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The Feasibility of Data Whitening to Improve Performance of Weather Radar

KOIVUNEN AND KOSTINSKI

A. C. KolVUNEN AND A. B. KOSTINSKI
Department of Physics, Michigan Technological University, Houghton, Michigan

(Manuscript received 5 March 1998, in final form 19 August 1998)

ABSTRACT

The problem of efficient processing of correlated weather radar echoes off precipitation is considered. An
approach based on signal whitening was recently proposed that has the potential to significantly improve power
estimation at a fixed pulse repetition rate/scan rate, or to allow higher scan rates at a given level of accuracy.
However, the previous work has been mostly theoretical and subject to the following restrictions: 1) the auto-
correlation function (ACF) of the process must be known precisely and 2) infinite signal-to-noiseratio is assumed.
Here a computational feasibility study of the whitening algorithm when the ACF is estimated and in the presence
of noise is discussed.

In the course of thisinvestigation numerical instability to the ACF behavior at largelags (tails) was encountered.
In particular, the commonly made assumption of the Gaussian power spectrum and, therefore, Gaussian ACF
yields numerically ill-conditioned covariance matrices. The origin of this difficulty, rooted in the violation of
the requirement of positive Fourier transform of the ACF, is discussed. It is found that small departures from
the Gaussian form of the covariance matrix result in greatly reduced ill conditioning of the matrices and robustness
with respect to noise. The performance of the whitening technique for various meteorologically reasonable
scenarios is then examined. The effects of additive noise are also investigated. The approach, which uses time
series to estimate the ACF from which the whitener is constructed, shows up to an order of magnitude im-
provement in the mean-squared error of the estimated power for a range of parameter values corresponding to
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typical meteorological situations.

1. Introduction

Meteorological radars typically sample many times
in order to form an estimate of power as an arithmetic
mean. As is well known, the statistical error (standard
deviation) of such an estimate decreases as the inverse
square root of the number of independent sampl es. How-
ever, consecutive radar echoes from precipitation are
highly correlated (typical interpulse separation on the
order of 1 ms and decorrelation or *‘reshuffling’” times
on the order of 0.1 s). Consequently, in most meteo-
rological applications of coherent radar, the total number
of samples greatly exceeds the number of statistically
independent samples, for example, the number of in-
dependent samples (10-100 samples s**) can be 10—
100 times smaller than the total number of samples and
loss of information can be substantial (see, e.g., Atlas
1964).

Yet, it is usually taken for granted that only the so-
called effective number of independent samples (call it
N,) matters and convergence of the average power es-
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timate scales as «1/7/N,. This is probably so because
one of the following two circumstances is always as-
sumed:

» the standard sample variance estimator is employed
(whose variance increases with the increasing decor-
relation time), and

« the autocorrelation function (ACF) of the process is
not known.

However, even when the ACF is estimated from data
(e.g., Gaussian spectrum), it is a common procedure
throughout remote sensing to use the estimated auto-
correlation function to convert correlated time series to
the equivalent number of independent samples (e.g.,
Ulaby et al. 1986, p. 488; Doviak and Zrni¢ 1993, p.
127; Nathanson 1990, p. 93; Sauvageot 1992, p. 53).
Thisisdoneto indicate the types of errorsthat arelikely,
based on the 1/A/N estimator variance dependence. Why
is the **equivalent number of independent samples” ap-
proach taken for granted in radar meteorology and in
other radar applications?

For example, in the case of incoherent radar, why
should one assume that the arithmetic mean estimator
of mean power is the optimal one even in cases where
the radar echoes are strongly correlated? Can one do
more with the ACF information than count one'slosses?
For instance, could one use a weighted mean where the
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weights “know’ about the estimated ACF? Recall that
the ACF is often at least approximately known in radar
meteorology [i.e., Gaussian shape of the spectrum is
commonly assumed (e.g., Doviak and Zrni€ 1993)]. Yet,
rather than to find a better estimator, the estimated au-
tocorrelation function is used to compute an equivalent
number of independent samples. Hence, a natural ques-
tion arises: Isthere a power estimator that can ‘“ extract’
information from all of the correlated samples if the
autocorrelation function of the process is known? Also,
given the inevitable Rayleigh fading, what is the best
accuracy of determining echo intensity for agiven num-
ber of (correlated) echoes?

