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Abstract 

This research addresses the problem of noise sensitivity inherent in motion and structure algorithms. The motion 

and structure paradigm is a two-step process. First, we measure image velocities and, perhaps, their spatial and 

temporal derivatives, are obtained from time-varying image intensity data and second, we use these data to compute 

the motion of a moving monocular observer in a stationary environment under perspective projection, relative 

to a single 3-D planar surface. The first contribution of this article is an algorithm that uses time-varying image 

velocity information to compute the observer's translation and rotation and the normalized surface gradient of 

the 3-D planar surface. The use of time-varying image velocity information is an important tool in obtaining a 

more robust motion and structure calculation. The second contribution of this article is an extensive error analysis 

of the motion and structure problem. Any motion and structure algorithm that uses image velocity information 

as its input should exhibit error sensitivity behavior compatible with the results reported here. We perform an 

average and worst case error analysis for four types of image velocity information: full and normal image velocities 

and full and normal sets of image velocity and its derivatives. (These derivatives are simply the coefficients of 

a truncated Taylor series expansion about some point in space and time.) The main issues we address here are: 

just how sensitive is a motion and structure computation in the presence of noisy input, or alternately, how accu- 

rate must our image velocity information be, how much and what type of input data is needed, and under what 

circumstances is motion and structure feasible? That is, when can we be sure that a motion and structure computa- 

tion will produce usable results? We base our answers on a numerical error analysis we conduct for a large number 

of motions. 

1 Introduction 

1.1 The Problem and Solution Methodology 

This article outlines a motion and structure algorithm 

that uses time-varying image velocity information to 

compute the motion of a monocular observer moving 

relative to a stationary 3-D planar surface under per- 

spective projection. Due to the depth-speed ambiguity 

experienced by a monocular observer, his translation 

0 and the 3-D coordinates of environmental points of 

the planar surface,/5~ cannot be recovered. Figure 1 

illustrates this. Hence, we can only compute ~; the 

depth-scaled observer translation and &', the normalized 

surface gradient of the 3-D planar surface. Since the 

rotational component of image velocity is independent 

of 3-D depth we can fully recover the observer's rota- 

tion, ~'. To determine these motion and structure 

parameters we derive nonlinear equations relating 

image velocity and its derivatives at some image point 

and time, Y(P', t') to the underlying motion and struc- 

ture parameters at another image point and time, Y(~ t). 

Hence, we are able to use time-varying image velocity 

information in the computation of motion and struc- 

ture. This is in sharp contrast with most previous 

approaches (for references, see [Barron 1984, 1988] and 

section 1.2) to motion and structure where image 

velocity information is measured at one time only. As 

we shall see in what follows, the use of time-varying 

image velocity information can often reduce error 



240 Barron, Jepson and Tsotsos 

Image Plane 

~.. . . . .~ ~2 "=(X 1 ",X 2 "~  3 ") 

T ~ ' .  AAP~I"=(XI'~X2",X3 ") 

~'~=(xt,x>x3) ~ ~ . . . .  

*p°I~-(X-1,X 2,X 3 ) ~ l  "'Y2 '1) 

F=(Y 1,Y2,1) ~ 

Fig. 1. The depth-speed ambiguity for a monocular observer. If UI and U2 are the 3-D translational velocities of/~1 and P2 respectively, both 
with the same image point Y, then both 3-D translational velocities project onto the image plane with the same image velocity proportional to 
depth-scaled translation tT"= U~/ItP1112 = ~)JI IP,  112. Hence, neither 3-D translation or 3-D depth can be recovered for a monocular observer, 
only their ratio. 

sensitivity in motion and structure calculations. Our 

solution technique then simply involves solving non- 
linear systems of equations (often in the least-squares 
sense) relating time-varying image velocity information 
to the appropriate motion and structure parameters. Due 
to the aperture problem [Horn and Schunk 1981] (see 

figure 2) it may be easier to compute normal image 
velocity and its derivatives rather than full image veloc- 

ities and its derivatives. Hence, we investigate the use 

of both full and normal image velocities and full and 
normal Taylor series coefficients in the recovery of 
motion and structure. We consider the use of Taylor 
series coefficients computed from (normal) image 
velocity fields [Waxman and Ullman 1983, 1985] or 

measured directly from time-varying image intensities 
[Eagleson 1989]. 

Image of a moving contour 

Aper ture(  

(True image velocity) 

~N (Normal image velocity) 

Fig. 2. The true image velocity, Vcannot be distinguished from the image velocity normal to a moving contour, VN, when viewed through an aperture. 
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1.2 Literature Survey 

The most common approach to monocular reconstruc- 

tion involves solving (generally nonlinear) systems of 
equations relating image velocity (or image displace- 
ment) to a set of motion and structure parameters [Adiv 
1984; Barron 1988; Bruss and Horn 1983; Buxton et al. 
1984; Dreschler and Nagel 1982; Fang and Huang 

1984; Kanatani 1985; Lawton 1983; Prazdny 1979; 
Roach and Aggarwal 1980; Tsai et al. 1982; Tsai and 
Huang 1984; Webb and Aggarwal 1981]. Some of the 
issues that arise for these algorithms are the need for 
good initial guesses of the solution, the possibility of 

multiple solutions, and the need for accurate input. The 
latter is by far the most important issue if a motion and 
structure algorithm is to be judged a success. As Waxman 
and Ullman [1983; 1985] and others have noted, motion 
and structure algorithms that use image velocities of 

neighboring image points require accurate differences 
of these similar velocities. That is, solving systems of 
equations effectively requires subtraction of very similar 

quantities: the error in the quantities themselves may 
be quite small but since the magnitudes of their differ- 

ences are quite small, the relative error in them can 
be quite large. Hence, such techniques can be expected 
to be sensitive to input errors. Adiv [1984] and Bruss 
and Horn [1983] suggest this sensitivity might be reduced 
if a least-squares minimization was computed over the 
entire image. 

A second approach to reconstruction involves solving 

nonlinear systems of equations relating local image 
velocity information (one image velocity and its first- 
and second-order spatial derivatives) to the underlying 
motion and structure parameters [Longuet and Higgins 
1981; Waxman and Ullman 1983, 1985; Subbamo 1986]. 

