager C. Washington	. :	TARRA .	No. 176 conversion	7075 TSERA	remeration to your	1 10
-	44	Ì.,		* 1/4 *			1.74	144		4.	7		1			1 144		. 60. *	461 -	424 1	131
-	† · · ·		;·		٠	٠,												,		_	-
1		PATILITE LIMIN HEETAN AND BARTEN OFFI ATTENDED TO SERVICE TO SERVICE TO SERVICE ATTENDED TO SERVICE ATTEND	Even AND Thress Lighter			CARDATOCK - FIATA RB DOL PARADOR	, <u>.</u>	TI IT PARAMETER	:	ATTE	PPERMER RETURNS	STEPLET BEBUS ON $\int_{B_{1}^{-1}B_{1}}^{B_{1}^{-1}} \left \exp \left(\frac{G_{2}(B_{1})}{G_{2}(B_{2})} \right) \right $ (1934) As the step of the ste	1 895 845		V V V V V V V V V V V V V V V V V V V	i de					
				11.00	the light to sold appropriate to		SARRA	97.41.248	ļ		\$ \$		<u> </u>	: .	a ‡:	;					
					1			8 9 90			-				إ						
		* # * * * * * * * * * * * * * * * * * *		1		1				-	12		11		; ;						
		i								: .	1	! 	 5 7		1 4						
				Wilder.	1.1	The Charles				· :	4 1										
				1.	. :	111.0	The state of	render (see in addition) and the second and the sec	i de s	1			†:								
		140 %						age or a erora			7				8.45						
		; :				-		per exposure a fingular to war agree .	the property at		9		,		ţ						
						THE STATE OF THE S		The section of I							:						
		į					1.44A	- FERN		•											
					1		-	disconnective of			1										
				1	the case of the colors		YMAY .	- NA		÷ -			;		ç						
		1				•		Transmiration							÷						
		_		š			. !	milds a ground week to be a provention and	2 . 4 . 1 . 4												
		<u> </u>			1 1 1 1 1			2 4 1 1 1 2 1 1 1 1 1 1 1 1 1		-					,	_					
			1	and the state of	1		******	- PA		_					2						
				_	:	•		the same or all			•										
		_					1	of the suppression of the base of the same	7				•		ė						

TABLE 6.7: SUMMARY OF YATES' CORRECTED X2 TEST AND FISHER'S EXACT TEST RESULTS FOR THE PRIMARY FATICUE ORIGIN DATA (95 Z CONFIDENCE)

$\chi_{c}^{2} \text{ OR P } \begin{pmatrix} (\chi_{c}^{2} > \chi_{0}^{2}.05;1) & 0R \\ (\chi_{c}^{2} > \chi_{0}^{2}.05;1) & 0R \end{pmatrix}$ $(P < \alpha = 0.05)$	
x2 OR P	
CRITICAL VALUE OF X ₀ .05,1 OR α	
SOURCE OF ASSOCIATION	
CHARACTERISTIC STRESS LEVEL	
FATIGUE LOAD HISTORY	

00		MATERIAL: 7075-T6RRA	S = 238 MPa	
6.24 yes	$x_{0.05;1}^2 = 3.84 x_c^2 = 6.24$	ENVIRONMENT (FATIGUE TESTING SCHEDULE)	AND	FALSTAFF
			S = 280 MD	

, ,	
ou.	ou
P - 0.091	P = 0.500
a = 0.05 P = 0.091	a = 0.05 P = 0.500
ENVIRONMENT (FATIGUE TESTING SCHEDULE)	MATERIAL: 7075-T6RRA VERSUS 7075-T76 (conversion)
77.6	constant amplitude, K = 0.1 S = 144 Mrs MA'
	amplitude,
	constant

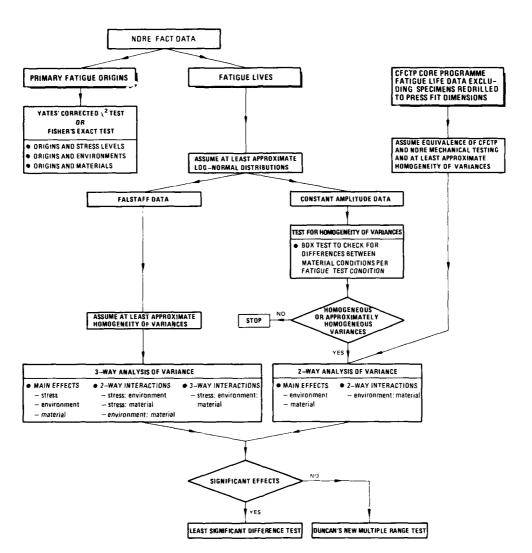


Fig. 6.1 Survey of statistical methods for analysing the NDRE data for FACT

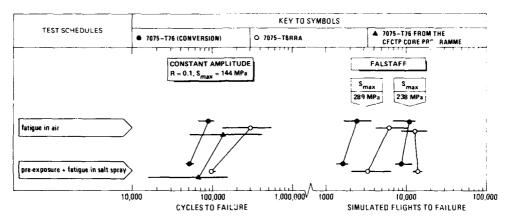


Fig. 6.2 NDRE fatigue life data contribution to the FACT programme and CFCTP core programme fatigue life data. The CFCTP core programme data exclude specimens redrilled to press fit dimensions

7. THE NLR AND LRTH CONTRIBUTION TO THE FACT PROGRAMME

R.J.H. Wanhill, National Aerospace Laboraty y VLR, Structures and Materials Division, Emmeloord, The Netherlands

7.1 Introduction

The Structures and Materials Division of the NLR and the Department of Aerospace Engineering LRTH of Delft University of Technology were joint participants in the FACT supplemental programme. Most of the work was carried out with the support of the Scientific Research Division of the Directorate of Materiel, Royal Netnerlands Air Force, and the Netherlands Agency for Aerospace Programs NIVR.

The primary objective of the NLR and LRTH contribution to FACT was to compare the resistance to corrosion ratigue of alreraft corrosion protection systems and aluminium alloy materials in use in the Netherlands. In addition the effectiveness of AMLGUARD, a water displacing corrosion preventive compound (reference 1), was examined.

To try and place the results in a broader context it was arranged that two of the aluminium alloys, 7075-16 and 7475-1761 clad, came from the same batches of material tested by the NDRE, IABG and RAE, s e table 1.1 of the introduction to this part of the report.

7.2 The Test Programme

An overview of the test programme as it finally evolve' is given in table 7.1. The partial filling-in of the test matrix was the consequence of limited number, of specimens and updating of priorities with respect to choice of fatigue testing schedules.

7.2.1 Materials and specimen configuration

The aluminium alloys used for monolithic specimens were 3.2 mm thick sheets of 2024-T3 Alciad, 7075-T6 and 7475-T761 clad. The 2024-T3/aramid fibre laminates were 3.2 mm thick and built up from 0.6 mm thick 2024-T3 sheets interleaved and adhesively bonded with single armid 143 fabric layers and then plastically strained 0. %. Additional details of the fabrication of these laminates, hereinafter referred to as ARALL (Aramid Reinforced Aluminium Laminate) are given in reference (2).

Engineering property data, based on total crosm sectional area, were as follows:

MATERIALS	0.2 % YIELD STRESS (MPa)	UTS (MPa)	ELONGATION (Z)
2024-T3 Alclau 7075-T6 7473-T761 Had ARALL	350 547 	474 582 498 600	16.5 11.2 12.6 1.8

Note the low elongation to failure for ARALL. In a fatigue-sensitive material this would be disastrous, but ARALL is highly resistant to fatigue (reference 2) as will also become clear in this contribution to the FACT programme.

All specimens were of the $1\frac{1}{2}$ dogbone configuration discussed in detail in reference (3) and recommended for the FACT programme. Cadmium plated steel Hi-Lok fasteners were used. The diameter of the holes for the fasteners was 0.306 \pm 0.044 mm, which corresponds to a slight press fit, see figure 1.1 of the introduction to this part of the report.

7.2.2 Protection systems and specimen assembly

Corrosion protection systems were applied by Fokker Aircraft Factories according to standard process specifications for the F-28, NF-5 and F-16 aircraft. Simplified processing schedules are shown in figure 7.1, which also includes Hi-Lok installation and assembly of the specimens. These processing schedules resulted in the Hi-Lok fastener holes being devoid of protective coatings, i.e. bare aluminium alloy directly contacted the cadmium plated fastener shanks and heads. This is a "worst case" situation which, however, is entirely feasible.

7.2.3 Mechanical testing conditions (static prestressing and fatigue)

All stresses were defined in terms of loads on the total cross-section (but excluding cludding layers if present) of the fatigue specimen dogbone at the location of the centreline between the fasteners, i.e. the fastener holes were included in the cross-sectional area.

Before environmental exposure and fatigue testing all specimens were prestressed at 209 ± 10 K by applying two load cycles up to either the maximum stress occurring in the subsequent fatigue test or 215 MPa, whichever was the greater. The procedure for this is discussed in reference (3). The purpose of this low temperature prestressing was to ensure that the paint and primer layers were brittle and would crack around the Hi-Lok fastener holes, thereby simulating service damage that enables corrosion and corrosion fatigue to occur.

The characteristic fatigue stress levels for the test programme have been indicated already in table 7.1. These stress levels were obtained from the pilot tests described in section 1.4 of this part of the report. Detailed procedures for fatigue testing are given in reference (3). All tests were done using a 900 kN load frame fitted to a WOLPERT-AMSLER/MTT electrohydraulic machine. The clc ed loop system was controlled by an NLR-developed device, MIDAS II (Magnetic tape Input Digital-to-Analogue Signal).

Information on flight simulation load sequences was stored on magnetic tapes and read by a kENNED7/9000 recorder.

The fatigue load histories were constant amplitude sinuscidal loading with a stress ratio $R = \frac{S_{min}/S_{max}}{max}$ of 0.1, the manoeuvre spectrum FALSTAFF (references 4, 5) and the good spectrum MINITWIST (references 6, 7). The peak loads of both spectra were untruncated. Short descriptions of these spectra are given in section 1.3 of this part of the report.

7.2.4 Environmental conditi ns (pre-exposure, fatigue and corrosion fatigue)

Specimens scheduled for static exposure to an aggressive environmen, before fatigue testing a resealed at the faying surface side edges and Hi-Lok collars to prevent corrosion except possibly in the fastener head areas. Some of the specimens were then completely spray coated with AMLGUARO 24 hours before exposure, see the test matrix in table 7.1. The procedure for static pre-exposure is described in detail in reference (3). The specimens were immersed for 72 hours in 5 % aqueous NaCl ucidified by a predetermined amount of $^{\circ}$, gas and maintained at 315 ± 2 K. The specimen cleaning procedure after pre-exposure followed the amendment in section 4.4 of Part 2 of reference (3).

For fatigue testing all specimens were electrically insulated from the loading grips and bolts by polymeric liners and bushings. Specimens to be fatigued in salt spray were also scaled at the faying surface side edges and Hi-Lok collars. The tatigue environments were laboratory air and 5 % aqueous NaCl salt spray acidified with $\rm H_2SO_4$ to $\rm pH/4$, but at a nominal temperature of 295 K. The salt spray tests were done in a specially constructed cabinet, full, described in reference (3).

The nominal cycle frequencies for each combination of fatigue load history and environment were as follows:

PATTOWN LOAD ULCTORY	NOMINA	L CYCLE FREQUENCY
FATIGUE LOAD HISTORY	fatigue in air	fatigue in salt spray
constant amplitude, R = 0.1	2 Hz	0.5 Hz
MINITWIST	15 Hz	5 Hz
FALSTAFF	15 Hz	2 Hz

7.3 Results

The complete set of fatigue life and primary fatigue origin data for the M.R and LRTH contribution to FACT is given in table 7.2. The way in which the test programme was set up and the results had consequences for the statistical methods used to analyse the data. This will be discussed in section 7.3.1.

The fatigue life results are presented and statistically analysed in sections 7.3.2 - 7.3.4. This is followed by presentation and statistical analysis of the primary fatigue origin data in section 7.3.5. Correlations between fatigue lives and primary fatigue origins are discussed in section 7.3.6.

7.3.1 Statistical methods for analysing the data

A survey of the statistical methods for analysing the NLR and LRTH data is given in figure 7.2. Owing to the ilmited number of data it had to be assumed that they at least approximated to random sumples from log-normally u stributed populations. Also, unequal sample sizes for the MINITWIST data and comparison of the constant amplitude data with CFCTP core programme data meant that equal variances had to be assumed for analysis of variance, and that for some "fine tuning" of analysis of variance results modified versions of the least significant difference test and Duncan's new multiple range test had to be used. More details of the statistical methods are given in Appendix II.

7.3.2 Constant amplitude fatigue life data

The constant amplitude fatigue life data are shown in figure 7.3. The data indicate the following trends:

- (1) 7075-T6 specimens had significantly shorter fatigue lives than other specimens.
- (2) The fatigue lives of 2024-T3 specimens and 7475-T761 specimens without interfay sealant were equivalent to those of CFCTP specimens, as indicated by the shaded bar in figure 7.3.
- (3) An interfay sealant was beneficial to the latigue lives of 7475-T761 specimens.
- (4) Coating with AMLGUARD to prevent corrosion during pre-exposure or fatigue in salt spray had little or no beneficial effect on the fatigue lives of 2024-T3 and 7075-T6 specimens.
- (5) Changing the fatigue environment from air to salt spray was more detrimental to fatigue life than pre-exposure.

As will be di-cussed, statistical analysis confirmed trends (1), (3), (4) and (5) and showed trend (2) to be partly true.

Analysis of variance was carried out separately for the NLR constant amplitude data and a combination of NLR and CFCTP core programme data. The results are summarised in table 7.3. The main effects of environment and material were found to be significant in both cases. The environment: material interactions were found to be significant only when the NLR data were analysed separately.

The analysis of variance results were "fine tuned" using the least significant difference test or Duncan's new multiple range test, as appropriate. The results of these tests are listed in tables 7.4 - 7.7, and show the following:

- ullet 7075-T6 specimens had significantly shorter fatigue lives than other specimens, in agreement with (1) above
- for fatigue in air, with or without pre-exposure, the fatigue lives of 2024-T3 specimens and 7475-T761 specimens without interfay sealant were equivalent to those of CFCTP specimens
- for pre-exposure + fatigue in salt spray the fatigue lives of 2024-T3 and CFCTP specimens were equivalent and significantly shorter than those of 7475-T761 specimens without interfay sealant
- 7475-T761 specimens with interfay sealant had significantly longer fatigue lives than other specimens: this confirms the beneficial effect of sealant
- ullet coating with AMLGLARD before pre-exposure had no significant effect on the lives of 2024-T3 and 2075-T6 specimens fatigued in air and salt spray
- an indication that pre-exposure significantly affected fatigue life was found only for 7075-T6 specimens (table 7.5)
- ullet changing the latigue environment from air to salt spray significantly shortened the lives of 2024-T3, 7075-T6 and CFCTP specimens
- 7475-T761 specimens with and without interfay sealant were insensitive to pre-exposure and changing the fatigue environment from air to salt spray.
- 7.3.3 Gust spectrum (MINITWIST) fatigue life data

The MINITWIST fatigue life data are shown in figure 7.4. The data indicate the following:

- ARALL specimens were greatly superior to monolithic 2024-T3 specimens (fatigue lives more than 10X longer at the same stress level).
- (2) Stress level had a significant effect for 2024-T3 specimens.
- (3) Coating with AMLCCARD to prevent corrosion during pre-exposure or fatigue in salt spray had little or no beneficial effect on the fatigue lives of 2024-T3 specimens.
- (4) Fatigue in salt spray was more detrimental to fatigue life than pre-exposure.

Owing to the evident superiority of ARALL it was considered unnecessary to check (1) statistically. However, statistical analysis was used to check and confirm (2) - (4).

The results of two-way analysis of variance are summarised in table 7.3. The effects of stress and environment and their interactions were found to be significant. Because there were only two stress levels it is obvious that the significant difference is between them. Thus it was not necessary to "fine tune" this result using the least significant difference test.

The stress: environment interactions were further investigated using the least significant difference test. The results are given in table 7.8, and show that

- the effect of stress level was significant for all environments (fatigue testing schedules)
- ullet coating with AMLGUARD before pre-exposure had no significant beneficial effect on the lives of 2024-T3 specimens fatigued in air and salt spray
- ullet environmental effects were more significant at the lower stress level (S $_{
 m mf}$ = 89 MPa) and were mainly due to changing the fatigue environment from air to salt spray.
- 7.3.4 Manoeuvre spectrum (FALSTAFF) fatigue life data

The FALSTAFF fatigue life data are shown in figure 7.5. The following trends can be observed:

- (1) Stress level had a significant effect.
- (2) At the higher stress level (S = 289 MPa) the 7075-T6 specimens had significantly shorter fatigue lives than 7475-T761 specimens with interfay sealant. However, the ranges in fatigue lives of 7075-T6 specimens and 7475-T761 specimens without interfay sealant tended to overlap.
- (3) At the lower stress level ($S_{max} = 238 \text{ MPa}$) the 7075-T6 specimens had significantly shorter fatigue lives than both types of 7475-T761 specimens.
- (4) An interfay scalant κ is Leneficial to the fatigue lives of 7475-T761 specimens only at the higher stress level.
- (5) Coating with AMLGUARD to prevent corrosion during pre-exposure or fatigue in salt spray had little or no beneficial effect on the fatigue lives of 7075-T6 specimens.

- (6) 7075-T6 specimens were more sensitive to environmental effects than 7475-T761 specimens. At the lower stress level (S = 238 MPa) 7475-T761 specimens were completely insensitive to environmental effects, as shown by the shaded bar in figure 7.5.
- (7) When environmental effects were present, notably for 7075-76 specimens, the change from fatigue in air to fatigue in salt spray was more detrimental to fatigue life than pre-exposure.

As will be discussed, statistical analysis confirmed all these trends, with minor refinements.

The Box test was used to check for homogeneity of variances of the FALSTAFF fatigue life data. The variances were found to be equal, see tables 7.9 and 7.10. The results of three-way analysis of variance are summarised in table 7.3. The effects of stress, environment and material and most of their interactions were found to be significant. Because there were only two stress levels it is obvious that the significant difference is between them. Thus it was not necessary to "fine tune" this result using the least significant difference test.

The remaining analysis of variance results were "fine tuned" using the least significant difference test or Duncan's new multiple range test, as appropriate. The results of these tests are given in tables 7.11 - 7.13, and show the following:

- the effect of stress level was significant for all environments (fatigue testing schedules)
- at the higher stress level (S_{max} = 289 MPa) the 7075-T6 specimens had significantly shorter fatigue lives than 7475-T761 specimens with interfay sealant; but the fatigue lives of 7075-Th specimens and 7475-T761 specimens without interfay sealant were equivalent for two of the three fatigue testing schedules (fatigue in air, pre-exposure + fatigue in salt spray)
- at the lower stress level (S $_{max}$ = 238 MPa) the 7075-T6 specimens had significantly shorter fittion-lives than both types of 7475-T761 specimens, whose lives were equivalent
- an interfay sealant was significantly beneficial to the fatigue lives of 7475-T761 specimens only at the higher stress level
- coating with AMLGUARD before pre-exposure had no significant effect on the lives of 7075-T6 specimens (atigued in air and salt spray
- at the higher stress level 7075-T6 specimens and 7475-T761 specimens without interfay sealant showed equivalent sensitivity to environmental effects; 7475-T761 specimens with interfay sealant were insensitive to chinging the fatigue testing schedule.
- at the lower stress level 7075-T6 specimens were significantly sensitive to environmental effects but 7475-T761 specimens were completely insensitive
- significant environmental effects were due to changing the fatigue environment from air to salt spray: pre-exposure had no significant effect by itself.

7.3.5 Primary fatigue origin data

The χ^2 test of independence and Yates' corrected χ^2 test were used to analyse the primary fatigue origin data listed in table 7.2. Owing to the limited number of data it was not possible to analyse separately for each combination of types of primary fatigue origin, stress level, environment and material. Instead various "lumped" combinations were examined. The results of the tests are summarised in table 7.14 and qualitatively compared in figures 7.6 - 7.8. Stress level, environment and material usually had significant effects on the locations of primary fatigue origins. In more detail:

- (1) Under constant amplitude fatigue a change from fatigue in air to pre-exposure + fatigue in salt spray promoted failure initiation at the bore/faying surface corners (F/R) of the fastener holes and reduced the number of faying surface (G/S) failures. The effect of changing the material and protection system was also significant: 7475-T761 specimens with or without interfay sealant had no failure initiations at bore/faying surface corners (F/R) and had many more faying surface (G/S) failures as compared to 2024-T3 and 7075-T6 specimens.
- (2) For MINITWIST fatigue of monolithic 2024-T3 specimens the effect of a higher stress level was to promote failure initiation in the bores (E/Q) of the fastener holes and reduce the number of bore/faying surface corner (F/R) and faying surface (G/S) failures. However, changing the fatigue environment from air to salt spray did not have a significant effect on the locations of primary fatigue origins.
- (3) For FALSTAFF fatigue the effect of a higher stress level and changing the fatigue environment from air to salt spray was to promote failure initiation at the bore/faying surface corners (F/R) of the fastener holes and reduce the number of faying surface (G/S) failures. The effect of changing the material and protection system was also significant: 7475-T761 specimens had more faying surface (G/S) failures than 7075-T6 specimens.

7.3.6 Fatigue lives and primary fatigue origins

Some unusual locations for primary fatigue origins were observed for 7475-T761 specimens with interfay sealant, see table 7.2. This was especially true for constant amplitude fatigue. The specimens had very long fatigue lives both in air and salt spray. For fatigue in air all the specimens failed at faying surface locations remote from the fastener holes. For fatigue in salt spray three out of four specimens failed near the top of the countersink area (B/N) as a consequence of paint cracking and corrosion attack of the underlying metal during the fatigue tests.

In view of these results it seems reasonable to conclude that for constant amplitude loading the use of interfay sealant prevented fatigue crack initiation at the more usual locations, i.e. bore/faying surface corners (F/R) and faying surfaces (G/S) close to the fastener holes. This resulted in prolongation of the fatigue lives until failures became possible at the other initiation sites.

It is unfortunate that under FALSTAFF loading, which is more realistic than constant amplitude loading, similar changes in primary fatigue origin locations (presumably owing to the use of interfay sealant) did not result in significantly longer fatigue lives.

These contrasting results illustrate the complexity of environmental fatigue in aircraft structural joints and the accessity for realistic testing.

7.4 Discussion

As mentioned in the introduction (section 7.1) the primary objective of the NLR and LRTH contribution to FACT was to compare the resistance to corrosion fatigue of aircraft corrosion protection systems and aleminium alloy materials in use in the Netherlands. The results of this test programme have shown that there were significant differences in environmental fatigue performance of 12 dogbone specimens made from different materials and with different protection systems. An overview of the results is given in figure 7.9. This will be helpful in the following discussion.

7.4.1 Fatigue lives at higher stress levels

For MINITWIST loading the fatigue performance of aRALL (2024-T3/aramid fibre laminates) was much superior to that of monolithic 2024-T3 Alclad. This is most encouraging for the use of ARALL in advanced aircraft structures. Subsequent testing of a full-scale wing panel has confirmed this (reference 8).

For FALSTAFF loading the fatigue resistance of 7475-T761 clad specimens with interfay was superior to that of 7075-T6 specimens and 7475-T761 clad specimens without interfay. Thus the interfay sealant was beneficial to fatigue lives.

Use of the water displacing corrosion preventive compound AMLGUARD, which was applied before preexposure and fatigue testing, proved to be ineffective in prolonging fatigue life. However, this does not invalidate the use of AMLGUARD or similar compounds for inhibiting corrosion.

Pre-exposure was not detrimental to fatigue life. Changing the fatigue environment from air to salt spray was detrimental for 2024-T3 Alclad, ARALL, 7075-T6 and 7475-T761 clad specimens without interfay, but not for 7475-T761 clad specimens with interfay. Thus the 7475-T761 clad specimens in combination with the F-16 paint system and interfay sealant were more resistant to environmental effects. This is an important result, since it means that corrosion-related fatigue problems for F-16 aircraft based in the Netherlands should be less severe than those for the previous generation of aircraft.

7.4.2 Fatigue lives at lower stress levels

At lower stress levels the fatigue resistances of 7075-T76, 2024-T3 Alclad and 7475-T761 clad specimens were equivalent. 7075-T6 was consistently inferior, thus differences in susceptibility to corrosion (pre-exposure) and corrosion fatigue were not primarily responsible. Possible reasons for the inferiority of 7075-T6 are a lower resistance to fatigue crack initiation, with or without fretting, and greater susceptibility of the relatively thick sulphuric acid anodisation layer to cracking as compared to the chronic acid anodisation layers on other specimens (see figure 7.1). However, it has been shown that anodisation layers are beneficial to the fatigue resistance of aircraft structural joints because they provide wear resistant coatings that delay the onset of fretting (reference 9).

With regard to corrosion protection systems, an interfay sealant was beneficial for 7475-T761 clad specimens tested under constant amplitude loading, but not under FALSTAFF loading. The reason for this is un-low, especially because the interfay sealant was beneficial at the higher FALSTAFF stress level, see the previous section and figure 7.9. As at higher stress levels, AMLGUARD was not effective in prolonging fatigue life.

Except for 7075-T6 specimens, pre-exposure was not detrimental to fatigue life. Changing the fatigue environment from air to salt spray was detrimental for 7075-T76, 2024-T3 Alclad and 7075-T6 specimens, but not for 7475-T761 clad specimens with or without interfay. This confirms that 7475-T761 clad specimens in combination with the F-16 corrosion protection system were more resistant to environmental fatigue effects.

7.4.3 Primary fatigue origins

An overview of the main influences on locations of primary fatigue origins in the 1½ dogbone specimens is given in figure 7.10. These influences may be summarised as follows:

- (1) Higher stress levels, pre-exposure and/or changing the fatigue environment from air to salt spray promoted fatigue crack initiation in the bores and at bore/faying surface corners of the fastener holes. This means that the number of failures at the faying surfaces decreased.
- (2) Lower stress levels and the absence of corrosion or corrosion fatigue favoured fatigue crack initiation at the faying surfaces close to the fastener holes. This means that there were fewer failures in the bores and at bore/faying surface corners of the fastener holes.

7.5 Conclusions

(1) Significant differences in environmental fatigue performance were found for 1 dogbone specimens made from different materials and with different corrosion protection systems.

- (2) Under gust spectrum (MINITWIST) loading the fatigue performance of ARALL (2024-T3/aramid libre laminates) was much superior to that of monolithic 2024-T3 Alclad.
- (3) Under constant amplitude and manoeuvre spectrum (FALSTAFF) loading the tatigue performance of 7475-T761 clad specimens was equivalent to, or better than that of 7075 776, 2024-T3 Alclad and 7075-T6 specimens.
- (4) An interfay sealant was beneficial to the fatigue lives of 7475-T761 clad specimens tested under constant amplitude loading at a lower stress level and FALSTAFF at a higher stress level, but not for FALSTAFF at a lower stress level.
- (5) The water displacing corrosion preventive compound AMLGUARD was not beneficial to fatigue lives.
- (6) Environmental effects were mainly due to changing the fatigue environment from air to salt spray: pre-exposure had no significant effect except for 7075-T6 specimens fatigued in air under constant amplitude loading.
- (?) It may be concluded that AMLGUARD's ineffectiveness in prolonging fatigue life can be associated with the lack of effect of pre-exposure on fatigue lives. It should be noted that AMLGUARD was developed specifically for combatting corrosion under static conditions, which it does very effectively. The present results therefore show that extension of corrosion protection to fatigue conditions will probably require a dynamic inhibitor system capable of being delivered to growing cracks.
- (8) 7475-T761 clad specimens in combination with the F-16 corrosion protection system were more resistant to environmental fatigue effects than other combinations of materials and corrosion protection systems.
- (9) Higher stress levels, pre-exposure and/or changing the fatigue environment from air to salt spray promoted fatigue crack initiation in the bores and at bore/faying surface corners of the fastener holes and reduced the number of failures at the faying surfaces.
- (10) Lower stress levels and the absence of corrosion or corrosion fatigue favoured fatigue crack initiation at the faying surfaces. Thus there were fewer failures in the bores and at bore/ faying surface corners of the fastener holes.

7.6 References

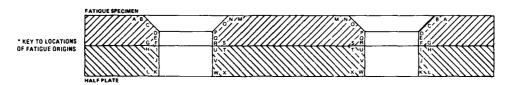

- G.J. Pilla, "The development of AMLGUARD, a clear, water displacing, corrosion preventive compound", Naval Air Development Centre Report NADC-78220-60, May 1979.
- L.B. Vogelesang and J.W. Gunnink, "ARALL, a material for the next generation of aircraft. A state of the art", Department of Aerospace Engineering, Delft University of Technology Report LR-400, August 1983.
- R.J.H. Wanhill and J.J. De Luccia, "An AGARD-coordinated corrosion fatigue cooperative testing programme", AGARD Report No. 695, February 1982.
- "Description or a Fighter Aircraft Loading STAndard For Fatigue evaluation", Combined Report of the F + W, LBF, NLR and IABG, March 1976.
- 5. J.B. de Jonge, "Additional information about FALSTAFF", NLR Technical Report TR 79056 U, June 1979.
- H. Lowak, J.B. de Jonge, J. Franz and D. Schütz, "MINITWIST. A shortened version of TWIST", Combined Report of the LBF and NLR, NLR Miscellaneous Publication MP 79018 U, May 1979.
- J.B. de Jonge, D. Schütz, H. Lowak and J. Schijve, "A standardised load sequence for flight simulation tests on transport aircraft wing structures", Combined Report of the LBF and NLR, NLR Technical Report TR 73029 U, March 1973.
- 8. L.H. van Veggel, A.A. Jongebreur and J.W. Gunnink, "Damage tolerance aspects of an experimental ARALL F-27 lower wing skin panel", New Materials and Fatigue Resistant Aircraft Design, Proceedings of the l4th Symposium of the International Committee on Aeronautical Fatigue, Engineering Materials Advisory Services Ltd., pp. 465 502 (1987): Warley, U.K.
- R.J.H. Wanhill, "Effects of cladding and anodising on flight simulation fatigue of 2024-T3 and 7475-T761 aluminium alloys", Fatigue Prevention and Design, Engineering Materials Advisory Services Ltd., pp. 323 - 332 (1986): Warley, U.K.

TABLE 7.1: OVERVIEW OF THE NLR AND LRTH TEST PROCRAMME FOR FACT. ALL SPECIMENS WERE OF THE 11 DOCKONE CONFICURATION

FATICUE LOAD CHARACTERISTIC Fatigue in air Fatigu					FATIGUE TES	FATIGUE TESTING SCHEDULE		
okker F.28 MINITUIST aninates with system therlands Air system without interfay with sealant constant amplitude, R = 0.1 Smx max max system vithout interfay with sealant constant amplitude, R = 0.1 Smx max max system with sealant constant amplitude, R = 0.1 Smx max max sealant constant amplitude, R = 0.1 Smx max max sealant constant amplitude, R = 0.1 Smx max max sealant constant amplitude, R = 0.1 Smx max	MATERIALS AND CORROSION RROTECTION SYSTEMS	FATICUE LOAD HISTORY	CHARACTERISTIC STRESS LEVEL	pre-exposu fatigue in air + fatigue air		fatigue in salt spray	pre-exposure + fatigue in salt spray	AMLGUARD coat + pre-exposure + fatigue in salt spray
Okker F.28 MINITALIST Snf animates with aminitalist Snf Snf system constant amplitude, R = 0.1 Snax Snax system FALSTAFF Snax without interfay constant amplitude, R = 0.1 Snax with sealant interfay constant amplitude, R = 0.1 Snax interfay sealant sealant snax interfay sealant			S = 144 MPa	•	•		•	•
system constant amplitude, R = 0.1 S mx = 1 system constant amplitude, R = 0.1 S max = 2 without interfay with constant amplitude, R = 0.1 S max = 2 Smax = 2 With constant amplitude, R = 0.1 S max = 2 with constant amplitude, R = 0.1 S max = 2 with sealant fALSTAFF Smax = 2 Smax	2024-13 Alciad, with Fokker F-28 protection system		S _{mf} - 101 MPa	•	•	•	•	•
system constant amplitude, R = 0.1 S max system constant amplitude, R = 0.1 S max system FALSTAFF S max interfay constant amplitude, R = 0.1 S max sealant FALSTAFF S max sealant falsTAFF S max interfay constant amplitude, R = 0.1 S max interfay constant amplitude, R = 0.1 S max sealant falsTAFF S max interfay constant amplitude, R = 0.1 S max interfay sealant falsTAFF S max interfay sealant falsTAFF S max interfay constant amplitude, R = 0.1 S max interfay sealant falsTAFF S max interface falsTAFF S max			ı	•	•	•	•	•
system FALSTAFF without interfay sealant FALSTAFF with with Volume Volum	2024-T3/aramid fibre laminates wi Fokker F-28 protection system	MINITWIST	S _{mf} = 101 MPa	•		•	•	
system FALSTAFF constant amplitude, R = 0.1 interfay sealant FALSTAFF constant amplitude, R = 0.1 with with interfay sealant FALSTAFF		-	aa x	•	•		•	•
vithout incerfay sealant FALSTAFF vith constant amplitude, R = 0.1 constant amplitude, R = 0.1 interfay sealant FALSTAFF	/U/>-T6 with Royal Netherlands Ai Force NF-5 protection system		S = 289 MPa	•	•		•	•
vithout interfay realized amplitude, R = 0.1 sealant FALSTAFF constant amplitude, R = 0.1 with constant amplitude, R = 0.1 interfay sealant FALSTAFF			S _{max} = 238 MPa	•	•		•	•
interfay sealant FALSTAFF constant amplitude, R = 0.1 interfay sealant FALSTAFF	100		S - 144 MPa	•			•	
oyal with constant amplitude, R = 0.1 interfay sealant FALSTAFF		ay t FALSTAFF	S = 289 MPa	•			•	
with interfay sealant FALSTAFF	loyal		S = 238 MPa	•			•	
		constant amplitude, R = 0.1	S = 144 MPa	•			•	
	inter	ay FALSTAFF	S = 289 MPa	•			•	
			S _{max} = 238 MPa	•			•	

TABLE 7.2: FATIGUE LIFE AND PRIMARY FATIGUE ORIGIN DATA FOR THE NLR AND LRTH CONTRIBUTION TO FACT

				FATIGUE LIFE TO	FAILURE (CYCLES C	R FLIGHTS, AND LOX	HEAN VALUES)/LOC	ATIONS OF PRIMARY	FATIGUE ORIGINS
MATERIAL CORROSION P SYSTE	ROTECTION	FATIGUE LOAD HISTORY	CHARACTERISTIC STRESS LEVEL	fatigue in sir	pre-exposure + fatigue in air	AMLGUARD coat + pre-exposure + fatigue in air	facigue in salt	pre-exposure + fatigue in sait spray	AMLGUARD coat + pre-exposure + fatigue in salt spray
		constant amplitude, R = 0.1	S - 144 MPa	221,285 S 138,735 G 175,214	101,039 R 217,132 S 258,474 E 76,274 F,R 144,212	98,577 Q 74,000 E 120,956 G 150,745 G 107,391		98,648 F 73,395 F 66,795 E 61,761 F 73,777	73,948 R 118,667 S 74,585 E 84,745 F 86,299
2024-T3 Alc with F-28 p system	lad, rotection		S _{mf} = 101 MPa	9,656 E 9,656 E 7,533 Q 8,889	6,687 Q 6,855 E 6,856 E 11,721 Q 7,791	11.672 Q 6.859 E 5,656 E 14.856 Q 9,056	5,656 E 5,656 E 5,656 E 5,656 E	5,656 E 5,656 F 5,656 Z 5,656 R 5,656	1.856 Q.F 9.656 E 5.656 E 6.682 E 7.072
		HINITWIST	S _{ouf} - 89 MPa	34,856 G 38,856 G 35,840 G	33,656 F 14,856 R 38,850 R 58,856 R 32,699	19,537 F.G 40,470 G 48,105 G 27,320 G 31,928	17,656 F 37,656 E 30,415 E,Q 26,856 E 27,146	15,068 R 25,378 R 13,656 F 26,936 G 19,366	14.856 F 8.106 F.E 15.709 R 40.856 F
ARALL with protection		MINITWIST	Smf - 101 MPa	> 250,000 ~ > 250,000 ~ > 250,000	> 250,000 - > 250,000 - > 250,000		134,371 - 226,682 - 174,526	97,510 168,501 128,181	
		constant amplitude, R = 0.1	S = 144 MPa	38,701 S 48,746 G,5 39,428 C 38,165 S 41,047	31,142 R 31,13° S 28,017 R 15,459 R 25,457	42,495 R 29,674 G 37,980 S 36,724 G 36,417		14,308 F 15,385 F 20,896 R	20,767 G 14 749 R 15,115 R 12,115 F 15,766
7075-T6 wit protection		PALSTAFF	S _{max} - 289 MPa	4,372 S 3,972 S 6,231 G 6,231 G 5,096	3,372 R 3,572 R 5,572 F 3,172 R 3,820	6,972 G 4,031 G 5,231 G 5,031 G 5,215		2,831 R,G 1,680 F 3,172 R 2,831 R 2,556	2,824 F 2,680 R 2,372 R 2,172 R 2,499
		PALSTAFF	S _{max} - 238 MPa	9,771 G 10,572 G 9,373 S 8,960 G 9,651	9,572 F 10,529 C 9,831 N 6,031 N 8,792	8,824 S 9,631 S 8,329 G 10,031 G 9,179		6,759 R 4,559 F 6,031 F 5,999 F	6.172 F 3.911 F 6.431 F 4.031 F 5.002
		constant amplitude, R = 0.1	S _{max} - 144 MPa	19: 301 G 141 963 G 147,242 G 152,266 G	175,117 G 168,741 G 271,473 G 108,130 G 157,780			141,941 C 134,268 G 188,244 G 262,870 B.S 175,241	
	without interfay sealant	PALSTAFF	S _{GIAX} - 289 MPa	7.972 R 4.624 Ł 8.631 E.G 6.82 F	11.529 G 10.231 S 4.372 F 10.972 G 8.673			2.824 F 3.511 F 1.924 E.F 3.972 Q.R 2.950	
7475-T761 clad, with		FALSIAFF	S _{max} - 238 MPa	17,480 G,S 17,480 S 16,972 G 21,231 S 18,216	16,372 G 15,314 G 74,372 G 15,538 S 17,554			16,501 G 17,392 G 20,796 G 18,480 G	
F-16 protection system		constant amplitude, R = 0.1	S - 144 MPa	442,310 S • 577,252 G • 373,934 G • 411,851 S •				236,220 B § 292,367 B § 407,376 B § 336,846 C •	
	interfay with sealant	FALSTAFF	S _{max} - 289 MPa	7,431 S 7,372 R 12,700 C 12,972 G,S				5,424 F 10,996 G 4,172 R 12,424 G •	
			S _{max} - 238 MPa	19.086 G 21.525 G 17.772 G 21.780 G 19.969				17.831 G • 14.025 G • 17.559 S 21.232 • 17.474	

- Fracture surfaces not available.
- * These failures were remote from the fastener holes and close to the cross-section at which the half plate ended
- These failures were just below the fastener holes and originated from paint cracking during the fatigue tests, i e they were not initiated by corrosion pits from pre-exposure.
 This failure occurred at a corner just beyond where the half plate ended

TABLE 7.3: SUMMARY OF ANALYSIS OF VARIANCE RESULTS (95 % CONFIDENCE)

SIGNIFICANT EFFECTS OF EXPERIMENTAL VARIABLES (F _o > F DISTRIBUTION VALUE)	yes	yes	yes	ou	yes	yes	yes yes yes	yes yes no	yes
۳,0	8.76 171.96	3.19	28.82 49.60	1.42	170.69	2.65	226.79 16.18 65.47	2.90 5.59 2.13	3.96
F DISTRIBUTION VALUE	2.59	2.24	3.07	2.08	4.13 2.49	2.49	4.00 2.53 3.15	2,53 3,15 2,76	2.76
SOURCE OF VARIATION	MAIN EFFECTS - environment - material	• 2-WAY INTERACTIONS - environment : material	● MAIN EFFECTS - environment - material	2-WAY INTERACTIONS environment : material	MAIN EFECTS - stress - environment	• 2-WAY INTERACTIONS - stress : environment	● MAIN EFFECTS stress environment material	• 2-WAY INTERACTIONS • stress : environment • stress : material • environment : material	3-WAY INTERACTIONS stress : environment : material
CHARACTERISTIC STRESS LEVEL	S 144 MPa	V	SS	max	Smf - 101 MPa	S _{mf} - 89 MPa	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	max - 207 hra AND Smax - 238 MPa	
FATIGUE LOAD HISTORY	constant amplitude, $R = 0.1$		constant amplitude, R = 0.1		cr-42			FALSTAFF	
	ATAU TOA	NI.R F.	ATAG 9	FACT CPCT	pe [3	¥ J C			

TABLE 7.4: LEAST SIGNIFICANT DIFFERENCE TEST RESULIS (95 % CONFIDENCE) FOR THE EFFECTS OF ENVIRONMENT AND MATERIAL ON CONSTANT AMPLITUDE FATIGUE LIFE OF NIR FACT SPECIMENS

FATIGUE TESTING SCHEDULE									
OR MATERIAL AND PROTECTION SYSTEM	facigue	in air pre-exposure + fatigue in air	AMIGUARD coat pre-exposure + + pre-exposure fatigue in salt + fatigue in air spray	pre-exposure + fatigue in salt spray	AMLGUARD coat + pre-exposure + fatigue in salt	2024-T3 Alclad with F-28 protection system	7075-T6 with NF-5 protection system	7075-T761 clad with F-16	AMLGUARD coat pre-exposure fatigue in sait farigue in air spray provection system procection system pr
LOG MEAN PATIGUE LIFE	391.5				2			manaka mornoanord	and sealant
	001.7	4.921	7.796	900'5	4.567	\$ 026	007.7		
SAMPLE SIZE n	14	-				230.7	4.409	5.213	5.572
		,,,	20	15	80	18	19	12	0
_			1 2 63					:	0
			0.025:42 - 4.04			MS residual - 0.016			

	SIGNIFICANT DIFFERENCE (t > t)	yes yes yes yes yes no yes yes	yes
	ند	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
COMPARISONS OF DATA SPON DIEREGENEY CLAFFORD	SCHEDULE IN THE	intigue in air/prie-apposure + fatigue in air fatigue in air fatigue in air/MuGUMAB coat + pre-exposure + fatigue in sair sprey fatigue in air/MuGUMAB coat + pre-exposure + fatigue in sair sprey fatigue in air/MuGUMB coat + pre-exposure + fatigue in sair sprey pre-exposure + fatigue in air/MuGUMB coat + pre-exposure + fatigue in air/MuGUMB coat + pre-exposure + fatigue in sair sprey MuGUMBD coat + pre-exposure + fatigue in air/MuGUMBD coat + pre-exposure + fatigue in sair sprey MuGUMBD coat + pre-exposure + fatigue in air/MuGUMBD coat + pre-exposure + fatigue in sair spray MuGUMBD coat + pre-exposure + fatigue in sair spray MuGUMBD coat + pre-exposure + fatigue in sair spray pre-exposure + fatigue in sair spray/AMUGUMBD coat + pre-exposure + fatigue in sair spray	Owing to equal sample size rive comments

Owing to equal sample size this comparison can also be made using the unmodified least significant difference test. The same result is obtained.