The theoretical results obtained in Monakov (1994)
and in Schulz and Kostinski (1997) show that in the
coherent radar case (multivariate Gaussian probability
density of the complex echo amplitudes) such an esti-
mator does exist. The appropriate convergence bounds
are derived and the whitening approach is also givenin
Schulz and Kostinski (1997). The reason for the exis-
tence of such an estimator can be understood in retro-
spect by realizing that the original amplitude data can
be “whitened” by a linear transformation whose co-
efficients know the ACFE Furthermore, this transfor-
mation leaves the variance (power) of the amplitude
time series unchanged. The resultant independent sam-
ples can then be used in a regular manner. In other
words, a variance estimator exists whose coefficients
are ACF dependent (so that al of the information is
taken into account), which converges as 1/\/N, where
N is the total number of (correlated) samples.

However, the theoretical method devel oped in Schulz
and Kostinski (1997) relies on the following possibly
restrictive assumptions: 1) infinite signal-to-noise ratio
(SNR) and 2) ACF is known precisely. The assumption
of infinite SNR is not strictly valid, but it is often ap-
proximately valid, for example, severe weather signal
can exceed 70 dB. In weather applications, the only time
the signals are so weak that the SNR is comparable to
unity iswhen the precipitation is either quite weak (e.g.,
light drizzle) or very distant. But meteorologically most
interesting and practically most important cases are
those involving severe weather not too far away and
then SNR is high. As far as the ACF restriction, in
defense of the whitening method, it can be pointed out
that similar objections can also be advanced against oth-
er methodsin usewhich rely, for example, on the Gauss-
ian shape of the spectrum such as the pulse pair pro-
cessor. It is widely and effectively used in spite of the
fact that the spectrum is often not Gaussian and, in fact,
ishimodal in 25% of the cases. See, for instance, Janssen
and van der Spek (1985, pp. 208-219).

Given the potential benefits of the decorrelation tech-
nique, it seems worthwhile to proceed with the quan-
titative evaluation of the sensitivity of the whitening
method to deviations from the two assumptions above.
What happens when the ACF must be estimated or is
known imprecisely and SNR is not infinite? Is the ACF
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estimation so poor or the noise sensitivity so severe as
to render any practical application useless? An attempt
to answer these questions is the main objective of this
work.

2. Signal model

As is well known, constant ‘‘reshuffling” of hy-
drometeors and randomly constructive and destruc-
tive interference cause the radar echo to fluctuate.
Doppler weather radar signals are usually modeled as
a zero-mean complex Gaussian random process z,
with discrete samples z,, = s,, exp(wpiT,m) + n.,
where s,,, exp(wpi T.m) is the precipitation echo signal
returned to the receiver, n,, is uncorrelated noise, wg
is the mean Doppler shift frequency, T, is the sam-
pling interval, and mis the sampling index. If we, for
example, assume a Gaussian power spectrum for the
returned signal, we may write

_(V — ?)2

2
202

S(v) = 1)

S ox 2kTg
V2o, P A

where S = (Js,|?) is the average signal power, o, is the
velocity spectral width, 7 is the mean radial velocity of
the scattering particles, A is the wavelength, and « is
the noise power. The corresponding autocorrelation is
written,

p(7) = Sexp[—8(mwo,7/A)?] exp[—4mi vT/A]

+ k8(T), ?

or, discretely,

p(mTg) = Sexp[—8(ma,mT4/A)?] exp[—4mi vmT4/A]
+ k&(MTy), 3)

where m is the sampling index.

The covariance matrix, K,, with elements K, =
(z,z;), whereK; , = K*__ isHermitian. The signal spec-
tral width, o, in the frequency domain is related to the
spectral width in the velocity domain by the relation

o, = o,M2. (4)

The variance of our estimate of the average scattered
power, o2, depends on the number of independent sam-
ples in the average according to
, _ OF
0‘5 N| 1 (5)
where N, is the number of independent samples in the
average.

Weather radars typically sample at about 1 kHz, while
the time to independence is in the range of 0.1-0.01 s
(on the order of timeit takesfor hydrometeorsto change
relative positions by about a radar wavelength). Hence,
consecutive samples are typically strongly correlated.

Increasing the independence of the samples in our
estimate of the average power would reduce the variance
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of the estimate, thereby increasing the amount of in-
formation extracted from a given set of data. The in-
formation needed to decrease the correlation between
the samples used in the estimate of the average scattered
power is contained in the scattered power ACFE Can one
use the estimated ACF information to decorrelate de-
pendent samples through whitening? Theoretically, at
least, the answer is yes (Schulz and Kostinski 1997)
because the Gaussian quadrature amplitude probability
density function (PDF) can remain unchanged with lin-
ear filtering, that is, whitening. Below, we show that the
method is practically feasible as well.