The rationale is that using local information about one 

image point means that the problem of similar neigh- 
boring image velocities can be averted. However, this 
is replaced with the problem of computing these first- 

and second:order spatial derivatives. Waxman and 
Wohn [1984, 1985] propose that these derivatives be 
found by solving linear systems of equations, where 

each equation specifies the normal component of image 
velocity on a moving nonoccluding contour in terms 
of a Taylor series expansion of the x and y components 
of full or normal image velocity. They call this the 
Velocity Functional Method. In effect, their motion and 
structure algorithm divides the computation into two 
steps: use a normal velocity distribution to compute 
image velocity and its first- and second-order spatial 

derivatives at an image point and then use these as input 

to an algorithm that solves the nonlinear equations relat- 

ing motion and structure to the image velocity and its 
first- and second-order derivatives. More recently, 
Subbarao [1986] and Waxman et al. [1987] have pro- 

posed closed-form solutions for motion and structure. 
This basically involves solving a cubic equation and 
a set of decoupled nonlinear equations. 

A third approach to reconstruction involves using 
spatiotemporal intensity derivatives directly as input to 
a motion and structure algorithm [Aloimonos and 

Brown 1984; Horn and Weldon 1988; Negahdaripour 
and Horn 1987]. The claimed advantage is that the com- 

putation of optic flow as an intermediate step is by- 
passed. However, the error sensitivity behavior of this 
approach has not yet been fully analyzed. 

Only recently, have researchers begun to address the 
use of temporal information, such as temporal deriva- 
tives, in reconstruction [Subbarao 1986; Bandyopadhyay 

and Aloimonos 1985]. We note that others' use of tem- 
poral derivative information and our use of time-varying 

image velocity information differ in one important 
respect: we measure our information, including spatial 
and temporal derivative information at many different 

times rather than at one just one time. The time interval 
between the measurement of adjacent image velocity 
fields can be arbitrarily large, provided our acceleration 

model (see below) is satisfied. Only if the time intervals 
are small can we accurately approximate temporal 

image velocity derivatives (as a finite difference) from 

the image velocities. Otherwise, image velocities meas- 
ured at different times have no relationship with tem- 
poral image velocity derivatives. We note that, via a 
Taylor series expansion, image velocity fields (at least 

locally) can be approximated from one image velocity 
and its first and/or second spatial and temporal deriva- 

tives and vice versa. Indeed, image velocity fields are 
often used in the derivation of spatial and temporal 
image velocity information [Waxman and U1]man 1985; 

Waxman and Wohn 1985]. 
Some other work [Broida and Chellappa 1986; Shariat 

and Price 1986a, b] has been concerned with the use 

of image displacements over multiple frames in motion 
and structure computations. As well, Matthies et al. 
[1989] and Wu et al. [1989] have used a Kalman-filter 
approach to integrate information over time in the com- 
putation of 3-D information from a sequence of images. 
Spetsakis and Aloimonos [1988] also showed the effec- 
tiveness of using least squares in image displacement 
motion techniques. 
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It is somewhat disappointing that almost none of these 

reconstruction techniques have been successfully applied 

to flow fields calculated from realistic scenes. Primar- 

ily, the problem is the difficulty in computing accurate 

flow fields. There has been little or no error analysis 

in previous monocular reconstruction work, although 

some researchers (see, e.g., Waxman and Ullman [1983, 

1985], Buxton et al. [1984], Aloimonos and Rigoutsos 

[1986], Subbarao [1986], and Snyder [1986) have begun 

to consider the inherent sensitivity of their algorithms 

to random noise in the input. See Barron [1984; 1988] 

for a more detailed survey of motion and structure algo- 

rithms and their problems. 

1.3 Contributions of This Work 

Most approaches to reconstruction use an image veloc- 

ity field at one time instance only. We propose that time- 

varying image velocities arising from a moving surface 

be used. By using image velocities distributed over both 

space and time, the range of image velocity magnitudes 

may be much larger than the range of image velocity 

magnitudes distributed over space at one time only. 

Hence, the problem of similar neighboring velocities 

may be reduced. Intuitively, this makes sense, as using 

image velocities over a time interval is, in effect, simply 

extending the spatial extent of the surface (and, gener- 

ally, the larger the spatial extent, the greater the range 

of image velocity magnitudes). As well, the use of time, 

may allow the recovery of motion and structure param- 

eters from flow fields that are not analyzable at one 

time only. A couple of other advantages result from using 

a spatiotemporal distribution of image velocity; namely, 

sparse flow fields may be used (often accurate image 

velocity can only be computed at a few points in each 

image) and occlusion of parts of a surface at different 

times can be handled as we can use image velocities 

on the visible parts of the surface at any given time. 

In order to relate a spatiotemporal distribution of im- 

age velocities to the motion and structure parameters 

at some image point we need to make some assumptions: 

1. The use of perspective transformations requires the 

assumption of rigidity; objects are assumed to be 

rigid. This ensures that the image velocity of an 

object's point is due entirely to the point motion with 
respect to the observer and not due to changes in 

the object's shape. There is much psychological evi- 

dence (e.g., Hay [1966] and Ullman [1979]) to support 

the premise that humans have a tendency to use the 

rigidity assumption to analyze world scenes. 

2. The 3-D surfaces of objects can be described locally 

as a plane. The local planarity assumption means 

curved surfaces are treated as collections of adjacent 

planes. 

3. The observer rotates with a constant angular velocity 

for some small time interval (with respect to the 

observer coordinate system). Webb and Aggarwal 

[1981] call this the fixed-axis assumption. 

4. The spatiotemporal distribution of image velocity 

results from 3-D points on the same planar surface. 

We call this the same-surface assumption. 

5. The observer's type of motion is known a priori. 

This known-motion-type assumption is necessary for 

relating ~ values at various image locations on a 

planar surface at different times to each other and 

will be explained in more detail below. We also refer 

to this as the acceleration model. 

The use of a spatiotemporal distributions of image 

velocity means motion and structure can be computed 

using local spatiotemporal data; thus we are not neces- 

sarily restricted to stationary environments as we can 

treat each independently moving surface as stationary 

relative to the moving observer. 

The reader may question the validity of using these 

kinds of assumptions, especially when real-world im- 

agery is used as the input. We treat violation of these 
assumptions as one type of error in the input data. We 

believe that artificial situations such as the one created 

by our assumptions need to be fully analyzed before 

the even harder problem of using real-image input can 

be addressed. We show below that the use of separate 

image velocities measured at separate individual times 

generally increases the robustness of the motion and 

structure calculation in most cases (especially in the 

least squares case). As well, it allows the recovery of 

motion and structure in situations not possible using 

only one flow field. 

The use of the local planarity and fixed-axis assump- 

tions means that the point-to-point correspondence 

problem does not have to be solved, that is, we do not 

have to use velocities of the same 3-D points at different 

time intervals, as it is now mathematically possible to 

relate image velocities distributed in space and time at 

any point and time on a 3-D planar surface to the motion 
and structure parameters of any other point on the 

planar surface at any other time (where these assump- 
tions are reasonably satisfied).1 Other researchers, such 
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as Kanatani [1985] and Aloimonos and Rigoutsos [1986], 

have also advocated a correspondenceless approach. 