	CICALIFICANT PARTICIPATION	0.025,42)	0 6 2	52/	900	S A	yes	yes
			14.83	3.97	10.16	17.24	21.82	6.22
The state of the s	CONFACTSONS OF MATERIA'S	2024-T3 Alclad + F-28 / 7075-T6 + NF.5	2024-T3 Alclad + F-28 / 7475-T761 clad + F-16	2024-T3 Alclad + F-28 / 7475-T761 clad + F-16 + sealant	70/5-T6 + NF: 5 / 7475-T761 clad + F-10	(U/2-16 + NF-5 / 7475-T761 clad + F-16 + sealant	/4/3-1/61 clad + F-16 / 7475-7761 clad + F-16 + sealant	

TABLE 7.5: LEAST SIGNIFICANT DIFFERENCE T'ST RESULTS (95 % CONFIDENCE) FOR ENVIRONMENT: MATIRIAL INTERACTIONS DURING CONSTANT AMPLITUDE FAILUE OF NIR FACT SPECIMENS

								a delication						and the same	
PATICUE TESTING SCHEDULE.		fattgue	fattgue in air		bre-exp	pre-exposure + fatigue in air	In atr	pre-exposure + fattigue	tir fatigue	910	exposure . fat	pre-exposure . failpur in salt sprav		pre-exposure + farigue in sait apray	ferigue pray
MATERIAL AND PROTECTION SYSTEM	2024-T3 • F-28	47.5.01	10.15.To 24.75.T261 + NF.5 + F.16	7425-1761 • F-16 • sealant	2024.T3	2024-T1 20:5-T6 74.5-T341 2024-T3 7055-T6 + F-28 + NF-5	7475-1761 + F 16	2024-T3	7075-T6 + NF-5	2024-T3 • F-28	7075-T6 • NF-5	7075-T6 7475-T761 + NF-5 + F-16	1475-1761 • F 16	2024 T3 + F:28	1075-T6 • NF 5
100 MEAN FATICUE LIFE \$ 244 4.196 4.406 5.199 4.406 5.031	\$ 244	4 613	> 147	679 \$	\$ 159	907.7	861 -	5 031	195 7	4.868	172.7	4 868 4 221 5 744 5 494	769 5	46.	108
SAMPLE SIZE n	~	,	,	,	,	,	3	J	,	,	_		,	,	,
				t 0.025 m = 2.02	2 03				#5 - 0 016	910 0 - 1					

TEST PARAMETER	COMPARISONS OF DATA PREMITIES		STUNIFICANT DINNERSON:
		ŀ	0.025,42
	fatigue in air/pre-exposure + fatigue in air	97 0	L. L.
	farigue in air/AMLGUARD coat + pre exposure + farigue in air	7	pq pq
	facigue in air/pre-exposure . fatigue in sait sprav		yes
303 - T. A L.	farigue in air/AMLAIDED oner - pre-exposite - farigue in sait spray	× :	Yes
110 PHICH WILL		, :	QU .
A 48 protection system	_	C :	No.
	AMERICANDANIA - SELEGIA IN SITTAMBONDANIA COSTA PERENDENENTE FERTINALE IN SELEGIA. AMERICAND COSTA PERENDENENTE - LETTERIA EN SITTAMBONDANIA PERENDENENTE EN SELEGIA EN COSTA PERENDENTE.		,
	AMERICAN THE PROPERTY - FACILITY IN STREET, THE STREET STREET STREET STREET	i d	3
	pre-expusite - factgue in sait sprav/AminiASD coar - pre-exposure - fatigue in sait sprav-	9, 0	
	fathare of an unerexposure - tathere in air	18 7	96A
	latigue in an AMGUMB coat a pre-exposure a farigue in air	39 , 12	QI.
	factions on any pre-exposure a facilities in said spray	9 ₁₎ •	l ves
	fartgue in air AMLGUARD coat + pre-exposure + tatigne in sair sprave	72 7	544
70.2 th with MF	pre-exposure - fatigue in air/AMidUARD coat + pre exposure - fatigue in air-	C	916
profection system	pre exposure - fatigue in air/pre-exposure - fatigue in salt sprav	-	201
	pre-exposure + fatigue in air/AMLWARD coat + pre-exposure + fatigue in sait sprave	5.	x-x.
_	AMEGIAND coat + pre-exposure + failigue in air/pre exposure + failigue in sait spray) *	Yes
	ACCURATED OF THE STANDARD FOR THE STANDARD FOR THE STANDARD FOR THE STANDARD FOR THE STANDARD IN STANDARD FOR THE STANDARD FO	2.0	55 A
7475-T761 clad with	fatigue in air/pre-exposure + fatigue in aire	0.01	ou
F.15 protection	fatigue in air/pre-exposure e fatigue in solt sprave	2:	SE .
875168	pre-exposure a facigue in all/pre-exposure a facigue in salt spinys	14.11	ou .
74.5 7761 clad with F-16 protection system	fathur in atripte expressor tather in salt sprav	5	Brd
and interfay sealant			

fatigue in air	No. 27 A. Marchadon, P. 1982, 1985,	5 75 0 0 5 3 20 11 58 1 18 5 0 0 0	627 627 627 627 627	
pre expudure · fallgue in air	2004-17 Abban F 18 - 19 - 77 - 58 - 5 2004-17 Abban F 18 - 19 - 77 CL cost F 18 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -	00 (7 ft 20) 00 (2 m)	Yes Ro Ves	
AMINUARD coar + pre-exposure + faithur in air	Addition cont. pre-appropriate facilities (250-12) Abilian + P.28 / 2005.The NPC to pre-appropriate facilities (250-12) Abilian + P.28 / 2005.The to the state of	\$ 33	, F. P.	
Discontinuo (arigue 1954) In safi aprav (arigue 1955) Originali		2 OF 20 OF 2	C 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
AMLOUARD court a pre-exposure a fathgue 2004 in sait spray	• Pork Disk tale (F. St. 1977) - St. St.	·		

TABLE 7.6: LEAST SIGNIFICANT DIFFERENCE TEST RESULTS (95 % CONFIDENCE) FOR THE EFFECTS OF ENVIRONMENT AND MATERIAL ON CONSTANT AMPLITUDE FATIGUE LIFE OF MIR FACT AND CFCTP SPECIMENS (OMITTING AMEGIARD COATED SPECIMENS)

FAILCUE TESTING SCHEDULE OR MATERIAL AND PROTECTION fatigue in air SYSTEM	fatigue in air	pre-exposure + fatigue in air	pre-exposure + 7075-176 with fatigue in salt U.S. Navy spray	th syste	2024-T3 Alclad 7075-T6 with with F-28 NF-5 protection system system	with	7475-T761 clad with F-16 protection system	7475-7761 clad 7475-7761 clad with F-16 with F-16 protection system
LOG MEAN FATIGUE LIFE	5 117	100 1						and sealant
1	7:13/	770.6	4.875	5.001	5.059	4.431	5 213	9,5
SAMPLE SIZE n	67	6.3					5 Y 7 Y	3.372
		0,	20	86	10	11	12	ď
	:	1 1 48						>
	0.025;	125				MSresidual - 0.036		

SIGNIFICANT DIFFERENCE (C > t_{0.025;125})

COMPARISONS OF DATA FROM DIFFERENT FATIGUE TESTING SCHEDULES

for in the state of	٠	(SIGNIFICANT DIFFERENCE (C > to page 192)
factor in allypre-exposure + factore in air factore in allypre-exposure + factore in salt spray pre-exposure + factore in air/pre-exposure + factore in salt spray	2.72 6.87 3.78	yes yes
		yes
COMPARISONS OF MATERIALS	1.	STONIETOANT DIEBERRASS
2075-176 + 11 < Navy / 2025 #2 41 = 1 × 12 = 1 × 12 = 1 × 12 = 1 × 12 = 1		SIGNIFICANT DIFFERENCE (E > t _{0.025-125})
7075-776 + U.S. Navy / 7075-76 + NF-28	0.92	ou.
7075-T76 + U.S. Navy / 7475-T761 clad + F-16	9.45	X A X
7075-776 4 U.S. Navy, 7, 7475-716 clad + F-16 + sealant	3.65	yes
2024-T3 Alclad + F-28 / 7475-T76 clad + F-16	7.58	yes
2024 13 Alclad + F-28 / 7475-7761 clad + F-16 + sealant	1.90	ou
7075-T6 + NF-5 / 7475-T76 clad + F-16 + 2 - 2 - 2	9.87	yes
7475-T761 clad + F-16 / 7475-T761 clad + F-16 + sealant	12.94	yes
	4.15	yes

TABLE 7.7: SUPPLARY OF DUNCAN'S NEW MULIPLE RANCE TEST RESULTS (95 % CONFIDENCE) FOR ENVIRONMENT : MATERIAL INTERACTIONS DURING CONSTANT AMPLITUDE FATIGUE OF NLR FACT AND CECIP SPECIMENS (OMITTING AMLGUARD COATED SPECIMENS)

FATICUE TESTING SCHEDULE			fatigue in air			á	pre-exposure + fatigue in sir	fatigue in sir			pre-expasure	pre-exposure + fatigue in salt spray	salt spray	
MATERIAL AND PROTECTION SYSTEM	7075-T76 + U.S. Navy	2024-T3 + F-28	7075 T6 + NF-5	7475-T761 • F-16	74.5.1761 7. + F.16 + seelant	7075-T76 + U.S. Navy	2024-T3 + F-28	7075-T6 • NF-5	7475-T761 7075-T76 + U.S. Navy + U.S. Navy	7075-T76 + U.S. Navy	2024.T3	7075.T6 • NP.5	7475-T761 + F-16	7475-T761 + F-16 + sealant
LOG HEAN FATICUE LIFE	\$ 123	> 244	4 613	5 197	679.5	5.072	\$ 159	907 7	5.198	618.7	898 7	4.221	5 244	767.5
SAMPLE SIZE n	£	~4	J	4	J	28	7	,	4	£	,		,	4

TEST PARAMETER	COMPARISMS OF DATA PER TEST PARAMETER		DIFFERENCE BETWEEN LACTOR MEAN FATIOUE LIVES X $\sqrt{\frac{n_1 n_1}{n_1 + n_1}}$	SSR	SIGNIFICANT DIFFERENCE $(\vec{x}_1, \hat{x}_2) \sqrt{\frac{2n_1 n_1}{n_1 n_2}} > \text{SSR}$
7075-776 with U.S. Navy profection system (CECTP core programme)	1005-75 with U.S. Navy fatigue in altypre-exposure e fatigue in alte protection system (CRIT) fatigue in altypre-exposure e fatigue in asta spraye in altypre-exposure e fatigue in salts spraye in altypre-exposure e fatigue in artypre-exposure in an interaction in actions on the sprayer.	~	0.246	25.5	NO VEEK
	9			7	
2024-T3 Alelad	tatigue in air/pre-exposure . fatigue in air	~	0.139	0.532	00
protection system	latigue in ditipre-exposure + fatigue in sait spray	~ ~	1 0 0 0	98.0	2 × × ×
	C				
7075 To with	fatigue in air/pre-exposure + fatigue in air+	r.	0.414	0.532	no
NF-5 protection	fatigue in air/pre exposure - fatigue in salt sprav	-	97. 0	584	ves
*vstem	pre-exposure * lattgue in air/pre-exposure * lattgue in sait spray	,	0.343	0.532	fio
74.75-T/b1 clad	fattgue in ant pre-exposure - tatigue in air*	~,	0 002	21.5	100
with F. 16	fatigue in al: pre exposure e fatigue in sait spraye	-	*60 11	0.50	ou
protection system	pre-exposure . Latigue in air/pre-exposure . fatigue in sait spray*	2	0.092	17.0	ou
74.15-1761 clad with F-16 protection system and interfay sealant	latigue in ait/pre-equosire - fatigue in sait aprava	7	0.310	0.532	92

-	3925-TF6 + U.S. Navy / 2024-T3 Alclad + 8-28	n	0,231	0 260	a a	
	7077 T15 + U.S. Savy / 7075 Tn + MF-5	7	1,372	0 512	\$40	
	7075-176 + U.S. Navy / 1475 1761 clad + F-16	2	0.193	215 0	no	
	'075-776 + U.S. Savy / '475-776 clad + File + sealant	,	1.404	\$1¢ 11	ves	
	2024-T3 Alclad + F-28 / 2025-T6 + SF-5	.,	1 030	0.579	٧٩٥	
וארולות ווו פון	2024-T3 Alchad + F-28 + 5275-T751 clad + F-16	~-	0.077	235.0	ag.	
	2024-T3 Alciad + F-28 / 4475-T/bl vlad + F-15 + sealant		0.661	0 5 82	Ves	
	20.5-T6 + NF-5 / 22.5-T761 clad + F-16*		1 168	0 260	ves	
_	1975 T6 + NF15 / 2475-T/61 clad + Fil6 + sealance		2.072	0 592	5.00	
	1475-Tibl clad + Filb , 7475-T761 clad + Filb + sealant*		0 904	03.560	4.65	
	2025-T76 + U.S. Savy / 2024-T3 Alchad + F-28	~	0.230	0.32	ou u	Ì
	2075-T76 + U S Sarry 1075 T6 + NF 5		1 162	255 0	Ves	
	20.5-176 + U.S. Navy , 2474 1761 clad + F-16	_	0 333	0.380	110	_
factions in air	2024-II Aid Jad + P.28 / 2025-IA + MF-S+		1 506	0.360	ves	
	2024 Ti Alciad + F-78 / CaPs-T761 clad + F-16*	~	8000	- 235	110	
	2075 The CMF School of This clade Files	,	1 585		463	
	200 Tob - C : New - 201 El Alchad - F.28	~	11 0	1.000	98	
	10 " 1 " + 1 C Nawy " " 0" 5 Th + NF 5		907 1	0.532	202	
	2025-1756 • U.S. Sawy . 2625-1761 chart • Folts		130	0.269	765	
	1015 776 + U.S. Mazze / '425-4761 elled + Folfs + secalant	.,	50%	- 52 5	***	
pre expensive a latigue	2025 TS ASSUMER FOR JUST TA + NF 5		1 198	1, 560	Cas	
ath Salts Aprily	2025-13 Ab lad + F 28 ; 25 5 174 clad + F 18*		200		Ver	
	2025-IS Alchad + Figs / Spir Titl clad + File + sealant*	-	22.7	1 197 17	Sec	
	20 20 20 20 20 20 20 20 20 20 20 20 20 2		1.4.5	r. e .	V45	
	2015 To + MF S : Safa 1751 clad + F 18 + sealann	-	1 121	. 765. 0	26.5	
	Astro-Fred : Lad + File - Astro-Fred + File + sealant*		10000	. 20 -	3	_

oung to equal sample size these or goatsons can also be made using the unmodified version of thosur's test. The same result is obtained

TABLE 7.8: LEAST SIGNIFICANT DIFFERENCE TEST RESULTS (95 % CONFIDENCE) FOR STRESS : ENVIRONMENT INTERACTIONS DURING MINITALIST FALIGUE OF 20.24-F13 ALGLAD WITH F-28 PROTECTION SYSTEM

FATICUE TESTING SCHEDULE		fatigue in air	fatigue in air in air	e + Lafigue	AMLUCARD coa pre exposure in air	or exposure (latigue Dre exposure (latigue) in air	fattgae in	tarigue in walt spraw prince exposure tarigue in AMIJIAND cont a sail spraw sail spraw in sail spraw in sail spraw	Apids ips	tatigue in	AMLEUARD coat pre exposure : in salt spray	. fatigue
CHARACTERISTIC STRESS LEVEL S (MP.)	101	7. de	89 101 89 101	ac ac		ž	 <u>3</u> !			2	101	68
LOC MEAN FATTODE LIFE		792.4	1.8%	ac,	1.48.1	75.4	7.	8.0 t	-	186	1 850	87 O 1
GAMPIE SIZE n	~	-		,		,		7		-	,	,
			⁶ 0 0,55,3	(0.025,34 - 2.03		: 	#5 residu	Ms residual 1 11 11 11 11 11 11 11 11 11 11 11 11		· 	1	

COMPARISONS OF DATA FOR DIFFERENT STRESS LEVELS	PATTORE TESTING SCHOOLS	•	SIGNIFICANT DIFFERENCE of Co. 250 P.
	a per a la mara per	 ;	¥400
	pre-exposure a fulligue in an		
* C. S. C.	AMACIARD coar a pre-expusure a fatte in atr		5.05
1E	tatagrae an soult spraw	;	- 22
	pre-exposure - futigue to sail spins	. F*	5,00.5
	AMACIAKO coar e pre expensive e total en un suit aprac		

LETEL.	CARPARISONS OF DATA FROM DIFFFERNT PAINT F CONTING THEOLOGS	•	SCHOOL CHERRIEN BOLL STORY	:
	taligne in any pre-exponence farigue in air			
	tatipue in air/Andedakb coat * pre-exposure * lafara an an	2		
	telligher the air leading in suit aprix	;		
	fatigue in air/pre-exposure - fatigus in sait stras		too.	
	fattgue in air/AMLAGABD coat + pre expressive + taftgue at sait stad.	:		
	pre-exposure + farigue in aircaMladraPb coat - pre exposure + farigue in age-	•	2	
S 1-1 MPa	, pre exposure : fatigor in air fatigue in sal' apravi	:	. 3	
	pre-exposure fariga- in air/pre exposure fariga- in air air air		•	
	pre-exposure + Latigue in aid AMadakb coar + pre-exposure + false of a pro-			
	AMIGIARO coat + pre-exposure + tarke se prouto facilities in this pre-			
	AMEGRAND coat + pre-exposure + fathgue in air pre-exposure + fathgue in and thought	-	****	
	AMEGGARD cost + pre-exposure + taringue in air-AcididaPD cost + pre-exposure + taringue as years		192	
	fatigue in sait sprav/pre-exposure + fatigue in sait sprav*	1 35 1	900	
	farigue in sait spray/aMistARD coar * prefexposite * tittus it alt spins*			
	tac i.e.	<i>i</i>	i	
	tatigue in air pre exposure e tatigue in air	-		
	farigue in air-AMLSGRAED court ; pre exposure ; tatages in air		=	
	factore in air futions in soil spray		i	
	I fattigue un autoprio experience formica un saite spins		7.5	
	tatigue in air AMASANO coat a pre expressee - tatigue in sact spirit		1.00	
	i pre exposure - fafigue in an AMMUNE, cast - pre expensive - fafica of its exi-	=	:	
S. 1 85 MFs.	pre-exposure a fatigue to air fatigue in sait sprace			
•	I pre-exposure a fathere in all pre-exposure a father in a million in a million of the contract of the contrac		7.5	
	The exposure - fatigue is its AMIATARD coat - pre-exposure - fatigue in sait spine.	r	X40	
	AMBAIARD court + pre-expressive + faringue in air fathere in call space .			
	* AMMAGARO coat * pre-exposure * Lattage in air pre-exposure * Lattage and agricult			
	C. AMIACARD court or preceptionaries a furtigue in air addud'AND court opine exp. Loc. of the court of court of court		*	
	Estimate the said spraw pre-est some in factories and some		•	
	definite in soil sprits AMSLANSS and a pre-expensive a table or an expensive	-		
	the expense of factorial and the second second second second second second and a second secon	1.		

trepul surple size these comparisons can also be made using the unmodified least startificant difference test. He same is cold to discount

TABLE 7.9: BOX FEST FOR HOMOGENEITY OF VARIANCES OF NLR FALSTAFF DATA FOR S = 289 MPa (95 % CONFIDENCE)

FATIGUE TESTING SCHEDULE	SAMPLE NUMBER	SAMPLE STZF	$\begin{array}{l} \text{STM} \text{OF} \text{SQUARES} \\ \text{SS} = \Gamma(\mathbf{x}_1 \mid \mathbf{x})^{\frac{1}{2}} \end{array}$	DEGREES OF FREEDOM , = n - 1	1	SAMPLE VARIANCE	log s²	.log s*
	1 0 10 Fe + NF 1		- 11	1	i' 133	0.016	- 1 980	- 1941
	i de filitio			į.	1 113	11+	1.17	
					1 7			
	r votat			4	111	1.421	- 1 Misa	in process
et iz selloti labbi.	CORPRESSOR		<u> </u>		5, - 1857			<u> </u>
	* *		erije e	•	1 = 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	t jeg:	* = 211	*1 *		- 14. 4H	\$50° (80°)	. p. 123.,	
	FOR a + 1 + AND	. ANI 150 DE	REES OF TREED OF E	= , → S18cE o	111 + 3 to THE	r PTAIL LARLAS	PEN ARE ESTAT	
	16 1 NF		1.1.	:		1 2.		

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		4 4 4 4 4 4		111	4 - 44 <u>-</u>		
gok kryv sole k Exhibite on ass	na net			- +	- 1.	* *.* = *		**** **1
	# # 1 1 1 1 E			•	÷ ,	- * ;;		
	being A	. R = . + ·	• •		• • • • • • • • • • • • • • • • • • •	N KIRAFE	, pystanie	
_	FOR a = 5 * AND (AND VIN DESI	GES OF FREEDOM 1 = 1	A. SIN.E o et	ter to the rel	FERTING VARI.	. ES AFE E⊘ AC	

	s÷s silv		,	*			
	K = 2 × 4 × 1 =	e : -	 -	• =	- * * * * * .= *		
pre exposure + fatigue in salt apras	DESERTED Y	· · ·		- 11. 	•	•	
	u			•	,	! •	
	1000	•		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	414	1.00	

TABLE 7.10: BOX TEST FOR HOMOGENETRY OF VARIANCES OF NEW FALSTAFF DATA FOR S = 238 MPG (95 C CONFIDENCE)

FATIGUE TESTING SCHEDULE	SAMPLE NUMBER	SAMPLE SIZE	SUM OF SQUARES $SS = \Sigma(x_{\frac{1}{4}}, x)^{\frac{1}{2}}$	DEGREES OF FREEDOM n - 1		SAMPLE VARIANCE s7 = \$5	ig 🕶	ing s
	1 7075 T6 + NE-5 2 1-75-7761 + F 16	•	0.001	3	0 313	9 991	0.3 (43)	9 ng: 8 19;
	3 Talla-Tible + Filter	4	0.06	,	i 11 333 12 533	1 7 02	- 7 698 - 7 147	
			+					
	POOLED				1.00-	· ·		
			0.114			ļ~~		
igue 'n air	DUFFERENCE				0, +: 484	<u>. </u>		5, • 3•
	K = 2 30% b, =	0.72	$L = \frac{5}{16} \frac{1}{4} \frac{1}{10} = +1.48$	k	1	6 - 1 - 185		
						-		
	p = 1 = 5 2	;== - K + 211	46	t., - j-	-1 = 0 18 + E1TB	/ AND IR! DECREES	of History	
	FOR a = > 1 AND	2 AND 183 DEC	REES OF FREEDOM F	- 3 06 SINGE 0	119 + 3 (0) THE	POPULATION VARIAN	ES APP 10 AL	
	1 2075-T6 + NE-5		0.037	3	9 335	0.012	+ 1 913	1.19
	2 1419-1761 + F-16	4	0.028	3	0 131	1 Diene	- 2 (3)	6 111
	k - :		<u>i </u>			<u> </u>		
	SCM		-		1 95	<u>. </u>		1 - 11 851
	P ^(A) LED	-	0.065		0.15	0.011	-) "	4. 2.2.14
exposure * :gue in air .	DIFFERENCE			-	0, = 9 500	-		0, - // //
	8 - 2 3026 b ₂ -	υ 13¢	$L = \frac{n_1}{1 - k_1} - n_1 + 6$., - k	- 1 - 1	$ = \frac{k+1}{14} = 104$		
			4. F.F. [1	1 "		.5 fr ₂		
	9 - 1 - 5 + 3)		:46	F., - 5	<u> - 0 416 2118</u>	1 AND 109 DECREES	OF FREEDRIK	
i		**			. ;			
	FOR a = 5 & AND	1 AND 109 DEG	REES OF FREEDOM F -	J 44 SINCE O	116 - 3 94 THE	PSPULATION VARIAN	CE: ARE EOGAL	_
					_			
					3 333	0.00.,		
	1 July 76 . NV .		1 0.01.					4 437
	1 2075-T6 + NF-5		0.003	3	0 133	· (w)		3.43
	2 7470-TM + F 16 3 7470-TM + F 16 + 8002an	-	0.078				- 1 411 - 1 241	5 (1) 6 (2)
	2 747 0 TM + F 167 3 747 0 TM + F 167	-	0.003	3	0.133	· (w)		
	2 147 - TM + F 16 3 247 - T76 + F 16 + Acolate 9 - 4	· ·	0.003	3	0 133	0.0015		6 mm
	TOTAL TWO RELATED AND ADMINISTRATION OF THE PROPERTY OF THE PR	· ·	9 016		40 133 40 334	0.005	- 1 261	6 (20)
eduacie -	F 1. T. T. W + F 1.6 3	· ·	9 016	3 1	0 133	0.0015	- 1 261	
exposite : gre in spray	2 12 17 17	· ·	7 do)	3	0 133 0 334 0 411 0 411 0, - 1 884	0.008	- 1 261	
gue in	2 12 17 17	· ·	9 016	3	0 133 0 334 0 411 0 411 0, - 1 884	0.008	- 1 261	**************************************

TABLE 7.11: LEAST SIGNIFICANT DIFFERENCE TEST RESGLIS (95 Z CONFIDENCE) FOR STRESS : ENVIRONMENT AND STRESS : MATCHIAL INTERIACTIONS BURING FALSTAFF FAILGT

CHARACTERISTIC STRESS LEVEL					Sant - Sky MPa							Mary west	1.0			
FATIGUE TESTING SCHEDULE OR HATERIAL AND PROTECTION A11 CYSTEM	fattgue in eir	pre exponite + farigae in	The control of the co	pre expression of a tgue to walt spray	AMELITARO TOTAL EXPOSATE TATIRNE IN SALT SPIRY	2 . 2		10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and the state of t	pre-exp cure farmed for	March of the companies	pite emporate - factory pro- vale space	÷ = :	# #	7 - 2 - 12 - 12 - 12 - 12 - 12 - 12 - 12	
LOG MEAN PATEUTE LIFE	. 8.		3.1	184	417.1	- ·	,	24.	(V)		1 4 1		11.1			
SAMPLE SIZE a	77	· ·	2			3	3	*	.a.					: :		ac.
				1000	10 C C 60 - 2 DC						The resident To the	i i p '				

COMPARISONS OF DATA FOR DIFFERENT STRENS LECTION	s, the paparitie		SPATES AND EXPRESS OF A SPACE STATE OF A
" (All h() = x " s " (h + p) = x " s	for type to act. Macketic course to act. Macketic course processor to act. Macketic course to act. Macketic cour	: : : *1.47: 1:44 : 27: *11*	(1664) (66

CEVEL TERISTIC STRESS CEVEL	COMPARISMS OF PATLOTE TENTING SCHEROLES ON MATERIALS AND PROTECT IN STATEM.	-	GALED WOOTSHEEN B. Y. Y. J. J. J.
	tatigue in air jie exposire - fallpar in all	11.	
	that give in a se AMALANED court of procession or the tight of a ser	: .	
	factories in air oper exposure : 10" byte in ball spray*		544
	作品的人类是是一种是一种是是有人的人,也是一种是一种的人,也是一种是一种的人,也是一种的人,也是一种的人,也是一种的人,也是一种的人,也是一种的人,也是一种的人,		
			3
1			
100 M	The expression of Latingian to and AM of AM and the composition of American of American contract of the		16
	, AMILIANS court - pre-exposure - tatigue to att pre-exposure - tatigue - tatigue	:	(A)
	AMINOTANO LIBERT PROPERTY OF THE STATE OF THE AMINOTANIA OF THE PROPERTY OF THE WAY OF THE STATE OF THE STATE OF THE		1:2
	the exposure of problem in party special Affair and a true of the exposure of a factor of the exposure of the		***
		7	
	10 11 11 11 12 12 13 14 15 15 15 15 15 15 15		
	Commission of the entropy and the second of		
	The first ordered for the control of		
·			
	の一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の		
	the first and the state of the	-	
	一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个		
	THE PARTY OF THE SECOND STATES AND THE SECOND SECON	:	
	the common of th		
1	かしま ものない なんしょ 一分 かいしゅうし かいしょう かいしょう しゅうしゅ しゅうしゅ しゅうしゅ しゅうしゅう		-
	一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个		
	かいかい かいこう かいかい かいかい かいかい かいかい かいかい 大学 のから かいかい かいかい かいしゅう ない かいかい 大学 におする		
	pre empoware a fattigue in sait sprac Afficial NO coat a pre exporter a fortgoe of color sprac		
	はなならる アンドラ かいこう かいこうき しょう しきから こうしゅうきゅう かんき ない こうしゅうしゅ しゅうしゅう		
	一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个		
	The second of th		

the professional segretaries comparisons on a contemporary of the contemporary of the

TABLE 7.12: STRUKRY OF OUTGAN'S NEW MUTIPLE RANGE TEST RESULTS (95 % CONFIDENCE) FOR ENVIRONMENT : MATERIAL INTERACTIONS DURING FALSTAFF PATIGUE

The second secon									
FATIGUE LESTING SCHEDULE	and the state of t		pre-exposure + tarigue in air	tarigue in air	AMINIARD cout + pre exposure • Latigue in air	ofx a - a rd	pre-exposive + Latigue to salt sprav	alt sprav	Aminiakii soni - pre exposure - [fetigue in solt yrav
MATERIAL AND PROTECTION SYNTEM TOTAL TO	Total SF 5 F 16	. Filb * sealant	7075-T6 • NF 5	14.75-17.61 clud + F-16	7075-16 - NF 5	2025.16 + SF-5	. F 16	. 1 1 1 sealast	
DIG NEAN PATIGUE LIFE	, 100 of CTR 1	4 145	1 763	160 7	3 844	3.583	3 871	. 40 "	\$ 548
SAMPLE SIZE II	*	8	30	x	π.	8	#	*	
TEST FARAMETER	dMO	COMPARISONS OF DATA PER TEST PARAMETER	SST PARAMETER		a.	DIFFERENCE NETWEN LOS MEAS FALLOS LIVES	EN LOG. MEAS TVES	SS STATE STATES	STONIFFART DIFFRENCE (DIFFERENCE + SSP)
	fattigue in attipite exposute e fatigue in att fattigue in att AMLACARD coat e pre-exposure e fattigue in arc	in air osure + fatigue in air				760) 5 (180) 5		011 0 013 0	210 211
	itatigus in altigos exposure + fatigue in salt speat Harigus in alti-AlliDAD cost + pre-exposure + fatigus in Salt angar	in salt spræt osure + tærigue in sa	t spids		<i>.</i>	Z		55	(A)
Acres to with NF-5	pre exposure * fattyue to att; AMLallaRD reat * pre-exposure * fattyue in air	roat . pre-exposure	fatigue in air			118.0			54
10	pre-exposure - tations in all/pre-exposure - configuration in sail and a fore-exposure - tations in sail and a	Coat + Dre-exposure	spiny the salt and	***				1110	
	AMLCCARI cout . pre-exposure . fatigue in air/pre-exposure . tatigue in salt spins	tn air/pre-vxposure	tatigue in salt spi	34	,			0.115	246.7
	AMEGRAND court a pre-exposition a tarigue in air/AMEGRAND court a pre-exposure a faithure in sain appara-	in air/AMistraRD coat	* pre exposure * fat	figure for sold appara-	•				San .
		The state of the s							
"475-T'61 clad, with	that there is not the expensive a factorise in all the annual sections on all the expensive and all the sections are all the sections and the sections are all the sections and the sections are all the sections and the sections are all the s	in air o cair shear				· · · · · · · · · · · · · · · · · · ·			2.0
F to profession system	bre exposure * fattigue in att. pre exposure * fattigue in only option	nure . tallgue in soil	st th		-				***
sarbiffel clad, with F to protection system and	Andre de de destruire de destru	in Salt Spraw				Kiku o			
interfay sealer:					-				
	1000 The with Mile professions seemen 1000 that old Mile with Pole profession seemen	a l'el clat, gath F.	In Distriction waster			200			
_									

fat gue its air	05 for with NF a profession, seems in a final class, with File profession system of the class of the file of the class of the file of the class of the file of the		Seat or Seat or That is	5 (1) 5 (2) 5 (3) 5 (4)	Say S
pre-exposure * tatigue in air 9075-T6 with NF > protection	pre-exposure a fathwar is any 100-37 with No. protection existing clad, with P. to protection existing.	}	67 c	1	
press, passire + fartifiat in sile aprav	th NFO Fromeron systems(475.7%) clad, with Ellip protection systems NFO protection systems(475.7%) clad, with Ellipprotection systems(455.7%) clad, with Ellipprotection systems(455.7%) clad, with Ellipprotection systems(455.7%) clad, with Ellipprotection		1800 p. 1	tal: 	

TABLE 7.13: LEAST STONIFICANT DIFFERENCE TEST RESULTS (95 % CONFIDENCE) FOR STRESS : ENVIRONMENT : MATERIAL INTERACTIONS DERING FALSTAFF FATICITE.

FATHURE TESTING SOMEDILE		fat 1 Ku	fattgue in ass				granda a a	for an andique a server dea and	200	AMEAN.	ARADIARS coat + pre-exposure + fattigue to aft			weign than it migates a sico-gravatiq	A Link		AMINIARD coat a per exponent faringer to sail spray	e
MATERIAL AND PROTECTION SYSTEM	, ys. 4.	:	T's risk riad v Elsk	·	* 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		% %		To the term of the first		10 Th - NF 5		<u> </u>	The condition of the chade Black	Contain	5 . 27	×	
"HARACTERISTIC STRESS LEVELS S MAN MPA:		ī.	•	 % 		ţ.	1 5		•	- -	ξ -		1. 1. 1. 5.		r i i		·	
THE MEAN PATICUE LIFE	(ga)	÷	· -	-	,	¥ -	-	ĺ		-	1.49.1	E	7		1];	3.	1. 894
MARPLE CIZE IN					! !		· · · · · · · · · · · · · · · · · · ·		Set w "For fixed	- :				!			• • • 1 • • • •	
CHARACTERISTS STRESS LEVELS			4 4	ARC Balance CAR						-30MP	ARTS 855 OF	OMBARISHSS OF DATA PRE TEST PARABLIEN	жтех		908 100 100 100	STREEFENT BETWEEN UN. MEAN MATERIAL TOUS	The season was presented the season of the s	4 STANDER AND DEBUNES IN THE STANDARD IN THE S
	The Rewarded							7.8.75 Te = 140 NF 5 0.07 Te warfu Np 5 0.07 Te 2.01 at	NE is profes t NE is profes t 1 acres Filte	profestion seatemoralists (2015) but of the control	35-7701 - 34 25-7701 - 34 88888 - 347	 protection exacts. And advantable to protection exacts. protection exacts. And advantable to protection exacts. Protection exacts. And advantable to the exact state. A protection. 	with Fit protection washed with Fit protection washed and investor search blacked, which Fit profection, washed as Exercise	P. editi R.S. profession existence (ASSTM clad), with Fig. protection system. D. editi R.S. profession systems (ASSTM Clad), with Fig. and profession systems and profession systems. Tol. clad. Style Existence (ASSTM Clad), ASSTM Clad, with Fig. profession systems at profession system.	ļ.] [28]] 3 t 3	
	The second secon	201 12 4 71					•	E	NEW JOSEPH	140 CV-07-08. 1-	25 Thi class	The second by a protection system has a fall clothering protection as been	witten ander		1 .			
	100		 					600 800 800 800 800 800 800 800 800 800	Man protect NF N protect a girls F Ly	effect system is orthon system in the protection's	S frith	d with folk prote 5 with F le prote 1701 elect with F	To both M. Tradestan seems to Philade with the projection seems in the No. 1995 of the No. 199	To the Military of protection washed to the first protection washed. The time Military protection washed to the first protection washed to the control of the first protection washed to	es at 10°	255		[" (44)
Age 157 - read			# •				सर्वेत्र स्थापन	attern to a state of the state	The expension of pre-expense of all all all all all all all all all al	The state of the speciment of the state of t	in air sakt spr desare e tat desare e tat coar e fatt desare e fatt desare e fatt desare et fatt	This part is a request of the first the state of the stat	or the act of act of a control	! !	-	untistți	!រន្ទឹងីរូងិខិមិ !	28 - 27 5 5
	:							The second second	of adjust to	MANAGEMENT AND	MARKIN COA	amonda and a p	the my mark of of goes in wait spraw-MulliMad coar a pre-exposure of actions to wait spraw. Proceedings of the coarse of the coa	Abrida	1	3 .i		
	Participation of the property	2 3 4 1	-				· {		tatages of	talities in an one expense - infigure in sail principle expenses - fallow	in said Na	tation in an error expension of the most space to the per- per error of the expension of the expension of all per or the con-		:	- :	141	; (- 7 1
	to a Private of a first of production	The process	\$14 TO 100	a test as a testing souls to	. erres		•	die a tra	the english t	halo, and the expression of tachque and eath spinal	the sail sys					4	4	
	The responsibility of								NF is presented NF is presented it, watch it to NF is project	A marker for A marker and A marker and	The lead of	the second of the production system/ship of other with the processing was a consistent of the second	the best with the spin contract contract that the second to be proved in contract to second in the second many contract to sec		· arman		181 8	11: 1
	:		1		i		•			ton vertes. 's ton entires.'s	100	d with F to prove	The state of the s	The state of the s		147		
To the second se	· · · · · · · · · · · · · · · · · · ·	Region of the second	<u> </u>				,	attice to as attice to a straight and the straight and th	December of the control of the contr	The first of the proposed of the proposed of the first of	to and the state of the state o	The first that the respect of the re	the first that the expect of the property is not the first that the first that the expect of the first that the	STORY OF STATE OF STA		egetegat.		
					- - -				1 1	which has a manager of the second of the sec	and the property of the proper	e e encore de autorio de la constanta de la co	;					1

TABLE 7.14: SUMMARY OF x2 TEST AND VATES' CORRECTED x2 TEST FOR THE PRIMARY FATIGUE ORIGLS (95 % CONFIDENCE)

FATIGUE LOAD HISTORY	CHARACTERISTIC STRESS LEVEL	SOURCE OF ASSOCIATION	X ² 0.05; (r-1)(c-1)	x2 OR x2	$\chi_0^2.05; (r-1)(e-1)$ $\chi_0^2 \text{ OR } \chi_0^2 \left(\chi_0^2 \text{ OR } \chi_0^2 > \chi_0^2 \text{ OS} \cdot (r-1) \cdot (r-1) \right)$
Constant amplifyeds D = 0.1	3 7 7 7 S	ENVIRONMENT (FATIGUE TESTING SCHEDULE) X0.05:1 - 3.84	x _{0.05;1} = 3.84	6.47	yes
Constant amplitude, N = 0,1 3 max 144 iita	max 134 iii a	MATERIAL AND PROTECTION SYSTEM	x _{0.05;2} = 5.99 14.09	14.09	yes
FSIGHTNIA	S = 101 MPa STRESS LEVEL	STRESS LEVEL	x _{0.05;1} = 3.84	20.65	yes
	9 MPa	ENVIRONMENT (FATIGUE TESTING SCHEDULE) X6.05;1 - 3.84	x _{0.05;1} = 3.84	0.07	OU
	S = 289 MPa STRESS LEVEL	STRESS LEVEL	X _{0.05;1} = 3.84	6.79	yes
FALSTAFF	AND	ENVIRONMENT (FATICUE TESTING SCHEDULE) $\chi^2_{0.05;1}$ = 3.84	x _{0.05;1} = 3.84	16.43	yes
	S = 238 MPa	MATERIAL AND PROTECTION SYSTEM	X2 05.3 - 5.99	6.79	yes

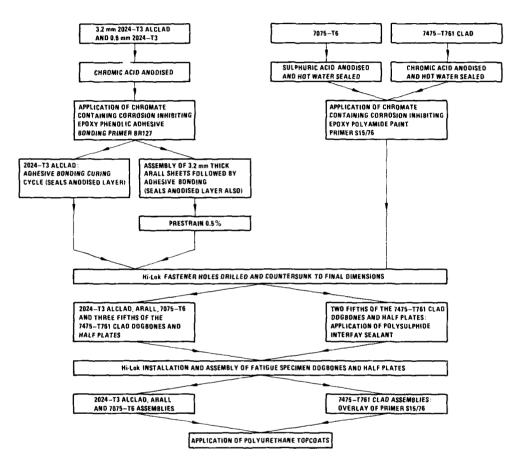


Fig. 7.1 Schematic of the application of corrosion protection systems and specimen assembly

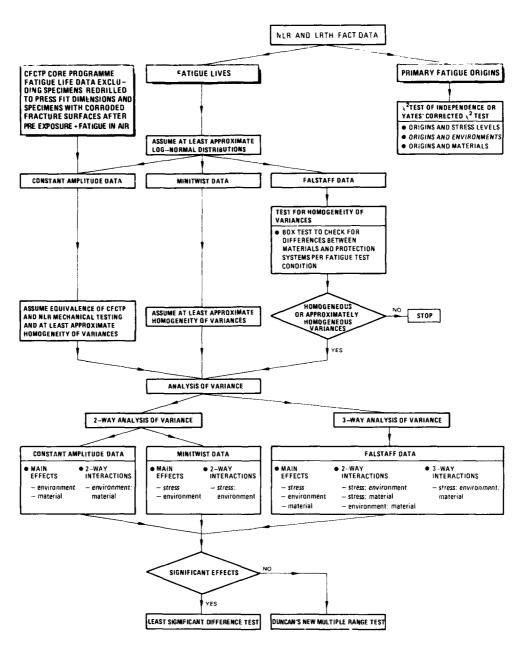


Fig. 7.2 Survey of statistical methods for analysing the NLR and LRTH data for FACT