3. Whitening

For the reader’s convenience we briefly review some
definitions of the random process theory needed later.
Consider the autocorrelation function of a random pro-
cess z [sequence of radar echoes in the complex am-
plitude format (e.g., see Papoulis 1984)]:

p(ti, t;) = E[z(t)Z* (t,)] (6)
p(ti, ;) = p(ty — t) = p(7) = E[z()Z*(t + 7)].  (7)
The average power is then
P = E[Z2(0)] = p(r = 0) (®)
and the variance of the process can be written
oz = E{[z(t) - 2]}
E[2()] — 2E[z()Z] + E(2), €)

where Z is the mean. For a zero-mean process such as
in-phase and quadrature components of radar echoes

P = E[z2(0)] = o2, (10)

so the average return power equals the variance of the
amplitude process.

Next we present a brief summary of the relevant de-
velopment from Schulz and Kostinski (1997). Consider
a time series of correlated echoes {z,} N=3. Given the
autocorrelation function p(r), can we “‘whiten” this
time series without affecting its variance (power)? To
that end, construct the covariance matrix Kp asfollows:

0 p(0) p() -+ p(N— 1)U
p(=1) p(0) - p(N—2)

K,=o ‘ o 1
®(1 = N) p2—N) - p(0) g

which is Hermitian and Toeplitz (elements along each
of the diagonals have the same value). This matrix can
always be factored as

K, =UAUT

ptrp~pr

(12)

where U, is orthonormal, U U7 = |, U] is the transpose
of U, and
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Iﬁ\ 0 - 0 ﬁ
A, = D? A ? 0 (13)
go 0 ’ )\N—1D

is a diagonal matrix with the eigenvalues of K, on the
diagonal. If we form the matrix H = A *2U , where
A, *2isadiagonal matrix with the elements A, on the
diagonal, then the transformed data, Y, = SN H, X,
k=0,...,N— 1 are independent, identicaly dis-
tributed random variables.

The scattered power can thus be estimated using the
transformed data, where the number of independent
samples has been increased to the total number of sam-
ples, N. The resulting variance in the scattered power
estimator will be reduced, improving the estimate of
average scattered power. However, infinite SNR and pre-
cisely known ACF have been assumed. Our objective
is to explore, via computer calculations, the sensitivity
of the whitening technique to the assumptions of per-
fectly known ACF and infinite SNR. To that end, in the
remainder of this paper we construct examples of time
series with specifically prescribed correlation functions
and SNRs, whiten them with transforms derived from
ACFs estimated from sample time series, and compare
the power in the time series before and after whitening.
Next, let us discuss the numerical stability of the whit-
ening transform calculation versus the assumed form of
the ACE

4. The Gaussian anomaly

To motivate two particular ACF parameterizations
used in the remainder of this paper, we next describe
what we termed the ** Gaussian anomaly.” In the course
of our whitening calculations we noticed that thereis a
surprising sensitivity to the assumed form of the auto-
correlation function. In particular, whitening worked
well in the case of the exponential ACF (which is in
agreement with Monakov's results) but less well in the
case of the Gaussian one. After numerical experimen-
tation, we found that the Gaussian case is numerically
ill conditioned in the sense that the condition number
(ratio of maximal to minimal eigenvalue) is extremely
large for the Gaussian covariance matrix. The root of
the difficulty surprised usand it isrelated to the Wiener—
Khintchin theorem. The numerical instability turns out
to be caused by the violation of the requirement of a
positive Fourier transform of the ACF.

Let usillustrateit on the following example. Consider
an ACF of the form exp[—7¢]. Then, itisavalid ACF
if and only if 0 < @ = 2 (e.g., Yaglom 1987). Hence,
the Gaussian ACF isright at the boundary (« = 2) and
therefore results in ill-conditioned covariance matrices
in the presence of even the smallest computer noise. We
present calculations to prove this in section 5 on the
condition number. The important thing to note now is
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that the above restriction on « dictates our choice of
the ACF functional form in sections to follow. In other
words, consider a continuous autocorrelation function

p(7) = exp[—8(ma,7/A)*] = exp[—pr<], (14)

wherethisform is chosen to explore the Gaussian anom-
aly as « approaches 2. The discrete version of this ACF
sampled at equally spaced time intervals, is given by

p(MT.) = exp[—8(mo,MTJA)<] = exp[—pm=] = r™,
(15)

where 8 = 8(ma, TJA)*and r = exp[— B]. For example,
if T,islms Ais 10 cm, o,is 3.6 m st and the
autocorrelation is Gaussian so that « = 2, then B =
0.11 and r = 0.9. Hence, under these meteorological
conditions the correlation coefficient between consec-
utive samples is about 0.9.

