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ABSTRACT - _
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a special tase of the general model described by Rasch (r961), with °® ,

close similarities to the models suggested by Bock and Aitkin (1981). &
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and Samejima (1974). The .concepts of item difficulty and . "
. discrimipation were discuSsed in reference to this model as
generalizations of the-same concepts used in the unidimensional
latent trait models. -For this case, difficulty was shown to be
defined by a funttion rather than a single value,.and discrimination
was sijown to be related to the slope of ‘the item characteristic
surface at its intersection with the .5-plane. Both the difficulty
function and discrimination parameters are most easily interpreted
when determined conditional on a particular dimension. The maximum
likelihood estimation procedure that #as developed for the model was
given an initial trial on a set of simulatien data that was generated
to contain two distinct dimensions. The item parameters estimated
from the simulated test data were shown to be very highly related to
the true parameters, (Author/PN) - !
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Because of the complexity of thé_inﬁeraction between a person and a "
" ¢ set of test items, there has been a continuing search for multidimensional,

models of test taking behavior. Although tesdt results are sometimes thought
‘to be an indicant of some ideal continuum, this hypothesized state of
nature is never truly achieved. Even ¢onceptually simple tests such as
vocabulary and number series are found to have seveyal components if they
are studied closely enough (Holzman, Glaser and Pellegrino, 1980). Many ’
tests are not even intended to measure a single trait. For example, achieve-
ment tests .are typically designed to measure a number of content areas, A
single achievement dimension is not usually defined.

’

.

, single dimension. Unfortunately, the procedures that have beén: developed

for the purpose of sorting test items into sets measuring’'a single dimension '
do not work well with the data yielded by the typical, dichotomously scored,
multiple choice test.items. Factor analysis is plagued by .problems’ déaling -
with the se%ection of a similarity coefficient, the effects of guessing on

the solutior, and the conceptual problem of using a model derived for

continuous data on dichotomous scores (Kim and Mueller, 1978). The use of
non-metric multidimensional scaling as an alternative to factor analysis

has not been well researched, and the ‘results that have been repdkrted are |
"inconclyusive (Reckase, 1981). :

An alternate approach to' the problem of hultidimensionality in test
data is to develop a model that is designed to explain the responses to
dichotomously scorep test items using a number of hypotlietical dimensions. -
In a sense, this has been done by Christofférsson (1975) and Muthén (1978)
from a factor analysis perspective, but their approach ‘requires extensive

~ computation. The approach presented in this paper is to describe the .

. multidimensional interaction using a latent trait approach, which will have . .

the advantages of using the sample-free properties of lagefnt trait theorf

. and the availability of useful statistics such as the item and test infor-
mation functions. . .

<
.

To date, little work has been done with multidiminsional latent trait
models, despite the fact that several variations have been described in the
literature (Bock and Aitkin, 1981; Rasch, 1961; Samejima, 1974; Sympson,

1978; Mulaik, 1972; Whitely, 1480). For the most part, the references to '
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the models in'the literature are only.descriptions of the mathematical-

‘forms with little information about actual applications. Guidelines for

the "interpretatio f results obtained using these models are nonexistent.
P *. ; -4 -

.

This paper will 'discuss one class of multidimensional latent trait

| models that is related to the models proposed -by Bock and Aitkin (1981),

Rasch (1961), and.Samejima ¥i974). The form of the model will be presented

first and information comcerning the interpretation of the model parameters

will be given. Also, the applicability of the model to test data will be

demonstrated using simulated item respenses. X °

' ' Characteristics of the Model -

SN L . :
* . The paxticular multidimensional latent trait model presented here was
selected on the basis of a detailed analysis of the general Rasch model
(1961). A full report of that analysis was given elsewhere (Reckase and
McKinley, 1982). The equation for the model is given by .