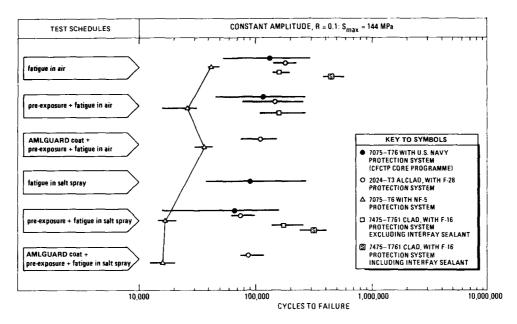


Fig. 7.3 Comparison of NLR FACT contribution and CFCTP core programme (a) constant amplitude fatigue life data. The CFCTP core programme data exclude specimens redrilled to press fit dimensions and specimens with corrode

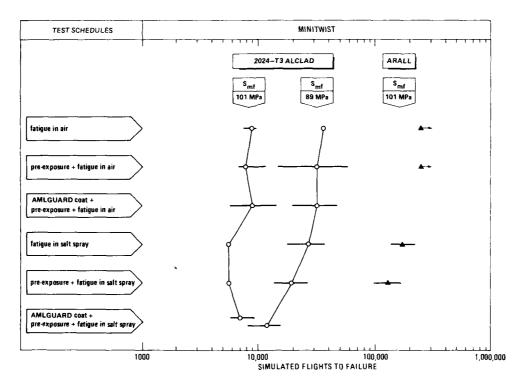


Fig. 7.4 NLR and LRTH fatigue life data for 2024-T3 Alclad and ARALL with an F-28 corrosion protection system and tested under gust spectrum loading (MINITWIST)

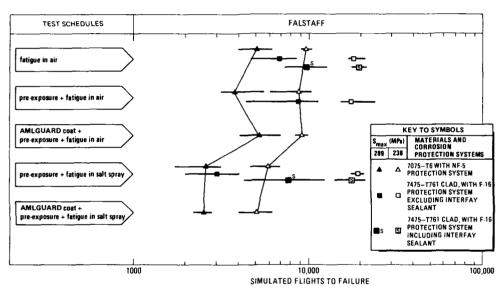


Fig. 7.5 NLR fatigue life data for testing under manoeuvre spectrum loading (FALSTAFF). The shaded bar indicates 7475-T761 clad specimens tested with S $_{max}$ = 238 MPa

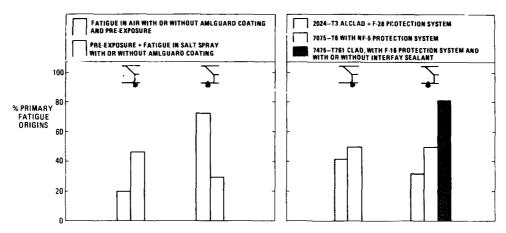


Fig. 7.6 Effects of environment and material on locations of .mary fatigue origins for the NLR constant amplitude fatigue (R = 0.1, $S_{max} = 144$ MPa) contribution to FACT

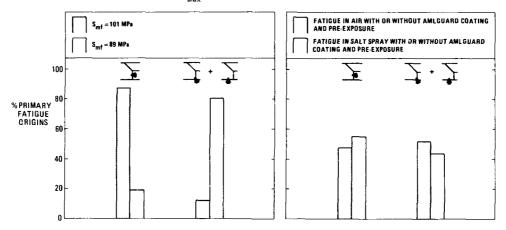


Fig. 7.7 Effects of stress and environment on locations of primary origins for monolithic 2024-T3 Alclad specimens tested as part of the NLR and LRTH MINITWIST fatigue contribution to FACT

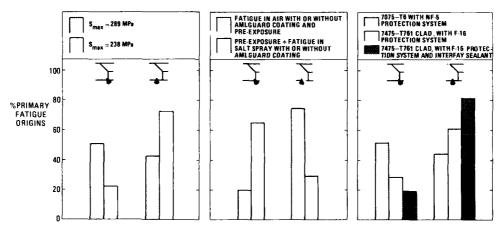


Fig. 7.8 Effects of stress, environment and material on locations of primary fatigue origins for the NLR FALSTAFF fatigue contribution to FACT

	CHARACTERISTIC		INFLUENCES ON FATIGUE LIVES	
HISTORY	STRESS LEVELS	SECTION MOITOTTONG CITY O LAIGHT AND		ENVIRONMENTAL EFFECTS
	(Smax, Smf)	MAIEHIALS AND THOIECTION STSTEMS	PRE-EXPOSURE	FATIGUE IN SALT SPRAY
CONSTANT AMPLITUDE. R = 0.1	144 MPa	■ 7475—T761 CLAD + F-16 + INTERFAY SUPERIOR OVERALL ■ 7073—T6 + NF-5 INFERIOR OVERALL ■ 7075—T76 + U.S. MAVY, 2024—T3 ALCLAD + F-28 AND 7475—T761 CLAD + F-18 EQUIVALENT FOR FATIGUE IN AIR WITH OR WITHOUT PRE. EXPOSURE ■ 7075—T76 + U.S. MAVY, 2024—T3 ALCLAD + F-28 EQUIVALENT FOR PRE. EXPOSURE + FATIGUE IN SALL SPRAY: 7475—T761 CLAD + F-16 SUPERIOR ■ AMLGUARD NOT BENEFICIAL	● SIGNIFICANTLY DETRIMENTAL FOR 7075—76 + NF 5 FATIGUED IN AIR	© SIGNIFICANTLY DETRIMENTAL EOR 7075–T76 + U.S. NAVY, 2024–T3 ALCLAD + F.28 AND 7075–T6 + NF 5 © NOT SIGNIFICANT FOR 7475–T761 CLAD + F.16 WITH OR WITHOUT INTERFAY
MINITWIST	101 MPa 89 MPa	ARALL MUCH SUPERIOR TO MONOLITHIC 2024-T3 ALCLAD AMLGUARD NOT BENEFICIAL AMLGUARD NOT BENEFICIAL	● NOT SIGNIFICANT	SIGNIFICANTLY DETRIMENTAL MAINLY AT LOWER STRESS LEVEL AND IN COMBINATION WITH PRE EXPOSURE
	289 MPa	● 7475-T761 CLAD +F-16 + INTERFAY SUPERIOR OVERALL ● 7075-T6 + NF-5 AND 7475-T761 CLAD + F-16 EQUIVALENT ● INTERFAY SEALANT BENEFICIAL ● AMLGUARD NOT BENEFICIAL	• NOT SIGNIFICANT	© SIGNIFICANTLY DETRIMENTAL FOR 7075—T8 + NF5 AND 7475—T781 CLAD + F.18 ■ NOT SIGNIFICANT FOR 7475—T781 CLAD + F.16 + INTERFAY
	238 MPa	A75—T761 CLAD + F-18 AND 7475—T761 CLAD + F-18 + INTERFAY EQUIVALENT O75—T8 + NF-5 INFERIOR OVERALL INTERFAY SEALANT NOT BENEFICIAL AMLGUARD NOT BENEFICIAL	● NOTSIGNIFICANT	SIGNIFICANTLY DETRIMENTAL FOR 7075–T6 + NF-5 NOT SIGNIFICANT FOR 7475–T751 CLAD + F-16 WITH DR WITHOUT INTERFAY

Fig. 7.9 Overview of the effects of different materials and protection systems and environmental conditions on the fatigue lives of 14 dogbone specimens from the CFCTP core programme and the NLR and LRTH contribution to FACT

		MAIN	MAIN INFLUENCES ON PRIMARY FATIGUE ORIGINS *	UE ORIGINS *	GENERALLY
TEST PARAMETER VARIATIONS	IATIONS		FATIGUE LOAD HISTORY		SIGNIFICANT
		CONSTANT AMPLITUDE, R = 0.1	MINITWIST	FALSTAFF	TRENDS
HIGH STRESS LEVELS	ELS	▼ 775-176 + U.S. NAVY F/S + G/S + E/D + E/D + G/S +	● 2024-T3 ALCLAD + F.28 E/O ↓ · E/B ↑ G/S ↑	● 7075-T6+NF-5 NO SIGNIFICANT EFFECT	● FAYING SURFACE (G/S) FAILURES INCHEASED
LOW STRESS LEVELS	ELS			■ 7475-T781 CLAD + F-16 WITH OR WITHOUT INTERFAY F/R 4: G/S 1	BORE/FAYING SURFACE CORNER (F/R) FAILURES DECREASED
	HIGH	• 7075-T76+U.S.NAVY F/Q t : G/S t	2024-T3 ALCLAD + F-28 NO SIGNIFICANT EFFECT	• 7075-T6+NF.5 AND 7475-T761 CLAD +F·16+INTERFAY F/R + : G/S +	
	LEVELS			7475-7761 CLAD + F-16 NO SIGNIFICANT EFFECT	
FATIGUE IN AIR		● 7075T76 + U.S. NAVY	◆ 2024-T3 ALCLAD + F-28	● 7075-T6+NF-5	FAILURES DECREASED
-		E/Q + , F/R + : G/S +	E/0 1 , F/R 1 : G/S +	F/R 1, B/N 1: G/S +	
BOYCHA SOLISORY 3 300		● 2024-T3 ALCLAD + F.28 AND 7075-T6 + NF·5		● 7475-T761 CLAD + F-16	BORE/FAYING SURFACE CORNER (F/R)
FATIGUE IN SALT SPRAY	NO7	F/R 1: G/S i		NO SIGNIFICANT EFFECT	FAILURES INCREASED
	LEVELS	● 7475-T761 CLAD + F-16		● 7475-T761 CLAD + F·16 + INTERFAY	
		NO SIGNIFICANT EFFECT		G/S ORIGINSSHIFTED AWAY FROM FASTENER HOLES	
		● 7475-T761 CLAD + F-16 + INTERFAY			
		G/S t : B/N t			

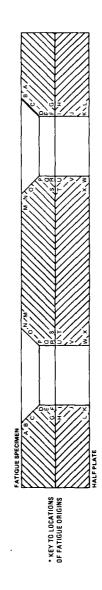


Fig. 7.10 Overview of the effects of stress level and environmental conditions on the locations of primary fatigue origins in 14 dogbone specimens from the CFCTP core programme and the NLR and LRTH contribution to FACT

8. THE IABG CONTRIBUTION TO THE FACT PROGRAMME

W. Schütz and W. Oberparleiter, Industrieanlagen - Betriebsgesellschaft IABG, Ottobrunn, Germany

8.1 Introduction

The IABG contribution to FACT compared the fatigue and corrosion fatigue properties of 7475-T761 clad and 7075-T6 aluminium alloy sheet under the realistic manoeuvre load history FALSTAFF (references 1, 2). To try and place the results in a broader context it was arranged that the 7075-T6 material came from a common batch purchased by the NLR and supplied also to the NDRE and RAE, and the 7475-T761 clad material was shared with the NLR, see table 1.1 of the introduction to this part of the report.

8.2 The Test Programme

An overview of the test programme is given in table 8.1. All specimens were of the $1\frac{1}{2}$ dogbone configuration discussed in detail in reference (3) and recommended for the FACT programme. Note that some tests on 7075-776 specimens from the same batch as the CFCTP core programme specimens were included. In all cases cadmium plated steel Hi-Lok fasteners were used. The diameter of the holes for the fasteners was 6.306 \pm 0.044 mm, which corresponds to a slight press fit, see figure 1.1 of the introduction to this part of the report.

8.2.1 Materials and properties

The materials were 3.2 mm thick sheets of aluminium alloys 70.75-776 (CFCTP core programme material), 74.75-7761 clad and 70.75-76. Engineering property data were as follows:

MATERIALS	0.2 % YIELD STRESS (MPa)	UTS (MPa)	ELCNGATION (7)
7075 - T76	479 (max)	550 (max)	11.0
7073-176	455 (min)	541 (min)	11.0
7475-T761 clad	422	498	12.6
7075-T6	547	582	11.2

8.2.2 Protection systems and specimen assembly

The 7075-T76 specimens had the same U.S. Navy paint scheme as in the CFCTP core programme, see reference (3) and Part 11 of this report. The 7475-T761 and 7075-T6 specimens were manufactured, painted and assembled by Messerschmitt-Bölkow-Blohm MBB in Augsburg, according to the following procedure:

- specimen parts machined, drilled and degreased
- chromate conversion coating "Alodine 1200" on all surfaces
- \bullet inhibited epoxy polyamide primer on all surfaces except fastener holes
- application of chromate-containing sealant "Celloseal" to faving surfaces and fastener holes
- Hi-Lok installation and wet assembly of fatigue specimen dogbones and half plates
- application of polyurethane topcoat.

The protection system applied by MBB was representative for the European Multi Role Combat Africaft MRCA. During wet assembly the sealant was forced through the fastener holes, but post-test examination showed that the holes had remained coated with a layer of sealant.

8.2.3 Mechanical testing conditions (static prestressing and fatigue)

All stresses were defined in terms of the total cross-section (but excluding the cladding layers on 7475-T761) of the fatigue specimen dogbone at the location of the centreline between the fasteners, i.e. the fastener holes were included in the cross-sectional area.

Before environmental exposure and fatigue testing all specimens were prestressed at $209 \pm 10~\mathrm{K}$ by applying two load cycles up to 238 MPa. The procedure for this is discussed in reference (3). The purpose of this low temperature prestressing was to ensure that the paint and primer layers were brittle and would crack around the Hi-Lok fastener holes, thereby simulating service damage that enables corrosion and corrosion fatigue to occur.

The characteristic fatigue stress levels for the test programme have been indicated already in table 8.1. These stress levels were obtained from the pilot tests described in section 1.4 of this part of the report. The fatigue load history was the manoeuvre spectrum FALSTAFF (references 1, 2). A short description of this spectrum is given in section 1.3 of this part of the report.

Detailed procedures for fatigue testing are given in reference (3). All tests were done using a 64 kN load frame fitted to a SCHENCK electrohydraulic macnine. The closed loop system was controlled by a SCHENCK GA-16/440 digital control computer. The generated load sequence was checked for each specimen type (7075- $^{-}$ 776, 7475- $^{-}$ 7761 and 7075- $^{-}$ 76) by classifying and comparing the actual and specified peak stresses for one complete block of 200 flights. Agreement between the actual and specified peak stresses was good.

8.2.4 Environmental conditions (pre-exposure, fatigue and corrosion fatigue)

Specimens scheduled for static exposure to an aggressive environment before fatigue testing were sealed at the faying surface side edges and Hi-Lok collars to prevent corrosion except in the fastener head areas. The sealant used was a silicone type and no. Permagum as recommended in reference (3). The procedure for static pre-exposure is described in detail in reference (3). Most specimens were immersed for the recommended time of 72 hours in 5 % aqueous NaCl acidified by a predetermined amount of SO_2 gas and maintained at 315 ½ k. However, for comparison purposes some specimens were pre-exposed for multiples (3%, 4% and 5%) of 72 hours. The cleaning procedure after pre exposure followed the unamended procedure in section 7.4 of Part 1 of reference (3).

For fatigue testing all specimens were electrically insulated from the loading grips and bolts by polymeric liners and bushings. Specimens to be fatigued in salt spray were also sealed at the faying surface side adges and Hi-Lok collars. The fatigue environments were laboratory air and 5 χ aqueous NaCl salt spray acidified with H_2SO_4 to pH 4, both at a nominal temperature of 295 K. The salt spray tests were done in a specially constructed cabinet, fully described in reference (3). The nominal cycle frequencies for fatigue testing with FALSTAFF were 15 Hz in air and 2 Hz in salt spray.

8.3 Results

The complete set of fatigue life and primary fatigue origin data for the IABG contribution to FACT is given in table 8.2. The way in which the test programme was set up and the results had consequences for the statistical methods used to analyse the data. This will be discussed in section 8.3.1.

The fatigue life results are presented and statistically analysed in section 8.3.2. This is followed by presentation and statistical unalysis of the primary fatigue origin data in section 8.3.3.

8.3.1 Statistical methods for analysing the data

A survey of the statistical methods for analysing the IABC data is given in figure 6.1. Owing to the limited number and unequal sample sizes of the fatigue life data it had to be assumed that they at lenst approximated to random samples from log-normally distributed populations with equal variance. Unequal sample sizes a, a meant that modified versions of the least significant difference test and Duncan's new multiple range test had to be used for "fine tuning" the analysis of variance results. More details of the statistical methods are given in Appendix 11.

8.3.2 Fatigue life data

The fatigue life data are shown in figure 8.2. In a general was these data indicate that stress level and environment had significant effects on fatigue lives (note that extended pre-exposures are considered equivalent). With regard to materials the only obvious differences were at $S_{max} = 289$ MPa, namely the shorter fatigue lives of 7075-T76 specimens compared to the 7475-T761 and 7075-T6 specimens.

The results of three-way analysis of variance of the data are summarised in table 8.3. According to the analysis the main variables of stress level, environment and material and their two-way interactions all had significant effects on the fatigue lives of the specimens. Since there were only two stress levels it is obvious that the significant difference is between them. Thus it was not necessary to "fine tune" this result using the least significant difference test. Also, owing to the dominating effect of stress level (compare the F and F distribution values in table 8.3) it was not worthwhile using the least significant difference test to compare environments and materials without introducing stress levels. In other words it was better to proceed directly to the two-way interactions, which will be discussed in the tellowing order:

- effect of stress level per environment (fatigue testing schedule) and material
- effect of environment at each stress level
- effect of material at each stress level
- effect of environment per material
 - tfect of material per environment.

importance of stress was confirmed in detail by using the least significant difference test to make see the effect of stress level on fatigue life per environment and material. The results are given in table 8.4. In every case the effect of stress level was significant, as would be expected.

least significant difference test results for the effects of environment and material at each stress level are summarised in tables 8.5 and 8.6. Significant environmental effects were found for both stress levels, but apart from this there was no general trend. Significant differences between materials occurred only at the higher stress level and were the result of shorter fatigue lives of 7075-T76 specimens compared to the 7475-T761 and 7075-T6 specimens.

For completeness the 'east significant difference test results concerning environment: material interactions are listed in table 8.7. There is a problem with interpreting these interactions. No distinction could be made between stress levels, since three-way interactions were not found significant by analysis of variance, see table 8.3. To include the effect of stress the data had to be analysed using Duncan's new multiple range test. The results are given in tables 8.4 and 8.9 and compared in table 8.10 with the least significant difference test results for environment: material interactions. There were several discrepancies, shown shaded, between the test indications. In all cases the discrepancies could be attributed to the importance of taking stress level into account. In other words, only the results from Duncan's test should be considered. These may be described as follows:

- (1) dignificant environmental effects were found for each material out there was no overall trend.
- (2) For 7475-T761 and 7075-T76 the significant environmental effects were confined to tatigue with $S_{max} \approx 289$ MPa.
- (3) Extended pre-exposure generally had no additional effect on fatigue life. An explanation of the one case for which extended pre-exposure was significant (7075-T6 fatigued with S = 238 MPa) is provided by the primary fatigue origin data in tab. S 2.2 Extended pre-exposure sometimes resulted in enhanced corrosion attack at specimen corners remote from fastener holes. For 7075-T6 specimens fatigued at the lower stress level this corrosion was sufficiently severe to cause early initiation of fatigue cracking. At the higher stress level fatigue crack initiation was determined mainly by the stress concentrating effect of the fastener holes.
- (4) Significant differences between materials occurred for fatigue with S_{max} = 289 MPa and for each environment in which all three materials were tested. As stated previously, these differences were due to shorter fatigue lives of 7075-T76 specimens compared to 7475-T761 and 7075-T6 specimens.

8.3.3 Primary fatigue origin data

The primary fatigue origin data were analysed using the χ^2 test of independence and the results are summarised in table 8.11. All three main variables of stress level, environment (fatigue testing schedule) and material had significant effects on the locations of primary fatigue origins, as follows:

- (1) For $S_{max} = 289$ MPa most failures initiated in the bores (E/Q) and at the bore/faying surface corners (F/R) of the fastener holes in the specimens. For $S_{max} = 238$ MPa most failures initiated at the (G/S) faying surface locations.
- (2) With or without pre-exposure the change from fatigue in air to fatigue in salt spray reduced the number of faying surface (G/S) failures. Pre-exposure and/or fatigue in salt spray promoted failures at the bore/faying surface corners (F/R) of the fastener holes and also promoted failures at specimen corners remote from the fastener holes.
- (3) For 7075-T76 specimens there were relatively more failures in the bores (E/Q) and at the bore/ taying surface corners (F/R) of the fas.ener holes. For 7475-T761 and 7075-T6 specimens a number of tailures occurred remote from the fastener holes. This was not observed for the 7075-T76 specimens either in this investigation or in the CFCTP core programme (see table 2 in Part II of this report).

8.4 Discussion

This investigation has shown that 7475-T761 and 7075-T6 specimens assembled using the MRCA protection system have equivalent fatigue and corrosion fatigue properties when tested with a realistic load history (FALSIAFF). On the other hand, 7075-T76 CFCTP core programme-type specimens had significantly shorter lives at $S_{\rm max} = 289$ MPa but not at $S_{\rm max} \approx 238$ MPa.

The reason for this difference is not obvious. However, the primary fatigue origin data provide a clue. For the 7075-T76 specimens tested at $S_{max} = 289$ MPa there were relatively more failures in the bores and at the bore/faying surface corners of the fastener holes. In the CFCTP core programme it was found that these failure locations tended to result in shorter fatigue lives than other locations, see section 3.4 of Part II of this report.

The question now arises as to why there were relatively more failures in the bores and at the bore/ faying surface corners of the fastener holes in the 7075-T76 specimens tested at $S_{\rm max}=289$ MPa. It is our opinion that the use of Celloseal sealant in assembling the 7475-T761 and 7075-T6 specimens was teaponsible. In other words, Celloseal prevented or postponed failure initiation at the characteristic shorter life locations and enabled the 7475-T761 and 7075-T6 specimens to reach significantly longer fatigue lives than the 7075-T76 specimens.

8.5 Conclusions

- (1) 7-75-T761 and 7075-T6 specimens assembled using the MaCA protection sincem had equivalent fatigue and corrosion fatigue properties under FALSTAFF loading. 7075-T76 GPC $^{\circ}$ core programme-type specimens were significantly inferior at the higher stress level (S_{max} = 289 MPa) but equivalent at the lower stress level (S_{max} = 238 MPa).
- (2) Wet assembly with Celloseal sealant can be beneficial to fatigue and corrosion fatigue life.
- (3) Stress level had a predominant effect on fatigue life.
- (4) Significant environmental effects occurred at both stress levels, but there was no overall trend.
- (5) Extending the pre-exposure period to multiples of the specified 72 hours generally had no additional effect on fatigue life.
- (6) All three main variables of stress level, environment, and mate, il + protection system combinations had significant effects on the locations of primary fatigue origins. Celloseal prevented or postponed failure initiation at locations which are characteristically associated with shorter fatigue lives.

8.6 References

- "Description of a Fighter Aircraft Loading STAndard For Fatigue evaluation", Combined Report of the F + W, LBF, NLR and IABG, March 1976.
- 2. J.B. de Jonge, "Additional information about FALSTAFF", NLR Technical Report TR 79056 U, June 1979.
- R.J.H. Wanhill and J.J. De Luccia, "An AGARD-coordinated corrosion fatigue cooperative testing programme", AGARD Report No. 695, February 1982.

TABLE 8.1: OVERVIEW OF THE TABC TEST PROGRAMME FOR FACT

 $3.2\ mm$ thick 7075-T76 (CFCTP core programme material), 7475-T761 clad and 7075-T6 aluminium alloy sheets MATERIALS PRESS FIT HI-Lak FASTENERS SPECIMEN 0 300 mm 7075-T76 : chromate conversion + inhibited epoxy polyamide primer (except fastener holes) + aliphatic polyurethane topcoat PROTECTION SYSTEMS 74/5-T761 and: chromate conversion + inhibited epoxy polyamide primer 7075-T6 (except fastener holes) + celloseal in fastener holes and at faying surfaces + polyurethane topcoat PROTECTION SYSTEM two stress cycles at low temperature to crack DAMAGE paint and primer around the fastener heads FATIGUE LOADING FALSTAFF FATIGUE ENVIRONMENTS laboratory air; 5 % aqueous NaCl salt spray with pH 4 STATIC PRE-EXPOSURE multiples of 72 hours in 5 \pm aqueous NaCl + S0, at 315 K SCHEDULES CHARACTERISTIC 7475-T/61 7075-T6 7075-T76 STRESS LEVEL S_{max} = 289 MPa fatigue in air S_{max} = 238 MPa • • S_{max} = 289 MPa • pre-exposure + fatigue in air S_{max} - 238 MPa • • TEST PROGRAMME fatigue in S_{max} - 289 MPa • salt spray pre-exposure + - 289 MPa • • • fatigue in salt spray - 238 MPa • • s_{max} = 289 MPa extended pre-• • • exposure + fatigue S_{max} = 238 MPa • in salt spray STATISTICAL ANALYSIS • fatigue lives and primary fatigue origins

TABLE 8.2: FATIGUE LIFE AND PRIMARY FATIGUE ORIGIN DATA FOR THE LABG CONTRIBUTION TO FACT

7

			FATIGUE LIFE T	TO FAILURE (FLICHTS	S AND LOG MEAN VA	ALUES)/LOCATIONS O	FATICUE LIFE TO FAILURE (FLIGHTS AND 1.00 MEAN VALUES)/LOCATIONS OF PRIMARY ORIGINS OF FATICUE.
MATERIALS AND CORROSION PROTECTION SYSTEMS	FATIGUE LOAD HISTORY	CHARACTERISTIC STRESS LEVEL	fatigue in air	pre-exposure + fatigue in air	fatigue in salt spray	pre-exposure + fatigue in salt spray	extended pre-exposure + fatigue in salt spray
7475-T761 clad, with	SAL CTA UD	S = 289 MPa	9,608 S 9,630 F 12,764 10,000 G •	11,028 G.S • 9,155 F # 4,424 F.E #	7,746 F 8,864 Q 11,634 5,178 R 8,020	3,134 R 5,155 E 4,895 F 4,292	5.468 (3 X 72 hours pre-exposure)
sysem		S = 238 MPa	14,626 G 8 17,964 G,S • 21,364 G,S • 13,764 S • 16,672	16,164 G.S • 22,164 S \$		12.934 B 20.660 • 9,111 F	16,494 F
7075-T6 with HRCA		S - 289 MPa	15,026 S 12,028 E 12,566 1 13,226 S •	7,365 E 4,965 E 10,566 Q	7,365 E 3,418 E 7,564 -	3,155 Q 5,175 B 2,964 F	3,390 (4 X 22 hours pre-exposure)
protection system	301	S = 238 MPa.	29, 964 C 21, 345 E 20, 564 Q 23, 605	24,218 G 12,545 S • 17,430		10,778 • 12,981 - 14,000 • 11,553 • 12,265	5,155 X. 72 hours pre-exposure) 5,656 (3 X. 72 hours pre-exposure)
7075-T76 with U.S. Navy protection system	FALSTAFF	S = 289 MFa	4,155 R 4,626 E 4,384			1,226 E.q 755 E 962	1,418 F (> X /2 hours pre-exposure)
(reference 3)		S _ 238 MPa	24, 379 S			18,143 \$	

Fracture surfaces not available to the NIR.
 These failures were on the boundary of the area clamped by the fasteners
 These failures were remote from the fastener holes
 These failures occurred at specimen corners remote from the fastener holes
 These failures occurred at specimen corners remote from the fastener holes but evidently from corrosion attack that lifted the protection system.
 These failures occurred from corrosion plts that most probably developed during pre-exposure.
 These failures showed corroded fracture surfaces indicative of incomplete drying of the specimens after pre-exposure.

EMBLE 8.3: SUPPAREY OF ANALYSES OF VARIANCE RESULES (95 7 CONTIDENCE)

FATIGUE LOAD HISTORY	JUSA-TERUSTIC STRESS LEVEL	SOURCE OF WARIATIO	F DISTRIBUTION VALUE	in o	STORIFICANT EFFECTS OF EXPERIMENTAL VARIABLES (F), > F DINIKHAUTON VALUE)
		MAZN RELECTS			
		N. PERSON OF STREET	= 3	 2 3 3 3	5.30
		Baterial	F 7 1	 : < :	
FALSTAFF	S - 281 MP., MAX AND	* 1 May INTERACTIONS STRESS environment	!		
	S = 238 MPa	offices material	87. X.	15 27	Ves
		STRESS FORTROMS STRESS FORTROMEST Beterial	2		130

TABLE 8.4: LEAST SIGNLFIGANT DIFFERENCE H.ST RESULTS (95 TOWNTHERM) FOR THE LFFECT OF STRESS LEVEL ON FATICUE LIFE

FATLAL TESTING SCHEDULE	nggard	fattigne de sor	the and wantier a appropriate of the	100		1	and the section of th		exfended pro exposure tatigue in salt sprav	extended pro exposare +
STRESS LEVEL.	S - 289 MPa	S - 238 MPa	S 18' Mile	S TOWN OF S THE STREET OF STREET	STRESS LEGAL S 249 Med 149 Med 140	rdk as a series	- AF + 87 - 21 %	A 235 MPa	S - 784 MPa	S - 238 MPs
LOU MEAN FAITHUE LIFE	3.963	 	1.87.3	-	1			3	1 48.7	1, 89.3
SAMPLE SIZE n		*		- 			**************************************	ac.	-`	-
			1.00	14.7		, Pr. 1. 1	Alto a - a folia			
FATILLUE TESTING SCHE ULE	ATIACE TESTING SCHE GLE				OMBARISONS OF DATA TOR PITPERSAL SPRING LANDS	DATA TOR of LEGETS	-		SIGNIFICANT DIFFERENCE	PERENCE 54.1
tatigue in air bre ext some • pre-extusiae • extended pre-ex	hatigue in air Dafe explosure - tatigue in air Pre-explosure - tatigue in air spilli Wiembel pre-exposure - fattour in air spilli	ods Christian	:	·	20 20 20 20 20 20 20 20 20 20 20 20 20 2	e e e e e e e e e e e e e e e e e e e	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		\$ 50 X X X X X X X X X X X X X X X X X X	

MATERIAL	control with the factor of the particular	Mr. A passer.			Chiral P.S., Navy parint.)	Navy parint)
- 1	73K 1-7 - 2-6	1 SE 50	7. · · · · · · · · · · · · · · · · · · ·	A William St. Co. March.	EdW 805 - 2 EdW 995 - 75 EdW 995 - 2 Edw 9	24 MPa S 13 MPa
DOC MEAN HATTOUR LIFE	!		7.2		7.	2,
SAMPLE SIZE n		·		2		
				May a problem at a cold		
	MACERIAL		CHERRIST OF DAIN F R	F F S		SINVIERANT DIFFERENCE
Carlo Tod Lout ARK A parred of the Toda (ARK A parred of the Toka Charles of the Toka			128 St. 1128 St. 1		8. F	5-30 5-30 5-30

TABLE 8.5: LEAST SIGNIFICANT DIFFERENCE TEST RESULTS (95 % CONFIDENCE) FOR THE EFFECT OF ENVIRONMENT ON FATTCLE LIFE AT EACH STRESS LEVEL

STRESS LEVEL		, vi	S - 289 MPa				S X ESI	- 238 MPa	
FATICUE TESTING SCHEDULE	fatigue in air	pre-exposure + fatigue in air	fatigue in salt spray	pre-exposure pre-expos + fatigue in + fatigue salt spray salt spra	pre-exposure + fatigue in + fatigue in salt spray	fatigue in air		pre-exposure pre-exposure + fatigue in + fatigue in air salt spray	extended pre-exposure + fatigue in salt spray
LOG MEAN FATIGUE LIFE	3 983	3 873	3.842	3 445	3.482	6 5 5 6	4.259	4.175	3.893
SAMPLE SIZE n	ę	٠	7	æ	3	8	7	8	3
		to.025;34 = 2.03	- 2.03		AS	MS residual - 0.016	9		
						S Tax -	- 289 MPa	S ×ene	S 238 MPa
COMPARISO	C S OF DATA FR	COMPARISC S OF DATA FROM DIFFERENT FATICUE TESTING SCHEDULES	ATIQUE TESTING	SCHEDULES	I	(6	SIGNIFICANT DIFFERENCE (t > C _{0.025;34})	t D	SIGNIFICANT DIFFERENCE (t > c _{0.025,34})
fatigue in air/pre-exposure - fatigue in air datigue in air/fatigue in sait spirur in sait spirur air/fatigue in air/fatigue in sait spirur fatigue in air/fatigue spirure - fatigue in sait spirur fatigue in air/fatigue in air/fatigue in sait spirur pre-exposure - fatigue in air/fatigue in sait spirur	ure + fatigue n salt spray ure + fatigue pre-exposure + n air/fatigue n air/fatigue	in air in salt spray* fatigue in sa in salt spray swre + fatigue nre-exposure	lt spray in salt spray	alt sprav		1,68 2,26 8,97 6,02 6,2 6,2	no yes yes yes yes	0.52 - 4.74 - 1.74 3.79	0 X X D X X X X X X X X X X X X X X X
facigue in salt spröypre esposure - facigue in salt spray facigue in salt spröyferemede pre-vapoure - facigue in salt spray pre-exposure - facigue in salt spray/extended pre-exposure - facigue in salt spray	e exposure + 1 tended pre exp n salt spray/e	atigue in salt sosure + fatigue xtended pre-ex	spray e in salt spra posure * tarig	y ue in salt spr	ćay	6.06 4.12 0.43	yes yes no	2.11	, ,

bying to equal sample size for S = 218 MPa, this comparison can also be made using the unmodified least significant difference test. The same result is obtained

TABLE 8.6: LEAST SIGNIFICANT DIFFERENCE TEST RESULTS (95 % CONFIDENCE) FOR THE EFFECT OF MATERIAL ON FATIGUE LIFE AT EACH STRESS LEVEL

STRESS LEVEL		S = 289 MPa			Smax - 238 MPa	a
HATERIAL	7475-T761 clad (MRCA paint)	/0/5-T6 (MRCA paint)	/075-T76 (U.S. Navy paint)	7475-T761 clad (#RCA paint)	7075-T6 (MRCA paint)	7075-T76 (U.S. Navy paint)
LOG MEAN PATICUE LIFE	3 865	3 828	3.280	4 205	671 7	4.322
SAMPLE SIZE n	15	14	3	10	11	2
	0 025	10 025 34 - 2 03	x	MS residual - 0.016		
			Sasx	S = 289 MPa	"S	S - 238 MPa
COMPARI	COMPARISONS OF MATERIALS		t SIGNIFI	SIGNIFICANT DIFFERENCE	t SIGN	SIGNIFICANT DIFFERENCE ST > t > t_0.025;3:
7475-T761 clad/7071-T6 7475-T761 clad/7071-T/6 7075-T6/7075-T76			0.79 8.96 8.32	sak sak	1.38 1.19 1.99	on on

TABLE 8.7: LEAST SIGNIFICANT DIFFERENCE TEST RESULTS (95 % CONFIDENCE) FOR ENVIRONMENT: MATERIAL INTERACTIONS

MATERIAL		14.18	7475-T/61 clad (MRCA paint)	(CA paint)			707	7075-T6 (MRCA paint)	int)		1015-	1075-176 (U.S. Navy paint)	paint)
FATICUE TESTING SCHEDULE fatigue in pre-exposure fatigue in air strange in air spray sait spray sai	fatigue in air	pre-exposure + fatigue in air	fatigue in salt sprav	pre-exposure + fatigue in salt spray	extended pre-exposure + fatigue in salt spray	fatigue in air	pre-exposure + fatigue in air	fatigue in salt spray	pre-exposure + fatigue in salt spray	extended pre-exposure + fatigue in salt spray	fatigue in air	pre-exposure + fatigue in salt spray	extended pre-exposure + fatigue in salt spray
LOG MEAN FATIGUE LIFE	4.120	4, 041	3.404	3.404 3.881	3.978	4.228	4.014	3.760	3.865	4.014 3.760 3.865 3.673 3.890	3.890	3.408	3.152
SAMPLE SIZE n	*		.1	٥	3	,	ş		-		~	3	-
		1	, to.3	t0.025,34 = 2.03			MS	MS residual = 0.016	016				

	14.1	74.5-T761 clad (MRCA paint)	Ĺ	7075-T6 (MRCA paint)	7075	7075-T76 (U.S. Navy paint)
COMPARISONS OF DATA FROM DIFFERENT FATICUE TEXTING SCHEDULES	ų	SIGNIFICANT DIFFERENCE (t > t _{0.025;34})		SIGNIFICANT DIFFERENCE (t > t _{0.025,34})	-	SIGNIFICANT DIFFERENCE (t > t ₀ 025;34)
fatigue in air/pre-exposure + fatigue in air	1.10	ou	2.89	yes	,	
factgue in alr/facigue in salt spray	2.79	yes	5.36	sak	,	t
fatigue in air/pre-exposure + fatigue in salt spray*	3.50	yes	5.37	yes	4.67	yes
fatigue in air/extended pre-exposure + fatigue in sait, sprav	1 42	ou	6.36	Ves	5.05	Ves
pre-exposure + fatigue in air/fatigue in salt sprav	1.62	ou	2.75	ves	,	1
pre-exposure + fatigue in air/pre-exposure + fatigue in sait spray	5 04	yes	2.01	ou	ı	,
pre-exposure + fatigue in air/extended pre-exposure + fatigue in salt spray	09-0	no	3.69	yes	,	-
fatigue in sait spray/pre-exposure + fatigue in sait spray	0.28	no	0,7	00	,	1
fatigue in sait spray/extended pre-exposure + fatigue in sait spray**	990	по		ou	ı	1
pre-exposure + facigue in sair spray/extended pre-exposure + fatigue in sair spray	76 0	no	2.20	yes	1.75	on

PARTICULAR DE MANDE DE MANDE		turigae in air	31d	pro-exposure + folique in air		fatigue in salt spray	pre-ex spray	pre-exposure + fatigue in salt spray	ن ن	extended pre-exposure + fatigue in salt spray
CONTRACTORS OF TAILERING	L.	STONIFICANT DIFFERENCE of the Control of the Contro		SIGNIFICANT DIFFERENCE (t > t ₀ 025,34 ⁷)		Significant Difference (t > t _{0.025,34})	t.	SIGNIFICANT DIFFERENCE (t > t _{0.025,34})	ں	SIGHIFICANT DIFFERENCE (t > t _{0.025;3,*})
7475-T761 clad/20/5-T9 7475-T761 clad/20/5-T ²⁶ 7075-T6/7075-T ²⁶	1.65 2.64 3.87	180 91.5 91.8	0. 34 - -	no +	1,49	- ou	0.23 5.29 5.24	no yes yes	2.64 5.33 3.57	sex sex

Ouing to equal sample size this comparison can also be made for 7003-T6 and 7003-T6 using the unmodified loast significant difference test. The same result is obtained.

Ouing to equal sample size this comparison can also be made for 7003-T6 using the unmodified least significant difference test. The same result is obtained.

Ouing to equal sample size this comparison can also be made using the unmodified least significant difference test. The same result is obtained.