5. Condition number

To implement the whitening procedure described ear-
lier, one needs to perform an inversion of the covariance
matrix. The latter is ill conditioned when the ratio of
maximal-to-minimal eigenvalue (the condition number)
is very large. As discussed before, our computations
have shown that the condition number is much larger
in the case of the Gaussian ACF than in other cases we
tried. In this section we present calculations to explain
this Gaussian anomaly.

We explore the effects of departure from the Gaussian
form by parameterizing the ACF, as indicated in Eq.
(14) or using the discrete version (sampled at evenly
spaced intervals) of Eq. (15), wherer O (0O, 1) is the
correlation coefficient between two consecutive samples
and « determines how Gaussian the ACF is (with 2
being pure Gaussian). Valid autocorrelation sequences
must posses anonnegative Fourier transform (physically
meaningful power spectrum). The eigenvalues of the
corresponding covariance matrices, A,, are nonnegative,
which turns out to force 0 < a = 2 for ACFs of the
family p(7) = r™ (Yaglom 1987).

Note that as r - 1, the maximum eigenvalue ap-
proaches N, the length of the autocorrelation sequence,
and all other eigenvalues approach zero. Physically, at
r = 1, al measurements are perfectly correlated and no
new information is provided by additiona measure-
ments. Then the covariance matrix is singular. Thus,
both r and « greatly affect the numerical stability of the
whitening transform. The rate at which the covariance
matrix approaches singularity asr approaches unity de-
pends strongly on «, with the Gaussian case a = 2
forcing the approach to singularity most rapidly.

We now proceed to illustrate the Gaussian anomaly
quantitatively. Let us quote from (Priestly 1981, p. 261)
‘““eigenvalues of the covariance matrix . .. are propor-
tional to the values of the (formal) ‘spectral density
function’ at the frequencies { 27k/N},” where the spec-
tral density values, v,, are computed as follows:
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o
p(t)=e Pt T vs. tforr=10.9, a = {1.9, 2.0}
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Fic. 1. Gaussian and nearly Gaussian functions. Small changesin
the parameter « result in small changes in the shape of the curve

p(r) = (0.9

— 1 S —i27kr /N =
Ve \/N;p(r)e k=1,2...,N. (16
Since the values of power spectral density cannot be
negative, the eigenvalues of the covariance matrix must
also be nonnegative.

Figure 1 illustrates the parameterization and displays
the two ACFs p,,(7) = r™* withr = 0.9, a; = 1.9,
and a, = 2.0. The slight difference between the curves
lies well within the variation of meteorological ACF
sequences (Janssen and van der Spek 1985), and the
corresponding condition numbersfor thetwo covariance
matrices derived from 32-point sequences of these
forms, are about 1.1 X 103 for @, = 1.9 and about 1.4
X 10°for a, = 2.0. Thisisstriking, assmall differences
in a produce very large differencesin condition number
and consequently greatly affect the computability of the
whitening transform. Figure 2 displays the effect of «
on condition number for 4-, 8-, 16-, 32-, and 64-point
ACF sequenceswherer = 0.98. [An example four-point
ACF sequence would be (0.98°°, 0.98"°, 0.982"°,
0.98%")]. Note that the condition number iswell behaved
up to @ = 1.95 for 32- and 64-point sequences (con-
dition number = 2.7 X 104 and 2.8 X 104, respectively),
indicating relatively easy computation of the corre-
sponding whitening transforms.

6. Potential improvement over the equivalent
number of independent samples

As aready mentioned in the introduction, the degree
of correlation between echoes depends on the distri-
bution of raindrop velocities in the resolution volume,
which in turn depend on turbulence, wind shear, beam
broadening, and fall velocity (e.g., see Nathanson 1968).
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Covariance matrix condition number vs. o

nOL
Where p(n)=(r) ,r=0.98 ’
! 1 |

105

—

o
e}
l

MAX(Eigenvalue)/MIN(Eigenvalue)
3
!

