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ABSTRACT
A class of multidimensional latent trait models is'

described. The properties of the model, parambters, and 'initial
results'on the,accuracy of a maximum likelihood procedure for-
tstimating the model parameters are diseussed."The model presented is
a special tase of the general model described by Rasch (19.61), with' '

close similarities to the models suggested by Bock and Aitkin (1981).
and gamejima (1974). Theconcepts of item difficulty and ,

, discrimination were diseased in reference to this model as
generalizktions of the-same cancepts used in the unidimensional
latent trait models.-For this case, difficulty was Shown to be
defined by a funetion rather than a single value, and discrimination
was shown to be' related to the slope of'the item characteristic
surface at its intersection with the .5-plane. Both the difficulty
function and discrimination parameters are most easily interpreted
when determined conditional on a particular dimension. The maximum
likeiihood estimation prodedure that *as developed for the model was
given ad initial trial on a set of simulation data that was generated
to contain two distinct dimensions. The item parameters estimated
from the simulated test data were shOwn to be'vnry highly related to
the true paramebers. (Author/PN)
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Because of the complexity of the.interaction between a person and aset of test items, there has been a continuing search for multidimensional_
models of test taking behavior. Although tegt results are sometimes thought'to be an indicant of some ideal continuum, this hypothesized state ofnature is never truly achieved. Even Conceptually sj.mple tests such asvocabulary and number series are found to have seveial components if they

. are studied cloSely enough (Holzman, Glaser and Pellegrino, 1980). Manytests Are not even intended to measure a single trait. For example, achieve-ment testsare typically designed to measure a number of content areas. Asingle achievement dimension is not usually defined.

The approach taken in the past to deal. with the multidimensionalnature of test data has been to deteemine the number and composition of the .components in a test and to use that information to form tests measuring asingle dimension.. Unfortunately, the procedures that have been-developed
for the purpose of sorting test items into sets measuring'a single dimensiondo not work well with, the data yielded by the typical, dichotomously scored,multiple choice test.items. Factor analysis is plagued by-problems dealingwith the selection'of a similarity coefficient, the effects of guessing.on
the solutiort, and the conceptual pEoblem of using a model derived for
continuous data on dichotomous scores (Kim and Mueller, 1978). The use ofnon-metriC multidimensional scaling as an alternative to factor analysishas not been well researched, and the.results that have been repated are.inconclusive (Reckase, 1981).

An alternate approach to'the problem of multidimensionality in testdata is to develop a model that is designed to explain the responses todichotomously scoreF1 test items using a number of hypothetical dimensions.
-In a sense, this has been done by Christoffersson (1975) and Muthen (1978)

- from a factor analysis perspective, but their approach'requires extensivecomputation. .The approach presented in this paper is to describe the
,multidimensional interaction using a latent trait approach, which will ha:yethe advantages of using the sample-aee properties of lakOt trait theoryand the availability of useful statistics such .as the item and test infor-mation functions.

To date,' little Work has been done with multidimensional latent traitmodels, despite the fact that several variations have been described in theliterature (Bock and Aitkin, 1981; Rasch, 1961; Samejima, 1974; SYmpson,
1978; Mnlaik, 1972; Whitely, 100). For tiie most part, the references to

Paper presented at the annual meeting of the American Psychological Associ-ation, -Washington, D.C., August 1982. This research was supported by.contract number NR0014-81-K0817 from the Personnerand Training ResearchPrograms of the Office of Naval Research.
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the models in, the, literature are only.descriptions of tlie mathematical.
'fotms with little information about actual applicatlons. Gui,graines for
the interpretatiotr7f results obtained using these moaels aie nonexistent.

This paper will'discuss one'class of,multidimensional latent trait
models that is related to tthe models proposed.by Bock and Aitkin (1981),
Rasch (1961), and.Samejima V1974). The foim of the model will be gresented
first and information conterning the interpretation of the model parameters
will be given. Also, the applicability.of the model to test data will be
demonstrated using simulateLitem responses.