TABLE 8.8: SUMMARY OF DUNCAN'S NEW MULTIPLE RANGE TEST RESULIS (95 % CONFIDENCE) FOR THE EFFECT OF ENVIRONMENT PER STREAS LEVEL AND MATERIAL

						Anna Language					İ		1		(aured battle)	î.				_		6 10) 9/1/6/0		Navy paint!	
PATIGUE TESTING SCHEDULE fatigue in air pre-tapusure	E facis	ue In air	pre-ex fatigu	pre-exposure + fatign fatigue in air spray	fatigue in salt spray	in salt	pre-exposure + fatigue in salt Spray	n salt	extended pre-exposure + fatigue in salt spray		fatigue in air		pre-exposure + fatiguiacigue in air sprey	e + fat	igue in ay	farigue in salt farigue in salt farigue in salt farigue in salt spray spray	exposur gue in y	salt pre-e	nded exposure gue in sa	tatig	fatigue in air	pre-ex fatigu spray	pre-exposure + pre-exposure + faigue in sall fat gue in sall sayly spray	extended pre-exposure + fatigue in salt spray	d osure In sa
CHARACTERISTIC STRESS LEVEL S (MPA)	289	238	289	\$13	585	238	289	238	585	238	289 2	238 2	289 23	238 2	289 2:	238 289		238	289 238	589	238	289	2.18	589	238
TOO NEAN FATICUE LIFE	\$10 7	8 4 222	1 883	4.323	706 5	,	3 633	4, 129	3.738	4.217 4	4 119 4	4.373 3.	3.862 4.241	┢	3.760	3.566	┼	4 089 3	3,555 3 731	3 042	2 4 386	2.983	657 7	3.15	Ľ
SAMPLE SIZE n	-37	,	-	~	,	,	^	-	-	-	,	_	3 2	-	,	-	\vdash	-	7	2	-	~	_	-	Ľ
																TEST P	TEST PARAMETERS	2							
								_		7475-17	7475-T761 clad (MRCA paint)	MRCA pai	(nt)			7075-1	7075-T6 (HRCA paine)	pathe		-	101	2015-T76 (U.S.	S. Navy	Navy paint.)	
	COMPA	COMPARISONS OF DATA		PER TEST PARAMETER	RAMETER		1	<u> </u>	DIFFERENCE BETWEEN LOW HEAN FATICUE LIVES X	DIFFERENCE BETWEEN LOC HEAN FATIGUE FATIGUE LIVES X $\sqrt{\frac{n_1 n_1}{n_1 + n_3}}$	SSR	SIGN DIFF	SIGNIFICANT DIFFERENCE \dot{x}_j $\sqrt{\frac{2n_jn_j}{\alpha_i^{1}n_j}}$ > SSR	SSR	DIFFERENCE BETWEEN LOC HEAN FATICUE FATICUE LIVES X	NCE LOC $\sqrt{\frac{2n_1n_1}{n_1^4n_3}}$	SSR	SIGNI DIFFE $(\dot{x}_1 \cdot \dot{x}_j) $	SIGNIFICANT DIFFERENCE $\frac{2n_1n_2}{n_1+n_1} > SSR$	•	DIFFERENCE BETHEN LO: HEAN FATIGUE Trives X V Trives X	1915	* * * * * * * * * * * * * * * * * * *	SICKLE ICANT DIFFERENCE	FRENCE Property P
																									ł
facigue in air/pre-exposure + tatigue tatigue in sait spravé tatigue in air/facigue in sait spravé tatigue air/pre-exposure + fatigue	igue in exposu	salt spr.	igue in air igue in sal	in air in sair sprayba	:					0.250 0.228 0.713	0.381 0.36; 0.401		2 C X	Nr,			0 362 0 381 0 393		yes yes	1 1 ~	1 1 6		181	' . ŝ	l
	ended p	re-exposu air/fati	igue in s.	fatigue in sait in sair spray***	ait spias				., ~	55.0 63%	0 365		5 H	so es		0.113	107 0		yes	~+ 1	0.566		798 0	N :	
pre-exposure + fatigue in air/pre-exposure + fatigue in salt spray**** pre-exposure + fatigue in air/extended pre-exposure + fatigue in salt ;	Lgue in Igue in	air/pre-	exposure	· fatigu	<pre>sure + fatigue in salt spray**** pre-exposure + fatigue in salt spray</pre>	spray**	t sprav			0 433	0 381		ves Bo	~ 4		0.513	187 0			1 1	1 .			,	
fatigue in sait spray/pre-exposure + fatigue in sait sprav***	ray/pre	exposure.	· fatig	ue in sal	t sprav**				_	705.0	0 393		ves	~	_		798 0	_	2 9	1	1 1	_			
Attigue in sait spray/extended pre-exposure + fatigue in sait spray pre-exposure + fatigue in sait spray/extended pre-exposure + fatigue in sait spray	ray/ext. Igue tn	sait spra	.ay/exten	e + fatig ded pre-e	xposace	: spray fatigue	in salt	_	2 2	9.210 0.12	0 582		of 64	~ ~		0 251	0 383	- •	20	1	2		362	35	
																									١
farigue in air/pre-exposure + farigue	nsodxa.	re + fatt,		in air	:			-	_	0.090	0.362		2 2	5	L	0.204	0 367		2 5		1 5		<u>-</u>	. :	
	nded p.	nsodxa.a.	ire + fat	igue in s	alt sprav			_		900 0	0.367		2 2				333	-		. 1	: ,	ž	 É .	ě.	
pre-exposure - ratigue in air/pre-exposure - tatigue in sait apray pre-exposure - fatigue in se	igue ta	alr/pre-	inded pre	exposure	inte + latigue in sait spray pre-exposure + fallgue in sait spray***	spray e in sal	t spray**		-	690 0	0 381		2 2	~ ~					Se s	1)	: 1				
pre-exposure + fatigue in sait spray/extended pre-exposure + fatigue in sait spray	igue in	salt spr	ray/exten	ded pre-e	* bosnie +	fatigue	in salt	_		901 0	0 362		91	24		0.585	2 34 5		\$				_		

TABLE 8.9: SUNMARY OF DUNCAN'S NEW MULTIPLE RANGE TEST RESULTS (95 % CONFIDENCE) FOR THE EFFECT OF MATERIAL PER STRESS LEVEL AND ENVIRONMENT

CHARACTERISTIC STRESS LEVEL						S - 289 MPa	y MPa						
FATICL TESTING SCHEDULE		fatigue in air		pre exp fatigue	pre-exposure + facigue in air	facigue in salt spray	salt spray	рге-ехрозаге	pre-exposure . fatigue in salt apray	salt aprav	exter	tatigue in sait apray	
MATERIA	1435.T361 (NRCA paint)	7075 T6 (MRCA paint)	2075-176 (U.S. Navy paint)	7475-1761 (MRCA paint)	7075-T6 (MRCA paint)	7475-T761 (MRCA paint)	7075-T6 (MRCA paint)	7475.T761 (MRCA paint)	7075-T6 (MRCA paint)	1075-776 (U.S. Mavy paint)	7475-T761 (MRCA paint)	7075-T6 (MRCA palnt)	7075-176 (U.S. Navy paint)
TOG MEAN FATTCUE LIFE	410 7	911 7	3 64.2	3 883	3 862	3,904	3.760	3 633	3 346	2.983	3 738	1 355	3 152
SAMPLE SIZE n	,		7	_		,	_	-		~	~	-	-
1631	EST PAKAMETER		G.	COMPARISONS OF DATA PER TEST PARAMETER	OF DATA	DIFFEREN MEAR FAT	DIFFERENCE BETWEEN LOG MEAN FATIOUE LIVES X	$\sqrt{\frac{2n_1n_1}{n_1+n_1}}$	is L	SSR	SIGNIFICANT DIFFERENCE	DIFFERENCE $(x_1, x_2) \sqrt{\frac{2n_1n_1}{n_1+n_2}} > SSR$	L , ssr
			2	2475-T761 clad/2075-T6*	*91-5/0		0.202		0	0.362		ou.	
fatigue in air			~	1475-T161 clad/1075-T76	025-176		0.614		0	0 362		yes	
			~	9/1-5/0//91-5/0/			0.739		0	0 381		šek	
pre-exposure + fatigue in air	-11		~	**************************************	075.T6*		960 0		0	0 362		ort	
fatigue in sait sprav			۳.	24.5 T761 clady 5975-T6	975-T6		0.267		a	0 362		ot.	
				5. 5 T/61 clad/20/5-T6*	0.75 - T6 •		0 116		э	295 0		00	
pre-exposure + fatigue in salt sprav	verte tipe		~	3475 T261 clad/2025-T76	075-776		1 00:		0	181 0		ves	
				2075 T677075-T76			0 403		0	291.0		yes	
				7475-T761 clad/7075-T6*	075 · T6*		0 183		θ.	0.362		90	
extended pre-exposure + fatigue in sait sprav	tigue in talt	.bt.av	-	7275-T161 clad//075-T16*	*971.570	·	0 586		a'	0.381		yes	
			7	1075-T677073-T46#			107 0		2	0 362		yes	

CHARACTERISTIC STRESS LEVEL.						S max - 214 MPs	r Ba				
FATIGUE TESTING NOMEDULE			fatigue in air		pre exposure + fatigue in air	ure . n air	bre-exposur	pre-exposure + fatigue in sait spray	salt spray	extended pre-exposure + fatigue in sait spray	exposure .
MATERIAL		(MRCA paint)	1975-T6 (MRCA paint)	1075-176 12.5. Navy paint)	7475-7761 : 7075-76 7475-7761 (MRCA paint) (MRCA paint)	7075-T6 RCA paint!	7475-7761 PRCA paint)	7075-T6 (MRCA paint)	7075-776 (U.S. Navy paint)	7475-T761 (MRCA paint)	1075.T6
LOG NEAN FATIGUE LIFE		777	. 173	786	4.177	197. 7	621.7	680 7	4,259	4 217	3 231
SAMPLE SIZE II		3			٠.		_	,	1		2
TEJT PANAMKTER	=	CHPARISONS OF DATA PER TEST PARAMETER	UF DATA	DIFFEREN	DIPPERENCE BETWEEN LOG (3n n) HEAN PATICLE LIVES X V n + n	2ntu1		888	STGNIFICANT DIFFERENCE	$\begin{array}{c} \text{Striftgam}; \\ \text{Difference} (x_1, x_3) \sqrt{\frac{2n_1 \epsilon_1}{n_1}} > \text{SSR} \end{array}$	1, ssk
		7475 T761 clady7075 Ib	0:5 Th		0.280		-	0 362		QL.	
farigue in air	-	7475-T761 clad/7015-T76	015-176		107 n		0	0.381		ż	
	`,	7015-T6/70/3 T/6			0 016		9	3 362		2	
pre-exposure e fatigue in air	~.	7475 Thi Clad. 1015 76*	•9: S.0		0.051		-	0.362		£	
	٠.	34.95 Thi chad/2025 Th	12 to		0.0%		0	0 362		Ē	
pre-exposure e factigne in Said Spray		Carry Total Charle Person Trus	4. T. h		e [54			0.362		Ē	
	-	" p.Th. Sec. 778.			SEC 0			188		136	
extended pre exposure + Latague an sail spiery		47. T'KL (Lancidors 14.	14 10	i	198.0		¢	0 162			

TABLE 8.10: COMPARISONS OF LEAST SIGNIFICANT DIFFERENCE TEST AND DUNCAN'S TEST RESULTS FOR THE EFFECTS OF ENVIRONMENT AND MATERIAL.

	SIGNIF	ICANT DIFF	ERENCES IN	FATIGUE L	IVES FROM	SIGNIFICANT DIFFERENCES IN FATIGUE LIVES FROM DIFFERENT FATIGUE TESTING SCHEDULES	FATIGUE TE	STING SCHE	DULES
	7475-1761	7475-T761 clad (MRCA paint)	A paint)	7075-	7075-T6 (MRCA paint)	aint)	7075-T76	7075-T76 (U.S. Navy paint)	paint)
COMPARISONS OF DIFFERENT FATICUE TESTING SCHEDULES		Duncan's test	s test		Duncan's test	s test		Duncan's test	s test
	LSD	Smax	×	LSD	Smax	Ř	LSD	S	×
		289 MPa	238 MPa		289 MPa	238 MPa		289 MPa	238 MPa
fatigue in air/pre-exposure + fatigue in air	011	no	ou	yes	yes	no	_	_	_
fatigue in air/fatigue in sait spray	yes	ou	1	yes	yes	_	_	-	-
fatigue in air/pre-exposure + fatigue in sait spray	yes	yes	ou	yes	yes	yes	yes	yes	ou
fatigue in air/extended pre-exposure + fatigue in salt spray	оп	ou	ou	yes	yes	yes	yes	yes	•
pre-exposure + fatigue in air/fatigue in salt spray	ou	ou	-	уөв	ou		-	_	_
pre-exposure + fatigue in air/pre-exposure + fatigue in salt spray	yes	yes	øu	no	уез	no	_	_	_
pre-exposure + fatigue in air/extended pre-exposure + fatigue in salt spray	ou	ou	ou	yes	ou	yes	_	1	-
fatigue in salt spray/pre-exposure + fatigue in salt spray	ou	yes	,	ou	ou	_	-	_	1
fatigue in salt spray/extended pre-exposure + fatigue in salt spray	ou	ou	-	ou	ou	l	1	_	1
pre-exposure + fatigue in salt spray/extended pre-exposure + fatigue in salt spray	no	ou	no	yes	ou	yes	ou	no	1

COMPARISONS COMPARISONS COMPARISONS COMPARI				SIGNI	FICANT DIF	FERENCES 1	N FATIGUE	LIVES FOR	SIGNIFICANT DIFFERENCES IN FATIGUE LIVES FOR DIFFERENT MATERIALS	MATERIALS						
LSD	STORE OF STORES	T,	atigue in a		nsodxa-aud	ire + fatig	ue in air	farigu	ne in salt	spray	pre-exp in salt	osure + fa spray	angji	extende	extended pre-exposure fatigue in salt spray	sure + pray
LSD	OF OF		Duncan'	s tent		Duncan'	s test		Duncan'	s test		Duncan's test	s test		Duncan's test	s test
100 100 <td>MAIEKIALS</td> <td>LSD</td> <td>S</td> <td>×</td> <td>LSD</td> <td>S</td> <td>*</td> <td>LSD</td> <td>S</td> <td>*</td> <td>LSD</td> <td>Smax</td> <td>×</td> <td>LSD</td> <td>Smax</td> <td>×</td>	MAIEKIALS	LSD	S	×	LSD	S	*	LSD	S	*	LSD	Smax	×	LSD	Smax	×
100 110			289 MPa	238 MPa		289 MPa	238 MPa		289 MPa	238 MPa		289 MPa	283 MPa		289 MPa	238 MPa
yes yes no yes	7475-T761 clad/7075-T6	0.0	ио	ou	оп	ou	по	no	no	-	no	ou	no	yes	94	yes
	7475-T761 clad/7075-T76		yes	no	,	ı	ı	ı	1	-	yes	yes	ou	ves	yes	1
7075-T6/7075-T16 yes yes no yes	7075-T6/7075-T76	yes	yes	no	-	-	1	,	-	-	yes	yes	uo	yes	yes	

TABLE 8.11: SUMMARY OF x2 TEST OF INDEPENDENCE FOR THE PRIMARY FATIGUE ORIGINS (95 Z CONFIDENCE)

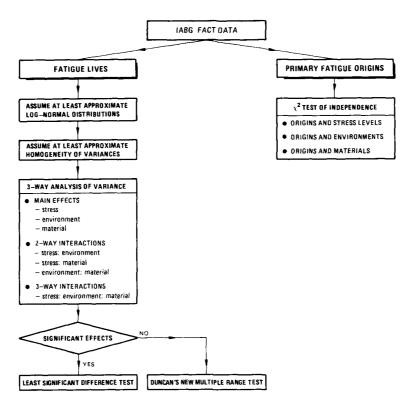


Fig. 8.1 Survey of statistical methods for analysing the IABG data for FACT

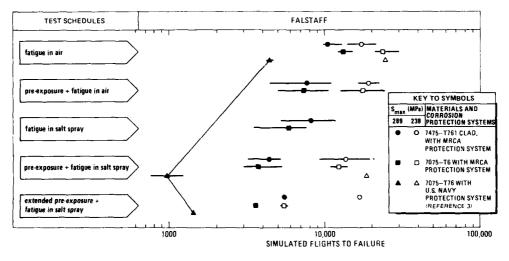


Fig. 8.2 IABG fatigue life data contribution to the FACT programme

9. THE RAE CONTRIBUTION TO THE FACT PROGRAMME

R.M.J. Kemp, Royal ircraft Establishment RAE, Materials and Structures Department, Farnborough, United Kingdom

9.1 Introduction

The high strength AlZnMgCuZr alloy 7010 has been developed for aerospace structural applications with the aim of combining high strength with resistance to corrosion and stress corrosion. The RAE contribution to the FACT programme concentrated on the fatigue and corrosion fatigue properties (fatigue strength and crack growth resistance) of 7010 in the T7651 and T7451 tempers.

In addition, the effectiveness of chromate-containing and non-chromate-containing primers in mitigating corrosion fatigue was compared using 1½ dogbone specimens of 7075-T6 aluminium alloy sheet. This material came from the same batch tested by the NDRE, NLR and IABG, see table 1.1 of the introduction to this part of the report.

9.2 The Test Programmes

An overview of the test programmes is given in table 9.1. There were three test programmes to compare

- fatigue and corrosion fatigue strengths of 7010-T7651 and 7010-T7451
- ullet fatigue and corrosion fatigue crack growth resistances of 7010-T7651, 7010-T7451, 7475-T7351 and 7050-T7451
- corrosion fatigue resistance of 7075-T6 with protection systems including chromate-containing and non-chromate-containing primers.

9.2.1 Materials and properties

Engineering property data for all the materials were as follows:

MATERIALS		0.2 % YIELD STRESS (MPa)	UTS (MPa)	FLONGATION (%)
25 mm thick 7010 plate	T7651	472 (L) 488 (T)	536 (L) 548 (T)	13.3 (L) 11.8 (T)
25 mm thick 7010 place	T7451	413 (L) 425 (T)	491 (L) 505 (T)	14.0 (L) 13.0 (T)
25 mm thick 7475-T7351 plat	e	451 (L) 449 (T)	519 (L) 519 (T)	11.0 (L) 12.0 (T)
40 mm thick 7050-T7451 plat	e	488 (L) 486 (T)	548 (L) 545 (T)	10.5 (L) 12.0 (T)
3.2 mm thick 7075-T6 sheet		547	582	11.2

Note that the two heat treatment conditions of 7010 were from the same plate.

9.2.2 Specimen configurations

The specimen configuration for the fatigue strength test programme is shown in figure 9.1. This specimen has a stress concentration factor $K_t = 2.52$. The burns around the drilled holes were removed by gentle abrasion. Note that the specimen long axis is normal to the plate rolling direction.

The specimen configuration for the fatigue crack growth resistance test programme is shown in figure 9.2. The specimens were machined from the centre sections of the plates and with the long axis normal to the plate rolling direction.

The specimens for comparing chromate-containing and non-chromate-containing primers were of the li dogbone configuration discussed in detail in reference (1) and recommended for the FACT programme. Cadmium plated steel Hi-Lok fasteners were used. The diameter of the holes for the fasteners was 6.248 ± 0.0127 mm, which corresponds to an interference fit, see figure 1.1 of the introduction to this part of the report.

9.2.3 19 dogbone protection systems and specimen assembly

The 7075-T6 $1\frac{1}{2}$ dogbone specimens were originally manufactured, painted and assembled according to the following procedure:

- specimen parts machined
- chromic acid anodising and hot water sealing of all surfaces
- application of chromate-containing or non-chromate-containing epoxy primer on all surfaces
- fastener holes drilled
- application of polysulphide sealant to faying surfaces

- Hi-Lok installation and wet assembly of fatigue specimen dogbones and half plates
- · application of acrylic topcoat.

During the test programme it became evident that the protection system with non-chr sate-containing primer was insufficiently resistant to static pre-exposure. Drastic decohesion of the topcoat + primer indicated faulty application of the primer. Therefore some specimens were reprocessed according to Royal Air Force (RAF) practice as follows:

- solvent or chemical stripping, without disassembly, down to the anodised layers on exterior surfaces
- re-application of chromate-containing or non-chromate-containing epoxy primer on exterior surfaces
- · application of polyurethane topcoat.

Finally, it should be noted that although in the original processing the polysulphide scalant was applied intentionally only to faying surfaces, post-test examination showed traces of scalant in the fastener holes of both dogbones and half plates.

9.2.4 Mechanical testing conditions (static prestressing and fatigue)

All stresses were defined in terms of loads on the total cross-sections of the specimens in the gauge length. This means that the central holes and notches in the fatigue strength and crack growth resistance specimens and the fastener holes in the dogbone specimens were included in the cross-sectional area.

Before environmental exposure and fatigue testing all $1\frac{1}{2}$ dogbone specimens were prestressed at 209 \pm 5 K by applying two load cycles up to 215 MPa. The procedure for this is discussed in reference (1). The purpose of this low temperature prestressing was to ensure that the paint and primer layers were brittle and would crack around the Hi-Lok fastener holes, thereby simulating service damage that enables corrosion and corrosion fatigue to occur.

All fatigue Lests were done using an INSTRON 1342 electrohydraulic machine. The fatigue load histories were constant amplitude sinusoidal loading with a stress ratio R = S_{min}/S_{max} of 0.1 and the manoeuvre spectrum FALSTAFF (references 2, 3). A short description of this spectrum is given in section 1.2 of this part of the report.

Details of the fatigue testing conditions are as follows:

- (1) Fatigue strength tests were carried out over a range of stress levels at a nominal cycle frequency of 15 Hz for both constant amplitude and FALSTAFF loading.
- (2) Fatigue crack growth resistance tests were done at similar load levels for constant amplitude loading and at a constant gross section S max of 75 MPa for FALSTAFF loading. As shown in table 9.1, the cycle frequencies were 10 Hz and 1 Hz for constant amplitude loading and 10 Hz for FALSTAFF loading. Crack growth was monitored using a 2-wire pulsed direct current potential drop method. The current and voltage leads were taken out of the salt spray chamber via a sealed porthole as shown in figure 9.3. A microcomputer was used for data storage and analysis.
- (3) The $1\frac{1}{2}$ dogbone specimen fatigue tests were done with constant amplitude loading at an S_{max} of 210 MPa and cycle frequencies of 2 Hz in air and 0.5 Hz in salt spray. These testing conditions were based on those of the CFCTP core programme.

9.2.5 Environmental conditions (pre-exposure, fatigue and corrosion fatigue)

 $1\frac{1}{2}$ dogbone specimens scheduled for static exposure to an aggressive environment before fatigue testing were sealed at the faying surface side edges and Hi-Lok collars to try and prevent corrosion except in the fastener head areas. The procedure for static pre-exposure is described in detail in reference (1). The specimens were immersed for 72 hours in 5% aqueous NaCl acidified by a predetermined amount of SO, gas and maintained at 315 ± 2 K. The cleaning procedure after pre-exposure followed the amendment in Section 4.4 of Part 2 of reference (1).

For fatigue testing the fatigue strength specimens were sealed off from the environment at the clamping area, while the crack growth resistance and $1\frac{1}{7}$ dogbone specimens were electrically insulated from the loading grips and bolts by polymeric liners and bushings. $1\frac{1}{7}$ dogbone specimens to be fatigued in salt spray were also sealed at the faying surface side edges and Hi-Lok collars. The fatigue environments were laboratory air (relative humidity ~ 50 %) and salt spray, both at a nominal temperature of 295 K. Depending on the test programme, the salt spray environment had different compositions and acidity, as shown in table 9.1 and listed here also:

FATIGUE TEST PROGRAMME	SALT SPRAY PAR	AMFTERS
THITTOUR FEST FROM AFFILE	weight % NaCl	рН
(1) fatigue strength	3.5	7
(2) fatigue crack growth resistance	5	4,7
(3) effect of chromate in primers	5	4

The salt spray tests were done in a specially constructed cabinet illustrated in figure 9.3. A description of the cabinet, except for the sealed porthole for the crack growth monitoring leads, is given

in reference (1).

The nominal cycle frequencies for each combination of fatigue load history and environment and for each test programme are given in table 9.1 and listed nere also:

		NOMINAL	CYCLE FREQUENC	CY
FATIGUE TEST PROGRAMME	FATIGUE LOAD HISTORY		fatigue in sa	alt spray
		fatigue in air	pH 4	рн 7
(1) fatigue strength	constant amplitude, R = 0.1 FALSTAFF	15 Hz 15 Hz		15 Hz 15 Hz
(2) fatigue crack growth resistance	constant amplitude, R = 0.1 FALSTAFF	10 Hz 10 Hz	10 Hz, 1 Hz	i Hz 10 Hz
(3) effect of chromate in primers	constant amplitude, k = 0.1	2 Hz	0.5 Hz	

9.2.6 Statistical methods for analysing the data

The way in which the test programmes were set up and the results had consequences for the statistical methods used to analyse the data. A survey of the statistical methods is given in figure 9.4. Only the notched fatigue strength data for FALSTAFF loading and the 1½ dogbone fatigue life and primary fatine origin data were readily amenable to statistical analysis. Nevertheless, owing to the limited number and unequal sample sizes of the fatigue strength and life data it had to be assumed that they at least approximated to random samples from log-normally distributed populations with equal variance. Unequal sample sizes also meant that modified versions of the least significant difference test and Duncan's new multiple range test had to be used for "fine tuning" the analysis of variance results. More details of the statistical methods are given in Appendix II.

9.3 Results of the Fatigue Strength Test Programme

The complete set of fatigue life data for the RAE fatigue strength contribution to FACT is given in table 9.2.

9.3.1 Constant amplitude fatigue tests

The constant amplitude data are plotted in figure 9.5 and show the following:

- <u>Fatigue</u> in <u>air</u>: the high cycle notched fatigue strength of 7010-T7451 was slightly greater than that of 7010-T7651. However, at higher stress levels 7010-T7651 was superior.
- Fatigue in neutral (pH 7) salt spray: the high cycle notched fatigue strengths were reduced to a similar level less than half the fatigue strengths in air.

9.3.2 Manoeuvre spectrum (FALSTAFF) fatigue tests

The data for FALSTAFF loading are shown in figure 9.6. These data indicate that stress level had a significant effect on fatigue life and that 7010-T7651 was superior to 7010-T7451 at higher stress levels, as was the case for constant amplitude loading. However, neutral salt spray apparently had no significan effect on the fatigue lives. This is a remarkable result, especially for tests at lower stress levels, in view of the relatively long testing times, for example, 50,000 FALSTAFF flights require about 80 hours of testing at a nominal cycle frequency of 15 Hz.

The results of three-way analysis of variance of the data are summarised in table 9.3. According to the analysis the main variables of stress level, material and their two-way interactions had significant effects on the fatigue lives of the specimens. Since there were only two materials it is obvious that the significant difference is between them. Thus it was not necessary to "fine tune" this result using the least significant difference test.

The least significant difference test was used to "fine tune" the effect of stress level and the stress: material interactions. The results are given in table 9.4. Changing the stress level significantly altered the fatigue lives, as would be expected. At the two higher stress levels 7010-T7651 specimens had significantly longer fatigue lives than 7010-T7451 specimens.

The potential sources of variation not found to be significant by analysis of variance were:

- effect of environment
- effect of environment at each stress level
- effect of material in each environment
- effect of material per stress level and environment.

Because there were only two environments the lack of a significant difference between them did not require further analysis. The remaining potential sources of variation were investigated using Duncan's new multiple range test. The results are listed in table 9.5 and show:

- (1) At each stress level the overall fatigue lives were unaffected by changing from fatigue in air to fatigue in salt spray. However, 1, one case there was a significant difference, namely for 7010-17651 tested with S $_{\rm max}$ = 250 MPa.
- (2) The previously mentioned result that 7010-T7651 specimens had significantly longer fatigue lives than 7010-T7-51 specimens at the two higher stress levels must be qualified. Significant differences were found only for fatigue in air at $\frac{1}{100}$ = 300 MPa and fatigue in salt spray at $\frac{1}{100}$ = 250 MPa.
- 9.4 Results of the Fatigue Crack Growth Resistance Test Programme

9.4.1 Constant amplitude fatigue crack growth tests

The constant amplitude fatigue crack growth data are shown in figures 9.7 and 9.8. Figure 9.7 compares the fatigue crack growth resistances of 7010-77651, 7010-77451, 7475-77351 and 7050-77451 plate materials in air and acidified (pH 4) salt spray at a cycle frequency of 10~Hz. It is seen that

- in air the crack growth resistances of 7010-T7651, 7010-T7451 and 7475-T7351 were equivalent but 7050-T7451 had significantly higher crack growth rates
- acidified salt spray resulted in increased crack growth rates for 7010-T7651, 7010-T7451 and 7475-T7351 but not for 7050-T7451. The greatest sensitivity to changing the environment was shown by 7010-T7451.

Figure 9.8 shows the effects of changing the salt spray acidity and cycle frequency on the crack growth resistances of 7010-T7651 and 7010-T7451. For 7010-T7451 these effects were negligible, but 7010-T7651 crack growth rates depended strongly on salt spray pH and cycle frequency. These results can be explained partly by the generally higher sensitivity of 7010-T7451 to changing from fatigue in air to fatigue in salt spray. i.e. there is a strong environmental effect even at a cycle frequency of 10 Hz. However, it was unexpected that crack growth rates in neutral salt spray would be higher than in acidified salt spray.

9.4.2 Manoeuvre spectrum (FALSTAFF) fatigue crack growth tests

The FALSTAFF fatigue crack growth data are given in figure 9.9. 7010-T7651 and 7010-T7451 were tested in air and neutral salt spray at a nominal cycle frequency of 10 Hz. The results show

- no significant influence of the environment on crack growth
- similar crack growth rates and lives for 7010-T7651 and 7010-T7451
- the occurrence of tensile crack jumping (static crack extension during peak loads) at half crack lengths beyond about 20 mm. This corresponds to $K_{max} \ge 22 \text{ MPa/m}$, which is significantly less than the fracture toughnesses of the two tempers $^{\prime}K_{1C}$ in the appropriate T-L orientation was 31.9 and 37.7 MPa/m for 7010-T7651 and 7010-T7451 respectively). Similar results have been reported and explained in reference (4).

The lack of an effect of environment on crack growth cannot be explained solely as a cycle frequency effect, since constant amplitude tests on 701°-T7451 at 10 Hz showed large differences in crack growth rates for fatigue in air and salt spray, see figure 9.8. Also, it is somewhat surprising that the manoeuvre spectrum crack growth rates and lives of 7010-T7651 and 7010-T7451 were similar. Generally it is found that within a class of materials the alloys and tempers with lower yield strengths (in this case 7010-T7451) exhibit more crack growth retardation following peak tensile loads and hence lower overall crack growth rates and longer lives.

9.5 Results of the Programme on the Effect of Chromate in Primers

The complete set of fatigue life and primary fatigue origin data for the RAE contribution to FACT on the effect of chromate in primers is given in table 9.6.

9.5.1 Fatigue life data

The fatigue life data are plotted in figure 9.10 and indicate that environment (fatigue testing schedule) had a significant effect on life. Pre-exposure + fatigue in salt spray was especially detrimental to specimens with non-chromate-containing primer + acrylic topcoat. As mentioned in section 9.2.3, the problem with these specimens was attributed to faulty application of the primer leading to drastic decohesion of the topcoat + primer during pre-exposure.

The results of two-way analysis of variance of the data are summarised in table 9.7. According to the analysis the main variables of environment and protection system had significant effects on the fatigue lives of the specimens. These effects were "fine tuned" by the least significant difference test. The results are given in table 9.8 and show that:

- (1) Fatigue lives in air and salt spray were equivalent. This unusual result agrees with the FALSTAFF tests on unprotected notched specimens of 7010-T7651 and 7010-T7451 (see section 9.3.2).
- (2) Pre-exposure + fatigue in salt spray significantly reduced the fatigue lives.
- (3) The combination of chromate primer + acrylic topcoat <u>appeared</u> to be better than the other protection systems. There is a complication with this result: specimens with chromate primer + polyurethane topcoat were tested only by pre-exposure and fatigue in salt spray, so that a general comparison with specimens having other protection systems is not justified.

A more detailed analysis of environment: protection system interactions had to be done using Duncan's new multiple range test. The results are summarised in table 9.9 and can be described as follows:

- (4) Pre-exposure + fatigue in salt spray significantly reduced the fatigue lives of specimens with acrylic topcoats whether or not the primers contained chromates.
- (5) The only significant differences in fatigue lives per testing schedule occurred for pre-exposure + fatigue in salt spray and were due to the shorter lives of specimens with non-chromatecontaining primer + acrylic topcoat.

9.5.2 Primary fatigue origin data

The primary fatigue origin data were analysed using Yates' corrected χ^2 test. The results are listed in table 9.10. Only the protection system was found to have a significant effect on the locations of primary fatigue origins. Specimens with non-chromate-containing primers had relatively more failures in the bores (E/Q) of the fastener holes and fewer failures at faying surface (G/S) locations as compared to specimens with chromate-containing primers.

9.6 Discussion

As shown in table 9.1, the present contribution to FACT consisted of three test programmes. The scope is broad and therefore the topics for discussion will be addressed separately in sections 9.6.1 - 9.6.3. These topics are:

- the effects of changing from fatigue in air to fatigue in salt spray
- comparisons of materials with respect to fatigue and corrosion fatigue strengths, lives and crack growth resistances
- the effect of chromate in primers.

9.6.1 Fatigue in air/fatigue in salt spray

In general it is to be expected that changing the fatigue environment from air to salt spray or salt water will result in lower fatigue strengths, shorter lives and higher crack growth rates, see for example references (5, 6). In the present test programmes several exceptions to this general trend were found. Table 9.11 reviews the comparisons of data for fatigue in air and salt spray. The results may be described as follows:

- (1) High cycle notched fatigue strengths were significantly reduced by a salt spray environment.
- (2) Fatigue lives of some specimens were unaffected by changing the environment from aft to salt spray. In particular, it is remarkable that under manoeuvre spectrum (FALSTAFF) loading the fatigue lives of unprotected notched specimens were unaffected up to 60,000 simulated flights, corresponding to about 93 hours in the salt spray environment.
- (3) For most of the materials tested, including 7010-T7651 and 7010-T7451, the constant amplitude fatigue crack growth rates were significantly increased by changing the environment from air to salt spray. But at the same nominal cycle frequency the fatigue crack growth rates of 7010-T7651 and 7010-T7451 under FALSTAFF loading were virtually the same in air and salt spray.

These results demonstrate the importance of conducting environmental fatigue tests with realistic load histories.

9.6.2 Comparisons of materials

The fatigue strength and life tests on 7010-77651 and 7010-77451 in air and sult spray showed that at higher stress levels 7010-77651 was generally superior and at lower stress levels the alloys were equivalent. 7010-77651 was also equivalent or superior to 7010-77451 in fatigue and corrosion fatigue crack growth resistance at a cycle frequency of 10~Hz. However, from figure 9.8 it is seen that the corrosion fatigue crack growth resistance of 7010-77651 was strongly affected by sait spray pH and cycle frequency. Reducing the cycle frequency to 1 Hz caused 7010-77651 to have higher crack growth rates than 7010-77451 over a wide range of ΔK .

Thus it is concluded that besides using realistic load histories (see section 9.6.1) it is important to conduct environmental fatigue tests with realistic stress levels and cycle frequencies.

Constant amplitude fatigue and corrosion fatigue crack growth tests were carried out for 7475-T7351 and 7050-T7451 as well as 7010-T7651 and 7010-T7451 at a cycle frequency of 10 Hz. In air the crack growth resistances of 7010-T7651, 7010-T7451 and 7475-T7351 were equivalent but 7050-T7451 had significantly higher crack growth rates. In salt spray 7010-T7651 was superior and 7010-T7451 was the least resistant. These latter results cannot be generalised because of the previously mentioned effects of salt spray pH and cycle frequency.

9.6.3 Effect of chromate in primers

The results of this test programme indicate that the absence of chromate in properly applied primer had no significant detrimental effect on the resistance to pre-exposure and/or fatigue in salt spray of painted 1! dogbone specimens containing interference fit Hi-Loks. However there are some caveats. Owing to the high constant amplitude fatigue stress level ($S_{max} = 210 \text{ MPa}$) most specimens failed in the bores or at bore/faying surface corners of the fastener holes where unprimed metal was present. Also the fatigue tests in salt spray lasted less than 14 hours.

It is possible that an effect of chromate in primers will be found for corrosion fatigue conditions under which failures initiate in areas where primer is more or less continuously present and there is plenty of time for chromate to leach out into the corrodent. With respect to the 13 dogbone specimen the results of the CFCTP core programme (reference 1) indicate that these conditions can be obtained by lowering the constant amplitude fatigue stress level. Flight simulation loading should also be used, since besides being more realistic it also gives much longer testing times, see for example table 9.11.

9.7 Conclusions

The present investigation consisted of three test programmes to compare

- fatigue and corrosion fatigue strengths of 7010-T7651 and 7010-T7451
- fatigue and corrosion fatigue crack growth resistances of 7010-T7651, 7010-T7451, 7475-T7351 and 7050-T7451
- corrosion fatigue resistance of 7075-T6 with protection systems including chromate-containing and non-chromate-containing primers.

Conclusions drawn from the results of each programme are given in sections 9.7.1 - 9.7.3. Some additional and more general conclusions are given in section 9.7.4.

9.7.1 Conclusions for the fatigue strength programme

- (1) In air the high cycle motched fatigue strength of 7010-77451 was slightly greater than that of 7010-77651.
- (2) In salt spray the high cycle notched fatigue strengths of 7010-T7651 and 7010-.7451 were reduced to a similar level less than half the fatigue strengths in air.
- (3) Under manoeuvre spectrum (FALSTAFF) loading in both air and salt spray the notched fatigue lives of 7010-T7651 specimens were equivalent to or longer than those of 7010-T7451 specimens.
- (4) The notched fatigue lives of 7010-T7651 and 7010-T7451 under FALSTAFF loading were unaffected by changing the environment from air to salt spray.

9.7.2 Conclusions for the fatigue crack growth resistance programme

- (5) In air the constant amplitude fatigue crack growth resistances of 7010-T7651, 7010-T7451 and 7475-T7351 were equivalent at a cycle frequency of 10 Hz. 7050-T7451 had significantly higher crack growth rates.
- (6) Acidified salt spray increased the constant amplitude fatigue crack growth rates for 7010-T7651, 7010-T7451 and 7475-T7351, but not for 7050-T7451, at a cycle frequency of 10 Hz. The greatest sensitivity to environmental change was shown by 7010-T7451.
- (7) Changing the salt spray acidity from pH 4 to pH 7 and the cycle frequency from 10 Hz to 1 Hz had negligible effects on constant amplitude fatigue crack growth rates for 7010-T7451. However, 7010-T7651 crack growth rates depended strongly on salt spray pH and cycle frequency.
- (8) Under manoeuvre spectrum (FALSTAFF) loading the fatigue crack growth rates and lives of 7010-T7651 and 7010-T7451 specimens were similar. Changing the environment from air to neutral salt spray had no significant influence.

9.7.3 Conclusions for the programme on the effect of chromate in primers

- (9) The absence of chromate in properly applied primer had no significant detrimental effect on the constant amplitude fatigue lives of painted 1½ dogbone specimens of 7075-T6 subjected to pre-exposure and/or fatigue in salt spray. However, owing the the high stress level the testing times were short and most specimens failed in the bores or at bore/faying surface corners of the fastener holes where unprimed metal was present.
- (10) Fatigue lives in air and salt spray were equivalent, but pre-exposure + fatigue in salt spray significantly reduced the fatigue lives of specimens with acrylic topcoats.
- (11) Specimens with non-chromate-containing primers had relatively more failures in the bores of the fastener holes and fewer failures at faying surface locations as compared to specimens with chromate-containing primers.

9.7.4 Additional conclusions

(12) The fatigue strength and life tests on 7010-T7651 and 7010-T7451 in air and salt spray at a cycle frequency of 15 Hz showed that at higher stress levels 7010-T7651 was generally superior and at lower stress levels the alloys were equivalent. 7010-T7651 was also equivalent or superior to 7010-T7451 in fatigue and corrosion fatigue crack growth resistance at a cycle frequency of 10 Hz. However, the results of changing cycle frequency and salt spray pN for crack growth tests show that a conclusion as to the overall superiority of 7010-T7651 cannot be made.

- (13) Changing the fatigue environment from air to salt spray does not necessarily result in shorter fatigue lives and higher crack growth rates. Significant variables in this respect include the type of test; fatigue load history and stress level; cycle frequency; environmental pH and material response. Environmental fatigue tests should therefore be conducted with realistic load histories, stress levels and cycle frequencies. (There still remains the difficult problem of deciding what are the most realistic environments.)
- (14) Further investigation of the effect of chromates in primers should include flight simulation fatigue tests on realistic specimens at stress levels that result in fatigue crack initiation in areas where primer is more or less continuously present. The tests should be of sufficient duration to allow time for chromate to leach out of chromate-containing primers into the corrodent.

9.8 References

- K.J.H. Wanhill and J.J. De Luccia, "An AGARD-coordinated corrosion fatigue cooperative testing programme", AGARD Report No. 695, February 1982.
- "Description of a Fighter Aircraft Loading STAndard For Fatigue evaluation", Combined Report of the F + W, LBF, NLR and IABG, March 1976.
- 3. J.B. de Jonge, "Additional information about FALSTAFF", NLR Technical Report TR 79056 U, June 1979.
- R.J.H. Wanhill, H.J. Kolkman and L. Schra, "Fatigue crack propagation and fracture in 7050 and 7091 aluminium alloy forgings", AGARD Conference Proceedings No. 376, Paper 5, November 1984.
- 5. Collected Papers in "Corrosion fatigue of aircraft materials", AGARD Report No. 659, October 1977.
- 6. Collected Papers in "Corrosion fatigue", AGARD Conference Proceedings No. 316, October 1981.