103 o

1 "4 by 4 covariance matrix :
102 47—

0.0 0.5 1.0 1.5 2.0 25
o, where p(n) = ()"

FiG. 2. Condition number vs « for covariance matrices derived
from autocorrelation functions of the form p(n) = exp[—pBn¢] =
() and r = 0.98.

The variance of the power estimate is inversely pro-
portional to the number of independent samples in the
estimate; that is, o3 = o2/N,. Current practice in radar
meteorology is to use estimated ACFs or power spectra
to determine the effective number of independent sam-
ples [see Eq. (17)] and to keep sampling until this ef-
fective number is large enough to drive the variance of
the estimate, o2, down to an acceptable level. For a
stationary random process, the rel ation between the total
number of samples N, the effective number of indepen-
dent samples N,, and the ACF p(n) is expressed (e.g.,
see Doviak and Zrni¢ 1993):

oB N = |n|
IE _ N = n). 17
Tenis 3 EENm. @

Meteorological time series are commonly assumed to
have Gaussian ACF (Gaussian power spectrum). The
assumption is often made for convenience—the Gauss-
ian form is analytically tractable and a good approxi-
mation for the near-center portion of the power spectrum
(e.0., see Srivastava et al. 1979). However, Janssen and
van der Spek (1985) find that thisis not always a good
approximation even in the center and especially near
the tails. To investigate the effect of whitening applied
to non-Gaussian autocorrelations, we will parameterize
the autocorrelation (because of the Gaussian anomaly)
as p(t) = exp[—B7¢] = r™.

Figure 3 displays the ratio N/N, versus correlation
coefficient rg s for ACFs of the form pg(n) = r2 and
pe(n) = rZ where N is 100. If the ACF were known
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Whitening improvement factor for ACF's of form

p(t) = e P=r, for a = 1.0 and 2.0
100 point time series

100

10

Improvement factor

1 4

T T T e T
00 01 02 03 04 05 06 07 08 09 1.0 141
Correlation coefficients, rg and rg for ACF's
2
pa(t) = (rg)®” and pg(v) = (rg)"

Fic. 3. Factor by which perfect, noise-free whitening increases the
number of independent samples in correlated 100-point time series
for time series with exponential and Gaussian autocorrelations.

exactly, the improvement in estimation variance, due to
whitening, would follow these curves. That is, if asam-
ple 100-point time series possessed an exponential ACF
with a correlation coefficient of r. = 0.8, there would
be about 11 effective independent samplesin the dataset.
Perfect whitening would raise the number of indepen-
dent samples to 100. From this figure we see the po-
tential efficiency improvement in the use of data, par-
ticularly for highly correlated samples—rapid sampling
and/or light drizzle conditions. Thisincreased efficiency
could be used to improve radar echo power estimate
accuracy at a given sample rate or to allow higher sam-
ple rates, and therefore higher scan rates, at currently
acceptable levels of accuracy. This may be particularly
beneficial in spaceborne radar applications (e.g., see
Meneghini and Kozu 1990, pp. 46—-47).

7. Generation of time series with specified
correlation

Let us now return to the exploration of the effects of
the use of ACFs estimated from data, and the addition
of noise on data whitening. To test this, we must first
construct time series with a prescribed autocorrelation
sequence. Following a procedure described in Johnson
(1994), we write

z
|

1

X, = T,

n n,mum1
0

(18)

3
1l

where the u,, are independent, normally distributed,
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zero-mean, unit variance random draws. The construct-
ed random draws, X, have the desired correlations if
the matrix T is a root of the covariance matrix C,

TTT = C, (19)

where the covariance matrix C describesthedesired time
series correlation.

8. Whitening with an estimated ACF

In arealistic application of the whitening technique,
the user must obtain an ACF to be used to calculate the
whitener. The candidate ACF will likely be estimated
in the presence of noise and probably will not be exactly
Gaussian or any other analytic form. In this section we
investigate a way to apply the whitening technique to
noisy measured data. To simulate the actual use of the
whitening transform, we first simulate measured time
series using the method of section 7, which allows us
to control the variance and autocorrelation of the time
series. We then add zero-mean uncorrelated Gaussian
random noise to the time series—scaling the variance
of this noise to control the time series SNR.