Direct methods for computing motion and structure 

[Aloimonos and Brown 1984; Horn and Weldon 1988; 
Negahdaripour and Horn 1987] may also be classified 
as correspondenceless. The computation of image 
velocity may require solving the correspondence prob- 
lem, although there is a group of techniques based on 

the relationship between spatial and temporal grayvalue 
distributions, (see, e.g., [Horn and Schunck 1981; Fleet 
and Jepson 1990; Waxman et al. 1988; Heeger 1987]) 
for determining image velocity without the need to com- 
pute correspondence. 

The algorithm presented here involves solving non- 
linear systems of equations that relate a spatiotemporal 
distribution of image velocity to a set of motion and 
structure parameters at some image point at a particular 

time. Newton's method is used to solve the equations. 
As a result, an initial guess to the actual solution is 
needed to start the convergence calculation. This article 
investigates two important questions: how good does 

the initial guess have to be and how accurate must the 
time-varying image velocity input be? Some preliminary 
results were presented by Barron et al. [1987a, b, c]. 

We note that only the first question is algorithm depen- 

dent. The second question involves the inherent sensi- 
tivity of the exact solution of the solution and structure 

equations to perturbations in the image velocity data. 
Any algorithm based solely on solving these types of 
equations will exhibit this sensitivity. 

2 Mathematical Preliminaries 

In this section we present a brief description of our algo- 
rithm. Complete details are in [Barron 1988]. We use 
notation P~(t; r) to indicate a 3-D point measured at time 

t with respect to a coordinate system ,~(r). Similarly, 
X3(P, t; ~') is the depth of P(t; z). Y(]~ t) is the image 
of P(t; t). We adopt a right-handed coordinate system 

as in Longuet-Higgens and Prazdny [1980] and shown 
in figure 3. f) = (U~, U2, U3) is the translational veloc- 
ity of the observer, centered at the origin of the coor- 
dinate system -~(t) and ~ = (o~, o~2, c03) is the angular 
velocity of the observer. The image of P is located at 

= (Yl, Y2, 1). The origin of the image plane is (0, 0, 1), 
that is, the focal length, f, is 1. The X3 axis is the line 
of sight. 

Image 
Plane 

3 

X2 

ux~ 

Observer 
(o,o,o) / ) > xl 

Y2 ~y 

( o , o , 1 ) / /  1 

/ / ~ "  ~_(~1 ,~2,U.3 ) 

P ~ ~ 3  D Planar Surface 

Fig. 3. The observer-based coordinate system. U" = (UI, U2, U3) is the observer's 3-D translational velocity while ~ = (wl, o~2, w3) is his 
3-D rotational velocity. The image plane is at depth 1. The image of ~ is located at ~ = (Yl, Yz, 1). ff = oq. a2, ol3) is the normalized surface 
gradient of the 3-D planar surface that/3" belongs to. The origin of the linage plane is (0. 0, 1). The X3 axis is the hne of sight 
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2.1 The General Monocular Image Velocity Equation 

We can write an equation relating image velocity at some 

image point Y(P;, t') to the monocular motion and 
structure parameters at some image point Y(Pi, t) as 

Oi(U, t, t') u-'(~(/~., t), t; t) 

Su(~z(fii, t), Y(Pj, t'), t') 

TM(Y(/~, t), t, t ') 

+ t')) 0. (1) 

where/~'~ and/b), are 3-D points on the same planar 
surface and generally Y(P'/, t) ~ Y(~, t'). In the 
above equation 

101 0 Y~I A,(F(P, t)) = - 1 , 
0 

ylyz - (1  + y~) 

A2(Y(P, t)) = ~(1 ; y~) -YlY20 

(2) 

(3) 

h(Y(/~, t)) is the perspective correction function that 
specifies the ratio between the depth of P(t; t), X3(P ~ 
t; t) and its 3-D distance from the observation point, 
t l lS(t ,  t ) l l 2  = (P(t; t)- P(t; t)) '/', that is, 

h(Y(/~, t), t; t) - liP(t; 0112  _ IIF(P, t)lh (4) 
x3(P, t; 0 

and fi*(Y(P~ t), t; 0 is the depth-scaled translational 
velocity of the observer, 

t~(Y(P, t), t; t) - U(t; t) (5) 

liP(t; 0112 

Before we define Q, S M and T M below we need to 
introduce the observer's acceleration model. One of the 
advantages of using a single instantaneous image veloc- 
ity field is that no assumptions about the observer's 
motion, for example his acceleration, have to be made. 
However, the use of a spatiotemporal distribution of 

image velocities requires that we relate the motion and 
structure parameters at one time to those at another 
time. Hence, we need an observer acceleration model. 
In this paper, we consider two specific types of motion, 
although we emphasize that our treatment can be gen- 
eralized to other motions as well. The two types of 
motion considered are: 

Type 1 (Linear Motion, Rotating Observer): A vehicle 
is moving with constant translational velocity and has 
a camera mounted on it that is rotating with constant 
angular velocity. The translation and rotation are con- 
stant with respect to the inertial coordinate system, X(0). 

Type 2 (Circular Motion, Fixed Observer): A vehicle 
with a fixed mounted camera is moving with constant 
translational and angular velocity. The translation and 
rotation are measured in the current coordinate system, 

Y?(0. 
Figures 4 and 5 show top-down views of a vehicle 

undergoing type 1 and type 2 motion respectively. 

Q,(U, t, t') = R r (co, t')R(&', t) 

and 

Q2(&', t, t') = I (the identity matrix), 

i N 
/ \ 

I..3 I._1 1_3 

Fig. 4. A top-down view of  type 1 motion.  A vehicle undergoes  pure constant  translation whi le  the camera  mounted  on it rotates about  some 

fixed axes. 
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\ 

"I 
/ 

U 

F/g. 5. A top-down view of type 2 motion. A vehicle moving w~th constant speed, t[ 0][~, has a camera rigidly mounted on it. The camera 

and the vehicle are rotated together as they translate, resulting in the curvilinear motion shown above. The  view is top-down. 

for types 1 and 2 motion respectively. R(&', t) is an 
orthogonal matrix specifying the rotation 11 [12t of Y~(t) 
with respect to ~'(0). SM, the monocular spatial scal- 
ing function, 

SM(Y(fi ~, t), Y([~), t), t) = &'(~' t; t) . Y(~ ,  t) 
ff(Pi, t; t)" Y(P'/, t) 

_ X3(P , ,  t; t) (6)  