A '
.

n
, Ex 0% T Mty .
= = ¢ .
P(Xip l'(-’i, 5p) - W

\ . gl 943%3 ¥ %1a + 1) . .
S . l+e i .

whexe X is the score on Item i for Person p, ,
oipis a vector of item parameters for Item i) v

. and Qp is a vector of person parameters for Person P. ) PY

¢

The relationship be;ween the probability of a correct‘fespohse and the

. O-vector for.this mgdel defines an item response surface. An example of

the item response gfirface for the two dimensional case of this model is
given ip Figup¥ 1 with\gy = 1.5, 05 = .5 and O3 = .650. Note that this
surface is mgnotonicaMlyN\increasing in both 0, and 63. . . y

Insert Figure 1 about here .
\

. In order to interpret the parameters of this model, the traditional
concept of item difficulty and discrimination must be extended to the
multidimensicnal case.® In unidimenSional latent trait models, the diffi-
culty of an item is defined as the point on the 6-scale below the point of
inflection'of the item characteristic curve (See Figure 2). This value can
be ‘determined by sng the second parxtial derivative’of the model with \ ’
respect to O to ze d solving for 6. The same procedure can be followed | S~.
for the multidimen al model, except that ‘the second partial derivative

is now taken with respect te the B-vector. For this -particular model, the
solution of the second partial derivative yields a function rather than a
. single value for the difficulty of theéjiém. The function i's given by

b. 3 . | .




— e ’ ’ t

v

n
.0 o+ @, =0 2
AT @

-

-and ‘O~vectors. For the
unction is given by the

where the 0- and O-terms are the elemen'ts of the o-

special case of the model shown in Figure 1, this f
equation- . ' T

. . ’ N K¢ b
1.50p1 + .Sep2 - .650 = 0. (3)

This is the formula for a line in the 8,4,
the dashed line on the surface shown in Fi
locate them on one side of, this line have
a correct response, while those located on,
less than a -3pprobability of a correct res
is defined by the intersection
parallel to the 0,,

82 plane. The line is shown by
gure 1. Individuals whose O-vectors
a greater than .5 probability of '
the other side of the line have
ponse. -The. difficulty function

of The item response surface with the  plane
B2 plane at a probability of .5 :

%
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Insert Figure 2 about here
~

. . ¢
. If all of the B~values
"conditibnal“ﬂdifficulty for

but one are set equal to .zero, thé result is « c

the item on that dimension. For the example
given above, the conditional difficulty on Dimension 1 is .43 and the

conditional difficuity on Dimension 2 is, 1.3. Hence, the item requires
proportionally more ability on Dimenginnﬁ2 than Dimension 1-to obtain a ,
high probability of a correct response. ' Note that all of the parameters of
the model enter into the definition of the item difficulty function.

Just as the concept of item difficulty can be generalized from unidimen-
sional latent tfait theory to multidimensional latent trait theofy, so to
can the concept of item discrimination. In unidiimensional theory, the
discrimination parameter for an ifem is a function of the slopé of the item
characteristic curve at the point of inflection (see Figure 2). For the . .
tyo parameter logistic model, this function is given by

. _ . C . = (slope at bg) X &4
1.7

(4)

-

1]

8

where a “is the discrimination parameter and b is the difficulty parameter,

For the®multidimensional model, the slope can Be determined by solving the

first partial derivative with respect to 0 for values on the difficulty , ~
function, .If the slope is measured parallel to a Dimension d the -slope *is

given by the,expression o, /4 for Item i. Thus, the discrimination parametex
for the item on Dimension’§ can be defined as four times the slope measured "

pardllel to that dimensigdn, For the example given in Figure 1, the slope o
with respect to Dimension 1 is .375, and with ?espe;t to Dimension 2-it is
.125. The surface is, therefore, "flatter!" with respect ko Dimension 1

than Dimension 2. On the basis of this information, the first n terms of

the O-vector can be considered as discrimination parameters,.

s -~

.
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Estimation of Parameters

The development of a model alone is not suff1c1ent to show that a,
multldlmen51onal latent trait ‘model is’ a practical p0551b111ty A procedure
must be developed'to estimate the parameters of the model with sufficient
accuracy to‘gudge whether they yield useful information about the test
items and the examinees.