We generated up to 50 realizations of the noisy time
series, computed the sample autocorrelations of each
time series using the standard routine of Marple (1987,
p. 168), and averaged them. This average sample ACF
p(n), was then used to construct a whitener that was
applied to subsequent time series. We did not use the
average ACF to directly compute the whitening trans-
form, but fitted p(n) to an equation of the form p(n) =
ro and then constructed the whitener from this analytic
form. We very simply solved for the parameters «,, and
r, using lags 1 and 2 of p(n). That is, we set r,, = p(1)
and «,, = In[p(2)]/In(r2).To test the whitener, we then
generated up to 10 000 realizations of the noisy time
series and computed the mean-squared error (mse) in
the variance estimate both before and after whitening
and compared the two errors. The mean-squared error
is defined as —mse = M-t 3V, (P, — P,)2, where P,
is the average power in the noise-free, unwhitened time
series (unity) and P; is the power in the jth time series
realization. The mse was chosen as a measure of the
error in the estimate because it detects both systematic
bias error and the fluctuation about the mean due to
finite sampling.

This computational procedure is divided into two
main parts:

1) Prepare the whitener.

(@) Generate unit variancetime series (we generated
50 realizations).

(b) Shape the time series with prescribed ACE

(c) Add the desired amount of noise to the time
series.

(d) Compute the sample ACF for each realization.

(e) Average the ACFs.

(f) Fit awhitener ACF of the form p,,(n) = r2* to
the average ACE
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MSEunwhitened/MSEwhitened

Time series and whitener ACF of form p(n) = e

Whitener estimated from 50 samples of 64 point time series
17

Time series correlation coefficient, r= 0.95 |
15 -

SNR = 20 dB
19 i

11 L

MS Eunwhitened/M SEwhitened

31 SNR = 10 dB| r

SNR =-5 dB SNR=0dB

S
10 11 12 13 14 15 16 17 18 19 20

Time series a,, where time series ACF is of form p(n) = "

Fic. 4. Ratio of unwhitened to whitened mse. The whitener ACF
was estimated from 50 samples of the noisy time series, assuming a
form p(n) = r.

(g) Build the whitening transform with p,(n) =
ro.

2) Test the whitener.

(a) Generate up to 10 000 realizations of noisy time
series with the same statistics used to construct
the whitener.

(b) Whiten the sample time series.

(c) Compute the mse's of variance estimates for the
whitened and unwhitened time series, one re-
alization at a time.

(d) Compare the mse's to evaluate the whitening
technique.

We generated samples of 64-point time series with
ACFs of the form p.(n) = 0.95™, with «, varying from
1 (exponential) to 2 (Gaussian) and added noise so that
we had SNRs of —5, 0, 10, and 20 dB. We used 50
realizations of the time seriesto *‘train” the whitener—
corresponding to about 3.2 s of data at a 1-kHz pulse
repetition rate. We then generated 10 000 samples of
64-point time series at each value of «, and computed
the mse’s in the variance estimates for the unwhitened
and whitened time series. The ratio of these errors are
plotted versus «, in Fig. 4.

Values of the ratio greater than 1.0 indicate improve-
ment in the power estimate due to whitening. In fact,
the y-axis values indicate the factor by which the mse
is improved by whitening. A value of MSe,,miened’
MSE,hiened = 2.0 Means that the error in the unwhitened
power estimate is twice that in the whitened power es-
timate. It is apparent from the figure that except for
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Fic. 5. Ratio of unwhitened to whitened mse's. The whitener ACF
was estimated from 50 samples of the noisy time series, assuming a
form p(n) = rn.

SNR = 0 dB, whitening improves the power estimate,
in the mean-squared sense, over the full range of «,.
The great variability in mSe, nitenca/MSCuhitened S
variesisdueto the relatively small number of timeseries
realizations, corresponding to =3.2 s of data at 1 kHz
pulse repetition frequency, used to train the whitener.
However, this training can be continuously and adap-
tively updated with an ongoing data stream.

Furthermore, despite the variability, it seems clear
from Fig. 4 that whitening has potential to substantially
improve power estimates. As the time series ACF gets
increasingly Gaussian (o, - 2), the benefit due to whit-
ening decreases but is still quite good, with an improve-
ment factor of approximately 2 even at «, = 1.98 and
SNR = 10 dB. We carried out the same calculations
with r = 0.8 and found improvement for al «, O
(2.0, 2.0), for SNR > 0 dB.