CharacteAstics of ihe Model .
;

The-particular mulfidimensional latent trait; model presented here was
selected on the basis of a detailed analysis of the general Rasch model
(1961). A fuli report of that analysis was given elsewhere (Reckase and
McKinley, 1982). The equation for the model issiven by

a

4. avn + v
3-1
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. whete x. is the scare,on Item i for Person p,ip
ai is a vector of item parameters for Item i',

, and 6 is a vector of perspn:parameters for Person p.-P
.

The relationship bepeen the probability of a correctq.esponse and the
.

6-vector for.this m del defines an item response surface. An example Of
the item response rface f6r the two dimensional,case of this model is
given in Figur. 1 wit 1 = 15, a2 = .5 and (72 = .650: Note that this

(#'

surface.is m

4
otonicdily ncreasing in both 61 and 62.

,

(1)

Insert Figure 1 about here

In order to interpret the parameters of this model, the traditional
concept of item.difficulty and discrimination must be extended to the
multidimensional case.. In unidimen'sional latent trait models, the diffi-
culty ofan item is defined as the point on the 6-scare below the point of
inflection.of the item characteristic curve (See Figure 2). Thii value can
be'determined by s g the second partial derivative'of the model with
respect to 6 to ze id solving for 6. The same procedure can be followed ,

for the multidimen al model, except that the second partial derivative
is now faken with respect to the 6-vector. For this.particular model, the
solution, of the second partial derivative yields ,a function rather than a
single value for the difficulty of theXem. The function is'given by
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I a . .0/ - + O. = 0 (2)lj pj i(n+1)

. ,, j=1
. .

.

' .,.Where the a- and 0-terms are the elements of the a-ahd"8-vectors. For the
A special case of the model shown in Figure 1, this function is given by thetiequaon. ...

.

*

1.58
p1

+ .58
p2 - .650 = O.

(3)

Thii is the formula for a line in the 81, 62 plane: The line is shown bythe dashed lin'e on the surface shown in Figure 1. Individuals whose 6-vectorslocate them on one side of,this line have A greater than probability ofa correct response, while those loCated on the other side of the line haveless than a .5pprobability of a correct response:
,Thedifficulty functionis defined by the intersection of the item response-surface with the'plane' parallel to the 014 82 plane at a probability of .5.

Insert Figure 2 about here

e"

If all of the 0-values.but one are set 'equal to.zero, the result is ,a"cOnditiOnal"%difficulty for the item on that dimension. For the examplegiven above, the conditional difficulty on Dimension), is .43 and theconditional difficulty on Dimension 2 is, 1.3. ,Hence, the item requires
proportionally more ability on DimenE'kon',i than Dimension 1.to nbtain ahigh probability of a correct response.. Note that all of the parameters ofthe thodel enter into the definition of the item difficulty function.

Just as the concept of item difficulty can be generalized from unitlimen-sional latent trait theory to multidimensional latent trait theoiy, so tocan the concept of item discrimination. In.unidithensional theory, thediscrimination parameter for apiiiem is a function pf the slope of the itemcharacteristic curve at the point of inflection (see Fighre 2). For the .two parameter logistic model, this function is siven by

(slope at b ) x 4'a =

1.7 .

'r

(4).

where 'is the discrimination parameter and b is the difficulty parameter.For thegmultidimensional model, the slope can §e determined by solving the,first partial.derivative with respeCt to 0 for values on the difficulty
function, .If the slope is meaSured pairallel to a Dimension d Ihe-slope4is

4givenbythe.expressiona. / 4for Item i. Thus, the discrimination parameterdfor the item on Dimensioni can be defined as four times the slolie Measuredparallel to that dimensi.Od. For the example given.in Figure 1, the slobewilh respect to Dimension 1 is .375, and with 'iespect to Dimension 2-it is..125. The surface is, therefore, "flatter" with respect to Dimension 1than Dimension 2. On the basis of this information, the first n terms ofthe a-vector can be considered as discrimination parameters,
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Estimation of Parameters

The development of a model alone is not sufficient to show that a

multidimensional latent trait'model ii a practical posSibility. A procedure
must be develope'dto estimate the parameters of the Model with sufficient
accuracy totjudge whether they yield .useful information about the test
items and the examinees.