TABLE 9.1: OVERVIEW OF THE RAE TEST PROGRAMMES FOR FACT

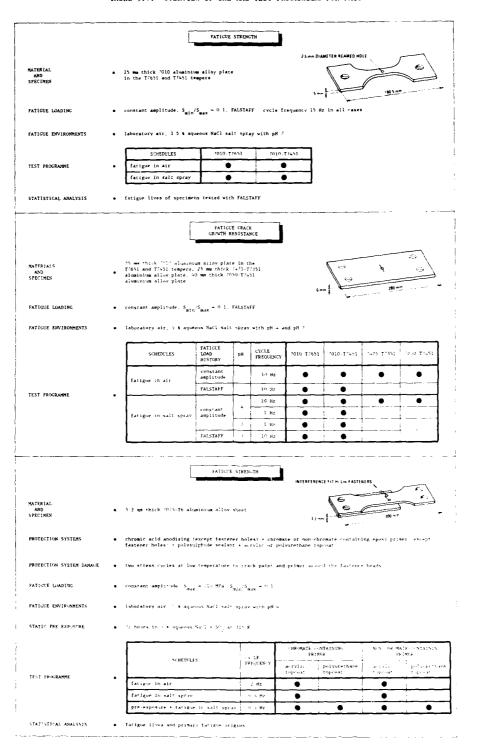


TABLE 9.2: FATIGUE LIFE DATA FOR THE RAE FATIGUE STRENGTH CONTRIBUTION TO FACT

MATERIAL HEAT TREATMENT	FATIGUE LOAD	CHARACTERISTIC STRESS LEVEL	FATIGUE LIFE TO FAIR	LURE (CYCLES OR FLICHTS)
CONDITION	HISTORY	S (MPa)	fatigue in air	fatigue in salt spray*
7010- T 7651	constant amplitude, R = 0.1	250 200 175 150 135 125 120 100 75 50	14,035 44,850 71,837 171,266 181,586 246,393 > 9,141,016	24,329 130,782 305,809 1,044,501 1,480,738 6,346,696
	FALSTAFF	300 300 250 250 175 175	5,311 5,497 6,734 10,996 36,352 56,047	4.077 4.826 14.825 22.217 59.735 57.598 52.823
7010-T7451	constant amplitude, R = 0.1	250 200 175 160 150 140 125 100 75 50	1,270 25,780 7,800 40,912 83,220 >12,673,484	13,892 25,779 88,799 96,849 188,026 701,170 1,848,773 4,999,171
	FALSTAFF	300 300 250 250 175 175 87	1,914 2,334 6,958 5,825 60,727 118,766	2,283 3,764 3,431 10,987 33,713 52,523 94,659

*Neutral salt spray solution with pH 7

IABLE 9.3: SUMMARY OF AMALYSIS OF VARLANCE RESULIS (95 % CONFIDENCE) FOR THE FATIGUE STRENGTH TESTS WITH FALSTAFF

FATICUE LOAD HISTORY	CHARACTERISTIC STRESS LEVEL	SOURCE OF VARIATION	F DISTRIBUTION VALUE	ia.º	SIGNIFICANT RFFECTS OF EXPERIMENTAL VARIABLES (F > F DISTRIBUTION VALUE)
	S - 300 MPa	MAIN EFFECTS Stress environment material	3.81 4.67 4.67	145 01 0.12 8.16	yes Do yes
FALSTAFF	AND S = 250 MPa AND	2.4AY INTERACTIONS stress : environment refess : marerial environment : material	3,81 3.81 4.67	1.49	fio Yes No
	S = 175 MPa	3.4AV INTERACTIONS stress : environment material	3, 81	2.87	по

TABLE 9.4: LEAST SIGNIFICANT DIFFERENCE TEST RESULTS (95 % CONFIDENCE) FOR THE EFFECT OF STRESS LEVEL ON FATIGUE SIRENGEN TESTS WITH FALSTAFF

JIMESS TEVEL	max xem	max	nex
LOG MEAN FATIGUE LIFE	3 343	3 946	4 743
SAMPLE SIZE n	30	8	6
	50 025 13 - 7 16	MS residual - 0 021	
COMPARISONS OF	COMPARISONS OF DATA FOR DIFFERENT STRESS LEVELS		SIGNIFICANT DIFFERENCE (C > 10.075,11)
300	300 ME4/250 MPa* 300 MPa/12 MPa 200 MPa/125 MPa	5.56 17.03 11.30	50% 50%

MATERIAL.	7010-17651	7010 - 17451	19971-0107	159/1-010/	7010 : T7651	7010-17451
LOG MEAN FATICUE LIFE	3.650	3.3%	4, 097	3.796	4.714	4 717
SAMPLE SIZE n	7	3	7	7	,	7
	to 625-13	to 625-13 = 2 16	MSresh	Sresidual - 0 021		
STRESS LEVEL	COMP.	COMPARISONS OF MATERIALS			SIGNIFICANT DIFFERENCE (C > 10.025, 13)	E (E > 10 075, 13)
300 MPa 230 MPa 175 MPa	107 107	7010-T/651/7010-T/451* 7010-T/651/7010-T/451* 7010-T/651/7010-T/451		2.87 2.94 0.65	ves ves	

Owing to equal sample size these comparisons can also be made using the unmodified least significant difference test. The same result is obtained

TABLE 9.5: SUMMARY OF DUNCAN'S NEW MULLIPLE RANGE TEST RESULTS (95 % CONFIDENCE) FOR THE FATICUE STRENGTH TESTS WITH FALSTAFF

MATERIAL.				701	7010-T7651 AN J10-T7451	A, 310.	.17451						7010-17651	1651					7010-T/451	7451		Ì
FATIGUE TESTING SCHEDULE	fatigue	gue in air	ir	fatigue	farigue in salt sp. y tatigue in air farigue in salt spray	y .qs	tatigue 1	in air	fatigu salt s	e in pray	fati	tatigue in air		fatigue	fatigue in salt spray	spray	fattg	fatigue in air		futigue in salt spray	in salt	spray
CHARACTERISTIC STRESS LEVEL. S MAX (MPA) OR MATERIAL	300	250	250 175 300	300	250	 	7010- 7010- 7010- 7010- 17651 17451 17651 17451	7010- T7451	7010- T7651	7010- T7451	300	250 175	175	300	300 250 175 300 250	17.5	300	250	175	300	250 175	175
LOC MEAN FATICUE LIFE	3.529	3.869	4, 792	3.557	.869 4.792 3.557 4.023 42 4.107 4.019 4.296 3.796 3.733 3.935 4.655 3.647 4.259 4.753 3.325 3.804 4.929 3.657 3.788 4.624	42	4.107	4.019	4 296	3.960	3.733	3.935	4.655	3.647	4.259	4.753	3.325	3.804	4.929	3 467	3.788	4.624
SAMPLE SIZE n	7		,	.,	7	-	4	9	7	9	2	2	2	2	2 2 3	3	~	2	~		2	~

COMPARISONS OF DATA PER TEST "ARAHETER	TEST PARAMETER	D.	BETWEEN LOG MEAN FATIGUE LIVES $X \sqrt{\frac{n_1 n_1}{n_1}}$	SSR	SIGNIFICANT DIFFERENCE (\dot{x}_1,\dot{x}_1) $\sqrt{\frac{\hat{x}_1\hat{x}_1}{n_1+n_1}} > SSR$
	S = 300 MPa*	2	0.056	0.443	no
fatigue in air/fatigue in sa: spruy	S = 250 MPa*	2	0.308	0.443	no
	S max = 175 MPa	2	0.190	0.443	no
[cw21:010, × [c971:0107	fatigue in air*	7	0.216	0.443	no
	tatigue in salt spray	2	0.854	0 443	Ves

154		S = 300 MPa*	7	0.122	(77.0	no
17-4	fatigue in ait-tatigue in salt sprav	S - 250 MPak	~. 	0.458	0.443	Ves
		S = 175 MPa	`.	0.152	6.4.0	no
		S Suc 300 Mpax	- 7	0.201	(5)* ()	Tho
· 1	tatigue in dir fatigue in sal sprav	S /20 MPa*	ć	0.023	0 443	tho
		S = 175 MPa*	7.	0 431	0 443	the cit

188	(2010) T (2010) C (2010)	fatigue in air*		0.577	£59 D	Ves
, n 1		fatigue in salt spray*	7	0 254	0.443	Bu
UIK.	2010-12651×7010-120-1	fattgue in air*	7	0.185	0 443	ou
oga mag		fatigue in salt spray*	~	0.666	0 443	şa.
lak,	76971-010771697	facigue in air*	2	0.387	6,443	ou
		fatigue in salt spray	~	0 700	0 4.43	92

* Owing to equal simple size these comparisons can also be made using the unmodified version of Duneau's test. The same result is obtained.

TABLE 9.6: FATIGUE LIFE AND PRIMARY FATIGUE ORIGIN DATA FOR THE RAE CONTRIBUTION TO FACT ON THE EFFECT OF CHROMAIE IN PRIMERS. ALL TESTS WERE DONE UNDER CONSTANT AMPLITUDE LOADING WITH R = 0.1 AND S HAX = 210 MPa

CORROSION PROT	CORROSION PROTECTION SYSTEMS ON	FATIGUE LIFE TO FAILURE (CYCLE	FATIGUE LIFE TO FAILURE (CYCLES AND LOG MEAN VALUES)/LOCATIONS OF PRIMARY ORIGINS OF FATIGUE*	OF PRIMARY ORIGINS OF FATIGUE*
7075-T6 ALUMIN	7075-T6 ALUMINIUM ALLOY SHEET	fatigue in air	fatigue in salt spray	pre-exposure + fatigue in salt spray
chromate-containing	interfay sealant + acrylic topcoat	32,870 S 15,367 R 20,192 F 21,686	12,004 R 13,647 E 12,260 G 24,549 G 13,335 S	8,433 R 6,111 Q,R 9,636 F 7,919
epoxy primer	interfay sealant + polyurethane topcoat			9,715 F 9,812 E 12,719 C 7,314 F
non-chromate.	interfay sealant + acrylic topcoat	15,956 E 15,002 E 18,989 Q 16,565	8.385 R 20,975 E.F 14,452 E 15,224 E 14,317 E	2,921 F 4,247 E,F 3,928 E,F 3,653
primer	interfay sealant + polyurethane topcoat			16,175 R 7,113 E 6,295 Q 111,330 Q 9,518

TABLE 9.7: SUMMARY OF ANALYSIS OF VARIANCE RESULIS (95 % CONFIDENCE) FOR THE 11 DOCBONE FATIGUE TESTS

FATIGUE LOAD HISTORY	CHARACTERISTIC STRESS LEVEL	SOURCE OF VARIATION	F DISTRIBUTION VALUE	٦° 0	SIGNIFICANT EFFECTS OF EXPERIMENTAL VARIABLES (F _o > F DISTRIBUTION VALUE)
onstant amplitude,	S 210 MPa	●MAIN EFFECTS - environment - protection system	3.44 3.05	30.58 6.36	yes
	C	2-WAY INTERACTIONSenvironment : protection system	3,44	2.55	по

TABLE 9.8: LEAST SIGNIFICANT DIFFERENCE TEST RESULTS (95 % CONFIDENCE) FOR THE EFFECTS OF ENVIRONMENT AND PROTECTION SYSTEM ON 14 DOGBONE FATIGUE LIVES

FATIGUE TESTING SCHEDULE	fatigue in air	fatigue in salt spray	pre-exposure + fatigue in salt spray
LOG MEAN FATIGUE LIFE	4.278	4.166	3.875
SAMPLE SIZE n	9	10	14
	^c 0.025;25 - 2.07	MS residual = 0.017	
COMPARISONS OF DATA FO	COMPARISONS OF DATA FOR DIFFERENT FATIGUE TESTING SCHEDULES	t	SIGNIFICANT DIFFERENCE (t > t _{0.025;22})
fatigue in air/fatigue in salt spray fatigue in air/pre-exposure + fatigue in salt spray fatigue in salt spray/pre-exposure + fatigue in salt spray	y ue in salt spray + fatigue in salt spray	1.66 6.33 5.39	no yes yes

PROTECTION SYSTEM	chromate : acrylic	chromate : polyurethane	non-chromate :	acrylic	non-chromate : acrylic non-chromate : polyurethane
LOG MEAN FATIGUE LIFE	4.147	3.987	4.008		3.979
SAMPLE SIZE n	11	7	11		7
	t _{0.025;22} = 2.07	MS	MSresidual - 0.017		
COMPARISONS OF DATA FO	COMPARISONS OF DATA FOR DIFFERENT PROTECTION SYSTEMS	S	t SI	GNIFICANT E	SIGNIFICANT DIFFERENCE (t > t _{0.025;22})
chromate primer + acrylic topcoat/chromate primer + polyurethane topcoat chromate primer + acrylic topcoat/non-chromate primer + acrylic topcoat/non-chromate primer + acrylic topcoat/non-chromate primer + polyurethane topcoat chromate primer + polyurethane topcoat chromate primer + acrylic topcoat chromate primer + acrylic topcoat chromate primer + polyurethane topcoat/non-chromate primer + polyurethane topcoat non-chromate primer + polyurethane topcoat non-chromate primer + polyurethane topcoat	hromate primer + polyurethane on-chromate primer + acrylic on-chromate primer + polyuret oat/non-chromate primer + acr oat/non-chromate primer + pol at/non-chromate primer + poly	topcoat topcoat* ham topcoat ylic topcoat yurethame topcoat urethame topcoat	2.10 2.50 2.21 0.28 0.09		yes yes no no

*

Waing to equal sample size these comparisons can also be made using the unmodified least significant difference test. The same result is obtained.

TABLE 9.9: SUMMARY OF DUNCAN'S NEW MULTIPLE NANGE TEST RESULTS (95 % CONFIDENCE) FOR THE 14 DOCBONE FALLOUE TESTS

PRIMER		chre	chromate			non-ch	non-chromate	
TOPCOAT		acrylic		polyurethane		acrylic		polyurethane
FATIGUE TESTING SCHEDULE	fatigue in air	fatigue in salt spray	pre-exposure + fatigue in salt spray	pre-exposure + fatigue in salt spray	fatigue in air	fatigue în salt spray	pre-exposure + fatigue in salt spray	pre-exposure + fatigue in salt spray
LOG MEAN FATIGUE LIFE	4.336	4.183	3.899	3.987	4.219	671.7	3.563	3.978
SAMPLE SIZE n	3	2	6	7	3	5	3	4
				i	PIFF	DIFFERENCE BETWEEN	SIGNII	SIGNIFICANT DIFFERENCE

TEST PARAMETER	COMPARISONS OF DATA PER TEST PARAMETER	a.	DIFFERENCE BETWEEN LOG HEAN FAILURE $x \sqrt{\frac{n_1 \cdot n_1}{n_1 + n_1}}$	SSR	SIGNIFICANT DIFFERENCE $(\dot{x}_1 \cdot \dot{x}_j) \sqrt{\frac{2n_1n_1}{n_1}} > \text{SSR}$
chromate primer + acrylic topcoat	<pre>fatigue in air/fatigue in salt spray fatigue in air/pre-exposure + fatigue in salt spray* fatigue in salt spray/pre-exposure + fatigue in salt spray</pre>	2 3 2	0.296 0.757 0.550	0,381 0,401 0,381	no yes yes
non-chromate primer + acrylic topcoat	non-chromate primer + fatigue in air/fatigue in salt spray acrylic topcoat fatigue in salt spray/pre-exposure + fatigue in salt spray fatigue in salt spray/pre-exposure + fatigue in salt spray	3 3 5	0.136 1.136 1.135	0.381 0.401 0.381	no yes yes

fatigue in air	chtomate primer + acrylic topcoat/non-chromate primer + acrylic topcoat*	2	0,203	0.381	ou
fatigue in salt spray	fatigue in salt spray chromate primer + acrylic topcoat, non-chromate primer + acrylic topcoat*	2	0.076	0.381	ou
pre-exposure + facigue in salc spray	chromate primer + acrylic topcoar/chromate primer + polyurethane topcoar chromate primer + acrylic topcoar to thromate primer + acrylic topcoar/mon-chromate primer + polyurethane topcoar faction in sait spray chromate primer + polyurethane topcoar/mon-chromate primer + polyurethane topcoar chromate primer + polyurethane topcoar/mon-chromate primer + polyurethane + polyurethane + polyurethane + polyurethane + polyurethane + pol	m n n n n n n	0.163 0.582 0.146 0.785 0.018 0.78	0.401 0.381 0.413 0.413 0.381	no yes yes no no

*Owing to equal sample size these comparisons can also be made using the urmodified version of Duncan's test. The same result is obtained.

FABLE 9, 10: SUMMARY OF VATES' CORRECTED 12 TEST FOR THE PRIMARY FATIGUE ORIGINS IN 14 DOCBONE SPECIMENS (95 % CONFIDENCE)

FATIGUE LOAD HISTORY	CHARACTERISTIC STRESS LEVEL	SOURCE OF ASSOCIATION	CRITICAL VALUE OF X 0.05:1	× 5°	SIGNIFICANT ASSOCIATION $\{x_c^2 > x_0^2, 05; 1\}$
constant amplitude, R = 0.1 S = 210 MPa	SS	ENVIRONMENT (FATIGUE TESTING SCHEDULE)	χ ² _{0.05;1} = 3.84	0	ou
	IIIdx	PROTECTION SYSTEM	x 2.05;1 = 3.84	4.35	yes

TABLE 9.11: OVERVIEW OF GOSPAKISONS OF FATIGUE IN AIR AND FATIGUE IN SALE SPRAY

TYPE OF TEST	FATIGUE LOAD HISTORY	CYCLE FREQUENCY IN SALT SPRAY	SPECIMEN CONFIGURATION	RELEVANT CONDITIONS IN SALT SPRAY	MATERIAL	SIGNIFICANT DIFFERENCE BETWEEN FATIGUE IN AIR AND SALT SPRAY
			-	lives < 3 X 10 ⁵ cycles • 5.5 hours	7010-T7651 7010-T7451	ou
fatigue strength and life tests	fatigue strength constant amplitude, and life tests	ZH C1	notened coupon	lives > 3 X 10 ⁵ cycles • 5.5 hours	7010-T7651 7010-T7451	sək Xes
		0.5 Hz	15 dogbone	lives < 25,000 cycles # 14 hours	7075-T6	ou
	FALSTAFF	15 Hz	notched coupon	lives < 60,000 flights = 93 hours	7010-T7651 7010-T7451	ou
fatigue crack	constant amplitude, R = 0.1	10 Hz	centre cracked panel	da/dn = 2.5 X 10 ⁻⁸ - 3.5 X 10 ⁻⁶ m/cycle 7010-17451 7010-17451 7475-17351 7475-17351	7010-T7651 7010-T7451 7475-T7351 7050-T7451	yes yes yes no
growth tests	FALSTAFF	10 Hz	centre cracked panel	centre cracked panel da/df = 2.5 X 10 ⁻⁷ - 10 ⁻⁵ m/flight 7010-T7651 da/dn = 2.8 X 10 ⁻⁹ - 1.1 X 10 ⁻⁷ m/cycle 7010-T7451	7010-T7651 7010-T7451	no

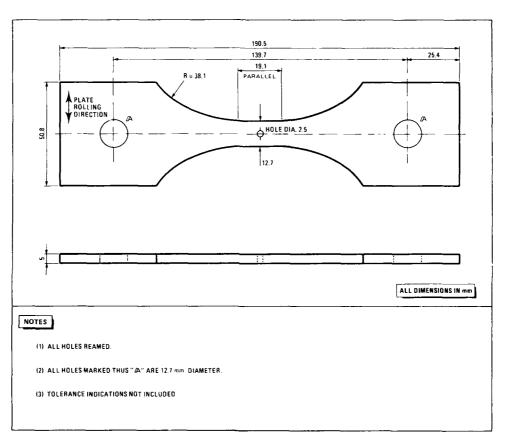


Fig. 9.1 Notched specimen configuration for the RAE fatigue strength test programme

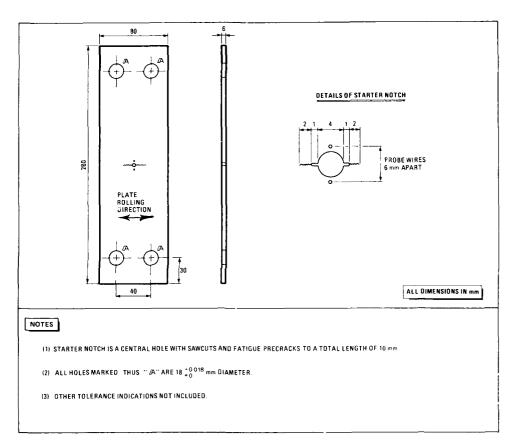


Fig. 9.2 Specimen configuration for the RAE fatigue crack growth resistance test programme

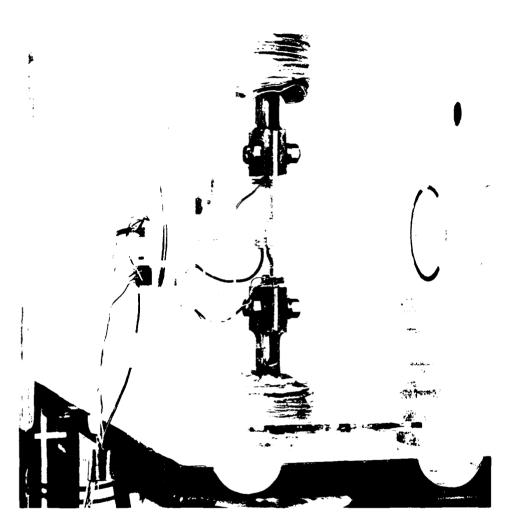


Fig. 9.3 Set-up for fatigue crack growth resistance tests in the sait spray chamber.

The crack growth monitoring leads have access to the chamber via a sealed porthole.

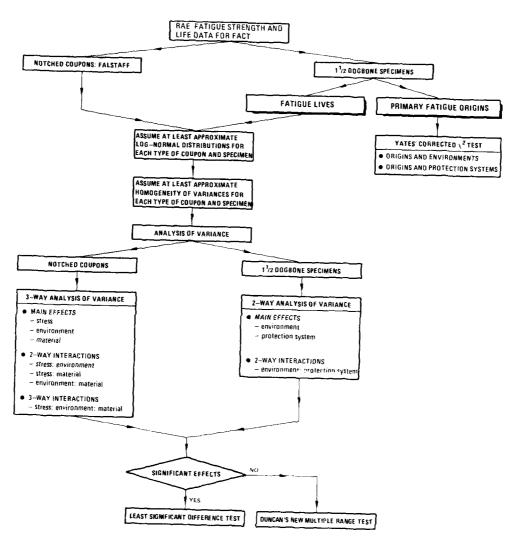


Fig. 9.4 Survey of statistical methods for analysing the RAE fatigue strength and life data for FACT

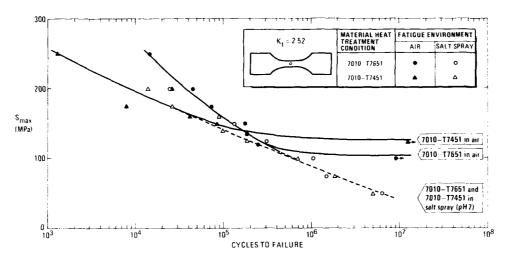


Fig. 9.5 RAE constant amplitude fatigue strength data contribution to the FACT programme. Cycle frequency 15 Hz; salt spray pH 7

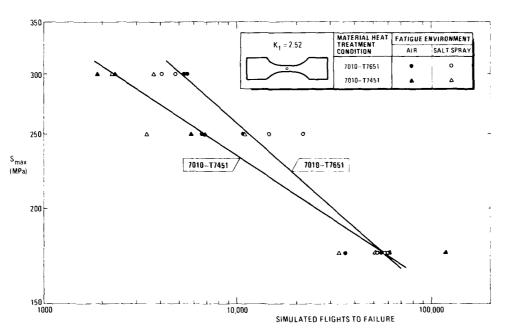



Fig. 9.6 RAE FALSTAFF fatigue strength data contribution to the FACT programme. Cycle frequency 15 Hz; salt spray pH 7

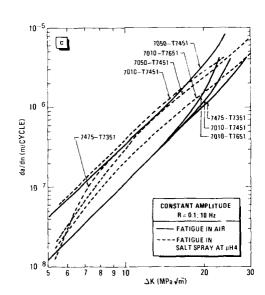


Fig. 9.7 Comparisons of constant amplitude fatigue and corrosion fatigue crack growth resistances of 7010-T7651, 7010-T7451, 7475-T7351 and 7050-T7451

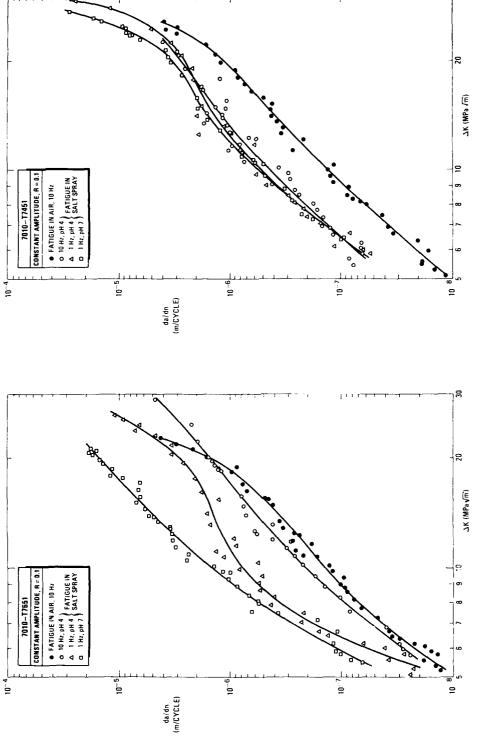


Fig. 9.8 Effects of environment and cycle frequency on the constant amplitude fatigue crack growth resistances of 7010-77651 and 7010-77451

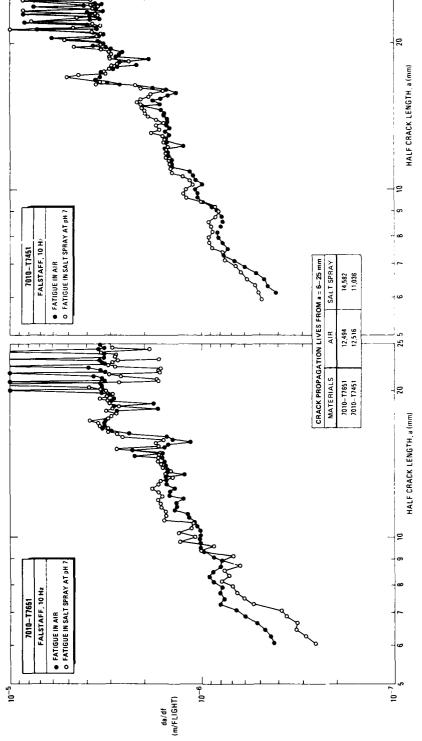


Fig. 9.9 Comparisons of manoeuvre rpectrum (FALSIAFF) fatigue and corrosion fatigue crack growth resistances of 7010-77551 and 7010-77451

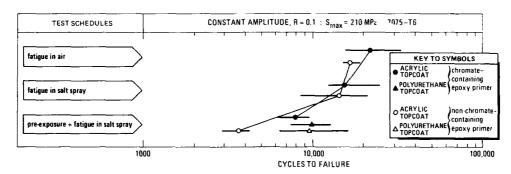


Fig. 9.10 RAE fatigue life data contribution to the FACT programme on the effect of chromate in primers. Cycle frequencies 2 Hz in air, 0.5 Hz in salt spray

10. THE NRC CONTRIBUTION TO THE FACT PROGRAMME

- A. Baldantoni, ALCAN International, Kingston, Ontario, Canada
- W. Wallace and M.D. Raizenne, National Aeronautical Establishment, Structures and Materials Laboratory, National Research Council, Ottawa, Canada
- J.Y. Dickson, Ecole Polytechnique, Department of Metallurgical Engineering, University of Montreal, Canada

10.1 Introduction

The NRC contribution to FACT was mainly a comparison of fatigue crack growth and corrosion fatigue crack growth properties of 7075 aluminium alloy plate in the T651, T7351 and RRA (retrogression and reage) conditions. Stress corrosion crack growth rate tests were also carried out on the same material. Some fatigue crack growth and corrosion fatigue crack growth tests were done with 7075 aluminium alloy sheet in the T651, T7351 and RRA conditions.

10.2 The Retrogression and Reageing (RRA) Process

The retrogression and reageing process was first described by Cina and Ranish (references 1, 2) and is a heat treatment designed for use with the 7000 series aluminium alloys. The RRA treatment was claimed to provide in a single temper the strength and stress corrosion resistance equivalent to the best features of the 76 and 73 tempers. The heat treatment is shown schematically in figure 10.1. It is applied to material in the 4-condition and involves two stages of treatment. The first stage, retrogression, requires heating for short times of the order of a few seconds or minutes at temperatures in the range 473-533 K. The second stage, reageing, is a repeat of the original 76 age, which typically involves heating for about 24 hours at 393 K.

Subsequent studies (references 3-8) have confirmed the essential features of the retrogression and reageing process. As indicated in figure 10.1, retrogression appears to involve three stages. During stage I the strength decreases from the initial T6 value and reaches a minimum at the start of stage II, where the strength begins to recover. A secondary hardening peak is reached at the onset of stage III. Continued heating through stage III causes a further loss of strength as the material effectively overages. Besides changes in strength, retrogression causes a progressive increase in electrical conductivity. After relatively short regression times the material can be reaged to recover strength, sometimes to levels higher than the initial T6 value, and electrical conductivity continues to increase and reaches values close to those obtained by conventional T73 heat treatment.

Cina and Ranish claimed that heating to the minimum in the retrogression curve, followed by reageing, produced a material with strength equivalent to the initial T6 value together with electrical conductivity and stress corrosion resistance equivalent to those of T73 processed material. A serious Itmitation of the process is that the retrogression times are very short, typically 5-120 seconds depending on temperature, and thus it is difficult to obtain uniform through-thickness properties in thick section parts. As originally formulated, the process is more suitable for very thin sections or as a surface modification treatment for thicker section parts. Wallace et al. (references 3-5, 7, 8) showed that lower temperatures and longer retrogression times as far as the secondary hardening peak could often be used to produce more effective combinations of strength and stress corrosion resistance in thicker section materials.

The effects of retrogression and reageing on microstructure have been studied using transmission electron microscopy of thin foils (references 4-6). Although some differences in interpretation exist, it appears that stage 1 of the retrogression process involves partial resolutioning of G.P. zones with little or no effect on the size or volume fraction of η or η' (MgZn₂) precipitates, see figure 10.2 and table 10.1. Continued retrogression *hrough stages II and III causes an interease in size and volume fraction of η or η' precipitates. Reageing causes a further increase in volume fraction of η + η' precipitates. Reageing causes a further increase in volume fraction of η + η' , but strength can be recovered only for short (to the end of stage !) or intermediate (to the end of stage II) retrogression times. In references (5) and (6) it is shown that the size of grain boundary precipitates increases substantially during retrogression and approaches the size of precipitates produced by the T73 heat treatment. It has been suggested that these coarse grain boundary precipitates produced by the T73 heat treatment. It has been suggested that these coarse grain boundary precipitates produced by hydrolysis at a crack tip and entering the metal would be encouraged to precipitate, forming molecular gas bubbles at the trapping sites and hence lowering the concentration of atomic hydrogen (presumed to be the damaging species) in the grain boundary region shead of the crack tip. Several workers have reported observations consistent with the presence of hydrogen bubbles at large grain boundary precipitates in aluminium-zinc-magnesium alloys exposed to water vapour (references 5, 9, 10).

10.3 The Test Programme

An overview of the test programme is given in table 10.2. Tests were originally planned for both 7075 and 7475 material. But testing of 7475 was discontinued because residual stresses introduced during heat treatment resulted in spurious fatigue crack growth behaviour, which is explained in section 10.4.4. There were two parts to the programme:

- investigation of stress corrosion crack growth resistance of 7075 plate as a function of heat treatment, including several T6RRA conditions
- comparisons of fatigue crack growth and corrosion fatigue crack growth resistances of 7075 sheet and plate in the T651, T7351 and optimum T6RRA conditions.

10.3.1 Materials, heat treatments and specimen configurations

The materials used in this investigation were 7075 and 7475 aluminium received in the T651 and T7351 tempers respectively. The 7075 alloy was received in the form of $3.2~\mathrm{mm}$ thick sheet and $102~\mathrm{mm}$ thick plate. The 7475 alloy was received in the form of $63.5~\mathrm{mm}$ thick plate.

Retrogression and reageing treatments were carried out on unnotched specimens planks using silicone oil baths. For the 7075 sheet and plate retrogression was carried out directly for the as-received T651 materials. However, since the 7475 plate was received in the T7351 condition it was necessary to do a full solution treatment and age in order to obtain a T6 starting condition before retrogression and reageing. The 7475 plate was quenched into cold water at 273 K after solution treatment at 753 ± 5 K, but no stress relieving was done before ageing at 393 K. Retrogression treatments were carried out at 493 K and 533 K for various times before ageing for 24 hours at 393 K.

There were three types of specimen, illustrated schematically in table 10.2. For stress corrosion crack growth tests the specimens were of the bolt-loaded double cantilever beam (DCB) type described by Speidel (references 11, 12). The specimens were 127 mm long, 19 mm high and 31 mm thick and orientated with the loading direction parallel to the short transverse (S) direction and with crack growth in the longitudinal (L) rolling direction of the plate. This is the most sensitive orientation with tespect to environmentally enhanced fracture.

For fatigue crack growth tests centre cracked tension (CCT) specimens were machined from the $3.2~\mathrm{mm}$ thick sheet. Loading was in the longitudinal (L) direction and crack growth in the long transverse (T) direction. Compact tension (CT) specimens conforming to ASTM Standard E647-83 (B = $12.7~\mathrm{mm}$, W = $63.5~\mathrm{mm}$) were machined from fully heat treated plate specimen blanks. The CT specimens were loaded either in the longitudinal (L) or short transverse (S) directions and crack growth was in the long transverse (T) or longitudinal (L) directions respectively.

10.3.2 Fatigue testing conditions

Constant amplitude fatigue crack growth rates were obtained for tests in laboratory air, dry argon and flowing 3.5% aqueous NaCl under the conditions of stress ratio (R = S_{min}/S_{max}) and cycle frequency shown in table 10.2. CCT specimen crack lengths were measured optically and also using two FRACTOMAT KRAK gauges bonded on either side of the centre crack starter. For the CT specimens crack lengths were calculated from compliance measurements made periodically during the tests.

Since previous work (references 13-15) showed that the most pronounced effects of heat treatment on fatigue crack growth in aluminium alloys are observed at low growth rates in the threshold regime (da/dn < 10^{-8} m/cycle) the present work on CT specimens concentrated on this regime. Crack growth rates were determined for both ΔK -increasing and ΔK -decreasing conditions using a computer controlled test system with automatic data acquisition and analysis (reference 16). For the ΔK -decreasing tests a technique described by Saxena et al. (reference 17) was used to keep the rate of change of plastic zone size constant as the crack propagates. Thus the load shedding followed an exponential curve given by

$$\Delta K(a) = \Delta K_0 \exp \left[C(a-a_0)\right]$$

where the subscript "o" denotes initial values of crack length a and ΔK , and the constant C determines the rate of decrease.

In addition, the software continually checked the load versus crack opening displacement (COD) data sets, used in the compliance technique to measure crack growth, for the occurrence of crack closure. The compliance data were scanned from the maximum load downwards for a 2.5 % positive change in slope. This point on the load-COD curve was taken to be the closure load, which was then used to define an effective ΔK :

Detailed descriptions of the test system and methods are given in references (16, 18).

10.4 Results

10.4.1 Effects of RRA on microstructure, mechanical properties and electrical conductivity

The microstructures, short transverse mechanical properties and electrical conductivities of the 7075 alloy plate in the T65!, T6RRA and T7351 conditions are shown in figure 10.3. As found previously (reference 5) both RRA and overageing to the T7351 condition increased the size of grain boundary precipitates. The grain boundary precipitates had diameters ~ 20, 75 and 65 nm for the T651, T6RRA and T7351 conditions respectively. A general increase in size of the intragranular (matrix) precipitates is also apparent in proceeding from the T651 to the T6RRA and T7351 conditions.

It is not the purpose of this contribution to the FACT programme to interpret these microstructures in detail, but it is worthwhile pointing out that the TGRRA treatment appears to give a microstructure combining the preferred features of fine matrix precipitates characteristic of the T651 temper with coarse grain boundary precipitates characteristic of the T7351 temper. These features are believed to be responsible for the combination of high strength and stress corrosion resistance of the T6RRA material. As shown in figure 10.3, the yield strengths of the T651 and T6RRA materials were similar and about 8 % greater than that of the T7351 material, while the tensile strength of the T6RRA material was halfway between the T651 and T7351 tensile strengths.

10.4.2 Stress corrosion crack growth rates

A series of heat treatments involving retrogression and retrogression and reageing, with retrogression temperatures of 493 K and 533 K, was carried out with 7075-T651. The Vickers hardness values (VPN) and electrical conductivities (% IACS) of these materials are listed in table 10.3. Retrogression treatments for times up to 8 minutes at 493 K and 2 minutes at 533 K were effective in providing hardness values comparable to that (~180 VPN) of the T651 starting material. Also, the retrogression times of 8 minutes at 493 K and 2 minutes at 533 K resulted in electrical conductivities higher than that of 7075-T651 (33-34 % IACS) and similar to values expected for 7075-T7351 (38-42 % IACS).

Stress corrosion crack growth rates are shown in figure 10.4 for 7075-T651, T7351 and T6RRA materials with retrogression times of 1, 2, 4, 6 and 12 minutes at 493 K. The plateau (stress independent) crack growth rate for 7075-T651 was about 8×10^{-9} m/s, and the transition from stress independent to stress dependent crack growth occurred at a stress intensity factor value of about 10 MPa m. The effect of increasing retrogression time at 493 K was to progressively lower the plateau crack growth rate and move the transition to higher stress intensity factor values.

Material retrogressed for 6 minutes at 493 K had stress corrosion crack growth rates of about $2-4 \times 10^{-10}$ m/s. This is slightly higher than crack growth rates in 7075-T7351 but much lower than the plateau crack growth rate for 7075-T651. In view of this result, and also the results of the hardness and electrical conductivity measurements listed in table 10.3, it appears that an optimum balance of strength and stress corrosion resistance is obtained with retrogression times of 6-8 minutes at 493 K.

Thus for the second and main part of this investigation, fatigue crack growth and corrosion fatigue crack growth resistance tests, it was decided in the case of T6RRA material to concentrate on retrogression times of 6-8 minutes at 493 K before reageing.

10.4.3 Farigue and corrosion fatigue crack growth rates for centre cracked tension (CCT) specimens

The fatigue and corrosion fatigue crack growth results for CCT sheet specimens are given in figures 10.5-10.7. There are three trends:

- (1) For each combination of fatigue environment and cycle frequency the data fall into fairly narrow scatter hands.
- (2) 7075-T7351 had the lowest crack growth rates in air. T6RRA material was intermediate, and 7075-T651 had the highest crack growth rates.
- (3) The overall effect of a lower cycle frequency was to shift the fatigue crack growth rates to slightly higher values. This effect is more noticeable for fatigue in 3.5 % aqueous NaCl.

10,4.4 Fatigue and corrosion fatigue crack growth rates for compact tension (CT) specimens

As mentioned at the beginning of section 10.3, residual stresses introduced into the 7475 plate material during heat treatment resulted in spurious fatigue crack growth behaviour. Specifically, the 7475-T6 and -T6RRA specimens required abnormally long times for initiation of fatigue precracks; the precracks often initiated away from the machined chevron notches and grew on planes not perpendicular to the loading direction; and the crack length values determined by computer from the compliance plots often varied in an apparently random way. The load-COD plots for these specimens often showed marked non-linearities even in the higher ranges of load employed. In contrast, load-COD plots for 7475-T7351, 7075-T651, -T6RRA or -T7351 were essentially linear and showed only minor indications of curvature at very low loads, most probably as a normal consequence of fatigue crack closure.

It is suspected that the anomalous behaviour of 7475-T6 and -T6RRA was a consequence of having to do a full solution treatment and age to obtain the T6 and T6RRA conditions from the original T7351 temper. In particular, it is thought that residual stresses were introduced by the cold water quench after solution treatment. Because of this all subsequent work was done with 7075, which had been received in the stress relieved T651 condition and could be converted to T6RRA and T7351 without full solution treatment.

Fatigue and corrosion fatigue crack growth rates for 7075 are given in figures 10.8-10.11, which show the following:

- figure 10.8 : fatigue crack growth in dry argon (no environmental effect)
- ullet figure 10.9 : comparisons of fatigue and corrosion fatigue crack growth
- figure 10.10: effect of cycle frequency on corrosion fatigue crack growth
- \bullet figure 10.11: effect of stress ratio on corrosion fatigue crack growth.

Figure 10.8 shows that fatigue crack growth rates for SL orientation specimens fall into narrow scatter bands with 7075-T651 the most resistant at low values of ΔK and $\Delta K_{\rm eff}$. LT orientation 7075-T651 specimens had greater resistance to fatigue crack growth than SL orientation 7075-T651 specimens at ΔK and $\Delta K_{\rm eff}$ values below 8 MPa m. However, LT orientation 7075-T6RRA specimens were less resistant than SL specimens, apparently because there was less crack closure.

Figure 10.9 shows the very large environmental effect of fatigue in salt water. There was note crack closure in salt water than in argon. Consequently, plotting crack growth rates against $\Delta K_{\rm eff}$ resulted in an even greater difference between the sets of salt water and argon data. Also the apparent "knees" in the salt water da/dn - ΔK plots at about 10^{-8} m/cycle are less evident when the data are corrected for crack closure. With respect to alloy temper, in salt water 7075-T651 was more resistant than 7075-T6RRA and 7075-T7351 at low values of ΔK and $\Delta K_{\rm eff}$, but less resistant at higher values.

Figure 10.10 shows that lowering the cycle frequency from 20 Hz to 2 Hz tended to result in higher crack growth rates at higher values of ΔK and $\Delta K_{\rm eff}$, and lower crack growth rates at low values of ΔK and $\Delta K_{\rm eff}$. It was expected that lower crack growth rates at low ΔK might be due to enhanced crack closure at 2 Hz, owing to a greater wedging effect of thicker corrosion products formed at this lower frequency. However, correcting fo. crack closure did not change the relative positions of the data sets. The da/dn - ΔK plots show knees at about 10^{-8} m/cycle. When corrected for crack closure the data show knees at slightly lower crack growth rates of about 5 x 10^{-9} m/cycle. Interestingly, the ranking of alloy tempers at low values of ΔK and ΔK changed with cycle frequency: 7075-T651 was the most resistant at 20 Hz but the least resistant at 2 Hz.

Figure 10.11 shows a significant effect of stress ratio on fatigue crack growth rates in salt water at 2 Hz. The range in crack growth rates plotted against ΔK covers about one order of magnitude. Correcting for crack closure reduces the data spread to a factor of 3-5 in growth rates. There are knees in the da/dn - ΔK plots at about 10⁻⁸ m/cycle. Below the knees the crack growth rates fall away rapidly, indicating threshold ΔK values in the range 2.5 - 3.5 MPa m. Values for the three tempers tested at R = 0.5 were towards the low end of this range, while at R = 0.1 the indicated values were towards the high end. 7075-7651 was generally the least resistant temper at both R values.

10.5 Discussion and Conclusions

Retrogression and reageing of 7075-T651 alloy results in significant increases in resistance to stress corrosion crack growth when retrogression is continued to the region of the secondary hardening peak. For the particular heat treatments used in this investigation the retrogression times were about 6-8 minutes at 493 K. Plateau stress corrosion crack growth rates were more than an order of magnitude lower than that of the T651 material.

In argon the fatigue crack growth rates in SL orientation specimens were similar for all three tempers. However, below about $10^{-8}\,$ m/cycle there were indications that 7075-T651 was more resistant than 7075-T6RRA and 7075-T7351. This is consistent with the results of other investigators who found that in the threshold region the fatigue crack growth resistance of various tempers of 7075 increases in going from overaged to peak aged to underaged material. These other studies were done with vacuum (reference 15), laboratory air (references 14, 15) and moist air at 95 % relative humidity (reference 13), and at relatively high frequencies in the range 25-40 Hz.

When tests were done in salt water at 20 Hz the ranking of the tempers remained the same. At the lowest crack growth rates the T651 (peak aged) material still appeared to be more resistant to fatigue crack growth than the overaged T7351 material and the T6RRA material. In this respect the T6RRA material behaves more like an overaged material than its peak aged T651 equivalent. At higher crack growth rates 7075-7651 was the least resistant to fatigue crack growth. This was also observed by Suresh et al. (reference 13) for tests in moist air.

For fatigue in salt water at 2 Hz the differences in crack growth rates between the three tempers in the near threshold regime were much less than those observed for fatigue in argon or salt water at 20 Hz. Also, the ranking of the tempers changed. 7075-T651 was the most resistant at 20 Hz but the least resistant at 2 Hz. This indicates that the T7351 and T6RRA materials have greater resistance to corrosion fatigue crack growth.

The longer test durations at 2 Hz would be expected to result in a greater contribution of corrosion fatigue crack growth to the overall crack growth process than at 20 Hz. However, this was observed only for higher crack growth rates and higher values of ΔK and $\Delta K_{\rm eff}$, and not fo, the lower crack growth rates in the near threshold regime. This unusual behaviour was not caused by differences in crack closure and therefore some other process such as crack tip blunting by anodic dissolution may be responsible. No firm conclusions on this can be reached at present, and the phenomenon is under investigation.