For the model presepted in Equation 1, an empirical maximum llkellhood
Procedure has been developed for the estimation of the person.and item
parameters. The item parameter estimation procedure begins with an initial
. _ estimate of the item parameters based on a weighted sum of ability parameter
estimates. These values are used as the starting p01nt for an iterative
Héwton-Raphson procedure that modifies the item parameter estimates on each
d1men51on.before est1mat1ng those on the next dimension. The iterations
continue until sucgessive estimates of the parameters do not dlffeg by e
‘ more, than a specified value. A full descrlptlon of the procedure is given ’
im Reckase and McKinley (1982). )
*  The ability parameter estimates are determined in a similar fashion.
Initial parameter estimates are obtained from a weighted sum-of the item
. parameter estimates. The imitial values are used as the'starting point in
a Newton-Raphsoh procedure for finding the maximum of the likelihood fenction
for t?e data. This procedure is also described in Reckase and McKinley
1(1982). ‘ ) ‘ ' ’ °

-

. -

In order to determine the practlcallty of the estimation procedure .
that was developed, it was applied to a set of simulated test data that was
. generated to fit the model. - The simulated test data contained responses on )
, 50 items for 1,000 exaimees. The data were generated to model two distinct - '
ability dimensions. The item parameters used to generate data to fit the -
model are given in the second through fourth columns of Table 1. The first
. of these thrde columns gives the O, (ot term from the model and the other
" two columns give the dlscrlmlnatloﬁ Bar meters. The ability parameters ' - °
used.to generate the data were sampled/from the bivariate normal distribution
‘with p=0,p=0and L =1.

. : hd )
. - *

L

v . _ Insert Table i about here

{ . S
The results of the item parameter est1matlon procedure for the two- ¢
-dimensional model are presented in the last, three columns of Table 1.
These estlmates have been scaled to have the same mean and standard devi-
ation as the “true parameters. The.correlations between the” parameter
v 'estlmates and the true values are given Table 2. From the information -t
presented it can be seen that the parasittntestimates are very highly
related to the tme values. While this does*ﬁﬁfiéégclusively show the "
value of this estimation procedure, the results. “guggest that the pro- 7 .
cedure is very promising. N )

Insert Table 2 about here




v

. ‘ L . Summa ry . -
The burpose of this paper was to describe a class of multidimensional
latent trait models, discuss the properties of the model parameters, and
give some initial results on the accuracy of a maximum likelihood procedure
. for estimating the model parameters. The model presented: is a speecial case
,of the general model described by Rasch (1961). It also has close simi- . .-
larities to the models suggested by Bock and Aitkin (1981) and Samejima .
(1974). T . :

- ] . A

- './ - Nl
The concepts of item difficulty and discrimination were discussed in
reference to this model as generalizations, of the same concepts used in the
unidimensional lafent trait‘models. For this case, difficulty was shown to .
be defined by, a function rather than a siqgle value, and discrimination was

shown to be related.to ‘the slope of the item characteristic surface at its

intersection with the .5-plane. Both the aifficnlty function and discrimi- .
nation parameters are most easily interpreted when determined conditional
on a particular dimension. TR . B

.

The, maximum likelihood estimation procedure .that was developed far the .

. model was given an initial trial on a set of simulation data that.was

generated to contain two distinct dimensions: The item parameters estimated

from the simulated test data were” shown to be very highly related to the

true parameters. Based on these results, and on the interpretive results i
presented earlier, this model seems very promising as a means of describing v
the interaction between a person and a test item in a multidimensional

latent space. . P L e

-
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: Table 1 ‘ |
True and 'Est:imat:ed Item Parameters