X3(J~, t; t) 

specifies the depth ratio of two 3-D points, P~ and J~ 
on the same planar surface at the same time. TM, the 
monocular temporal scaling function, 

TM(~(fi:, t), t, t ')  -- X3(~., t; t) 
X3(Pk, t'; t ') 

= r ' ;  0} + 

{6t'(/~k, t"; t") " RT(ff~ ", t")R(ffo', t) 

X [Y(fi~, t) - A'd (P~., t, t"; t) 

× h(~t(P; ., t))]} (7) 

specifies the depth ratio of two 3-D points, P~ and P'k 
at times t and t', where Y(P), t) = Y(Pk, t"). ffd (P, t, 
t'; t) is the depth-scaled observer displacement from 
time t to t '  in ~'(t) coordinates, 

Ad(/3. t, t'; t) - ~ (t, t'; t) (8) 

IlPlh 

z~9 (t, t'; t) is the absolute observer displacement from 
time t to t'. For type 1 motion 

~91(t,  t'; t) = ~)l(t; t)(t' - t) 

yielding 

A'dx(fi, t, t'; t) = tT](Y(fi, t), t; t)(t' - t). (9) 

For type 2 motion 

~gz(t; t'; t) = Rr(~', t) I f  j' R(~, s) ds] ~12(t; t) 

yielding 

Ad2(P, t, t'; t) = 

R(~o, s~ ds ~'~(~(P, O, t; t). (lO) 

The integral in (10) can be computed using adaptive 
quadrature. However, since type 2 motion involves the 
observer moving on a path that traces out a circular 
helix, a closed-form expression is possible. The partic- 
ular expression is messy and therefore omitted. 

Equation (1) reduces to the standard image velocity 
equation [Longuet-Higgens and Prazdny 1980] when 
t = t '  = 0, and image velocity is measured at the same 
image point the motion and structure parameters are 
measured at, that is, Q = I, SM = 1, and TM = 1. 
Given eight distinct components of image velocity 
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distributed over space and time, but on the same 3-D 

planar surface, we can construct and solve a nonlinear 

system of equations to determine the motion and struc- 

ture parameters. 

In addition to recovering motion and structure from 

full image velocity data, we can also use normal image 

velocity data directly in the computation of motion and 

structure. We can write 

IIv.f (P, 0, t)l12 = t), t ) .  t, 0 (11) 

where t~ is the unit-normal vector against which ~ was 

measured. Equation (11) means we can use 8 normal 

image velocities measured in space and time to recover 

motion and structure. 

Lastly, we can differentiate (1) and (11) to obtain first- 

and second-order spatial derivatives and first-order tem- 

poral derivatives of ~7'and ~ .  These derivatives can be 

estimated via an approximate Taylor series expansion 

from full/normal image velocity flow fields or meas- 

ured directly from the time-varying intensity data by 

some as yet unspecified filtering technique. These 

derivatives can be used directly in a motion and struc- 

ture computation. 

2.2 The Nonuniqueness of  the Solutions 

Because we are solving nonlinear systems of equations 

we need to be concerned about the uniqueness of our 

solution. Hay [1966] was the first to investigate the in- 

herent nonuniqueness of the visual interpretation of a 

stationary planar surface. He showed that for any planar 

surface there are at most two sets of motion and struc- 

ture parameters that give rise to the same image velocity 

field for that surface. Hay also showed that given two 

views of such a surface only one unique set of motion 

and structure parameters was capable of correctly de- 

scribing the image velocity field. Waxman and Ullman 

[1983, 1985] carried this result one step further by show- 

ing the dual nature of the solutions: given one set of 

motion and structure parameters it is possible to derive 

a second set in terms of the first analytically. If this 

second solution is then substituted back into the equa- 
tions specifying the duality, the first solution is obtained. 

Given one set of motion and structure parameters, ~ ,  

if1, and U1 at Y(~ t), we can derive expressions for 

the dual solution, fi'z, ffz, and ~72, at Y(P, t) as 

t), t; t) 

= &'~(/~, t; t) ~(Y(F '  t), t; t) • Y(P, t) ,  (12a) 

if~(P, t; t ) .  Y-(P, t) 

12(P, t; t) = 

and 

Uz(t; t) = "* " t) Wl(t, 

+ I0t13(/3! t, t) 
t; t) 

t), t; t) 

II (F(P, t), t; t ) L  
(12b) 

-c~13(P, t; t) oq2(P,t; t)"] 

0 t; t)j 
oql(P, t; t) 

× ~t'l(Y([~ t), t; t)h(~(P, t)) (12c) 

ifl(P, t; t) • Y(P, t) 

ffl = (otn, oqz, ol13) in (12c). Obviously, when 

fi'(Y(P, t), t; t) 
if(P, t; t) = 

t), t; t)llz 

the solution is unique as the dual solution reduces to 

the first solution. Subbarao and Waxman [1985] have 

also shown the uniqueness of the motion and structure 

parameters over time. 

These theoretical results suggest that the possibility 

of multiple (nondual in the spatial case) solutions is 

nonexistent. However, they hold only when the whole 

flow field is considered. It is possible for two distinct 

sets of four image velocity fields to have four common 

image points at the four times with the same image 

velocity values. Hence, the analysis of the four image 

velocities may give rise to any of the sets of motion 

and structure parameters having those four image veloc- 

ities in common. See [Barron 1984 and 1988] and below 

for examples of multiple solutions. It is unlikely this 

phenomenon would be observed as the amount of input 

data is increased. In this case, we can be reasonably 

confident that the solution obtained in time is unique. 

2.3 Singularity 

In cases where there is no translation it is essential that 

this be known; the reduced system of equations for &" 

is well conditioned and robust (c~ cannot be recovered 

unless there is translation). However, we are concerned 
with the general system of equations for fi, 6t', and &', 

which is singular if fi" = (0, 0, 0) and is treated as an 

unknown. In fact, when i7 << U, its condition number 

becomes very large; a relatively small input error can 

cause large changes in the output. Also, Fang and Huang 
[1984] and others have shown that the solution does not 

exist if image velocities at three or more collinear 3-D 

points are used (as the determinant of the Jacobian 
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matrix, J, is 0). We have also observed that the solu- 

tion cannot be obtained when two pairs of time-varying 

image velocities resulting from the 3-D motion of two 

3-D points on the same planar surface are used. The 

image motion of the points can be caused by an infinite 
number of motion and structure combinations. As well, 

there are pal~cular motion and structure combinations 

that cannot be recovered at one time. For example, if 

0 = (0, 0, a), ff = (0, 0, 1) and g = (0, b, 0) at time 

0, then for an arbitrary set of constants (a, b) the motion 
is singular. 