10.6 References

- B. Cina and B. Ranish, "A new technique for reducing susceptibility to stress corrosion of high strength aluminium alloys", in Aluminium Industrial Products, American Society for Metals (1974): Pittsburgh.
- B.M. Cina, "Reducing the susceptibility of alloys, particularly aluminium alloys, to stress corrosion cracking", U.S. Patent 3,856,584, December 24 (1974).
- W. Wallace, J.C. Beddoes and M.C. de Malherbe, "A new approach to the problem of stress corrosion cracking in 7075-T6 aluminium", Canadian Aeronautics and Space Journal, Vol. 27, pp. 222-232 (1981).
- D.N. Cong, K. Rajan and W. Wallace, "A TEM study of microstructural changes during retrogression and reageing in 7075 aluminium", Metallurgical Transactions A, Vol. 14A, pp. 1843-1850(1983).
- K. Rajan, W. Wallace and J.C. Beddoes, "Microstructural study of a high strength stress-corrosion resistant 7075 aluminium alloy", Journal of Materials Science, Vol. 17, pp. 2817-2824 (1982).
- J.K. Park and A.J. Ardell, "Effect of retrogression and reageing treatments on the microstructure of Al-7075-T651, Metallurgical Transactions A, Vol. 15A, pp. 1531-1543 (1984).
- M.V. Islam and W. Wallace, "Retrogression and reageing of 7475 aluminium alloy", Metals Technology, Vol. 10, pp. 386-392 (1983).

- M.V. Islam and W. Wallace, "Stress corrosion crack growth behaviour of 7475 T6 retrogressed and reaged aluminium alloy", Metals Technology, Vol. 11, pp. 220-222 (1984).
- 9. L. Christodoulou and H.M. Flower, "Hydrogen embrittlement and trapping in Al 6 \overline{x} Zn 3 \overline{x} Mg", Acta Metallurgica, Vol. 28, pp. 481-487 (1980).
- 10. G.M. Scamans and C.D.S. Tuck, "The role of hydrogen in environmentally sensitive mechanical behaviour of Al-Zn-Mg alloys", in Hydrogen Effects in Metals, edited by I.M. Bernstein and A.W. Thompson, The Metallurgical Society of AIME, pp. 482-495 (1980): Warrendale.
- 11. M.O. Speidel, "Stress corrosion cracking of aluminium alloys", Metallurgical Transactions A, Vol. 6A, pp. 631-651 (1975).
- 12. M.O. Speidel, "Current understanding of stress corrosion crack growth in aluminium alloys", in The Theory of Stress Corrosion Cracking in Alloys, edited by J.C. Scully, Nato Scientific Affairs Division, pp. 289-344 (1971): Brussels.
- 13. S. Suresh, A.K. Vasudevan and P.E. Bretz, "Mechanisms of slow fatigue crack growth in high strength aluminium alloys: role of microstructure and environment", Metallurgical Transactions A, Vol. 15A, pp. 369-379 (1984).
- 14. P. Renaud, P. Violan, J. Petit and D. Ferton, "Microstructural influence on fatigue crack growth near threshold in 7075 Al alloy", Scripta Metallurgica, Vol. 16, pp. 1311-1316 (1982).
- R.D. Carter, E.W. Lee, E.A. Starke Jr. and C.J. Beevers, "The effect of microstructure and environment on fatigue crack closure of 7475 aluminium alloy", Metallurgical Transactions A, Vol. 15A, pp. 555-563 (1984).
- M.D. Raizenne, "KRAKS an MTS Basic 770 computer program for automated fatigue crack growth rate testing", National Aeronautical Establishment, National Research Council of Canada Report LTR-ST-1538, February 1986.
- A. Saxena, S.J. Hudak, Jr., J.K. Donald and D.W. Schmidt, "Computer-controlled decreasing stress intensity technique for low rate fatigue crack growth testing", Journal of Testing and Evaluation, Vol. 6, pp. 167-174 (1978).
- 18. A. Baldantoni, "Corrosion sous tension et fatigue-corrosion des materiaux structuraux aeronautiques", Thesis submitted in partial fulfilment of the requirements of Master of Applied Science, Department of Metallurgical Engineering, Ecole Polytechnique, University of Montreal, June 1985.

TABLE 10.1: VOLUME FRACTION OF C + n' AFTER RETRACRESSION AT 473 K AND AFTER RETROCRESSION AND REAGEING (REFERENCE 4)

VOLUME FRACTION OF " + " PRECIPITATES	900 0 100 0 100 0 100 0
HEAT TREATMENT CONDITION OF 1015	To Merrogressed "initiates Recogressed" in initiates and reaged Recogressed "on initiates and reaged Recogressed "to initiates Recogressed to initiates

TABLE 10.2: OVERVIEW OF THE NRC TEST PROGRAMME FOR FACT

STARTING MATERIALS .	3.2 mm thick / alloc plate*	075-T651 alumi	nice	alloy shee	et ; 102	3.2 mm thick (04) 7651 aluminium alloy sheet; 102 mm thick 7875-7651 and 63 5 mm thick 7475-77351 aluminium alloy sheet;	thick /4/5-T/	351 atum	ini um	
FATIGUE LOADING .	constant amplitude	tude								
FATIGUE ENVIRONMENTS .	laboratory ale	dry argon, t	lowin	16 3.5 B at	i snoant	laboratory air; dry argan, flowing 3.5 % aqueous NaCl with pH /				
			S	3 1000			SPECIMEN	HEAT TRE	HEAT TREATMENT CONDITION	ONDITION
	TYPE OF TEST	TYPE OF TEST ENVIRONMENT	S and	S FREQUENCY		MATERIALS AND SPECIMENS	ORIENTATION	1651	TGRRA	17351
	FATIOUE	air and 0.2 and 3.5 Az watt	0 1	0 2 and 2 Hz	2075 sheet		נו	•	•	•
TEST PROGRAME.	CRACK CROSTH RESISTANCE	3.5 % aqueous and 2.0 Hz	and 0 >	2 and 20 Hz	7075 plate		LT and SI.	•	•	•
	STRESS Inter- CORROSION meeti CRACE GROWIN 3 : RESISTANCE Mach	STRESS intermittent SORGESIUS wenting with RACE GROWIN 3 - aqueous RESISTANTE Mac)			plate		ระ	•	•	•

Originally included in the text programme but for costed (see text)

TABLE TO, 11. HARDNESS AND ELECTRICAL CONDUCTIVITY OF 7075 AFTER RETROCRESSION AND RETROCRESSION AND REAGEING, WITH REPROCRESSION TEMPERATURES OF 493 K AND 53 K

This works a second second	SETRINGESON	PETROLEPSONON ONLY, AND F	D PPA.	SHEAL ASS	· interest	timered.
MINCIPS)	Sed 3			• 1A'S	VPN	N TACS
			9.5		190.5	0.55
	<u> </u>				90	7.07
	er d			 	186 4	7
	- 1		×	- x	1 14 5	51,
			A [2]	· ;	5.27	?
٤.			- 4-1		134.6	5

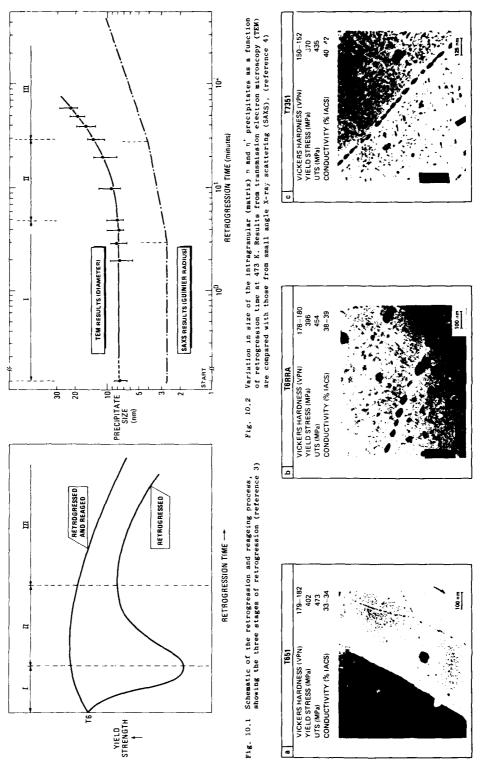


Fig. 10.3 Microstructures and mechanical properties (short transverse) for 7075 plate in the 1761, 168% and 17351 conditions

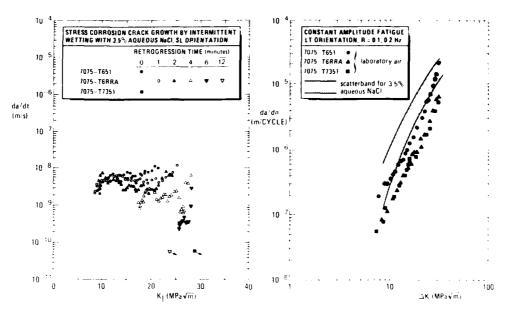
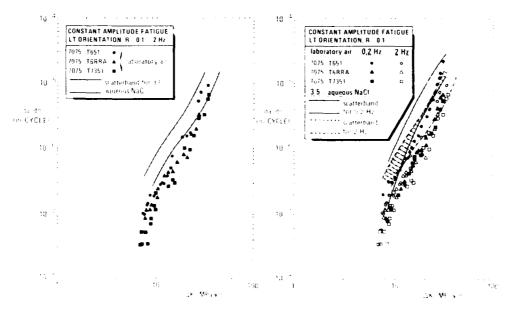


Fig. 10.4 Influence of retrogression time at 493 K on stress corresion crack growth rates for 7075-16RR4

Fig. 18.5 Comparisons of constant amplitude fattrae and corrosion fatigue crack greats resistances of 7075-7651, T6RNA and T7951 sheet at 0.2 Hz.



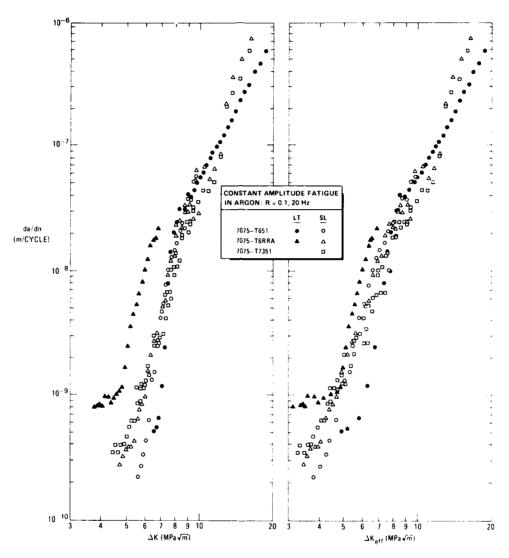
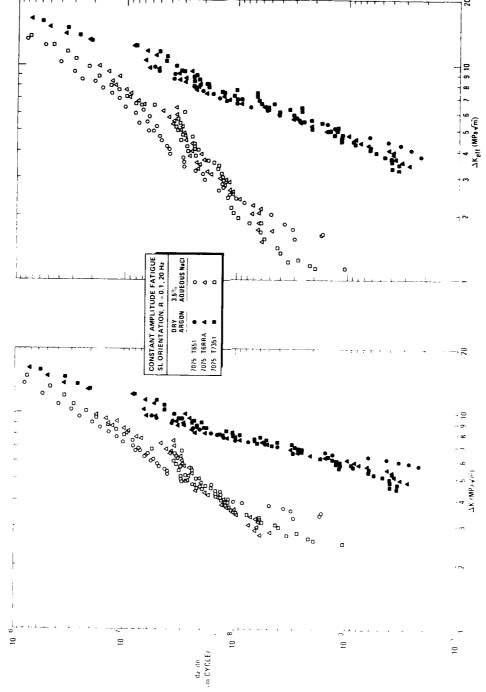


Fig. (c) surprise to distant amplitude fattings of 2 objections of distant upportunity fattings of the control

Fig. 10.8 Comparisons of constant amplitude fatigue crack growth resistances of 7075-T651, TGRRA and T7351 plate in dry argon

growth restatunces of 7075-T651, T6RRA and T7351 plate 10.9 Compar som of constant ampittude fatigue and currosion fatigue

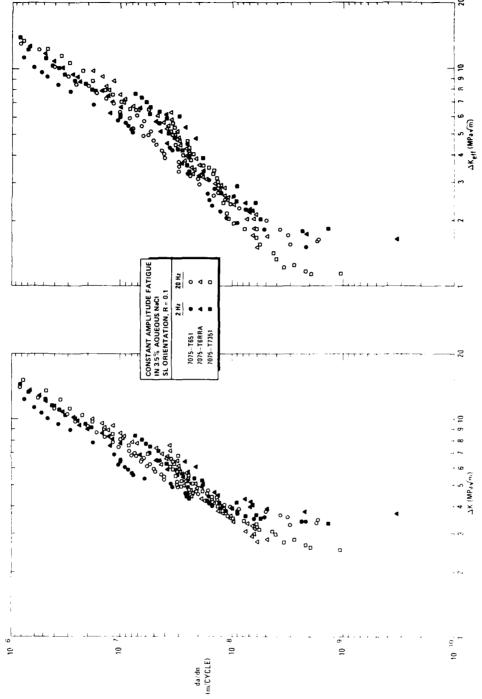
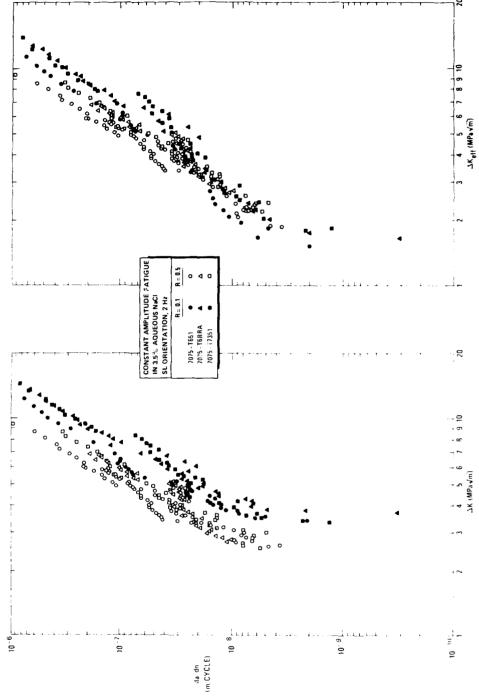



Fig. 10 ID. Comparisons of constant ampiatude corresion fatigue crack growth resistances of 7075-7651, T688A and 77351 plate at different frequencies (2.47 and 20.47)

(0.11) Comparisons of constant amplifude corresion latigue crack growth resistances of 7075-T651, T6RRA and T7351 plate at different attess ratios (R . 0.1 and 2.5) F 18

PART IV

EVALUATION OF THE CFCTP AND FACT PROGRAMMES

1. INTRODUCTION

In this final Part of the report we shall endeavour to assess the total effort involved in the CFCTP and FACT programmes. First we wish to thank the AGARD Structures and Materials Panel (SMP) for enabling the setting up of an internationally coordinated programme on corrosion fatigue. As figure 1 shows, this was a formidable task that has taken more than a decade to accomplish.

2. THE CFCTP CORE PROGRAMME

In Parts I and II of this report it was stated that the CFCTP core programme consisted of round-robin testing whose primary purpose was to establish whether participants could obtain confidence in one another's fatigue testing capabilities, especially when using a controlled atmospheric corrosion environment (salt spray). There were originally eight participants: NADC, University of Saskatchewan, VOUCHT, AFWAI, NLR, DFVLR, NDRE and RAE. These were subsequently joined by two more, SIFFRL and the University of Pisa.

The later participants obtained results significantly different from the rest. This was at least partly due to their being supplied with new specimens which, because they had to be redrilled from interference to press fit dimensions, turned out to have significantly inferior fatigue properties compared to the first batch. The differences are regrettable but instructive. They show how important and necessary it was to do the CFCTP core programme and, as first intended, to supply participants with specimens from one batch.

An innovative combination of statistical methods was used to analyse the CFCTP core programme data, both with respect to fatigue lives and the locations of primary origins of fatigue initiation and fracture. A detailed evaluation, described in Part II of this report, demonstrated the following:

- (1) The original eight participants could be confident in one another's environmental fatigue testing capabilities. Thus the primary purpose of the CFCTP core programme was achieved.
- (2) The first batch of CFCTP core programme specimens and the mechanical and environmental testing conditions were highly reproducible except for the way specimens were originally cleaned and dried after pre-exposure to actidified salt water. The cleaning and drying procedure was amended to be reproducible, and this amended procedure was stipulated for the FACT programme.
- (3) Environmental effects on fatigue lives were significant and consistent. Most importantly it was found that environmental effects were greater at a higher stress level. This is the opposite of what many literature data show. This discrepancy is explained in section 4.2.1 of Part II and is due to the fact that the majority of specimens used in environmental fatigue testing are simple coupons, whereas the CFCTP specimens were designed to be realistic representations of a fatigue critical structural joint.
 - It is therefore concluded that realistic specimens are necessary for correct assessment of environmental fatigue effects.
- (4) Examination of failed specimens to determine the locations of primary fatigue origins proved to be essential for understanding the fatigue behaviour.

3. THE FACT SUPPLEMENTAL PROGRAMME

As stated in Part III of this report, the intention of the FACT supplemental programme was to allow individual participants to investigate corrosion (atigue problems of particular relevance to their own interests and yet maintain a high degree of commonality. To achieve this it was recommended that

- ullet the same specimen configuration (1½ dogbone) be used as for the CFCTP core programme
- mechanical and environmental testing conditions be identical
- efforts be made to obtain meterials of mutual interest from one heat.

An overview of the FACT programme is given in figure 2. There were ten participants: VOUGHT, SAAB, NADC, AFWAL, NDRE, NLR, LRTH, IABC, RAE and NRC. Six had also taken part in the CFCTP core programme, namely VOUGHT, NADC, AFWAL, NDRE, NLR and RAE. Figure 2 shows similarities and commonalities in the individual programmes. Most participants tested 1½ dogbone specimens under nominally identical mechanical and environmental conditions. The fatigue loadings were constant amplitude, as in the CFCTP, the manoeuvre spectrum FALSTAFF (references 1-3) and the gust spectrum MINITWIST (reference 4). The environmental conditions generally included two or more of those in the CFCTP. Notable exceptions were in the SAAB and NRC programmes.

The main interest of several participants was to compare - in their individual programmes - the environmental fatigue properties of a number of aluminium alloys in various tempers. However, owing to the calibratory function of the CFCTP and the participants' active cooperation in obtaining the many similarities and commonalities within the FACT programme, it is possible to make inter-participant comparisons of materials, protection systems and fasteners as well. Furthermore, the total testing effort provided many data for comparing fatigue effects under constant amplitude and FALSTAFF loading, the latter being a realistic cyclic load history for tactical aircraft.

For detailed analyses of the results, discussions and conclusions of the individual contributions to the FACT programme we refer the reader to Part III of this report. Here we shall discuss inter-participant comparisons of materials, protection systems and fasteners in section 3.1, and comparisons of environmental fatigue effects under constant amplitude and spectrum loading in section 3.2.

3.1 Inter-Participant Comparisons of Materials, Protection Systems and Fasteners

The possibilities for inter-participant comparisons of materials, protection systems and fasteners are summarised in table 1. Comparisons of fatigue lives per fatigue testing schedule, load history and stress level are made in figures 3-6 and show the following:

- (1) For constant amplitude fatigue at a higher stress level (S = 210 MPa) the fatigue lives of 7075-T6 and 7075-T76 specimens were equivalent. Fatigue lives were not significantly prolonged by the use of interference fit fasteners, a flexible primer (Koroflex) or interfay sealant.
- (2) For constant amplitude fatigue at a lower stress level (S_{max} = 144 MPa) the rankings of materials, protection systems and fasteners depend on environment, except that 7075-T6 specimens had significantly shorter average fatigue lives than the rest.

For fatigue in air the fatigue lives of 7075-T6RRA, 7075-T76 and 7475-T761 clad specimens were equivalent. The use of interference fit fasteners (7075-T76) and interfay (7475-T761 clad) was beneficial to fatigue lives.

For pre-exposure + fatigue in salt spray the 7475-T761 clad specimens had longer average fatigue lives; 7075-T6RRA, 7075-T76 and 2024-T3 Alclad specimens had equivalent fatigue lives; and 7075-T6 specimens had shorter average fatigue lives. The use of interference fit fasteners and sealant in fastener holes (7075-T76) was not beneficial. However, interfay sealant prolonged the fatigue lives of 7475-T761 clad specimens.

- (3) For FALSTAFF fatigue at a higher stress level (S_{max} = 289 MPa) the average fatigue lives of specimens with interfay sealant were longer (sealant in fastener holes was most probably not beneficial). The relatively good performance of /U75-T6 specimens is noteworthy. The reason for this may be that a high yield scrength helps to postpone fatigue crack initiation at high stress levels.
- (4) For FALSTAFF fatigue at a lower stress level (S = 238 MPa) the fatigue lives of most specimens were equivalent. The average fatigue lives of 7075-T6 specimens with the NF-5 protection system were shorter than the rest, including 7075-T6 specimens with the MRCA protection system and interfay sealant. Since these 7075-T6 specimens were from the same batch of material, it may be concluded that the MRCA protection system with interfay sealant significantly longer fatigue lives than the NF-5 protection system. However, in general there was no consistent benefit from using an interfay sealant. Nor was the use of interference fit fasteners or sealant in fastener holes beneficial.

It is clear from the foregoing observations that there are no overall trends with respect to material and protection system rankings. Nevertheless, significant improvements in environmental tatique resurance are obtainable through choice of improved materials, heat treatments and protection systems. In particular, the use of an interfay scalant can be recommended because it is sometimes very beneficial. There are several possible reasons for this. Inhibition of corrosion and fretting can postpone fatigue crack initiation at faying surfaces. And improved load transfer (via the scalant) can reduce the stress concentrations at fastener holes. This has been observed in preliminary work at the NLR using a SPATE 8000 thermoelastic stress analysis camera.

Since there are no overall trends with respect to materials and protection systems, it may be concluded that their evaluation requires realistic load histories, stress levels and environments. This conclusion adds to one in \circ ction 2 concerning the CFCTP core programme, namely that realistic specimens are necessary for correct assessment of environmental fatigue effects.

There was, however, an overall trend with respect to fastener fit. The use of interference fit Hi-Loks and SLEEVBolts instead of press fit Hi-Loks v on beneficial to fatigue lives. A similar result was obtained in the AGARD-coordinated Fatigue Rated Fastener Systems programme (reference 5) for specimens with moderate to high values of secondary bending ratio (SBR). As discussed in Appendix I, the SBR for 1½ dogbone specimens varies from 0.2 for press fit Hi-Loks to 0.4-0.5 for interference fit SLEEVBolts and Hi-Loks. Thus it is most likely that any potential improvement in fatigue life from using interference fit fasteners was counteracted by an increase in SRR.

In view of the foregoing, it may be questioned whether the 1½ dogbone specimen configuration is suitable for the evaluation of different fastener systems. Insofar as this specimen type is realistic for certain types of aircraft structural joints, the answer is yes. However the present results, i.e. no significant differences in fatigue lives for specimens with press and interference fit fasteners, should not be extrapolated to other types of joints, particularly those with low secondary bending ratics.

3.2 Inter-Participant Comparisons of Environmental Fatigue Effects

Inter-participant comparisons of environmental fatigue effects under constant amplitude and manoeuvre spectrum (FALSTAFF) loading at different stress levels are shown in figure 7. Environmental effects were greater at higher stress levels. This is the same trend found for the CFCTP core programme and, as mentioned in section 2, it is the opposite of what one would expect from literature data, which refer mostly to simple coupon specimens.

The reason for this discrepancy is as follows (see also section 4.2.1 of Part II of this report). Higher stress levels and environmental fatigue testing (pre-exposure + fatigue in salt spray) promoted fatigue initiation in the bores and at bore/faying surface corners of the fastener holes in I½ dogbone specimens. On the other hand, lower stress levels favoured fatigue initiation at the faying surfaces. It is most likely that environmental effects will be greater when they promote characteristic failure modes. This explains why the observed environmental effects were greater - on the average - at higher stress levels.

As before, it is concluded that this distinct difference in environmental fatigue behaviour between simple coupons and l_2^1 dogbone specimens, which were designed to simulate an actual joint, shows that realistic specimens are necessary for correct assessment of environmental fatigue effects.

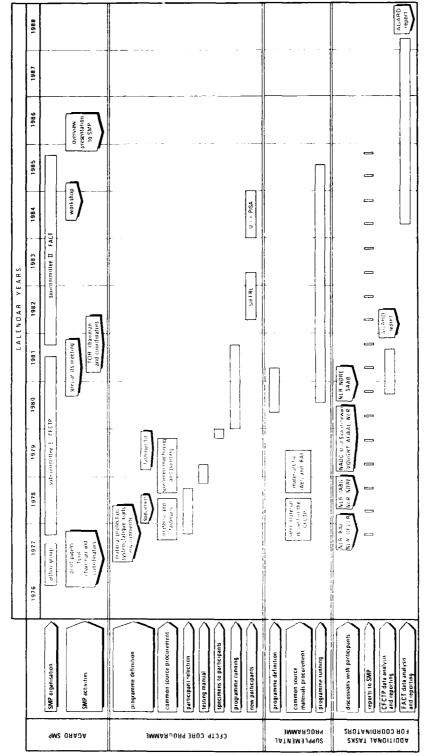
4. CONCLUSIONS AND RECOMMENDATIONS

The main objectives of the CFCTP and FACT programmes were:

- assessment of the effectiveness of state-of-the-art protection schemes for aluminium alloys with respect to corrosion fatigue and corrosion + fatigue
- stimulation of the development of new protection products, procedures and techniques
- bringing together researchers on both sides of the Atlantic in a common testing effort that would result in a better understanding of the corrosion fatigue phenomenon and the means of mitigating it for aerospace alloys
- enabling participating laboratories to add to their fatigue testing capabilities by using a controlled atmospheric corrosion environment.

This report demonstrates that the first, third and fourth objectives have been achieved. It also provides many data on a broad, international basis for achieving the second objective.

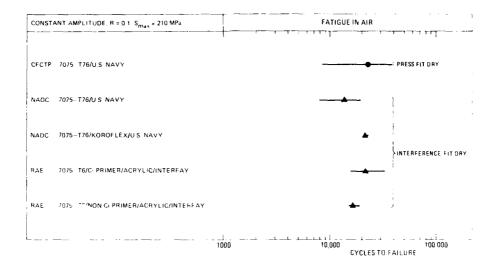
Much remains to be done to increase the understanding of aircraft corrosion fatigue and the effectiveness of protection systems. The incentive is present in the FACT programme results: significant improvements in corrosion fatigue resistance are obtainable.


The degree of improvement depends on specimen configuration, fatigue load history, stress level and environment. It is therefore essential to evaluate potential improvements in materials, protection systems and fasceners by testing realistic specimens under representative fatigue load histories with environments simulating mission service conditions as closely as possible.

5. REFERENCES

- G.M. van Dijk and J.B. de Jonge, "Introduction to a fighter aircraft loading standard for fatigue evaluation "FALSTAFF"", Paper 3.61, Problems with Fatigue in Aircraft, Proceedings of the Eighth ICAF Symposium, compiled and edited by J. Branger and F. Berger, Swiss Federal Aircraft Establishment (F+W) 1975: Emmen, Switzerland.
- "Description of a Fighter Aircraft Loading STAndard For Fatigue evaluation," Combined Report of the F+W, LBF, NLR and IABG, March 1976.
- 3. J.B. de Jonge, "Additional information about FALSTAFF", NLR Technical Report TR 79056 U. June 1979,
- H. Lowak, J.B. de Jonge, J. Franz and D. Schütz, "MINITWIST. A shortened version of TWIST", Combined Report of the LBF and NLR, NLR Miscellaneous Publication MP 79018 F., May 1979.
- 5. H.H. van der Linden, "Fatigue rated fastener systems", AGARD Report No. 721, November 1985.

TABLE 1: SUMMARY OF POSSIBILITIES FOR INTER-PARTICIPANT COMPARISONS OF MATERIALS, PROTECTION SYSTEMS AND PASTENERS PER FATIOUE TESTING SCHEDULE


	CHARACTERISTIC			FASTENER INSTALLACTOR	SKOITIONO NOITIONS	2	
LOAD	STRESS LEVEL		fattgue in air		ud	pre-exposure + fatigue in sait spray	ray
	aax	press fit dry	press tit wet	Interference for dry	SAJ4	press fit wet	interference fit : dry
		CPCTP OFCTP VAVY S MAVY		MAD SOFTETHER STAND TOTAL THE ROPETED STANDS	ACMS IS THAT OUT		1075-176/U.S NAVY 1075-176/Koroflex/U S NAVY
constant	377			PAF - d., forth, an Mar potentially (10) a former transplace patential			RAE 7075-T6/CC/acryllc/interfay 7075-T6/CC/polyu/interfay 7075-T6/nonGc/acryllc/interfay 7075-T6/nonGc/acryllc/interfay
R = 0 1		CECTP CPGS-T'6-CUS NAVY		• • •	OPPORT NAVE	AFVAL. 70.% T26/U S NAVY	AFVAL 1015-T76/U.S. NAVY/SLEEVBOLLS
		NORE SOLVE OF SOLVE O			NAPE TO CONTRACT S NAVY TO COMPANY S NAVY		
	:	818 2004 - 71 ALC Lade F. 98 2005 - 72 SEC. 2004 - 2005			218 20 5 8 50 8 78 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
		1. This lad by antertur			in the first of the supertage		
		NOTS TAK (SOUND OF S. MAUY) OUTS TERRANG S. MACA	Part Court of the		SDRE 1-1 To commy Q S NAVY to be bereath S NAVY	IABG 7475-1781 clad/MCA/Interiav 70°9-16/MCA/Interiav	
	Ž	RIP * 171 July 8 - 17 * 171 July 8 - 17 * 171 July 8 - 17			Wigness of the tribute of the control of the contro		
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		25 m - 1 m -			LANCE CONTRACTOR		
		AFWALL TOTAL S NACT	THE THE PLANT OF THE PARTY OF T	Application of the state of the	1878 N 18 12 (10)	STATEST S NAVY	APVAL (675 T %/2 S NAVY; SLEEVbolts
		Majore A March Control of the Contro			MORE STORY OF THE	1ABG '.'>-T?hi .iad/MRCA/intertav '0:>-T6/MR/A intertay	
	*	M.P. Solver St. Communication of the communication			を 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2		
		AND A COLOR				==	

ig. 1 Overview of the correston faltgue programme milestones and activities

Г	PARTICI	PANTS	VOUGHT	SAAB	NADC	AFWAL	NDRE	NLR, /LRTH	IABG	RAE	NRC
-	IDENTICAL MATER		1000	•	•	•	•	1 C	•	•	, inc
PROGRAMMES	IDENTICAL PROTEC	TION SYSTEM	•	•	•	•	•		•		
UAL PRO	MATERIAL	DIFFERENT MATERIALS		•				•	•	•	•
OF THE INDIVIDUAL	COMPARISONS	DIFFERENT HEAT TREATMENTS			-		•			•	•
CTS OF TH	PROTECTION SYSTE	M COMPARISONS		•	•	•		•	•	•	
MAIN ASPECTS	FASTENER COMPAR	ISONS			•	•					
2	FATIGUE LOAD HIS	TORY COMPARISONS				•	•	•		•	
		1 ¹ 2 03680NE		•	•	•	•	•	•	•	
	FATIGUE LIFE AND STRENGTH	NOTCHED COUPONS	•							•	
		UNNOTCHED		•							
	FATIGUE	CENTRE CRACKED TENSION (CCT)	•							•	•
F TESTS	G 7H	COMPACT TENSION (CT)									•
TYPES OF TESTS		CONSTANT AMPLITUDE	•	•	•	•	•	•		•	•
	FATIGUE LOADINGS	FALSTAFF				•	•	•	•	•	
		MINITWIST						•	-		
	ENVIRONMENTAL	AS PER CFCTP	•		•	•	•	•	•	•	
	COMBITIONS	OTHER	•	•							•

Fig. 2. Overview of the FACT supplemental programme

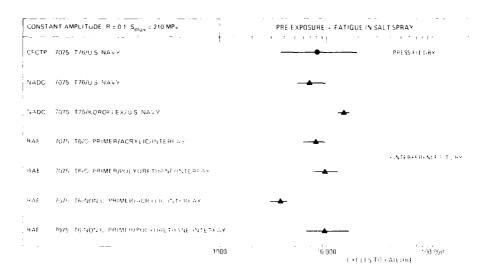
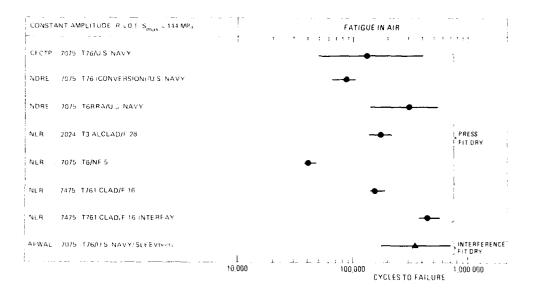



Fig. 3. Inter-participant comparisons of FACT and CFCTP constant ampetitude tatigue live, at a higher discs. level (S. + 210 MPa). The CICTP core programme data exclude specimens reducted to press tit dimensions.

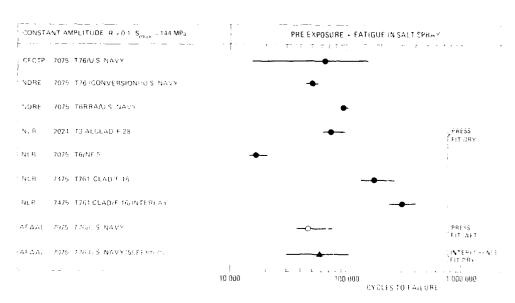
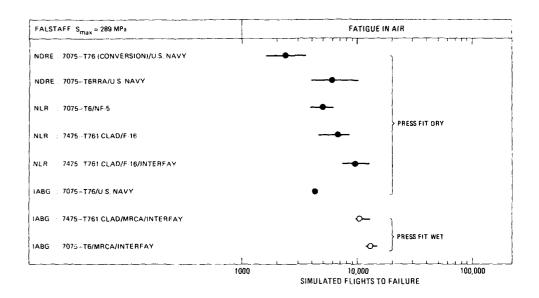



Fig. 4 Inter-participant comparisons of FACT and CFCTP constant amplitude latigue lives at a lower stress tevel (S $_{\rm max}$ = 144 MPa). The CFCTP core programme data exclude specimens redrible to press (it dimensions

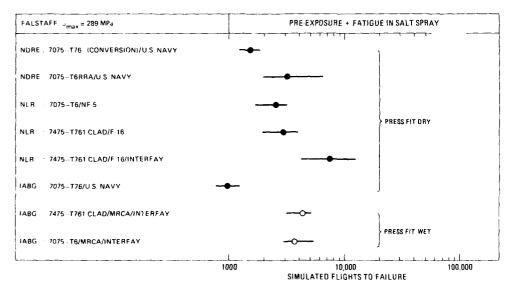
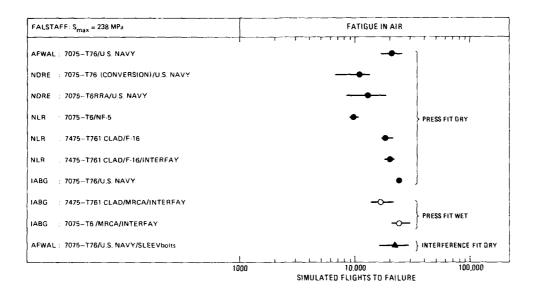



Fig. 5 Inter-participant comparisons of FACT manoeuvre spectrum (FALSTAFF) fatigue lives at a higher stress level ($S_a = 289 \text{ MPa}$)

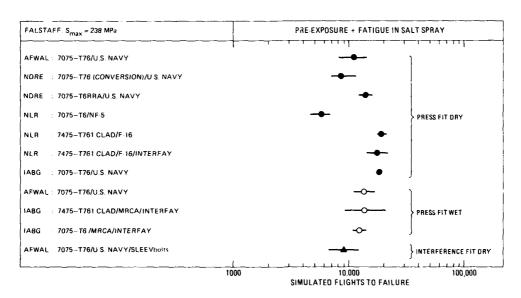


Fig. 6 Inter-participant comparisons of FACT manoeuvre spectrum (FALSTAFF) fatigue lives at a lower stress level (S_{a} = 238 MPa)

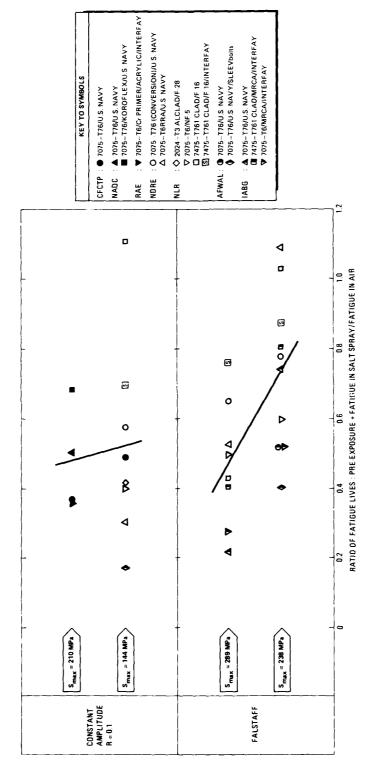


Fig. 7 Inter-participant comparisons of environmental fatigue effects. The CFCTP core programme data exclude specimens redrilled to press fit dimensions.

RAE data for 7075-76/non-: primer/acrylic/interfay are also excluded owing to faulty application of primer (see section 9.2.3 of part III of this report)

APPENDIX I

LOAD TRANSFER AND SECONDARY BENDING IN THE 14 DOGBONE SPECIMEN

1. INTRODUCTION

This Appendix describes the load transfer and secondary bending characteristics of 1½ dogbone specimens similar to those used in the CFCTP core programme and recommended for the FACT supplemental programme. The CFCTP and FACT specimen configuration is illustrated in figure 1. The specimen configuration was designed to simulate the load transfer and secondary bending characteristics of runouts of stiffeners attached to the outer skin of an airframe structure. The design goals were a load transfer of 40 % and secondary bending ratio of 0.5 (reference 1). These parameters are defined in figure 2.

The NLR and the University of Pisa conducted a programme to determine the actual values of load transfer (LT) and secondary bending ratio (SBR) in 1½ dogbone specimens (references 2,3). This programme was based on specimen requirements for the AGARD-coordinated Fatigue Rated Fastener Systems (FRFS) programme (reference 2). The specimen configuration was identical to the in figure 1 except for the aluminium alloy sheet thickness and fastener fit, as follows:

	CFCTP AND FACT	LT AND SBI	R PROGRAMME
ALUMINIUM ALLOY SHEET THICKNESS	3.2 mm	5	cings
FASTENER TYPE	Hi-Lok	Hi-Lok	Hi-Tigue
NOMINAL FIT OF FASTENERS *	slight press: - 0.019 interference: - 0.077	clearance : + 0.020 interference : ~ 0.025	interference : - 0.070

* Dimensions in millimetres. + = clearance, - = interference.

Despite the differences in specimen configuration the results of the load transfer and secondary bending ratio programme are relevant to the behaviour of the $l\frac{1}{2}$ dogbone specimens used in the CFCTP and FACT programmes.

2. OVERVIEW OF THE LOAD TRANSFER AND SECONDARY BENDING RATIO PROGRAMME

An overview of the load transfer and secondary bending ratio (LT and SBR) programme is given in table 1. The number, positions and dimensions of the strain gauges on the fatigue specimen -1 are important. A detailed discussion of these aspects is given in reference (2). An example of strain gaugeing the fatigue specimen -1 is given in figure 3a. The strain gauges and wire leads at the faying surface were accommodated by shallow recesses milled in the half plate -2, figure 3b.

The strain gauges were bonded to the fatigue specimens after priming and before assembly into $l\frac{1}{2}$ dogbones. Assembly was done using the appropriate fasteners and with polysulphide sealant at the faying surfaces and in the fastener holes.

The specimens were fatigue cycled under constant amplitude loading with maximum stress $S_{max}=250$ MPa and a stress ratio $R=S_{min}/S_{mon}$ of 0. Fatigue cycling was interrupted at fixed intervals, e.g. cycles 1, 5, 100, 1000, 5000 and 10,000, in order to measure strains in a "static" loading test with $S_{max}=250$ MPa and $S_{min}=-67$ MPa.

3. RESULTS

The results of the LT and SBR programme are compiled in references (2,3). Figure 4 presents characteristic values of load transfer and secondary bending ratio at $S_{max} = 250$ MPa. The following trends can be observed:

- (1) Load transfer is almost independent of fastener fit, with a typical value of 27 %. This is lower than the design goal of 40 %.
- (2) Secondary bending ratio depends strongly on fastener fit, reaching a maximum of about 0.47 for an interference fit of 0.070 mm. Again the values are lower than the design goal of 0.5.

4. ESTIMATION OF LOAD TRANSFER AND SECONDARY BENDING RATIO IN THE CFCTP AND FACT SPECIMENS

Most lt dogbone specimens for the CFCTP and FACT programmes were assembled using Hi-Loks and a slight press fit resulting in a nominal interference of - 0.019 mm. The NADC, AFWAL and RAE contributions to the FACT programme also included specimens with higher interference fit fasteners, see sections 4, 5 and 9 of Part III of this report. Estimates of the load transfer and secondary bending characteristics of the three specimen types have been made using the LT and SBR programme data, specifically the correlations between fastener fit, load transfer and secondary bending ratio. These estimates are as follows:

	FASTENER	NOMINAL FIT OF	S	= 250 MPa
	TYPE	FASTENERS *	LOAD TRANSFER	SECONDARY BENDING RATIO
CFCTP AND FACT PROGRAMMES	Hi-Lok	slight press : - 0.019	24 %	0.20
NADC AND RAE CONTRIBUTIONS TO FACT	Hi-Lok	interference : - 0.077	30 %	0.51
AFWAL CONTRIBUTION TO FACT	SLEEVbolt	interference : - 0.064	29 %	0.44

^{*} Dimensions in millimetres. - = interference.

5. REFERENCES

- D. Schütz and J.J. Gerharz, "Schwingfestigkeit von Fügungen mit Sonderbefestigungselementen", Fraunhofer-Institut für Betriebsfestigkeit Technische Mitteilungen TM 69/73, 1973.
- 2. H.H. van der Linden, "Fatigue rated fastener systems", AGARD Report No. 721, November 1985.
- 3. H.H. van der Linden, L. Lazzeri and A. Lanciotti, "Fatigue rated fastener systems in 1½ dogbone specimens", NLR Technical Report TR 86082 U, August 1986.