n

Maximum Likelihood

I'tem . True Parameter§ Estimates
_ 1 v - 2 ; . 1 2 3
. ~0.65.... ...1.50 - 0.50 -0.48 1:27 - 0.36 - - —
2 ~1.40 0.50 - 1:25 -1.56 0.45 1.29
3 -0.20 1.35 0.15 -D.06 1.69 0.25
4 0.40 ° 1.60 0.55 , 0.59 1.58= 0.63
5 ,0.00 ‘0.50 1.15 0.10 0.51 1.04
6 -1.30 0.35 1.05 -1.68 0.42 1.25
7 0.05 . 1.45 0.35 0.34 1.63 0735 \
8 - 0.19 0.25 1.40 0.25 0.20 1.23 s
9 -0.17 0.85 0.85 -0.07 0.89 0.67
10 0.14 *1.75 0.45 0.34 1.45 0.57 . .
11 0.37 0.60 0.80 0.29 0.61 0.88
12 0.87 1.65 0.65- . 0.70 1.38 .0.46"
13 +0.93 -  0.35 1.35 -1.00 0.24 1,85
14 1.85 0.65 1.65 , ''1.59 0.54 1,29,
15. 0.06 0.65 0.65 \ 0.00 0.80 0.52
16 -0.41 . 0.45 1.45 . =0.38 0.23 1.60
17 «1.54 0.75 . 1.25 *=1.55 0.71 1.14
18 0.3¢ -+ 1.55 '0.25 - 0.39 1.46 0.29
19 -0.15 0.65 © 1.35 0.04 0.65 1.28
20 1.48 1.25 . 0.45 1.42 1.32 0.22
21 -1.45 1..65 0.45 -1.73 1.80 0.48"
22 10,75 0.45 1.35 _ 0.67 0.40 1335
- 23 -0.75 0.35 .55 -0.63 0.21 1.72
24 1.10 .1.10 0.30 0.93 1.11 0.35 ~
25 -0.55 1.20- 0.15 . -0.38 1.37 0.24
26 0.50 0.50 * 1.00 0.28 .0.49 1.12
27. -0.15 - .1.45 0.45 -0.02 1.32 0.42
28 0.65 0.70 0.70 0.56 0.68 0.86
29 -1.00 1.00 0.30 7 ~-0.95 1.14 0.38
30 1007 0.30 1.00 " 0.98 0.27 1.14
31 -0.25 0.95 G.25 ~-0.04 1.11 0.24 )
32 -0.70 , . 0.15 1.50 -0.68 0.03 1.51
33 0.85 1.15 " 0.45 0.98 1.29 0.30
34 0.05 0.10° 0.95 0.03 0.20 .1.09 '
35 -0.95 1.35 0.50 £0.80 1.28 0.52
36 -1.50 0.20 1.20, -1.38 . "0.47 1.03
37 1.80 * 1.58 0.55 " 2.06 , 1.51 Q.44
38 -2.00 0.15 1.15 -2.06 0.30 1.09
39 -0.90 1.40 0.35 ©T,=0.70 1.18 0.40,
40 1.00 1.00 1.00 , 1.04 0.87 0.79
41 0.15 1.25 0.70 0.28 1.17 0.75.
42 -1.50 0.25. 0.95 ~1.60 0.49 1.14 , ,
43 -1.25 0.35 1.45 -1.13 0.26 1.30
44 1.25 1.30 0.25 0.95 1.26 0.:26
45 -2.00. 1.15 0.15 -2.01 1.30 0.13
46 1.75 0.50 0.50 1.65 0.68 0.64
47 0.65 0.65 1.30 0.71 0.49 1.27
48 -0.25. 1.00 0.45 -0.17 1.03 0.53
49 0.35 . 0.35 1.15 « 0.24 0.48 1.04
50 0.00. 0.95 0.15 : -0.07 1.11 0.26




Table 2

Interconrelatfgn Matrix for True and.

B
<

Estimated Item Parameters roa e
4 1] 3
. - True PArameters Estimates -t
Egraheter . - - —
911 %v2 %13, %1 %2 %3

o
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Figure 1

Example of an Item Kesponse Surf
for thq Two-Dimensional Case
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o Figure 2

.x Slope and Point of Inflection _
for the Unidimensional Two-Parameter Logistic Model
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