3 Experimental Preliminaries 

In this section we present details about the solution tech- 

nique and sensitivity analysis. 

3.1 The Solution Technique 

We solve the nonlinear system of equations 

j r =  j~ _ f• = 0 (13) 

where ~ are the measured input (fun/normal) image 

velocities or (full/normal) Taylor series coefficients and 

f'~ are the corresponding (full/normal) image velocities 

or (full/normal) Taylor series coefficients computed 

using the current estimate of the motion and structure 
parameters. We use Newton's method to solve equation 

(13), hence we need to compute a Jacobian matrix 

Of O fc  i 1 
i = 1, . . . , m ,  j = 1, . . . , n  (14) 

where n is 8 as K=  (~, if, ~ consists of nine compo- 
nents but only eight of them are independent--that is, 

since ff is normalized to 1, II lh -- 1, only two of its 
components are independent; and m _> n specifies the 
number of inputs. To enforce the ff normalization con- 

straint we replace the three ff parameters with two 

parameters. We compute three mutually perpendicular 
normalized vectors, g'~, g~, and g;, where, for conven- 

ience only, ~ is set to the correct 6~" value. We then 
replace ~7 by ~ = (al, az): 

cT.g~ 
a i - i = 1, 2 (15) 

cT .N 

Given ~, we can reconstruct if: 

(16) 

Elements of J corresponding to a i are computed as 

a, ' Oa U (,Ooq ' Oa2 ' Oa " (gq' ~2) (17) 

If we assume pure translation, we compute Jm×5, that 

is, we do not compute Of/c%~i, i = 1 . . . . .  3. Newton's 

method also requires an initial guess, ~0, to start the 

convergence calculation. That is, we iterately solve 

= f (18) 

where, at the ith iteration ff = ~' - ~/-1, until conver- 

gence is obtained. 

3.2 The Sensitivity Analysis 

It is well known in the computer vision community that 

motion and structure computation is very sensitive to 

noisy input. The problem is further compounded by 

the fact that image velocity may not be entirely due to 
the 3-D velocity field [Horn 1986; Verri and Poggio 

1987], since variation in the image brightness patterns 
can be due to other phenomena as well, such as changes 

in lighting conditions and specnlar points. It is possible 

to discriminate between the 2-D motion field that is 

a direct result only of the 3-D velocity and the optic 

flow field which is a measure of the image intensity 

variation in space and time. As a result of these prob- 
lems, some authors, for example, Thompson and 

Kearney [1986] and Verri and Poggio [1987], argue 

against the quantitative use of image velocity informa- 

tion. In this article the discrepancy between a motion 

field and the measured optic flow field is considered 
as another source of input error. 

Recentl); Waxman et al. [1987] and Subbarao [1986] 

have presented closed-form solutions to motion and 

structure (at one time) even if the surface is nonplanar. 

As Subbarao [1986] notes, any such algorithm's error 
behavior can be predicted analytically. Hence, a numer- 

ical analysis is not needed because it is redundant. 
However, since we are solving for motion and structure 

in space and time we use SM and TM in our image 

velocity equation. As a result, this equation is highly 

nonlinear and as of yet we have not been able to derive 
a closed-form solution for it. Thus, an analytic analysis 
is not possible and we instead conduct a numerical anal- 

ysis. Since error behavior for a particular set of motion 

and structure parameters is inherent in the environment 
under which recovery is being attempted and not the 
particular algorithm being used, results of our error 
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analysis should (roughly) hold for all similar motion 

and structure algorithms. 

Previous error analysis has consisted almost entirely 

of running particular motion and structure algorithms 

with random noise in the input, see for example, 

Waxman and Ullman [1983, 1985]. Here we present 

average and worst case error results for both minimal 

and least squares input. Rather than compute the per- 

cent output error given X% input error we compute 

error amplification factors: given a certain size input 

error, what is the size of the output error? I f  A f i s  the 

input error and As is the output error, then the L2 error 

amplification factor is simply 

II~sl12 (19) 

o -  II~fllz 

If  I" = IIf'qlJIIrll2, w h e r e f i s  the correct input vec- 

tor and K is the correct ouptut (the solution) then X% 

input error causes pPX% output error. 

We also considered best case error for minimal input 

in [Barron 1988]. These results, which are not reported 

here, are quite good, with error amplifications typically 

0.2 or less for most motions. Of  course, in the least 

squares case best case error corresponds to a residual 

vector of size 0, which occurs for both error-free input 

and erroneous input in some unspecified direction. 

3.2.1 What Constitutes a Feasible Motion and Structure 

Computation? At this point in the article we state the 

criteria by which we judge whether a motion and struc- 

ture computation is viable. We believe a feasible motion 

and structure algorithm should consistently produce 

worst case error amplification factors of 3 or less. 3 

may seem arbitrarily chosen but higher p values such 

as 10 would be too big (yielding no useful information) 

while we may not be able to obtain lower p values for 

a large range of motions. For I '  ~ 1, the 10% worst- 

case error in f~vould then produce at most 30% error 

in E Typically, I" ranges from 0.5 to 2.0 for the motions 

we have examined in this article. We have chosen 10% 

error in the input as the maximum allowable. Heeger 

[1987] and Fleet and Jepson [1990] have presented some 

encouraging results in this regard for the measurement 

of  image velocities. Still, 30 % output error is not that 

useful, except to give a general idea about the motion. 

For an autonomous vehicle we probably need p _< 1 

if the computed motion and structure parameters are 

to be useful. As well, we desire a robust calculation: 

the condition number of the Jacobian matrix, r, should 

be small, in the thousands or less, at most (an arbitrary 

cutoff). Obviously, there is a strong correlation between 

r and p. Lastly, we note that the use of  worst case input 

in our investigation is important: if we can show that 

the motion and structure algorithm is feasible for worst 

case input error then it is also feasible for all types of 

other error. Worst case error will seldom occur in the 

real world. 

3.2.2 SVD Analysis: Computing Average and Worst 

Case Input Error. Given a Jacobian Jmxn, m >_ n we 

can compute its singular value decomposition (SVD) as 

Jm×n T = UmxnDn×n Vnx n (20) 

where U and V are unitary matrixes and D is a diagonal 

matrix. Given the SVD of J we can compute worst case 

SVD error amplification factors as simply the inverse 

of  the smallest diagonal element of  D. i f  d,- is that ele- 

ment, then Urn, gives the worst case error direction. 

We note that this is actually the worst case error direc- 

tion for the linear system of equations Jh" = f a t  one 

iteration (we always compute the best, average, and 

worst case error using the correct g'values) and is only 

an approximation for the nonlinear system in general: 

the smaller the input error, the smaller the nonlinear 

effects and the better the approximation. (When m = n 

the inverse of the largest diagonal element of  D gives 

the best case SVD error amplification factors.) 