For the model presrted in Equation 1,'an empirial maximum likelihood
;procedure has been developed for the estimation of the person.and item
parameters. The item paraiiieter estimation procedure begins with an initial
estimate of the item parameters based on a weighted sum of ability parameter
estimate's. These values are'used as the starting point for an iterative
Hewton-Raphson prqcedure,that modifies the item porameter estimates on each
dimension before'estimating those on the next dimension. The iterations
continue until' successive estiMates of the parameters do not differ, by

'more,than a specified lialue. A full description of the procedure is given
in 'Reckase and McKialey (1982).

. The ability parameter estimateA'sare determined in a similar fashion.
Initial parameter estimates are obtained from a weighted sum.of the item
parameter estimates. The initial values are used as the-starting point in
a Newton-Raphsoh procedure fbr finding the maximum of the likelihood ftnction
fd .t. the data. This procedure is also de.scribed in. Reckase and licKinley
(1982).

In order to determine the pr'acticality of the estimation procedure :

that was developed, it was applied to a set of simulated test data that' was
generated to fit the model. The.simulated test data contained responses on
50 items fot 1,no exaimees: The dnta were generated to model two distinct
ability dimensions. The item parameteis used to generate data to fit the
model are givenLin the second through fourth columns of Table 1. The first
*of.these thrde columns gives the cri(10.1) term from the model and the other

. 9two columns give the dscrimination'parimeters. The ability parameters
used,to generate the data were iampledefrom:the bivariate normal distribution
'with 2 = 0, E = 0 and 2,=. I-

Insert Table I about here

The results of the item parameter estimation procedure for thr two-
-dimensional model are.presented in the last,three columns of Table 1.
These estimates have been scaled to have the same mean and standard devi-
ation as the true parameters. The correlations between the"parameter
estimates and the true values are givenli& Table .. From the information
Vresentéd; it can be seen that the paramett,t9.estimates are very highly
relafed to the true values. While this does n conclusively show the
value of this estimation procedure, tile results. 'suggest that the pro- '
cedure is very promising.

Insert Table 2 about here
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Summary
. ,

The purpose of this paper was to describe a class of multidimensionallatent trait models, discuss the properties of the model parameters, and
give some initial results on the ..accuracy of a maximum likelihood procedurefor estimating the model parametess. The model presented.is a speeial case,of the general model described by Rasch (1961). It also has close simi-
larities to ihe models Suggested by Bock and Aitkin (1981) and Samejima, . .

.(1974).
.

. -
. ,

- ./

The concepts of item difficulty and discrimination were discussed in
reference.to this model as generalizations, of the same concepts used in the
unidimensional latent trait'models. For sthis case, difficulty was shown tic,be defined by a function rather than a sivle value, and discrimination wasshown to be related.to'the slope of the item characteristic surface at its
intersection with the .5-plane. Both the aifficulty function.and discrimi-nation parameter's are most easily interpreted when determined conditional
on a.pailticular dimension. n ,

The. maximum likelihood estimation procedure.that was developed for the ,1 model was given an initcal trial on a set of simulation data that.was
generated to contain two distinct dimensions: The item parameters estimatedfrom the simulated test data were'shown to be.very highly related to the (1true parameters.. Based on these results, and on the interpretive resultspresented earlier, Chis model seems very promising as.i means of describing

,the interaction between a person and a test item in a multidimensionallatent space.
0
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Table 1
True and Esttmated Item Parameters

item True Parameters Maximum Likelihood ,

Estimates

1 2 3. 1 2 3

1 4.65 1.50 0.50 -0.48 1.27 0.36
2 -1.40 0.50 125 -1.56 0.45 1.29
3 -0%20 1.35 0.15 -0.06 1..69 0.25
4 0.40 1.60 0.55 0.59' 0.63
5 '0.50 1.15 0.10 0.51 '1.04 ,