In Fig. 4 we assumed the *‘correct” form for the
whitener ACF that is, both time series and whitener
ACFsof theform p(n) = r™*. We also consider theresults
when we fit an “‘incorrect’” form of the whitener ACF
to the sample ACF In Fig. 5 the time series were gen-
erated with ACF p,(n) = ©0.8” + (1 — $)0.8", a
mixture of exponential and Gaussian ACFs, but the
whitener was still constructed with an ACF of form
py(N) = r*w. Here again, we fit the whitener ACF form
to the average ACF computed with 50 realizations of
the time series. We see that despite using an incorrect
parametric form of the ACF to build the whitener, we
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Fic. 6. Ratio of unwhitened to whitened power estimate mse vs «,
where both time series and whitener ACF are of the form p(n) =
r"“. The whitener is estimated from 50 samples of 64-point time series.

still reduce the mse substantially by whitening the time
series before computing the variance.

We illustrate the dependence of whitening on the
magnitude of the correlation coefficient in Fig. 6. Here
we plot MSe,,nitencd/MSEuhitenea VErSUS « fOr time series
generated with ACF of the form p;(n) = r™, withr =
(0.85, 0.90, and 0.95) and whitened with a transform
derived from an estimated ACF of the same form, as
described earlier in this section. We set the signal to
noise ratio at SNR = 10 dB. Again, there is great var-
iability in the ratio as « is varied, but the ratio exceeds
unity throughout the range of «, indicating power es-
timate improvement. The improvement is greatest for
highly correlated time series. This is to be expected
because highly correlated time series have few inde-
pendent measurements and consequently high estimator
variance. Whitening then has greater potential to reduce
the correlation between successive measurements and
increase the number of independent samples, thereby
reducing the variance of the power estimator. We also
see that the benefits of whitening are greater for time
series with more nearly exponential ACFs. Note, how-
ever, that even at a = 1.98, Mse,,hitenea/MSEhitened 1S Still
greater than unity.

9. Concluding remarks

In this paper we explored the practical feasibility of
the ““ideal case’ theoretical whitening approach pro-
posed in Schulz and Kostinski (1997) to improve me-
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teorological radar echo power estimates. Three issues
not adequately addressed in that paper were 1) the nu-
merical instability of commonly used covariance ma-
trices, 2) the lack of precisely known ACF and the ne-
cessity of estimating the correlation function to compute
the whitening transform, and 3) the effects of noise.
All three points have been addressed in this paper. In
section 5, the numerical instability and ill conditioning
were related to the nonnegativity requirement of the
ACF and the Gaussian anomaly (the fact that the Gauss-
ian ACF isright at the edge of what is allowed by the
nonnegativity condition). Furthermore, a simple param-
eterization was suggested to avoid this problem.
Concerning the other two points, the results of section
8 strongly suggest that the whitening transform is a
robust technique (with respect to noise), which is ca-
pable of significant improvement of power estimates.
We showed that estimates of the time series ACF, in the
presence of noise and even assuming an incorrect func-
tional form for the time series ACF, can be used to
design a whitener that results in improved power esti-
mates for SNRs greater than or equal to about 5 dB.
No claim is made here that the proposed approach can
be applied to all meteorological situations and all kinds
of autocorrelation functions. However, we have dem-
onstrated here that it can be applied to a variety of
situations: varying correlation coefficient magnitude,
ACF functional form, and SNR. The standard two-lag
ACF estimator we used here is not optimal, but it is
simple and practical. Perhaps the potential benefit may
justify the computational overhead involved in imple-
menting a more sophisticated ACF estimator. Recall,
however, that only a few lower lags of the Doppler
spectrum are required for most estimators widely used
in radar meteorology such as 2 for the pulse-pair esti-
mator (see, e.g., Passarelli and Siggia 1983, p. 1783).
Our simulation results suggest that SNR values of
about 5 dB or greater may be necessary for noticeable
improvement via whitening. Thisis not very restrictive
as severe weather echoes are often in excess of 50 dB.
Recall that drops reshuffle quickly in severe weather
cases, implying that small interpulse correlation coef-
ficients and nearly singular values of, say, r = 0.999,
are rather unlikely, for example, see the discussion in
Kostinski (1994, p. 1179). Severa initia sets of time
series could be taken and used to compute a whitening
transform. Subsequent sets of time series could then be
whitened with this transform. An adaptive procedure
such as periodic reestimation of the time series ACF
could be carried out for updating the whitening trans-
form asthe decorrelation time changes. Assuming aPRT
of 1 kHz and the use of fifty 64-point (correlated) time
series to train the whitener, 3-4 s of the ongoing data
stream could be used for whitener *‘training,” and a
fraction of a second in computing the whitening trans-
form (which, for 64 samples, involves the inversion of
a 64 X 64 Hermitian—Toeplitz matrix). The cost would
also depend on the rate at which the signal statistics
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(ACF) change, that is, how locally stationary the signal
is (see the appendix for a corresponding sensitivity
study). This additional computational burden appears
rather small relative to the potential benefit.