TABLE 1: OVERVIEW OF THE LOAD TRANSFER AND SECONDARY BENDING RATIO PROGRAMME

MATERIAL

• 5 mm thick 7075-T76 aluminium alloy sheet

SPECIMEN

CLEARANCE OR INTERFERENCE FIT Hi Loks OR Hi-Tigues

FASTENER HOLE QUALITY • Reamed with or without prior cold work

PROTECTION SYSTEM

Chromate containing epoxy $\mbox{pr}_1\mbox{mer}$ + polysulphide sealant in fastener holes and at interfays

INSTRUMENTATION

• Strain gauges on fatigue specimen -1

LOADING CONDITIONS

 \bullet Constant amplitude fatigue cycling with intermittent measurements of strains

TEST PROGRAMME

REFERENCE	ERENCE 2 3			
NUMBER OF STRAIN GAUGES PER SPECIMEN	1	8		22
FASTENER HOLE QUALITY	reamed	cold worked + reamed	reamed	cold worked + reamed
FASTENER	Hi-Lok	Hi-Lok	Hi-Tigue	Hi-Tigue
FASTENER FIT	clearance	low interference	high interference	high interference

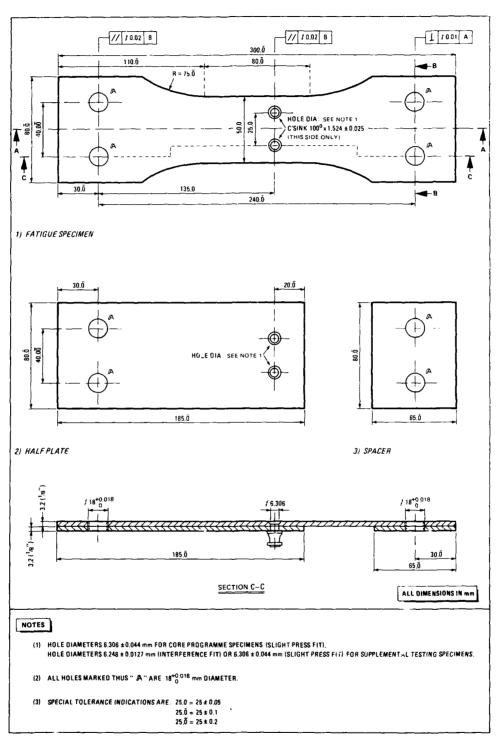


Fig. 1 The CFCTP core programme and recommended FACT supplemental programme specimen

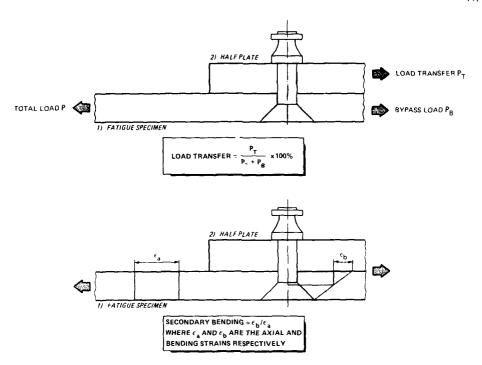


Fig. 2 Definition of load transfer and secondary bending for the $1\frac{1}{2}$ dogbone specimen

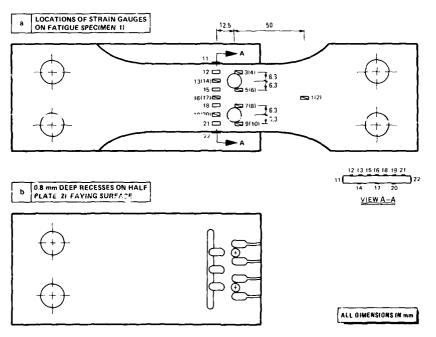


Fig. 3. Example of strain gaugeing a $1\frac{1}{2}$ dogbone specimen for measurement of load transfer and secondary bending ratio

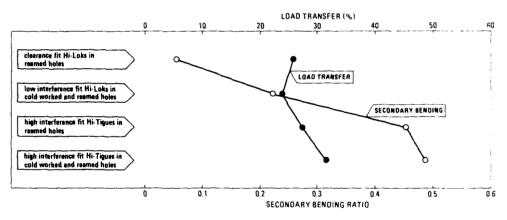


Fig. 4 Load transfer and secondary bending characteristics of $1\frac{1}{2}$ dogbone specimens at $\frac{S}{max} = 250 \text{ MPa}$

APPENDIX 11

STATISTICAL METHODS

i. INTRODUCTION

The catistical methods used to analyse the (FCTP core programme and FACT supplemental programme data are discribed in this Appendix. It is sufficient to refer to the procedure used for the CFCTP core programme since the methods were the same, although the amount of statistical analysis for the FACT programme varied according to each participant's contribution.

A survey of the statistical methods and procedure for analysing the CFCTP core programme fatigue life and primary fatigue origin data is given in figure 1. The latigue life data were first checked for permality and homogeneits of variances corporate compliance with these conditions is sufficient) as a prerequisite to further treatment. The main analysis was multiple factor analysis of variance. This was followed by "time tuning" using the least significant difference test or Euncan's new multiple range test. To avoid possible misuse the least significant difference test was applied only when analysis of variance indicated significant effects. Discur's new multiple range test can be used whether or not analysis of variance indicates significant effects. Piecever, because the least significant difference test is core powerful it was decided to use Durcan's test only when analysis of variance did not indicate significant effects. In addition the lips n and sheth method was used to check for adequate sample size bised on scatter in the latigue life data.

The primary fatigue arigin data were analysed using the χ^2 test of independence. Yates' corrected ϵ^2 test or Fisher's exact test, whichever was appropriate. For these tests it is sufficient to assume only that the data constitute a random sample. These tests were also used (as appropriate) to check whether their were significant correlations between fatigue lives and primary fatigue origins for each of the eight combinations of tatigue stress levels and testing schedules, which are given here for reference:

[CHOIF COST PROGRAMME FATIGUE TESTING SCHEDULES
Mine	totigne deart
1	•
	•

THE RESERVE STORE NORMALITY

The value for a modification relations are pregrammed data were considered to belong to clear fitting expectable as stresponders as each of the introduction tenders to make the model as the first paper and subject, vely exact today described as the \mathbb{Z}_{++} . But the \mathbb{Z}_{++} today is the first paper and subject, vely exact today discussed in section \mathbb{Z}_{++} . But the \mathbb{Z}_{+++} today is the first paper and subject, vely exact today discussed in the state. This is illustrated as section in the state.

in a regard of an edgre for test of Normality

A set of fits fitting life dots was available for each of the eight retinue test committees, had not set represented from specimens to teach of the terrocotteniques in the estimate programme. The fitte sets core irranded in as ending order of tation lines, which were isotated median ranks for a sample size of sold. But less of median ranks are implied easy, in reference (10). Median ranks correspond to annihilate productions of trainer and were plotted a distribution fixed in rights correspond to agent and productions against productions against productions against productions.

An excepte to given in table in A stream time fits the data who clotted in logarithm and probability paper, but not when elected in arithmeth in amount of admire, upper this mains that the late approximate that I amount distribution and may be treated in the large was according variables in a limit distribution provided that the logarithm it such data. In second

and add best for conducts of firt

The ϵ^2 test for go doese of fit involves testin, the hop-fless that the distribution function fraction for a sample approximates the distribution function from the population, ϵ decide this it is necessary to know how much 1 ϵ can uniter from Fig. with an invalidating the by, the is. A sample of the proofunctived in the ϵ^2 test is given here:

- of Subdivide the sample into K intervals such that each interval contains at least 5 values.
- $\mathcal{L}(t)$. Determine the number of sample values t_{ij} is each interval.
- (3) Using Eq.() impute the number of sample values r_{ij} theoretically expected in each interval if the hypothesis is true.

(4) Compute the destriction
$$(r^2,\pi):=\frac{r^2}{r^2}(\pi)$$
 .

- (5) Choose a significance level α (e.g. 5 %, 1 %).
- (6) Determine the solution c of the equation P $(\chi^2 > c) = 1$ -a from the appropriate value of χ^2 in the table of the χ^2 distribution (included in most standard texts on statistics). The appropriate value of χ^2 is listed under the chosen value of a and for
 - ullet K-1 degrees of freedom if all parameters of F(x) are known
 - K-r-i degrees of freedom if r parameters of F(x) are unknown and their maximum likelihood estimates are used.
- (7) If $\chi_0^2 \le c$, do not reject the hypothesis. If $\chi_0^2 \ge c$, reject the hypothesis.

An example using CFCTP core programme data is given in table 2. This shows that the data approximate to a log-normal distribution and may be treated in the same way as random variables in a normal distribution provided that the logarithm of each datum is used.

3. TESTING FOR HOMOGENEITY OF VARIANCES

There are several methods of testing for homogeneity of variances. For the CFCTP core programme two tests were used, both or which are discussed in reference (4):

- (1) Bartlett's test, which is used when the sample size is large.
- (2) Box's test, which is a modified version of Bartlett's test and used when the number of degrees of freedom of any sample variance is less than 4.

The objective of these tests is to check the hypothesis that the variances σ^2 of k populations are equal. This is done by estimating the variances s^2 for each of the k samples and following the computational procedures outlined in table 3, which is almost self-explanatory. The two tests are quite similar. The statistic used in Bartlett's test is

$$\chi_{0}^{2} = \frac{K}{1+L}$$
 with v_{1} degrees of freedom

 $F_o = \frac{\chi_o^2}{v_1} = \frac{E/v_1}{1+L}$ with v_1 and ∞ degrees of freedom.

Box's test changes the denominator of the statistic F as follows:

$$F_0 = \frac{1}{U/U}$$
 with U and U degrees of freedom.

Note that for large samples Burtlett's test and Box's test are consistent with each other.

The calculated values χ^2_0 and F_0 are compared with appropriate values of χ^2 and F in tables of the χ^2 and F distribution (included in most standard texts on statistics). The appropriate values of χ^2 and F are listed under the chosen significance level α and for $\frac{1}{2}$ and $\frac{1}{2}$, $\frac{1}{2}$ degrees of freedom respectively. If χ^2_0 and F_0 are less than or equal to the respective χ^2 and F values, the hypothesis that the variances σ^2 of the k populations are equal is not rejected. If χ^2_0 and F_0 are greater than the respective χ^2 and F values, the hypothesis is rejected.

Examples of the use of Bartiett's test and Box's test for the CFCTP core programme data are given in table 4. The logarithms of the fatigue lives were used for all calculations since both tests assume normality.

4. ANALYSIS OF VARIANCE

Analysis of variance is a statistical technique for comparing three or more sets of experimental data to determine the effect of various factors (experimental variables) on some characteristic of a product or specimen. The analysis is based on separating the total variation present in the data sets into parts, each of which measures variability attributable to a specific source.

Three-way analysis of variance was used for the CFCIP core programme. In a three-way analysis of variance, which evaluates the simultaneous elicits of three factors, the sources of variation are variations due to each main lactor, interacting factors, and residual (experimental) error. The parts of the variance are analysed thence the name; analysis of variance) for significant differences between the data nots by comparing their means. Thus the hypothesis tisted is that the means of k populations from which k samples are obtained are equal.

The procedure for testing this hypothesis is illustrated schematically in table 5 for a fairly simple three factor experiment. The three main factors are assigned to columns (c), rows (r) and groups (g). In the computations the sums of the squares and mean squares are determined for each main factor, the two-way interactions, the three-way interaction and the residual error term. The ratio of each mean square to the residual mean square provides values of the statistic F_o, which is then compared with appropriate F values from the F distribution table. When F_o is greater than F the influence of a factor or combination of tactors on the data is considered significant. When F_o is less than or equal to F any differences in means are indicated to be due to chance or experiment. For only.

Certain assumptions are necessary when analysis of variance is used. These are:

- (1) The data represent random samples from normally distributed populations.
- (?) The variances of these populations are equal.

Failure to meet these assumptions may affect the validity of the analysis. However, the F distribution is very robust, i.e. "forgiving", with respect to violation of the assumptions, so that moderate violations should not affect the outcome of the analysis. For the CFCTP core programme the data were found to be log-normal or to approximate log-normal distributions, and there were only a few slight-to-moderate violations of the criteria for homogeneity of variances (see sections 3.2.1 and 3.2.2 of Part II of this report). These results were considered sufficient for continuing the statistical treatment of the fatigue life data provided that the logarithms of the fatigue lives were used.

Table 6 gives a schematic of the three-way analysis of variance for the CFCTP core programme. The input data are much more extensive than the schematic three factor experiment plan in table 5. This is why the analysis was done using a computer program called "ANOVA", which is part of the well-known Statistical Package for the Social Sciences (reference 5).

5. "FINE TUNING" WITH THE LEAST SIGNIFICANT DIFFERENCE TEST

as shown in figure 1, significant effects indicated by analysis of variance were investigated in more detail ("fine tuning") using the least significant difference test (references 6.7). From table 6 the significant effects indicated by analysis of variance were

- laboratory
- stress
- environment
- stress: environment.

However, it was not necessary to analyse the effect of stress level in more detail. Since there were only two stress levels it is obvious that the significant difference is between them.

The least significant difference test locates the source or sources of the significant difference in the data. This is done by comparing all possible combinations of two means in the k samples in order to determine which of the $\frac{1}{2}$ k (k-1) comparisons are significant and which are not. The test is based on the statistic t, which can be expressed as

$$\varepsilon = \frac{\bar{x}_1 - \bar{x}_j}{\sqrt{MS_{residual} (\frac{1}{n_1} + \frac{1}{n_j})}}$$

where \bar{x}_i and \bar{x}_j are the means of two samples of sizes n_i and n_j respectively, and $MS_{residual}$ is the residual mean square obtained from analysis of variance (see table 5). The procedure for the least significant difference test is given in table 7 for the usual case of equal sample sizes and in modified form for anequal sample sizes. Tabulated values of the t distribution for various significance levels and degrees of freedom are included in most standard texts on statistics. The criteria for indication of a significant difference between two means are

$$|\bar{x}_i - \bar{x}_j| \rightarrow : sn_\alpha$$

or

Examples of the use of the least significant difference test to locate the source or sources of a significant effect indicated by analysis of variance are given in table 8. Note that omission of data for reassembled specimens resulted not only in unequal sample sizes, but also changed the values of MS residual and residual obtained from analysis of variance. In other words, one cannot simply omit data in the "fine tuning" stage. A complete reanalysis of variance has to be done as well.

6. "FINE TUNING" WITH DUNCAN'S NEW MULTIPLE RANGE TEST

As shown in figure 1, Duncan's new multiple range test (references 8,9) was used to investigate in more detail the experimental variables, or their interactions, that were not found to be significant by analysis of variance. From table 6 these are

- · laboratory: stress
- · laboratory: environment
- laboratory: stress: environment.

However, it should be noted that Duncan's test can be used whether or not the analysis of variance indicates a significant effect. Like the least significant difference test, Duncan's new multiple range test locates the source or sources of the significant difference in the data by comparing all possible combinations of two means in the k samples in order to determine which of the $\frac{1}{2}$ k (k-1) comparisons are significant and which are not. The test is based on the range of the k means, i.e. the difference between the smallest and largest means of the samples involved in a comparison. The difference between any two ranked means is significant if it exceeds a shortest significant range (SSR).

The procedure for Duncan's test is best illustrated using actual examples from the CFCTP core programme. Table 9 gives an example for the usual case of equal sample sizes. As shown in the table, the procedure consists of the following steps:

- (i) Kank the means and calculate the standard error of the mean s_{χ}^{-} from the residual mean square MS residual (obtained from analysis of variance) and the sample Size n.
- (2) Choose a significance level a and determine the significant studentized ranges z for appropriate values of p, the number of means involved in a comparison, and presidual Tables of z values are available e.g. in references (8,9).
- (3) Calculate the shortest significant ranges SSR from the products of $s_{\tilde{y}}$ and the appropriate z values.
- (4) Test the differences between means in the following order: largest minus the smallest, largest minus the second smallest, and so on, ending with the second smallest minus the smallest. With one exception each difference is declared significant if it exceeds the corresponding SSR, otherwise it is declared insignificant. The exception is that no difference between two means can be declared significant if they are both contained in a sub-set of means which has a non-significant range. Thus as soon as a non-significant difference between two means is found, the remaining differences between these means and all the intervening ones are insignificant and need not be tested against the SSR. However, this testing is shown for completeness in table 9.

Table 19 gives an example of Duncan's test for unequal sample sizes. The procedure is much the same as for equal sample sizes except that $s = \sqrt{MS}$ residual is used instead of s_{x} and the difference between two means \overline{x}_{1} and \overline{x}_{2} is multiplied by $\sqrt{\frac{Z_{1}}{n_{1}^{+}}}$, where n_{1} and n_{2} are the sample sizes for each mean. As was mentioned in section 5, it should be noted that omission of data for reassembled specimens resulted not only in unequal sample sizes, but also changed the values of $\frac{MS}{residual}$ and $\frac{NS}{residual}$ obtained from analysis of variance.

7. LIPSON AND SHETH METHOD FOR ADEQUATE SAMPLE SIZE

Scatter in the CFCTP core programme fatigue life data was used to check for adequacy of sample size (four specimens per test condition per participant). The method used is due to Lipson and Sheth (reference 10) and involves selecting an acceptable error level, usually 5.7 and 10.7, and finding the required sample size for a particular confidence level. The sample size check has two purposes:

- To find the combination of error and confidence levels for which the actual sample size was sufficient.
- (2) To give an indication of differences in data scatter between participants and fatigue test conditions.

Table II illustrates the Lipson and Sheth method by using an actual example from the CFCTP core programme. The table is largely self-explanatory. On the basis of a log normal distribution for the population the percent coefficient of variation $\frac{8}{3}$ is calculated. An error level is selected and the percent error divided by the percent coefficient of variation is used to graphically determine the nearest integer sample size for a given confidence level. The curves in the graph are derived from the t distribution according to the following expression:

$$\frac{z \text{ EKROR}}{z \text{ COEFFICIENT OF VARIATION}} = \pm \frac{t_{0.5\alpha;0}}{\sqrt{n}}$$

where α is the significance level and n and ω are the appropriate sample sizes and degrees of freedom (n-n-1).

To indicate differences in data scatter the required sample sizes for a given combination of error and confidence levels were determined for the complete set of CFCTP cure programme fatigue life data, as shown in table 12. The shaded regions denote exceedance of the actual sample size, and a larger required sample size reflects greater scatter in the data.

8. χ^2 TEST OF INDEPENDENCE, YATES' CORRECTED χ^2 TEST AND FISHER'S EXACT TEST

As mentioned in the introduction to this Appendix and shown in figure 1, the χ^2 test of independence, Yates' corrected χ^2 test or Fisher's exact test were used, as appropriate, to analyse the primary ratigue origin data with respect to the influence of stress level and environment. In addition, these tests were used (as appropriate) to check whether there were significant correlations between fatigue lives and locations of primary fatigue origins for each of the eight combinations of tatigue stress levels and testing schedules.

8.1 x2 Test of Independence

The χ^2 test of independence (reference !) involves testing the hypothesis that two variables or characteristics of a sample are independent of each other. Data for this test are arranged in a table which shows one characteristic and its r categories down the left side of the table, and the other characteristic and its c categories across the top. This table is known as a contingency table. It has r rows and c columns that form cells in the body of the table. Each cell contains the number of sample members observed to have each particular combination of the characteristics being examined.

8.1.1 Analysis of primary fatigue origin data

Construction of a contingency table and the procedure for the χ^2 test to analyse the primary fatigue origin data with respect to stress level and environment will be illustrated using table 13, which gives an example from the CFCTP core programme. The test compares the observed frequencies of occurrence f in each cell with the theoretically expected frequency f if the hypothesis of independence is true. The expected frequency for a cell is obtained from the product of the total of the row and total of the column in which the cell appears, divided by the total number of observations. The sum of the expected frequencies should equal the total number of observations.

Application of the χ^2 test is reliable only if every expected frequency is at least five. If this requirement is not satisfied the results of two or more categories must be combined to raise the expected frequency to the necessary level. The initial contingency table in table 13 does not contain enough B/N, C/O and D/P primary fatigue origins to give expected frequencies of five in each cell. Therefore the B/N, C/O and D/P categories were combined with the E/Q category in a modified contingency table.

The procedure is then as follows:

- (1) Compute the deviation $\chi_0^2 = \tilde{x} \frac{(f_0 f_t)^2}{f_t}$.
- (2) Choose a significance level a (e.g. 5 %, 1 %).
- (3) Determine the solution c of the equation $P(\chi^2 \le c) = 1-\alpha$ from the appropriate value of χ^2 in the table of the χ^2 distribution (included in most standard texts on statistics). The appropriate value of χ^2 is listed under the chosen value of α and for (r-1)(c-1) degrees of freedom.
- (4) If $\chi_0^2 \le c$, do not reject the hypothesis. If $\chi_0^2 > c$, reject the hypothesis.

For the example in table 13 the hypothesis is rejected, i.e. it is concluded that the locations of primary fatigue origins depend on the environments (fatigue testing schedules).

8.2 Yates' Corrected X2 Test

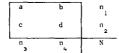
A slight modification of the χ^2 test is usually recommended for contingency tables with r=2 and c=2 (one degree of freedom). This modification is known as Yates' correction for continuity (reference ii). It is used to correct for the fact that the χ^2 distribution is continuous whereas the observed frequencies are discrete.

The only change is that the formula $\chi_0^2 = \Sigma (f_0 - f_t)^2/f_t$ is modified to

$$x_c^2 = \Sigma \frac{(|f_o - f_t| - 0.5)^2}{f_t}$$

where $\begin{bmatrix} f_0 - f_t \end{bmatrix}$ is the absolute value of $(f_0 - f_t)$. χ^2_c is always smaller then χ^2_o . This means that the hypothesis of independence is more readily accepted, i.e. Yates' corrected χ^2 test is more conservative.

8.2.1 Correlation of fatigue lives and primary fatigue origins


Table 14 gives an example of using Yates' corrected x^2 test to check an association between fatigue lives and primary fatigue origins. The fatigue life data were arranged in ascending order together with the corresponding primary fatigue origins. The median value of fatigue life was used to separate the data into two columns for the contingency table. The median value was used instead of the mean because the median is less affected by data scatter.

The hypothesis to be tested is that the locations of primary fatigue origins do not depend on fatigue life. The initial contingency table in table 14 does not contain enough F/R and G/S primary fatigue origins to give expected frequencies of five in each cell. Therefore the F/R and G/S categories were combined in a modified contingency table.

The results in table 14 indicate that the hypothesis should be accepted, i.e. it is concluded that for this fatigue test condition (fatigue in air at $S_{max} = 210$ MPa) the locations of primary fatigue origins do not depend on the latigue lives.

8.3 Fisher's Exact Test

Fisher's exact test (reference 12) is used for contingency tables with r=2 and c=2 when the total sample size is ≤ 20 or when the sample size is between 20 and 40 and the smallest expected frequency is less than five. This is because Yates' corrected χ^2 test is inaccurate for small numbers. In Fisher's test a probability is calculated from the values in the contingency table and is compared to the actual value of a chosen significance level α . For a 2 X 2 contingency table containing four values a, b, c, d; marginal totals n, n, n, n; and a grand total N, thus:

The probability P is given by

$$P = \frac{{{n \choose 1} \ \ x \ \ {n \choose 2} \ \ x \ \ {n \choose 4} \ \ X \ \ {n \choose 4}}}{{{N!} \ \ X \ \ {a!} \ \ X \ \ {b!} \ \ X \ \ {c!} \ \ X \ \ {d!}}}$$

An illustration of Fisher's exact test is given in table 15. The initial contingency table is modified by combining the E/Q and C/O categories and the F/R and G/S categories. The probability F is calculated from the modified contingency table.

The hypothesis to be tested is that the locations of primary fatigue origins do not depend on fatigue life. The hypothesis is accepted if the calculated probability is greater than α . The result in table 15 indicates that the hypothesis should be rejected, i.e. it is concluded that for this fatigue test condition (fatigue in salt spray at $S_{max} = 144$ MPa) the locations of primary fatigue origins depend on the fatigue lives.

9. REFERENCES

- G.M. Smith, A Simplified Guide to Statistics, Twelfth Printing, Rinehart and Company, Inc., pp. 86-96 (1958): New York.
- E. Kreyszig, Advanced Engineering Mathematics, Third Edition, John Wiley and Sons, Inc., pp. 779-781 (1972): New York.
- C. Lipson and N.J. Sheth, Statistical Design and Analysis of Engineering Experiments, McGraw-Hill Book Company, Inc., p. 458 (1973): New York.
- 4. J.C.R. Li, Statistical Inference I, Edwards Brothers, Inc., pp. 552-556 (1964): Ann Arbor, Michigan.
- N.H. Nie, C.H. Huil, J.G. Jenkins, K. Steinbrenner and D.H. Bent, Statistical Package for the Social Sciences, Second Edition, Version 8.0, McGraw-Hill Book Company, Inc. (1975): New York.
- 6. J.C.R. Li, Statistical Inference I, Edwards Brothers, Inc., pp. 265-270 (1964): Ann Arbor Michigan.
- R.G.D. Steel and J.H. Torrie, Principles and Procedures of Statistics, McGraw-Hill Beck Company, Inc., pp. 106-107 (1960): New York.
- 8. J.C.R. Li, Statistical Inference 1, Edwards Brothers, Inc., pp. 270-273 (1964): Ann Arbor Michigan.
- R.G.D. Steel and J.H. Torrie, Principles and Procedures of Statistics, McGraw-Hill Book Company, Inc., pp. 107-109 (1960): New York.
- C. Lipson and N.J. Sheth, Statistical Design and Analysis of Engineering Experiments, McGraw-Hill Book Company, Inc., pp. 265-270 (1973): New York.
- W.J. Dixon and F.J. Massey, Jr., Introduction to Statistical Analysis, Fourth Edition, McGraw-Hill Book Company, Inc., p. 278 (1983): New York.
- 12. R. Langley, Practical Statistics, Dover Publications, Inc., pp. 292-313 (1971): New York.

TABLE 1: EXAMPLE OF GRAPHICAL PROCEDURE FOR TEST OF NORMALITY

	108 FLUB		••	فللمعو		-		<i>F</i>
	CUMULATIVE PROBABILITY OF FAILURE (%) 4 00 10 10 10 10 10 10 10 10 10 10 10 10			فعر	•	<u> </u>		<u>;</u> /
	99 9 99 8 99 5	ARITHMETIC N	ORMAL		-	LOGA	RITHMIC NORMA	
	38,512	24 01	65,121	48.76	90,392	73.51	154,293	98.26
MEDIAN RANKS	31,200 31,762 33,693 36,553 37,012	11 63 14 10 16.58 19 05 21.53	46,550 48,291 56,478 56,574 60,019	36.38 38.86 41.33 43.81 46.28	76,442 79,830 85,956 85,655 88,720	61.13 63.61 66.08 68.56 71.03	121,927 125,357 139,690 143,841 144,344	85.89 88.36 90.84 93.31 95.79
FATIGUE LIFE DATA ARRANGED IN ASCENDING ORDER AND ASSIGNED	15,160 22,608 28,139 31,116	1.73 4.20 6.68 9.15	39.572 41.320 41.557 45.500	26.48 28.96 31.43 33.91	67,798 67,940 71,021 73,840	51.23 53.71 56.18 58.66	93,692 104,817 106,209 114,147	75,99 78,46 80 94 83 41

TABLE 2: EXAMPLE OF x2 TEST FOR GOODNESS OF FIT TO CHECK FOR NORMALITY

X* TEST PROCEDURE FOR THE CECTP CORE PROGRAMME

Assume f(x) is the normal distribution. Divide f(x) into k=4 intervals such that each interval includes 1/4 of the population. This is a convenient division based on the sample size n=40 for each of the eight combinations of fatigue stress levels and testing schedules. This division also means that the theoretical frequency f_{χ} is 1/4 of the sample, i.e. $f_{\chi}=10$.

ARRANGE THE SAMPLE IN ASCENDING ORDER OF FATIGUE LIVES AND CALCULATE

THESE ARE THE MAXIMUM LIKELIHOOD ESTIMATES FOR THE SAME (UNKNOWN) PARAMETERS FOR F(x), i E, r = 2

THE STANDARD DEVIATION s = $\sqrt{\frac{i-1}{n+1}}$

- THE STANDARDIZED NORMAL VARIATE $z=\frac{(x_{\hat{1}}\cdot\hat{x})}{s}$ FOR EACH DATUM

COMPARE THE VALUES OF z FOR THE SAMPLE WITH THE z VALUES BOUNDING THE K INTERVALS OF F(x). THIS ENABLES DIVIDING THE SAMPLE INTO THE K INTERVAL. AND CIVES THE NUMBER OF SAMPLE VALUES f_o IN EACH INTERVAL.

CALCULATE $y_0^2 = \Sigma \frac{(f_0 \cdot f_1)^2}{f_0}$ AND COMPARE WITH $c = v^2$ LISTED UNDER a = 5 % AND FOR $K \cdot r \cdot 1 = 4 \cdot 2 \cdot 1 = 1$ DECREE OF FREEDOM

	TEST FOR NORMA	L DISTRIBUTION		7	TEST FOR LOG-NOR	MAL DISTRIBUTION	
FATIGUE LIFE × (CYCLES)	$z = \frac{(x \cdot \dot{x})}{s}$	FATIGUE LIFE x (CYCLES)	z = (x·x)	FATIGUE LIFE × (LOG CYCLES)	$z = \frac{(x \cdot \hat{x})}{s}$	FATIGUE LIFE x (LOG CYCLES)	$z = \frac{(x - \bar{x})}{s}$
4, 933 5, 957 6, 377 6, 442 6, 830 7, 163 7, 460 7, 460 7, 561 7, 586 7, 935 9, 060 9, 100 9, 570 10, 137 10, 298 10, 298 11, 026 11, 105 11, 360	- 1.38 - 1.19 - 1.11 - 1.10 - 1.02 - 0.96 - 0.93 - 0.91 - 0.88 - 0.82 - 0.61 - 0.51 - 0.41 - 0.38 - 0.28 - 0.22 - 0.22 - 0.18	11,370 11,386 11,524 11,737 11,940 12,047 12,626 12,848 13,520 13,626 14,670 17,549 17,893 18,577 18,577 19,523 20,470 22,546	- 0.18 - 0.17 - 0.15 - 0.15 - 0.11 - 0.07 - 0.05 - 0.06 - 0.06 - 0.23 - 0.23 - 0.23 - 0.24 - 0.98 - 1.04 - 1.17 - 1.24 - 1.35 - 1.52 - 1.91 - 2.31 - 2.71	3.693 3.775 3.804 3.804 3.804 3.834 3.855 3.864 1.879 2.880 3.997 3.997 3.997 3.997 3.981 4.006 4.013 4.042 4.042 4.042	- 2.00 - 1.54 - 1.38 - 1.36 - 1.22 - 1.10 - 1.05 - 1.00 - 0.97 - 0.95 - 0.93 - 0.53 - 0.53 - 0.52 - 0.40 - 0.26 - 0.22 - 0.04 - 0.26 - 0.20 - 0.04	4.056 4.056 4.056 4.056 4.070 4.077 4.081 4.101 4.109 4.131 4.134 4.166 4.244 4.253 4.269 4.278 4.291 4.311 4.353 4.391 4.393	0 02 0 02 0 05 0 09 0 13 0 16 0 27 0 31 0 43 0 5 0 63 1 10 1 20 1 25 1 32 1 43 1 67 1 88 2 08
× - 12.	308	s = 5	353	× - 40)53	s = 0	180
VALUES OF Z BOUNDING THE K=4 INTERVALS OF F(x)	THEORETICAL FREQUENCY f	OBSERVED FREQUENCY f	(f _o -f _t)*	VALUES OF Z BOUNDING THE K-4 INTERVALS OF F(x)	THEORETICAL FREQUENCY i	OBSERVED FREQUENCY f	(f _o -f _t)*
0 . 68 - 0 . 68	10 10 10 10	11 15 5 9	0.100 2.500 2.500 0.100	0.68 -0.68 0.00 0.00 0.68 0.68	10 10 10 10	11 8 12 9	0.100 0.400 0.400 0.100
TOTALS	40	40	χ ² = 5.200	TOTALS	40	40	x2 = 1 000

NUMBER	SAMPLE SIZE	SUM OF SQUARES SS = $\Sigma(x_1 - \hat{x})^2$	DEGREES OF FREEDOM	<u>1</u>	SAMPLE VARIANCE	log s	.log s²
1	n _l	\$5 ₁	1	1 1	5 }	log si	r_1 log s_1^2
2	n ₂	ss ₂	7,	1 v ₂	s ž	log s2	$\frac{1}{2} \log s_2^2$
k	n _k	ss _k	k	$\frac{1}{v_{\mathbf{k}}}$	s ² k	log s²k	· k log sk
sun	-	-		Σ 1	-	-	Σ(vlog s²)
POOLED	-	ΣSS	Σ 2	Σν	$s_p^2 = \frac{\Sigma SS}{\Sigma V}$	lng c2	(Σ.)log s² p
			_	$S_1 - \Sigma \frac{1}{v} - \frac{1}{\Sigma v}$		l - 1	$D_2 = (\Sigma v) \log s_p^2 = \Sigma(v) \log s_p^2$
DIFFERENCE		K ~ 2.302		$\frac{1}{L} = \frac{2\sqrt{-Ev}}{\sqrt{3}/k}$	-1)		p ₁ - k - 1
DIFFERENCE					-1)		
DIFFERENCE	BA				-1)	<u></u>	
		K ~ 2.302	6 D ₂		(k+1)/L ²	<u></u>	v ₁ − k − 1
\2 -	K WITH V	K - 2.302	6 0 ₂			ВОХ	- k − 1 TEST
√2 = - CHOOSI	$\frac{K}{1+L}$ WITH $\sqrt{\frac{K}{1+L}}$ WITH $\sqrt{\frac{K}{1+L}}$	K ~ 2.302	5 0 ₂ EED/M. G 5 1) DER		$x_2 = (k+1)/L^2$ $0 = \frac{x_2}{1 - L + C}$	ROX	- k − 1 TEST
√2 = - CHOOSI	$\frac{K}{1+L}$ WITH $\sqrt{\frac{K}{1+L}}$ WITH $\sqrt{\frac{K}{1+L}}$	K ~ 2.302	5 0 ₂ EED/M. G 5 1) DER		$\begin{aligned} &v_2 = (k+1)/L^2 \\ &D = \frac{v_2}{1 - L + (2)} \\ &F_0 = \frac{K/v_1}{67/2} \text{ with} \end{aligned}$	ROX	r - k - 1 TEST

TABLE 3: BARTLETT AND BOX TEST PROCEDURES FOR TESTING THE HOMOGENEITY OF VARIANCES

TABLE 4: EXAMPLES OF BARTLETT'S TEST AND BOX'S TEST FOR HOMOGENEITY OF VARIANCES

SAMPLE NUMBER	SAMPLE SIZ	SS - S(x i x)?	DEGREES OF FREEDOM	1,	SAMPLE VARIANCE		 10g s²
fatigue in air ! fatigue in salt spray	40 40	1.292 1.269	39 39	0.026 0.026	0.033 0.033	-1.480 -1.487	- 57,706 - 58.012
k - 2		1		1	ļ		
SUM	-	-	-	0.052	-	-	- 115 '18
POOLED		2.561	78	0.013	0.033	-1.484	- 115.727
DIFFERENCE	1	-	-	D ₁ - 0.039	-	-	D ₂ = -0.00

 $x_0^2 = \frac{K}{1+L} = \sim 0.021$ WITH v_1 = 1 DEGREE OF FREEDOM.

FOR α = 5 % AND 1 DEGREE OF FREEDOM χ^2 = 3 841. SINCE = 0.021 < 3.841 THE POPULATION VARIANCES ARE EQUAL

		BOX TEST TO CHE	CK FOR INTER-LABORAT	TORY DIFFER	ENCES		
COMPARISON	OF POPULATION	VARIANCES FOR	PRE-EXPOSURE + FATIS	GUE IN SALT	SPRAY AT Smax .	144 MP	.1
SAMPLE NUMBER		SUM OF SQUARES SS = $\Sigma(x_{\hat{1}} \cdot \hat{x})^2$	DEGREES OF FREEDOM	1,	SAMPLE VARIANCE $s^2 = \frac{SS}{v}$	log se	∵log s²
1 NADC 2 SASKATCHEWAN 3 VOUCHT 4 AFWAL 5 NLR 6 DTVLR 7 NDRE 8 RAE	4 4 4 4 4	0.091 0.250 0.085 0.060 0.761 0.157 0.333 0.155	3 3 3 3 3 3	0.333 0.333 0.333 0.333 0.333 0.333 0.333	0.030 0.083 0.028 9.020 0.087 0.052 0.111	-1.517 -1.079 -1.548 -1.697 -1.061 -1.281 -0.955 -1.287	- 3.237 - 4.644 - 5.091 - 3.182 - 3.844 - 2.864
SIFFRL 10 PISA k - 10	4	0.302 0.017	3 3	0.333	0 101 0 006	-0.998 -2.241	- 2 993 - 6 723
POOLED	-	1.711	30	1,330 0,033	0.057	-1.244	- 40 989 - 37.316
DIFFERENCE	-	-	-	D 3.297	_	-	D ₂ = 3.62

$$K = 2.3026 D_2 = 8.457$$
 $L = \frac{D_1}{3(k+1)} = 0.122$ $v_1 = k = 1 = 9$ $v_2 = \frac{k+1}{L^2} = 73$

$$K = 2 3026 D_2 = 8.457 L = \frac{D_1}{3(k-1)} = 0.122 v_1 = k - 1 = 9 v_2 = \frac{k+1}{L^2} = 739$$

$$D = \frac{v_2}{1 - L + (2/v_2)} = K = 831 F_0 = \frac{K/v_1}{D/v_2} = 0.836 \text{ with 9 AND 739 DEGREES OF FREEDOM}$$

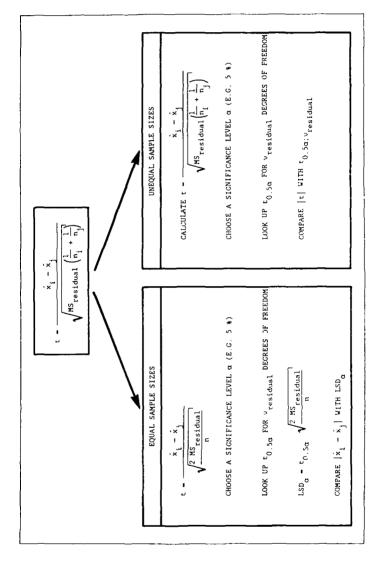

FOR $\alpha=5$ % and 9 and 739 degrees of freedom F=1 880. Since 0.836 <1 880 the population variances are equal.