6
o0.00

-1.30 0.35 1.05 -1.68 0.42 1.25
7 0.05 1.45 0.35 0.34 1.63

Ne 8, 0.19 0.25 1.40 0.25 0.20 1.239 -0.17 0.85 0.85 -0.07 0.89 0.6710 0%14 *1.75 0.45 0.34 1.45 0.57
I. 11 0.37 0.60 0.80 0.29 0.61 0.8812 0.87 1.65 0.65. 0.70 1.38 .0.46

-

/ 13
14

-7.-0.93

1.85

L. 0.35
0.65

- 1.35

1.65
-1.00
' 1.59

0.24
0.54

1,65
1,2915.

16
. 0.06

-0.41
0.65
0.45

0.65

1.45

k. 0.00 1
-0.38

0.80
0.23

0.52
1..60.17 =1.54 0.75 1.25 -1.55 :

0.71 1.1418 0.34 1.55 '0.25 0.39 1.46 0.2914 -0.15 0.65 1.35 0.04 0.65 1.2820 1.48 1.25 0.45 1.42 1.32 0.2221 -1.45 1.65 0.45 -1.73 1.80 0.48'22 '0.75 0.45 1.35 0.67 0.40 1:3523 -0.75 0.35 1.55 -0.63 0.21 1.7224 1.10 1.10 0.30 0.93 ,1.11 0.3525 -0.55 1.20 0.15 -0:38 1.37 0.2426 0.50 0.50 1.00 0.28 .0.49 1.1227 -0.15 1.45 0.45 -0.02 1.32 0.4228 0.65 0.70 0.70 0.56 0.68 0.8629 -1.00 1.00 0.30/ -0.95 1.14 0.3830 17e0 '0.30 1.00 0.98 0.27 1.1431 -0.25 0.95 .0.25 -0.04 1.11 0.2432 -0.70 . .,0.15 1.50 -0.68 0.03 ,1.5133 0.85 1.15 0.45 0.98 1.29 0.3034 0.05 0.10 0.95 0.03 0.20 . 1.0935 -0.95 1.35 0.50 0.80 1.28 0.5236 -1.50 0.20 1.20. -1.38 '0.47 1'1.03
.. 37 1.80 ' 1.5k 0.55 2.06 1.51 Q.4438 -2.00 0.15 1.15 -2.06 0.30 1.0939

1

-0.90 1.40 0.35
.

-0.70 . 1.18 0:40,40 1.00 1.00 1.00
, 1.04 0.87 0.7941 0.15 1.25 0:70 0.28 1.17 0.7542 -1.50 0.25. 0.95 -1.60 0.49 1.1443 -1.25 . 0.35 1.45 -1.13 0.26 1.3044 1.25 1.30 0.25 0.95 1.26 0.26'

45 -2.00. 1.15 0.15 -2.01 1.30 0.1346 1.75 0.50 0.50 1.65 0.68 0.6447 0.65 0.65 1.30 0.71 0.49 1.2748 -0.25. 1.00 0.45 -0.17 1.03 . 0.5349 0.35 0.55 1.15 , 0.24 0.48 1.0450 0.00- 0.95 0.15
.

-0.07 1.11 0.26
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Table 2

Intercorxelation Matrix for True and.
_-----fetimated Item Parameters Ail

4
parameter

True Parameters Estimates

a
Tl

a
T2

a
T3

a
Cl

a
C2

a
C3

0
a
Tl

1:00

,

0.21 -.12 0.99 0.15 .18

a
T2

a
T3

0.21

-.12

100

-.75

,-.75,

:1.00

0.15

-.18.

0.96

-.79

-.79

-.96

a
Cl

0.99 0.15 -.18 1.00 0.20 -.22

a
C2

0.15 0.96 -:-.79 . 0.20 1.00 -.88

Cr'

C3
-.18 --7a -.96 -.22 -.88 1.00
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Figure 1

Example of an Item 1(esponse Surface
for the Two-Dimensional Case
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Figure 2

Slope and Point of Inflection
for the Unidimensidnal Two-Parameter Logistic Model
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