We can also conduct average case error analysis if 

we make enough random error nonlinear simulations. 

We can compute average case SVD error amplification 

factors as 

1000 

i=l 

lOOO (21) 

where J + is the pseudoinverse of J and hi is a random 

unit vector. The largest random error amplification fac- 

tor should approach worst case error amplification 

results. 

Even though worst case SVD error is only an approx- 

imation to the actual nonlinear worst case error of a 

nonlinear system of equations experimental observations 

show it is still much worse than random (average) case 

error for all the motion and structure setups we exam- 

ined in this article. As well, SVD analysis of  J allows 

us to predict average and worst case performance for 

a nonlinear system of equations without performing 

nonlinear simulation. Hence, SVD analysis is a valu- 

able tool in our sensitivity investigation. 
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We can analyze the feasibility of motion and structure 

using full image velocities, normal image velocities, 

full Taylor series coefficients and normal Taylor series 

coefficients; we compute the appropriate Jacobian J for 

each type of input. We can also estimate Taylor series 
coefficients from image velocities, that is, Ag" = f~ 

where fare  the image velocities and f a r e  the estimated 

Taylor series coefficients. SVD analysis of Jest = A-1J 

allows us to compare error amplification behavior with 
J computed for Taylor series coefficients. 

In order to compare worst case predicted SVD error 

amplification factors with nonlinear simulation results 
we compute the worst case error direction as described 

above and then add X% relative worst case error to the 
input by scaling the worst case error so that the image 

velocity or Taylor series coefficient pair with the largest 
ratio of error size to the magnitude of the pair has X% 

error; hence all other pairs have <_X% error in them. 

In the case of normal image velocities and Taylor series 

coefficients we compute X% relative error by scaling 

the error vector so that the largest ratio of error to 
normal magnitude is X%. 

3.2.3 Computing Mean~Difference Error in Image 

Velocities. Given four image velocities, f we can com- 
pute a matrix, T, that transforms the image velocities 

into their mean and differences, that is, Tg'= f w h e r e  
~is a vector consisting of two mean coefficients and 

six difference coefficients. By orthogonalizing T, T-1j 

and J produce the same best and worst case error ampli- 
fication factors, although we use g'in the former case 

and f l n  the latter case as the input. We perform SVD 
analysis on T-1j to compute best and worst case mean 

and difference error amplification factors (see [Barron 
1988] for full details). 

3.2.4 Computing Mean/Derivative Error in Taylor 

Series Coefficients. Again, we can perform SVD anal- 

ysis on the Taylor series J to obtain best and worst case 
error when error is added to the image velocity only 

or is added to image velocity derivatives only. Full 
details are in [Barron 1988]. 

3.3 Computing Initial Guess Error 

We add random error to the correct solution g~ = 07, 
if, ¢5~ to obtain the initial guess ~0 required to start the 

convergence calculation in nonlinear simulation. We 
compute X% initial guess error in g'by simply adding 

X %  L 2 random error for each of ~, 6~', and ~' separately. 

This means that if one set of parameters is much larger 

than another, the latter's initial-guess error is not domi- 
nated by the larger set of parameters. 

3.4 Experimental Motions and Surfaces 

In choosing what motion and structure parameters we 

should investigate we were guided by two principles: the 

parameters should be realistic given our assumptions or 

they should have been previously reported in other work. 
Table 1 shows the parameters for eight realistic 

motions (and their duals at time 0) that we have devised. 

We show the ff values as unnormalized to keep them 
as simple integers. When U ~ (0, 0, 0), we have ana- 

lyzed the motions for both type 1 and type 2 observer 

motion; hence motions 5 and 7 are type 1 motion; 

motions 6 and 8 are type 2 motion. The solution point 

Ys = (20, 20) is the image point where Y'is computed? 

If Ys were changed from (20, 20) to (0, 0), then motions 

D3, D4, D7, and D8 would be singular as ~ = (0, 0, 0). 

Motions 1-4 are analyzed assuming pure translation 

(i.e., U = (0, 0, 0) is known). We can analyze motions 

2-4 assuming general motion as well. However, motion 

1 is singular when general motion is assumed, regard- 

less of the time at which the inputs are measured. 
Motions 5 and 6 are also singular, if all the input is 
obtained at time 0, but can be analyzed when the input 

is measured over time. 

The second set of motion and structure parameters 
considered here are the planar motions of Waxrnan and 

Ullman [1983, 1985]. Table 2 shows the 5 motions 
(labeled W6 to Wl0 to correspond to examples 6 to 10 

in Waxman and Ullman [1983]) and their duals, DW6 

to DWl0. These are not realistic, everyday, motions one 
might expect an autonomous vehicle to undergo. We ana- 

lyze these motions at time 0 only and use Ys = (0, 0), 

as did Waxman and Ullman. Note that motions DW7 
and DW9 are singular since tT" = (0, 0, 0). For all the 

motions described in tables 1 and 2, X3 is 2000. Using 

equation (5) we can always compute ~) given t7, Y, and X3. 

We examine motion and structure for various environ- 

mental setups. The quantities that describe the environ- 
mental setup include ~s, the solution point, the spatial 

extent, and the temporal extent. We compute the spatial 

extent of a set of image points where the input is 
measured as the diagonal angle of the smallest rectangle 
containing all the image points (see figure 6). We com- 

pute the temporal extent, 0-t, of a set of image points 
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Tab/e L Original and dual solutions when Ys = (20, 20). 

Motion g" ~ Motion 

/~ = (0, O, 0.496976) /i" o = (0, 0, 0.496976) 

1 (7 = (0,  0,  1) (TD = (0,  0,  1) D1 
0 7 = ( 0 , 0 , 0 )  ~o = (o, o, o) 

fi" = (0, 0, 0.496976) a* o = (0.460963, 0, 0.460963) 
2 (7 = (1, 0, 1) 07D = (0, 0, 1) D2 

07 = (0, 0, O) 070 = (0, -0.463768, 0) 

/i" = (0, 0.496976, 0) ~*D = (0, 0, 0.038826) 
3 (7 = (0, 0, 1) (70 = (0, 1, 0) D3 

07 = (0, 0, 0) 070 = ( -0 .5 ,  0, 0) 

~* = (0, 0.496976, 0) fro = (0.036013, 0, 0.036013) 
4 (7 = (1, 0, 1) (7D = (0, 1, 0) D3 

07 = (0, 0, 0) 07o = (-0.463768, 0, 0.463768) 

/i* = (0, 0, 0.496976) ~*D = (0, 0, 0.496976) 
5, 6 (7 = (0, 0, 1) (79 = (0, 0, 1) D5, D6 

07 = (0, 0.2, 0) 07D = (0, 0.2, 0) 

~" = (0, 0.496976, 0) go = (0.036013, 0, 0.036013) 

7, 8 (7 = (1, 0, 1) (TD = (0, 1, 0) D7, D8 
07 = (0.2, 0, 0) 070 = (-0.263768, 0, 0.463768) 

Table 2. Waxman and Ullman's planar motions and their duals at Ys = (0, 0). 