TABLE 5. PROCEDURE FOR THREE-WAY ANALYSIS OF VARIANCE

				THRE	E FACTOR EXPERIMENT PLAN			
				1	GROUPS (g) c1	 i		
						- ^c 2		
				1 1.	*2	*10		
					κ ₂ × ₃ ×.	*11		
				ROUS (E)		*17		
					8 ₁ ×,	*11 *14		
				1	r ₂			
					6, ×8	*15 *16		
					x - each datum			
					1			
-					Y			
SOURCE OF	<u> </u>			COMPUTATIONS	S FOR THREE FAIT R ANALY	SIN OF VARIANCE		
VARIATION				SUM OF SQUAR	RES 55		DESPES F FEELOW	MS - SS
	1 7	74	x; -xg + 1xq - +	x16,'4x1 .x16,'4			-+	55
among relumins						_		
among tows	ss - 175	- <u>F</u>	41 -4x44x9 -4x1224	* (X ₅ *X ₈ *X ₁₃ *)	16 18 1 18 1 16 18 18 18 18 18 18 18 18 18 18 18 18 18		. + 4 - 1	11
							· · · · · · · · · · · · · · · · ·	·
among groups	ss _K - 2 7	- T2	17-4 44 5 48 48 5 48	2 X 2 X 2	1+x11+x+x3+x11+x1++	_; ;, ;, ;		, E
column row							·· — -	
interaction	55 _{c1}	N - 55	- SS _r , where I T _c r		**12'* * ** ***	· · · · · · · · · · · · · · · · · · ·		
column group								· \
interaction	rg n	N	· · · · · · · · · · · · · · · · · · ·			**************************************	-	
raw group	54 2.7;	A - T' - 95	- SK where I Tag	· (*,**,** ₄ ** ₁₀ (* *	(x3*x4*x11*x12)* * (x3*	Armania de Calendaria de Calen	1,2 - 11 - 1	11.
	 , ;							- FA
enlumn row group interaction	85. IK	TE - 1/ - 5:	s - ss, - ss, - ss,	r SS _{ER} - SS _{ER} who	renite e ritari, re e e	spring to the time.		1:-1
	1				* +x5*x6+1	etilestic constant of estimate	. *	118
	1				·x[4·x[4·x]4·			
total	ss _{rotal} -1x	·×	.x}.x{.x!.x!.x6.x6.x	ต์**จ์**โอ**โา**(อ**โา	×i ×i ×i		- N	2
	1			·				100
rasidual							The state of the s	
residual				r · SS _{eg} - SS _{eg} - SS			The section of the section of	in the control of the
residual			s ^c - 22 ^t - 22 ^g - 22 ^c		erg.			Ann fore:
residuat				т · SS _{eg} - SS _{eg} - SS	T _c - total for i _q - total for	each column	The section of the section of	Ann fore:
residual			x = each datus	т · SS _{eg} - SS _{eg} - SS	T = rotal for $i_{\rm p}$ = total for $I_{\rm p}$ = rotal to	each column each row each group	The section of the section of	Ann fore:
residual			x = each datus	т · SS _{eg} - SS _{eg} - SS	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	each column	The section of the section of	Ann fore:
residual			x = each datum n = mumber of repl S = total number of I = total for ell c = number of colu r = number of rows	r SS _{eg} - S	T _C = rotal for i _T = total for T _S = total for T _{1,1} = total for T _{1,2} = total for T _{CS} = total for T _{CS} = total for	each rotum each row each prosp each column row continuation each column group conditiation each row-group conditiation	7, 127, 127, 127, 127, 127, 127, 127, 12	Ann fore:
residual			x = each datum n = number of rept N = total number of T = total for all c = number of column	r SS _{eg} - S	T _c = rotal for i _T = total for T _g = total for T _{ij} = total for T _{ig} = total for T _{ig} = total for T _{ig} = total for	each column each row each group each column row coefficients each column group coefficients	7, 127, 127, 127, 127, 127, 127, 127, 12	and the
residual			x = each datum n = mumber of repl S = total number of I = total for ell c = number of colu r = number of rows	r SS _{eg} - S	T _C = rotal for i _T = total for T _S = total for T _{1,1} = total for T _{1,2} = total for T _{CS} = total for T _{CS} = total for	each rotum each row each prosp each column row continuation each column group conditiation each row-group conditiation	7, 127, 127, 127, 127, 127, 127, 127, 12	and the
residual			x = each datum n = mumber of repl S = total number of I = total for ell c = number of colu r = number of rows	, SS _{CE} - S	T _c = rotal for i _t = total for T _c = total for t _t = total for t _t = total for T _{crg} = total for T _{cr}	each column each for each foreign each column for red tration each column from continuition each torriging condition each torriging continuition each torriging continuition for column from from the foreign for each foreign continuition for each column from the foreign continuition for each column from the foreign continuition for each column from the foreign colum		and the
residual		SS _{total} - \$1	x = each datum n = mumber of repl S = total number of I = total for ell c = number of colu r = number of rows	r SSeg SSeg SS	Te = rotal for Te = total for Te = total for Teg = total for T	each column each for each group each column for continuous each column from positivation each column from positivation each column-tow-group continution each column-tow-group continution in the column-tow-group column-tow-group continution in the	16 1	Ann fore:
residual		SS _{total} - \$1	s - ss -	is actions I data data ann AMALYSIS OF VARIA	T rotal for T r	each column each for each group each column for continuous each column from positivation each column from positivation each column-tow-group continution each column-tow-group continution in the column-tow-group column-tow-group continution in the	16 1	and the
residual		SS _{total} - \$1	s - ss -	r SS _{eg} SS _{eg} SS (cations of dark dark dark dark dark dark dark dark	T rotal for T r	each column each cou- each column row rest tration each column row rest tration each column group combination each column-row-group combination each column-row-group combination for EXPERIMENT WINDERS MARS SUMMER FAILS MAR IN DISTRIBUTE MARS AND AS THE SAME THE SAME SAME THE SAME	16 1	and the
residual		SS _{COTAL} - SI	x = each datum x = each datum c = mabber of repl S = total remailer T = total for all t = number of column r = masher of column r = masher of rows g = masher of groun OF VARIATION	r SSeg SSeg SS	Te = rotal for Tend to the total for Tend to the total for Tend to Ten	each column each row each group each column row coefficients each column group coefficient each column-row-group coefficient row EXPERIMENT NUMBER VALUE EALTH NAME FACTORY TO BE INVESTED TO NAME OF THE TOP TO SECURE THE PARTY TO BE INVESTED TO NAME OF THE TOP THE PARTY TO BE INVESTED THE NAME OF THE TOP THE PARTY TO SECURE THE NAME OF THE PARTY TO SECURE THE NAME OF THE PARTY TO NAME	16 1	the first
residual		SS COTAL - ST	x = each datum x = each datum c = mabber of repl S = total remailer T = total for all t = number of column r = masher of column r = masher of rows g = masher of groun OF VARIATION	r SS _{eg} SS _{eg} SS (cations of dark dark dark dark dark dark dark dark	Te = rotal for Tend to the total for Tend to the total for Tend to Ten	each column each row each group each column row coefficients each column group coefficient each column-row-group coefficient row EXPERIMENT NUMBER VALUE EALTH NAME FACTORY TO BE INVESTED TO NAME OF THE TOP TO SECURE THE PARTY TO BE INVESTED TO NAME OF THE TOP THE PARTY TO BE INVESTED THE NAME OF THE TOP THE PARTY TO SECURE THE NAME OF THE PARTY TO SECURE THE NAME OF THE PARTY TO NAME	16 1	the first
residual		SS coral - SI	x = each detum n = masber of repl N = total master of r = master of colu r = master of colu r = master of colu r = master of grou OF VARIATION among reluans	r SS _{eg} = S	Tr - rotal for ir - total for Tr - total for NS - NS - Total for MS - NS -	which column mach con- mach column row continuation each column row continuation each column group continuation each column-row-group continuation each column-row-group continuation each column-row-group continuation THE EXPERIMENT HINISTEM MASS SUBSECTION THE FACTORS TO BE SINCEPTION THE FOR COLUMN THE F	16 1	the first
real dual		SS coral - SI	x - each datum n - maber of repl S - total maker n r - total for colu r - maker of colu r - maker of colu r - maker of grou OF VARIATION	SS SS SS SS SS SS SS S	Te = rotal for Tend to the total for Tend to the total for Tend to Ten	each column each row each group each column row coefficients each column group coefficient each column-row-group coefficient row EXPERIMENT NUMBER VALUE EALTH NAME FACTORY TO BE INVESTED TO NAME OF THE TOP TO SECURE THE PARTY TO BE INVESTED TO NAME OF THE TOP THE PARTY TO BE INVESTED THE NAME OF THE TOP THE PARTY TO SECURE THE NAME OF THE PARTY TO SECURE THE NAME OF THE PARTY TO NAME	16 1	the first
real dual		SS coral - SI	x - each datus n - maber of repl S - total maker n T - total for colu c - maber of colu c - maber of grou OF VARIATION Among reluans among reluans among group column row	T - 55 _{FR} - 55 _{FR} - 55 II ACTOMS II data data data ANALYSIS OF VARIA MEAN SQUARE MS - 55 MS - 55 MS - 51 MS - 51 MS - 51 MS - 51 MS - 7	To rotal for it could be recommended by the rotal for the	with column each for each group each column for coefficiation each column from coefficiation each column from coefficiation each column from coefficiation each column from group coefficiation each column from group coefficiation each column from group coefficiation for Experiment MINISTER MAN SYMME SALES MAN FAITHER THE SIGNIFICATION FAITHER For instance For in	16 1	the first
residual		SS coral - SI	x - each datum n - maber of repl S - total maker n T - total for 1 C - maker of colu t - maker of colu t - maker of cros g - maker of grou OF VARIATION asong columns asong reups	T - 55 g	Ty rotal for a rotal for a rotal for the rot	which column mach con- mach column row continuation each column row continuation each column group continuation each column-row-group continuation each column-row-group continuation each column-row-group continuation THE EXPERIMENT HINISTEM MASS SUBSECTION THE FACTORS TO BE SINCEPTION THE FOR COLUMN THE F	16 1	the first
residual		SUCRCE SUCRCE MAIN FACTORS	x - each datus n - maber of repl S - total maker n T - total for colu c - maber of colu c - maber of grou OF VARIATION Among reluans among reluans among group column row	1	T rotal for i_r - total for T rotal for T total fo	each rotumn each row each row each column row rest instrum each column group constitution each column group constitution each column-tow-group constitution each column-tow-group constitution each row-group each row-gr	16 1	the first
residual		SOURCE SOURCE HAIN FACTORS INSERTITE	x = each datum o = mober of repl S = total mober of T = total for T = total for T = total for r = mober of grou OF VARIATION Among relumns among relumns among relumns among relumns column rev instruction column rev	T SS g SS	TT - rotal for IT - rotal for TT - rotal for	each rotions each rotions each for each group each column for rest instrume each column from rest instrume each column-from prosp conditiation each rotingroup conditiation each rotingroup conditiation each column-from prosp conditiation each column-from group conditiation each column-from group conditiation each rotingroup conditiation each rotion for EXPERIMENT	16 1	the first
residual		SOURCE SOURCE HAIN FACTORS INSERTITE	x - each datum n - mabber of repl S - total rember of T - total for C - mabber of colu c - mabber of colu c - mabber of grou OF VARIATION Among relumn among relumn column row interesting	SS	Ty rotal for it ro	each rotions each rotions each for each group each column for rest instrume each column from rest instrume each column-from prosp conditiation each rotingroup conditiation each rotingroup conditiation each column-from prosp conditiation each column-from group conditiation each column-from group conditiation each rotingroup conditiation each rotion for EXPERIMENT	16 1	the first
residual		SOURCE SOURCE HAIN FACTORS INSERTITE	x = each datum n = mabber of repl S = total resident c = mabber of column r = mabber of column r = mabber of column r = mabber of grou OF VARIATION among relumn among groups column groups interaction if v group interaction	SS	Ty rotal for it local for Ty rotal for Ty	each column each row each group each column row coefficients each column group coefficient each column-row-group coefficient each column-row-group coefficient NENINCH MARK WARRE FALLS THE FACTORY TO STATE FALLS THE FOUND	16 1	the first
residual		SOURCE SOURCE HAIN FACTORS INSERTITE	x = each datum n = mabber of repl S = cotal rumber of T = total for lead c = number of cotal c = number of cotal c = number of cotal c = number of grou OF VARIATION among criumn among group information column pro information information information information column pro information information information column pro information information column pro information information column pro information information column pro information information information column pro information informatio	SS	T_	each column each row each group each column row coefficients each column group coefficient each column-row-group coefficient each column-row-group coefficient NENIES MAN SYMME FALLS WAS FACTORS TO STATE PARTY PACTORS TO STATE PARTY NAME 1	16 1	Ann fore:
residual		SOURCE SOURCE HAIN FACTORS INSERTITE	x = each datum n = mabber of repl S = cotal rumber of T = total for lead c = number of cotal c = number of cotal c = number of cotal c = number of grou OF VARIATION among criumn among group information column pro information information information information column pro information information information column pro information information column pro information information column pro information information column pro information information information column pro information informatio	SS	T_	each rotions each rotions each for each group each column for rest instrume each column from rest instrume each column-from prosp conditiation each rotingroup conditiation each rotingroup conditiation each column-from prosp conditiation each column-from group conditiation each column-from group conditiation each rotingroup conditiation each rotion for EXPERIMENT	16 1	Ann fore:

TABLE 6: SCHEMATIC OF THREE-WAY ANALYSIS OF VARIANCE FOR THE CFCTP CORE PROGRAMME

					INPUT	DATA							
							FATIGUE	LIFE TO	FAILURE	(TOC CAC	LES)		
			ROUPS				C	OLUMNS (ABORATO	R1ES)			
			RONMENTS	NADC	SASK	VOUGHT	AFVAI.	N1_R	DFVLR	NDRE	PAE	SIFFRL	PISA
		fatigue in	air	4.27 4.40 4.41 4.44	8 4.140 3 4.339	4 085 4 412 4 312 4 384	4.348 4.513 4.531 4.561	4.375 4.395 4.427 4.509	4.389 4.404 4.412 4.536	4,403 4,407 4,284 4,341	4 312 4 418 4 430 4 472	4 582 3 976 4 159 3 919	3 950 4 239 4 959 3 992
		pre-exposur fatigue in		3.69 3.80 4.04 4.21	2 3.902	4 456 4 305 3.922 4 308	4 090 4 196 4 191 4 279	4 298 4 314 4 394 4 517	3.732 4.211 3.797 3.928	4 390 4 271 4 086 3 594	4.161 4.268 3.659 3.943	4 012 4 058 3 903 4 087	3 492 3 524 3 640 4 106
	S _{max} - 210 MPa	facigue in spray	salt	4.07 4.05 1.90 3.87	5 4.269	3 855 3 693 3 804 3 809	4 131 3 873 3 957 4 391	4 034 4 062 4 056 3 775	4 056 4 278 4 353 4 291	4 134 3 954 4 042 4 006	4 011 4 046 4 081 4 428	3 981 3 864 3 834 4 166	4 311 4 109 3 880
ROWS	,	pre-exposur fatigue in spray		4.22 3.39 3.66 3.92	3 729	3 575 3.892 3 9/3 3.979	3 787 3.641 3.995 3.880	3 717 4 001 4 057 4 209	3.752 4.198 3.762 3.839	4 004 4 058 3 851 3 994	4 012 3 801 4 291 4 055	3 914 3 914 3 949 4 059	3 410 3 425 3 454 4 355
(STRESSES)		fatigue in	air	4,68 5 12 5.16 5 30	6 4.776 8 5.039	5.246 5.231 5.264 5.243	5.184 5.388 5.018 5.468	\$ 060 \$ 090 \$ 212 \$ 295	5 016 5 049 5 259 5 038	5 244 4 939 5 047 5 165	5 187 4 984 4 834 5 133	5 063	4 927 5 758 4 836 4 876
	S _{max} = 144 MPa	pre-exposus fatigue in		4.98 5.02 5.04 5.37	6 5 088	5 076 4 934 4.979 5 022	5 089 5 053 5 186 5 111	4 920 5 042 5 272 5 294	4 939 5 129 4 921 4 648	4 856 4 857 4 858 4 891	5 075 5 010 5 589	4 905	5 437 4 345 4 659
	roa X	fatigue in spray	salt	5 15 5 17 5 08 4 86	8 5 017 7 4 663	5 088 4 777 5 281 4 548	4.834 5.348 4.895 5.239	4 743 5 105 4 914 4 670	4 734 5 246 4 847 4 975	4 968 4 917 4 656 5 085	5 194 5 146 4 757 5 437	4 /33 4 847 4 690 4 885	4 519 4 659 4 423 4 545
		pre-etp-sur fatigue in sprav	salt	4 75 5 05 4 93 5 15	7 4 502 8 4 814	4.934 4.753 4.684 4.528	5.145 4.902 4.868 4.832	4 586 4 778 4 493 5 159			5 (198 4 563 4 955 4 831		4 568 4 568
					J								
			STA	TISTICAL PAC	KAGE FOR T	HE SOCIA	L SCIENC	E.S					
				SU	BPROGRAM A	NOVA							
					+								
		ANAI	YSIS OF	VARIANCE RE	SULTS (95	• CONFID	ENCE . I	E a -	5 %)				
	SOURCE OF VARIATIO		SUM OF SQUARES SS	DECREES OF FREEDOM	MEAN SQUAR MS - SS	ES MEA	N SQUARE MS MS resid	RATIO 	F DISTR VALUE F _{0.05}	- (EXPERIM	ICANT EFF MENTAL VA	RIABLES
	laboratory		1.962	9	0 218		5.76		1.			ves	
MAIN FACTORS	stress		59 494	1	59,494		1572 B7	,	3	89		V+5	
	environment		5.113	,	1 704		45 05	5	2	65		yes	
	laboratory:stress		0.557	9	0 062		1 63	7	ì	93		no	
INTERACTING	laboratory:enviro	went	1 427	27	0 053	$\perp \perp$	1 39	7	1	54		no	
FACTORS	stress environmen		0 302	3	0 101		2 66	2	2 .	65		yes	
	laboratory: stress	environment	1.510	27	0.056		1 42	8	,	54		no	

TALLE 7: PROCEDURE FOR THE LEAST SIGNIFICANT DIFFERENCE TEST

TABLE 8: EXAMPLES OF LEAST SIGNIFICANT DIFFERENCE TEST FOR LOCATING THE SOURCE OR SOURCES OF A SIGNIFICANT EFFECT OF STRESS VERSUS ENVIRONMENT (FATIGUE TESTING SCHEDULE) INDICATED BY ANALYSIS OF VARIANCE

STPESS LEVEL	S _{π эκ} + 210 MPa			- 14, MP4	
FATIGUE TESTING SCHEDULE	fatigue in air pre exposure +) takigue in fatigue in air sait spiav	pre exposire : feligue in salt spiav	fatigue io air tar gue	income e distingu um aut — east —	um is similary live spraw tatione in spraw sult site
LOS MEAN FATISUE LIFE	a disa — a si di — a si di	1.44	5.04		
	186 y − 4 y y y √ 1.25		√ 10 de meix	`**	- (u (
-OMPARISONS OF	TATA FROM LIFETHERS, PATTICE TEXTING SOUTH ESC.	COMMENS NOT BETWEEN THE MEAN SALE OF MEAN SALE OF SILE			TOWNS BY THE STANK

Mitter of Free	1.		. •.,		1	` -		
PATION DESTINATION SHEEDS OF	tatikan in avr	interespondent Extraorio son	totaker it kustogka	The especial of the state of th	trave in co		r derre de la cur espre	Table and the second of the se
C + MEAN EATL-9 LIFE								
SAMPLE SIZE	1			•	1			•
					M ves taal =			
OMPART GOS OF	DATA FROM DIFFERE	NT FATE F TEST	N = 3-492-03	-	745 - 11 - 41 a 11 - 819 (- AST - 51	23-11-5-2	7.51	ANT DIFFEREN
farigue in all pro- fatigue in all far- farigue in all pro- pre exposure * far- pre exposure * far- fatigue in sal? s	tigue im Balt Spra E expusure e fatig Tigue in air fatig Tigue im Ali/pre e	s ue in salt strav ue in salt strav sposure a fartys	a in kalt kpr	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2		1 m	# 5 # 5 # 5 # 6 # 5

TABLE 9: EXAMPLE OF DUNCAN'S NEW MULTIPLE RANGE FEST FOR EQUAL SAMPLE SIZES AND FOR ONE OF THE LABORATORY VERSUS ENVIRONMENT (FAILGUE TESTING SCHEDULE) INTERACTIONS

	EDPAR S	AMPLE STAFS COMPT	UNIT DATA SETS ES	ON ALL TEN OF TE	WE PR - PANN	E FABIT DV	AND:
		DAY MEAN E		WED IN OUDER FOR A			
PRANKING FATE FILLIPS AND ALTIGATION A THE STANDARD BROOM FITH MEAN O	ESTA NUMBER	5A.F + =	RAP NERE			HT	
*			- 🗸	- √ ,™ -			
Demokratika Nasa Nasa		S NURL AND UT	TENTOJET BAN EU	2 · 2 : - • AD	46.37.2		
LEVEL A SMILL REPORT OF A SMIL	n wash a ward a control of the second of the						
y galan a dina w	<u></u>	<u></u>				<u> </u>	<u> </u>
				The street years			
ingstein (1995) Million Miller (1995)							
	Harris N. Santa	Factors	528 - 25 ° 2 ° 24 ° 25 ° 2 ° 24 ° 25 ° 2	. • · · · · · · · · · · · · · · · · · ·	Service Servic		
	Control of the Contro			10 (8) (8) (8) (8) (8) (8) (8) (8) (8) (8)			
Control of sections	ASTACLANDS Control of the control o		* * * * * * * * * * * * * * * * * * *	F NA, HI A NA, HA NA, HA NA, HA NA			
	N. N. S.						

	UNEQUAL SAMPLE	SIZES OMISSIO	M OF DATA I		S FROM SIF		, , , , or	10K1 11 9F	TOTA REPORT
	STRESS LEVEL		s -	210 MPa	3 1804 317			- 144 MPa	
RANKING FATICUE LIVES	FATIGUE TESTING	. The right		pre exposure • fatigue in	fatigue in	pre-exposure • fatigue in		fatigue i	- 1 m - 1 k - 1 k
AND CALCULATION OF THE RESIDUAL MEAN A	SCHEDULE LING MEAN FATIGHE LIVES RANKED LIVES RANKED	salt sprav	3 761	# 035	4 159	salt sprav	4 789	1 . 415	wir
	SAMPLE STOR 10			2	4	,	-:-		•
			, .	√ ^{MS} residu:		190 - 1960			
HARRY & STONIFFDANCE SEVEL O AND LOOK UP THE		S (- N I	FILANT STU	DENTIZED PANG	S (z) Pho	g = 5 + AND -	residual	210	
SUNTEFFICIANT STUDENTIZES PARCES FOR APPROPRIATE	80%	BER OF MEANS P	INV-EVÊD Î	IN A SET OF O	MPAR I SOLES			3	• • • • • • • • • • • • • • • • • • • •
PALMES OF P AND DESIGN	al				0.05.p.210		3.19	2.959	1.5
			SHI	ORTEST SIGNIF	CANT RANGE	S SSP			
ALCOLATE THE SHORTEST STONIES CANCEL TANCE .	823	BER OF MEANS I	(SVOLVED I	IN A SET OF C	MPARI ONS		:	1	
				SSR - sz	1 45.p.21h	·	0.32		
						- Internativ			
	pt compartsons	≏F DATA FRUM	DIFFERENT !	FATUUL TESTI	RG SCHEDULE	DIFFEREN BETWEEN S HEAN FATIGUE LIVES X	uor Viellelli "		THEFEN E
	fatigue in air latigue in air latigue in air latigue in air	fatigue in sa	lt spray			0.3	96 11	554 554 577	tie tie tie
) pre exposure .				in salt e	prav 1 1 0 1	n o	3% 473	160 160
TEST THE DIFFERENCES	2 fatigue in sal	spray/pre-ex	posure • f	atigue in sal	spray	9.0		3.5	10-
	pre exposure • pre exposure • pre exposure • pre exposure •	fatigue in a:	r/fatigue	in salt spray		pray 3 6 0 3 0 5	41 5	211 554 527	ves ni- no
	3 fatigue in air 7 fatigue in air			in salt spray		0.5		53.1 527	V+4
	! fatigue in sal	spray/pre-es	eposure + f.	atigue in sal	Spray	1 03	52 1	587	no .

TABLE 10: EXAMPLE OF DUNCAN'S NEW MULTIPLE RANGE TEST FOR UNEQUAL SAMPLE SIZES AND FOR ONE OF THE LABORATORY VERSUS STRESS VERSUS ENVIRONMENT (FATIGUE TESTING SCHEDULE) INTERACTIONS

TABLE 11: THE LIPSON AND SHETH METHOD OF SAMPLE SIZE DETERMINATION

				RESULTS FROM \$1	FFFL FOR FATI	GUE IN AIR		
S _{max} (MPa)	LOG FATIGUE	LOG HEAN FATIGUE LIFE	SAMPLE SIZE	SUM OF SQUARES SS + E ·× ₁ ·x) ²	DEGREES OF FFEEDOM	SAMPLE VARIANCE	STANDARD DEVIATION	• JOEFFICIENT - F VARIATION X
210	3 919 3 976 4 159 4 582	4 159		6.270	3	21 SM	g 10g	
144	4 205 6 841 5 963 5 ;78	4 97*	.	0 10.	} } }	3.738	7 18:	3 797
					+			
FLECT:	ON OF ERROR LET	VELS		4 58808	GERROLLAND D	F VARIATI S S _{max} = 1 Mps		
				7 [8]	1 186	1 37 · 7 6 · 1		
	. CI	≪ERROR OEFFICIENT OF VAR	IATION .			Į	CONFIDENCE	;
	· u		10.		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		CONFIDENCE LEVELS 99'- 90'- 80'-	
PARKICA EQUIRE:	ACION OF THE ACL DESEMBINATIO SEMBLE SIZE MELSATION OF I SIZE W.S. DEVELS	S _{max} 210 S _{max} 220 S _T ERROR	10.		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		93°: 94 - 90 °:	
PARKICA EQUIRE:	ALION OF THE AL DETERMINATION SYMPLE SIZE	S _{max} 210 S _{max} 220 S _T ERROR	10.	j 4			99" 94 - 90 - RU	12 13 14 15
PARRICO EQUIRE INTEN (O NO (C N	ACION OF THE AC DETERMINATION S NAMES TO WE WELSACT OF US TO WE SERVELS	S _{max} 210 S _{max} 220 S _T ERROR	1 0		CIRCO SAMPLE	, , , 9	99 99 99 99 99 99 99 99 99 99 99 99 99	

TABLE 12: REQUIRED SAMPLE SIZES FOR 5 % ERROR AND 90 % CONFIDENCE LEVELS

S max (MPa)	FAIR-DE JESTING SCHEDULE	NATH!	SASK	Volvent	. AFWAI	SLR	DEVIR	N083	PAE.	STEERT.	FISA
	fattigue in aix	- 3	5		,	1	-	,	,	В	1
210	pre exposure + fatague (u air	6	•	,	,	,	5	10	7	3	8
	fatigue fo salt spray	,	1	7	5			1	,		
L	presevousope e fatigue in salt oprav	6		,		,	5	,	5	,	5
	fatigue in air		,	7	4	,	-	1	1		
	pre exposite + fatigne di Air		7				., .		6	, ,	12
	fatigue in salt sprav	,		6	,	•			3		,
L	pre-exponsite a farigue in salt oprav		6		: 1	6	,	,	5	,	

TABLE 13: EXAMPLE OF χ^2 TEST OF INDEPENDENCE FOR ANALYSING THE PRIMARY FATIGUE ORIGIN DATA (ORIGINAL EIGHT CFCTP PARTICIPANTS AND SIFFRL)

				SUS ENVIRONMENT: S BAX		Γ
	ROWS, F (LOCATIONS OF PRIMARY FATIGUE ORIGINS)	fatigue in air	pre-expos • fatigue	oure factors to	pre exposure + fatigue in salt spray	ROW TOTALS. R
	E/Q	0	4	7	9	20
CONSTRUCTION OF INITIAL CONTINGENCY TABLE	F/R	11	11	16	15	53
	G/S	25	14	10	6	55
	B/N	3	5	0	4	4
	c/0	0	1	1	1	3
	D/P	0	1	0	1	2
	COLUMN TOTALS, C	36	34	34	34	142 - N
		T		SUS ENVIRONMENT S		
	ROWS. r	CL		THE TESTING SCHEDUL		
MODIFICATION OF THE CONTINUENCY TABLE	(LOCATIONS OF PRIMARY FATIGUE ORIGINS)	fatigue in air	pre-expos + fatigue sir		pre-exposure * fatigue in salt spray	ROW TOTALS, R
(SEE TEXT)	E/Q, B/N, C/O, OR D/P	9	11	8	15	34
	F/R	11	11	16	15	51
	C/S	25	14	10	6	55
	COLUMN TOTALS, C	35	36	34	34	1+2 = S
	THEORETICAL (EXPECTED) FREQUENCY RC	OBSERVED FREQUENCY	(f ₀ -f _t)*	THEORETICAL *EXPECTS FREQUENCY PG	FREQUENCY	$\frac{(f_a^-f_{\chi})^2}{f_s}$
	f, - RC	ŧ,		f, - RS	f _a	· t
	35 X 36 = 8.620	a	8 620	$\frac{53 \times 34}{142} = 12.640$	16	C 863
	$\frac{34 \times 36}{142} = 8.620$	11	0.657	$\frac{53 \times 36}{142} = 13.412$	15	0 192
CALCULATION OF to	34 X 34 - 8 141	8	0 002	35 X 36 - 11 944	25	8 '66
r LISTED UNDER a = 5 % AND FOR (r-1)(c-1)	$\frac{34 \times 36}{147} = 8 620$	15	4 222	$\frac{55 \times 36}{142} = 13.944$	14	0.001
DEGREES OF FREEDOM	$\frac{53 \times 16}{142} = 13.437$	11	0 سند 2	$\frac{55 \times 35}{142} = 13 \cdot 169$	10	0 763
	$\frac{51 \times 36}{142} = 13.437$	11	0 442	$\frac{75 \times 36}{142} = 13.944$,	+ 526
	E (FOR a = 5 & AND (r-1)(c-1) CONCLUDED WITH 9° & CONF1	T = E f = N = 142	DEGREES OF	$r_0^2 = \sum \frac{(t_0)f}{f_0}$ FREEDOM $r^2 = 12.597 - S$	INCE 29 986 > 12 9	592 IT MAY BE

TABLE 14: EXAMPLE OF YATES' CORRECTED .º TEST FOR CHECKING THE ASSOCIATION OF FATIGUE LIVES AND PRIMARY FATIGUE ORIGINS (ORIGINAL EIGHT CFCTP PARTICIPANTS)

			F	ATIGUE IN AIR	AT S - 210	MPa		
	FATIGUE LIFE (CYCLES)	LOCATIONS OF PRIMARY FATIGUE ORIGINS	FATIGUE LIFE (CYCLES)	LOCATIONS OF	FATIGUE LIFE (CYCLES)	LOCATIONS OF PRIMARY FATIGUE ORIGINS	FATIGUE LIFE	LOCATIONS OF FRIMARY FATIGUE ORIGINS
PRIMARY FATIOUS DATAINS CORRELATED WITH FATIOUS LIVES ARRANGED IN ASCENDING ORDER	9,180 12,165 13,800 13,800 18,705 19,21; 20,444 20,449 21,850	Q R Q R Q E E R Q	21,850 21,940 22,300 23,713 24,235 24,429 24,672 25,310 25,373	R Q Q Q E E E F	25,500 25,500 25,606 25,841 25,841 25,841 25,894 26,111 26,714	0 R F O F O C C	26,8%, 26,950 28,134 29,677 37,317 12,650 34,000 34,400	5 8 9 9 6 5 5
	L		MEDIAN W	ALUE OF FATIC	TE LIFE - 25.4	of motes		
		DWS. r IS OF PRIMARY	T	courses	. FATICUE LI	IVES:		
		E ORIGINS)	BELO	C 25,432 KY B	ES ABOS	7E 25, +37 (Y)	IFS F W	TOTALS B
CONSTRUCTION OF INITIAL	J	./0					- 1	***
CONTINUENCY TABLE	F	F R			•			•
	,	irS		l)				
	COLUMN	TOTALS: 4				18		36 - N
	CL/80AT108	PAS. r IN OF PRIMARY PE ORIGINS:	BEISH	CORPANS 4 (3),437 CYCL		EVE : The STORY	LES RA	T RAND. E
MODIFICATION OF THE POSITIONNEY TABLE	,	(4)		13				
(SEE TEXT)	F/R o	or 6/8		>		11		tr.
	COLUMN	T∩TALS €		18		14		M - 8
	INEGRETICAL FREDE	TENTY	OBSERVED FREQUENCY -	f _n =f _g in Sec		- EXPECTED - TENCY RC S	HESERTED FREQUENTY	
CALCULATION OF 15	20 <u>X 18</u>	10.0	13	0.625	1 = 1 1 1 M	- 8.0	!	1.161
AND COMPARISON WITH ** LISTED UNDER Y = 5 * AND FUR (r) 1	20 X 18 -		,	0.625	J	- 40	i 11	0.141
OF REES OF FREEDOM		Et,	- 1 1 - N -	16,	$(1 - \sum_{i=1}^{n-1} i^{i})$	- 1, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.802	
	FOR Q = 5 N BE CONSTRUCTOR PRIMARY ORIG	WITH 95 * 79	INFIDENCE THAT	1) - 1 DEGETT. I THERE IS SO	OF FREEDOM	4 = 1 RVI SI ASSOCIATION B	N F . RID :: ETWEEN FAIL:	841 01 MW 11755 AND

TABLE 15: EXAMPLE OF FISHER'S EXACT TEST FOR CHECKING THE ASSOCIATION OF FAFIGUE LIVES AND PRIMARY FATIGUE ORIGINS (ORIGINAL EIGHT OFCTP PARTICIPANTS)

	ł .		FATIG	US IN SALT SP	RAY AT S	144 MPa			
	FATIGUE LIFE (CYCLES)	LOGATIONS OF PRIMARY FATIGUE ORIGINS	FATIGUE LIFE (CYCLES)	LOCATIONS OF PRIMARY FATIGUE ORICINS	1	LOCATIONS OF	FATIOUS		PRIMARY PRIMARY FATIGUE ORIGINS
PRIMARY FATIGUE ORIGINS CORRELATED WITH FATICUE	35,331	R	68,170	0	64,3-1	P.	345.6		k
LIVES APPRAMIED IN	45 240	G	70,228	8	164,030	E .	158 /		4
ASCENDING OPDER	46,046	F R	73.974 78.988	P. G	121,584	 	116.1		s
	54,165	R	28,530	9	177, 68		141		
	55,317	F	82.008	F	127 344	E	14		1 2
	57.088	R.	82,561		144,186		222 4	2341	i
	59,900	R	92,929	F'	1+3,43+	6	273 -	++	
			MEDIAN V	ALUE OF FATIO	DE LIFE - 93.	es wates			
		WS. r		COLUMN	S, e 'FATIO"E	11785			
		S OF PRIMARY E ORIGINS)		43,635 cvct.	ES ABO	V£ 44 +3 + 17 -	CE.S	R-72	THIAIN B
	F	79		1		1			4,
O NOTESCIION OF INITIAL CONTINUES Y TABLE	F	/R		11					1.1
	(,	. · S			:				1
		.0		i)		:			:
	COLUMN T	OTALS: C		16		:.			3 - 1
		NS. r IS OF PRIMARY	{	O ILUMN	S. C. FATROF	LIVES /		ł	
		E ORIGINS)		4 93,635 CV:0	ES ABO	VE 41,635 TY	15	#14	THATS F
MODIFICATION OF THE CONTINGENCY TABLE	E/Q c	r 0/0		1		,			-
(SEE TEXT)	F/R c	er G/S		15		8		Ĺ.	.73
	COLUMN T	OTALS, C	1	16	1	1.		}	19 = N

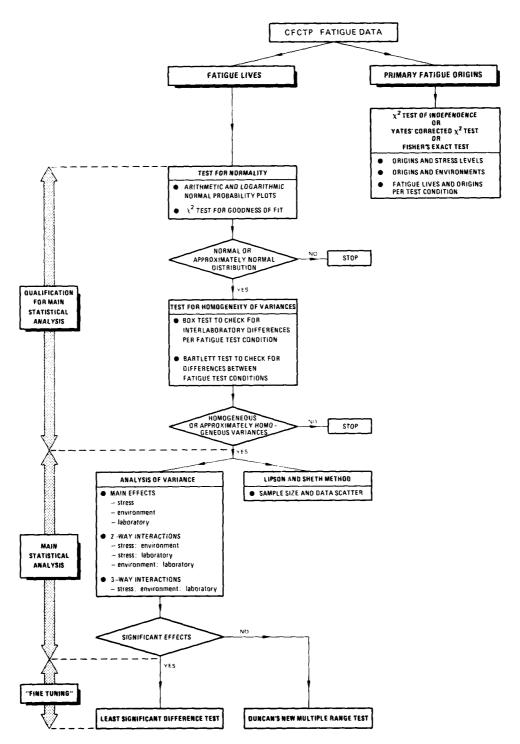


Fig. 1 Survey of statistical methods for analysing the CFCTP fatigue life and primary fatigue origin data

		REPORT DOCU	MENTATION PAGE	
1. Recipient's Re	eference	2. Originator's Reference	3. Further Reference	4. Security Classification of Document
		AGARD-R-713	ISBN 92-835-0495-X	UNCLASSIFIED
5. Originator	North A	ry Group for Aerospace Atlantic Treaty Organiza ncelle, 92200 Neuilly su		t
6. Title		ATIGUE IN AIRCRAF RAMME	T CORROSION TESTING	G (FACT)
7. Presented at				
8. Author(s)/Edi	tor(s)			9. Date
	R.J.H.V	/anhill, J.J. De Luccia and	M.T.Russo	February 1989
10. Author's/Edit	or's Addre	ss		11. Pages
	See Fly	leaf.		224
12. Distribution S	tatement	policies and regulat	istributed in accordance wit ions, which are outlined on ers of all AGARD publication	the
13. Keywords/De	scriptors			
Corrosion f Aluminum a Joints (junc	alloys tions)	İ	Aircraft Fatigue tests Cyclic loads	
Corrosion p	orevention			, .
14. Abstract				

In accordance with the mission of AGARD the Structures and Materials Panel (SMP) has always kept an open eye for the possibilities to sponsor collaborative programmes of research. AGARD is unique in its ability to realise the cooperation of laboratories in up to sixteen nations. In this way AGARD distinguishes itself from other international scientific and technical organisations.

In the 1970s the SMP decided to embark on collaborative research activities in the area of fatigue. One of the first activities was the Corrosion Fatigue Cooperative Testing Programme (CFCTP), the precursor to the Fatigue in Aircraft Corrosion Testing (FACT) programme. Both programmes are described in this report.

~ Failure by fatigue and degradation by corrosion continue to be major considerations in aircraft design. Environmental effects influence both initiation and propagation of fatigue cracks. and dynamic loading may cause more rapid deterioration of corrosion protection systems. Therefore the conjoint action of dynamic loading and environmental attack, i.e. corrosion fatigue, requires special attention.

Many corrosion fatigue tests have been done on aluminium alloys. However, few included critical structural details like joints, under realistic cyclic load histories and in service-like environments. Even fewer used practical corrosion protection systems. These aspects are specifically addressed by the CFCTP and FACT programmes. The results provide a significant contribution to the understanding of aircraft corrosion fatigue and should encourage further investigation in this difficult and challenging area of aerospace technology.

In the 1970s the SMP decided to embark on collaborative research activities in the area of fatigue. One of the first activities was the Corrosion Fatigue Cooperative Testing Programme (CFCTP) the precursor to the Fatigue in Aircraft Corrosion Testing (FACT) programmes are described in this report.

Failure by fatigue and degradation by corrosson continue to be major considerations in aircraft design. Environmental effects influence both initiation and propagation of fatigue cracks, and dynamic loading may cause more rapid deterioration of corrosion protection systems. Therefore the conjoint action of dynamic loading and environmental attack, i.e. corrosion fatigue, requires special attention.

Many corrosion fatigue tests have been done on aluminium alloys. However, few included critical structural details like joints, under realistic cyclic load histories and in service-like environments. Even fewer used practical corrosion protection systems. These aspects are specifically addressed by the CFCTP and FACT programmes. The results provide a significant contribution to the understanding of aircraft corrosion fatigue and should encourage further investigation in this difficult and challenging area of aerospace vechnology.

X-56t0-588-26 NBSI

In the 1970s the SMP decided to embark on collaborative research activities in the area of fatigue. One of the first activities was the Corrosion Fatigue Cooperative Testing Programme (CFCTP), the precursor to the Fatigue in Aircraft Corrosion Testing (FACT) programme. Both programmes are described in this report.

Failure by fatigue and degradation by corrosson continue to be major considerations in aircraft design. Environmental effects influence both initiation and propagation of fatigue cracks, and dynamic leading may cause more rapid deterioration of corrosion protection systems. Therefore the conjoint action of dynamic loading and environmental attack, i.e. corrosion fatigue, requires special attention.

Many corrosion fatigue tests have been done on aluminium alloys. However, few included criticals structural details like joints, under realistic eyele load histories and in service-like environments. Even fewer used practical corrosion protection systems. These aspects are specifically addressed by the CFCTP and FACT programmes. The results provide a significant contribution to the understanding of aircraft corrosion fatigue and should encourage further investigation in this difficult and challenging area of aerospace rechouses.

N-9640-988-26 NHSI

In the 1970s the SMP decided to embark on collaborative research activities in the area of fatigue. One of the first activities was the Corrosion Fatigue Cooperative Testing Programme (FFCTP), the precursor to the Fatigue in Aircraft Corrosion Testing (FACT) programme. Both programmes are described in this report.

Failure by fatigue and degradation by corrosion continue to be major considerations in aircraft design. Environmental effects influence both: 'tiation and propagation of fatigue cracks, and dynamic loading may cause more rapid deterioration of corrosion protection systems. Therefore the conjoint action of dynamic loading and environmental attack, i.e. corrosion fatigue, requires special attention.

Many corrosion fatigue tests have been done on aluminium alloys. However, few included critical structural details like joints, under realistic cyclic load histories and in service-like environments. Even fewer used practical corrosion protection systems. These aspects are specifically addressed by the CFCTP and FACT programmes. The results provide a significant contribution to the understanding of aircraft corrosion fatigue and should encurage further investigation in this difficult and challenging area of aerospace technology.

ISBN 92-835-0495-X

In the 1970s the SMP decided to embark on collaborative research activities in the area of faitigue. One of the first activities was the Corrosion Faitigue Cooperative Testing Programme (CFCTP), the precursor to the Faitigue in Aircraft Corrosion Testing (FACT) programme, Both programmes are described in this report.

Failure by fatigue and degradation by corrosion continue to be major considerations in aircraft design. Environmental effects influence both initiation and propagation of fatigue cracks, and dynamic bading may cause more rapid deterioration of corrosion protection systems. Therefore the conjoint action of dynamic leading and environmental attack, i.e. corrosion fatigue, requires special attention.

Many corrosion fatigue tests have been done on aluminium alloys. However, few included critical structural details like joints, under realistic cyclic load histories and in service-like environments. However used practical corrosion protection systems. These aspects are specifically addressed by the CFCTP and FACT programmes. The results provide a significant contribution to the understanding of aircraft corrosion fatigue and should encountered further investigation in this difficult and challenging area of aerospace recharders.

X-56t0-588-26 N8SI

	AGARD-R-713	}	AGARD-R-713
Addisory Group for Aerospace Research and Development, NATO THE FATIGUE IN AIRCRAFT CORROSION TESTING (FACT) PROGRAMME by R.J.H.Wanhill, J.J.De Luccia and M.T.Russo Published February 1989 224 pages In accordance with the mission of AGARD the Structures and Materials Panel (SMP) has always kept an open eye for the possibilities to sponsor collaborative programmes of research, AGARD is unique in its ability to realise the croperation of laboratories in up to system nations. In this way AGARD distinguishes itself from other international scientific and technical organisations.	Corrosion fatigue Aluminum alloys Joints (junctions) Corrosion prevention Airoria Airoria Cyclic loads	Advisory Group for Aerospace Research and Development, NATO THE FATIGUE IN AIRCRAFT CORROSION TESTING (FACT) PROGRAMME by R.J.H.Wanhill, J.J. De Luccia and M.T.Russo Published February 1989 224 pages In accordance with the mission of AGARD the Structures and Materials Panel (SMP) has always kept an open eye for the possibilities to sponsor collaborative programmes of research. AGARD is unique in its ability to realise the cooperation of laboratories in up to sixteen nations. In this way AGARD distinguishes itself from other international scientific and technical organisations. P.T.O.	Corrosion fatigue Aluminum alloys Joints (junctions) Corrosion prevention Aircraft Aircraft Cyclic loads
AGARD Report No. 713 Advisory Group for Aerospace Research and Development. NATO THE FATIGUE IN AIRCRAFT CORROSION TESTING (FACT) PROGRAMME by R.J.H.Wanhill. J.J.De Luccia and M.T.Russo Published February 1989 224 pages In accordance with the mission of AGARD the Structures and Materials Panel (SMP) has always kept an open eye for the possibilities to sponsor collaborative programmes of research AGARD is unique in its ability to realise the cooperation of laboratories in up to sixteen nations. In this way AGARD distinguishes itself from other international scientific and technical organisations.	AGARD-R-713 Corrosion fatigue Aluminum alloys Joints (junctions) Corrosion prevention Astrorate Fatigue tests Cyclic loads	AGARD Report No.713 Advisory Group for Acrospace Research and Development, NATO THE FATIGUE IN AIRCRAFT CORROSION TESTING (FACT) PROGRAMME by R.J.H.Wanhill, J.J.De Luccia and M.T.Russo Published February 1989 224 pages In accordance with the mission of AGARD the Structures and Materials Panel (SMP) has always kept an open eye for the possibilities to sponsor collaborative programmes of reach AGARD is unique in its ability to realise the cooperaction of laboratories in up to sixteen nations. In this way AGARD distinguishes itself from other international scientific and technical organisations. P.T.O.	AGARD-R-713 Corrosion fatigue Aluminum altoys Joins (junctions) Corrosion prevention Aircraft Fatigue tests Cyclic loads