To conclude, the question is whether the simulations
carried out in this paper accurately reflect real-world
conditions. We feel that given the range of ACF forms
and correlation coefficients examined, the simplicity of
the technique, and the potential to produce up to an
order of magnitude improvement in accuracy for weath-
er radars or other remote sensing instruments, an ex-
perimental study is justified.
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APPENDIX
Sensitivity to Incorrect Whitener ACF

To provide an additional test of the method via com-
parison with Monakov’s results (Monakov 1994) and to
provide the worst-case scenario in which highly variable
weather renders any whitening estimation impossiblein
real time, we provide the following sensitivity study in
this appendix. Here we let the time series and whitener
correlation coefficients (between two consecutive sam-
ples) differ widely in magnitude and examine the con-
ditions where whitening might still prove useful.

We then come back to the question: How accurately
does the r (correlation between consecutive samples) of
the ACF have to be known in order for whitening to
produce promising results? To that end, we generate
noise-free time series with prescribed ACF and corre-
lation parameter r and then whiten the series with a
different r and compute the resulting error in estimated
power. We report the results of computer simulations
for the case where both the time series and whitener
ACFs are of the same form. Specifically, we construct
time series with exponential autocorrelation, that is, the
time series autocorrelation is of the form p;(n) = ro.
The average power in the unwhitened time seriesisunity
in al cases. Whiteners are then constructed using au-
tocorrelations p,,(n) = rn, with correlation coefficients
r, = 0.8,0.85, 0.9, 0.95, and 0.98. We expect whitening
to be most effective whenr,, = r.

Figure Al illustrates the effect of whitening with
varying r,, on the error in the power estimates. The
horizontal axis is the correlation coefficient of the time
series being whitened, r. The vertical axisisthe mean-
squared error (mse) of the estimated power for the whit-
ened and unwhitened times series.

Time series of 64 points were used with up to 50 000
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Power MSE in d and itened time series. 64 point time series
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Fic. ALl. Curves of power estimate mse in 64-point time series
with and without whitening. Whitener and time series ACF both of
form p(n) = rn.

separate time series realizations in the mse sum. The
“ripple”’ in the curvesis due to the fact that finite num-
bers of time series realizations were used to compute
the mean-squared error at each value of r+. Increasing
this number would reduce the ripple. Note that in the
case of unwhitened time series, as r increases, the cor-
relation between points of the time series increases and
the independence of successive pointsin the time series
decreases. This increases the mse in the power estimate
and is apparent in the monotonic increase of the un-
whitened mse with r,. Thisis expected. The high error
in power estimation associated with high correlation is
important in meteorological applications where corre-
lations can often be greater than 0.95. The five other
curves of Fig. Al plot the power estimate mse for whit-
ened time series. The mse’s for the whitened time series
are minimum at r. = r,,. The best whitener, in the mse
sense, is expected to be the one derived from the time
seriesACF wherer; =r,,. Notein Fig. Al that although
the best power estimate occurs when the whitener cor-
relation coefficient is approximately the same asthetime
series autocorrelation coefficient, the whitened power
estimate is aways better than the unwhitened power
estimate when the whitener correlation coefficient is ei-
ther less than, equal to, or just slightly greater than the
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time series correlation coefficient. Although we might
expect the greatest improvement to occur when r; =
rw, we see that whitened mse is minimum when r, is
slightly lessthan r;. Monakov (1994) also reported sim-
ilar results. When we estimate the average power in the
time series without explicit whitening (i.e., with the
standard sample mean), we are implicitly ““whitening”
because the sample mean is optimal for the case of
independent (white) samples. This amounts to always
underestimating the correlation coefficient. We pay a
penalty if we overestimate the time series correlation
coefficient, however. For example, if r; = 0.8 and r,
= 0.9, the unwhitened power mseis about 0.14, but the
whitened power mse is about 0.93.
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