Motion g" ~D Motion 

iir = (6, 5, 4) ffD = (4, 0, 4) 
W6 (7 = ( - 1 ,  0, -1 )  (TD = ( -1 .5 ,  -1 .25,  -1 )  DW6 

07 = (3, 2, 1) 07D = (--2, 4, 6) 

ii~ = (6, 5, O) ffD = (0, 0, 0) 
W7 (7 = ( - 1 ,  0, - 1 )  (70 = (1.2, 1, 0) DW7 

= (3, 2, 1) Uo = ( - 2 ,  8, 6) 

ii t = (1, 2, 3) /~D = (3, 6, 3) 
W8 (7 = ( - 1 ,  - 2 ,  -1 )  (TD = (--0.333, --0.667, --1) DW8 

0 7 = ( 4 , 5 , 6 )  0 7 9 = ( 8 , 3 , 6 )  

~ =  (1, 2 ,0)  ffD = (0, 0, 0) 
W9 (7 = ( - 1 ,  - 2 ,  -1 )  (TD = (1, 2, 0) DW9 

0 7 = ( 4 , 5 , 6 )  0 7 0 = ( 2 , 6 , 6 )  

ff = (6, 5, 4) /go = (0, O, 4) 
WlO (7 = (0, 0, -1 )  (TD = (--1.5, --1.25, --1) DW10 

07 = (3, 2, 1) UD = (--2, 8, 1) 

w h e r e  the  inputs  a re  m e a s u r e d  as the  t imes  0, t/3, 2t/3, 

and  t for  full  i m a g e  ve loc i ty  o r  Taylor  se r ies  coe f f i c i en t  

inpu t  and  as the  t imes  0, t/7, 2t/7, 3t/7, 4t/7, 5t/7, 6t/7, 

and  t for  n o r m a l  image  v e l o c i t y  o r  Taylor  ser ies  coef f i -  

c ien t  input .  I n  genera l ,  the  t empora l  extent  d e p e n d s  on  

the  t imes  w e  m e a s u r e  i m a g e  ve loc i ty  i n fo rma t ion  f r o m  

the image  data. We use  un i fo rm  t ime  intervals  he re  on ly  

for  c o n v e n i e n c e .  

3.5 Monocular Flow Field Examples 

In  this  s ec t ion  we  show the  i m a g e  ve loc i t y  and  its 

de r iva t ive  f low f ie lds  for  one  o f  W a x m a n  and  U l l m a n ' s  

m o t i o n s ,  W6. F o r  a p l a n a r  su r face  at  dep th  X3 = 2 0 0 0  

w i t h  sur face  g r ad i en t  &" = ( - 1 ,  0, - 1 )  the  i m a g e  ve loc -  

i ty  f low f ie ld  g e n e r a t e d  for  an  o b s e r v e r  m o v i n g  w i t h  

t rans la t ion ,  U = (12000, 10000, 8000)  and  ro ta t ion ,  
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J ~ 1" max=[y 41,y 1 2 , 1 ) 1 " ,  [,Y , 2,1) 

S ~I=(Y ll'Y 12'1)- - '/  I~ 
I . - "  ;\ 
I .-'" :\ 

i F4=(Y41'Y42'l) + ~ 

I / 

.,_ ~ , !  .- " ~3=(Y 31'Y3z'l) 

(0,0,0) 

Fig. 6. We compute the spatial extent of the image points used as the maximum diagonal angle, Omax, of the largest rectangle containing all 
the image points, i.e., the angle formed by the lines joining Ymm and 17ma x at the lower left and upper right corners of the square respectively 
with the origin at (0, O, 0). Ym,n is computed using the minimum Yl and Y2 coordinates of ~, ~, ~, and ~ while "~max is computed using 
the maximum y~ and Y2 coordinates of those same four image points. 

G:" = (3, 2, 1), is shown in figure 7. Figures 8 to 11 show 

the OV70yl, 0~70y2, ~V-'70yl0Y2, and OV/Ot flow fields for 

W6 respectively? Figure 12 shows the image vdoci ty  

field for the flow field with the motion and structure 

parameters: 0 -- (1000, 0, 0), t7 = (1, 1, 1), if:" = 

(0, -0.5,  0) and X3 = 2000. This flow field is an exam- 

ple of Regan and Beverley's type of FOE [1982]. Figures 

13 to 16 show the corresponding derivative flow fields. 

Finally, we present image velocity flow fields for 

motions 5 (type 1 motion) and 8 (type 2 motion) at four 

times, 0.0, 0.333, 0.67, and 1.0, that is, a temporal ex- 

tent of 0-1 in figures 17 and 18 respectively. We note, 

that at time 0, motion 6 is the same as motion 5 and 

motion 8 is the same as motion 7. The corresponding 

sets of flow fields for these two motions are very close 

to each other at the other times, becoming more differ- 

ent as the time becomes larger. For temporal extent 0-0  

motions 5 and 6 are singular: we cannot analyze the 

flow field at this time because it is impossible to dis- 

tinguish how much of the image velocity is due to 3-D 

observer translation and how much is due to the 3-D 

observer rotation since observer 3-D translation and 

3-D rotation velocity are in the same direction. How- 

ever, if the flow field is sampled for a nonzero temporal 

extent the motion can be analyzed. This is because the 

rotational image velocity field is constant over time due 

to the fixed-axis assumption. Hence, any changes in 

the flow field over time are due to observer translation 
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Fig. 7. The full image velocity field for Waxman and Ullman's motion, W6. The motion and structure parameters are/i" = (6, 5, 4), unnormalized 

= (-1,  0, -1),  ~ = (3, 2, 1), and X3 = 2000 at time 0 for image location Y = (0, 0) in pixels. The observer velocity 0 is (12000, 10000, 

8000) and the flow field is generated at time 0. The corner points of the images (in pixels) are: (-100, -1130), (-100, 100), (100, 100), and 

(100, -100). The image velocities are scaled by a factor of 1. 

d d 1 7 7 ~ 7 7 1 l 1 

/ ¢ l 7 7 7 l d 1 1 l 

/ / / / 7 ¢ 7 7 1 d 1 

/ ,/ ¢ / ~' i 7 1 ~ 1 d 
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/ / 1 / l ¢ 1 1 1 1 
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I / / l I I l I 1 1 1 

/ / / / / / / ,' 1 1 1 

Fig. 8. The first-order spatial image velocity derivative field, O~/Oyi for Waxman and Ullman's motion, W6. The motion and structure parameters 

are/~ = (6, 5, 4), 6~ ~ = (-1,  0, -1),  U = (3, 2, 1), and X3 = 2000 at time 0 for image location Y = (0, 0) in pixels. The correct observer 

velocity ~ is (12000, 10000, 8000). The flow field is generated at time 0. The corner points of the images (in pixels) are: (-100, -100), 

(-100, 100), (100, 100), and (100, -100). The scale factor is 1. 
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Fig. 9. The first-order spatial image velocity derivative field, Ov'/Oy2 for Waxman and Ullman's motion, W6. The motion and structure parameters 

are ~ = (6, 5, 4), ff = ( - I ,  0, -1),  ~" = (3, 2, 1), and X3 = 2000 at time 0 for image location Y = (0, 0) in pixels. The correct observer 

velocity U is (12000, 10000, 8000). The flow field is generated at time 0. The comer points of the images (in pixels) are: (-100, -100), 

(-100, 100), (100, 100), and (100, -100). The scale factor is 1. 

Fig. 10. The s6cond-order spatial image velocity derivative field, O 2v-TOylOy2 for Waxman and U11man's motion, W6. The motion and structure 

parameters are ~" = (6, 5, 4), ~" = (-1,  0, -1),  U = (3, 2, 1), and X3 = 2000 at time 0 for image location Y = (0, 0) in pixels. The correct 

observer velocity 0 is (12000, 10000, 8000). The flow field is generated at time 0. The comer points of the images (in pixels) are: (-100, -100), 

(-100, 100), (100, 100), and (100, -100). The scale factor is 1. 
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Fig. 11. The first-order temporal image velocity derivative field, O~TOt for Waxman and Ullman's motion, W6. The motion and structure parameters 

are ~" = (6, 5, 4), ~ = (-1, 0, -1), c~ = (3, 2, 1), and X3 = 2000 at time 0 for image location ~ = (0, 0) in pixels. The correct observer 

velocity U is (12000, 10000, 8000). The flow field is generated at time 0. The corner points of the images (in pixels) are: (-100, -100), 

(-100, 100), (100, 100), and (100, -100). The scale factor is 0.25. 

Fig. 12. The full image velocity field for the Regan and Beverley FOE example. The motion and structure parameters are ff = (0.5, 0, 0), 
unnormalized &" = (1, 1, 1), U = (0, -0.5, 0), and X3 = 2000 at time 0 for image location ~ = (0, 0) in pixels. The observer velocity 
is (1000, O, 0) and the flow field is generated at time 0. The corner points of the images (in pixels) are: (-100, -100), (-100, 100), (100, 

100), and (100, -100). The image velocities are scaled by a factor of 20. 
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Fig. 13. The first-order spatial image velocity derivative field, Ov-TOy~ for Regan and Beverley's FOE example. The motion and structure parameters 

are ~" = (0, 0.5, 0), 8 = (1, 0, 1), ~ = (0.2, 0, 0), and X3 = 2000 at time 0 for image location Y = (0, 0) in pixels. The correct observer 
velocity U is (0, 1000, 0). The flow fields are for type 2 motion at time 0.333. The corner points of the images (in pixels) are: (-100, -100), 
(-100, 100), (100, 100), and (100, -100). The scale factor is 10. 
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Fig. 14. The first-order spatial image velocity derivative field, Ov-'/0y2 for Regan and Beverley's FOE example. The motion and structure parameters 

are ~" = (0, 0.5, 0), ~" -- (1, 0, 1), U = (0.2, 0, 0), and X3 = 2000 at time 0 for image location Y = (0, 0) in pixets. The correct observer 
velocity ~ is (0, 1000, 0). The flow fields are for type 2 motion at time 0.667. The comer points of the images (in pixels) are: (-100, -100), 
(-100, 100), (100, 100), and (100, -100). The scale factor is 50. 
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Fig. 15. The second-order spatial image velocity derivative field, a 2~ayl0y2 for Regan and Beverley's FOE example. The motion and structure 

parameters are ~* = (0, 0.5, 0), ~ = (1, 0, 1), U = (0.2, 0, 0), and X3 = 2000 at time 0 for image location ~ = (0, 0) in pixels. The correct 

observer velocity U is (0, 1000, 0). The flow fields are for type 2 motion at time 1.0. The corner points of the images (in pixels) are: (-100, 

-100), (-100, 100), (100, 100), and (100, -100). The scale factor is 25. 
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Fig. 16 The first-order temporal image velocity derivative field, Ov-TOt for Regan and Beverley's FOE example. The motion and structure parameters 
are ~* = (0, 0.5, 0), ~ = (1, 0, 1), U = (0.2, O, 0), and X3 = 2000 at time 0 for image location ~ = (0, 0) in pixels. The correct observer 
velocity U is (0, 1000, 0). The flow fields are for type 2 motion at time 1.0. The corner points of the images (in pixels) are: (-100, -100), 

(-100, 100), (100, 100), and (100, -100). The scale factor is 100. 
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Fig. 17. The full image velocity fields for temporal extent 0-1 for motion 5. The morton and structure parameters are ~ = (0, 0, 0.5), 

~" = (0, 0, I), U = (0, 0.2, 0), and X 3 = 2000 at time 0 for image location 17 = (0, 0) (in pixels). The correct observer velocity ~ is 

(0, 0, 1000). The flow fields are for type 1 motion at times 0.(3, 0.333, 0.667, and 1.0. The comer  points of the images (in pixels) are: (-80, -80), 
( - 8 0 ,  80), (80, 80), and (80, - 8 0 ) .  The image velocities are scaled by 25. 
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Fig. 18. The full image velocity fields for temporal extent 0-1 for motion 8. The motion and structure parameters are ~ = (0, 0.500000, 0), 
c7 = (0.707107, 0, 0.707107), ¢~ = (0.2, 0, 0), and X3 = 2000 at time 0 for image location Y = (0, 0) (in pixels). The correct observer velocity 

0 is (0, 1000, 0). The flow fields are for type 2 motion at times 0.0, 0.333, 0.667, and 1.0. The comer points of the images (in pixels) are: 

( -80,  -80) ,  ( -80,  80), (80, 80), and (80, -80) .  The image velocities are scaled by a factor of 25. 
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only. On the other hand, motions 7 and 8 are analyzable 

for temporal extent 0-0 as the translational and rota- 

tional image velocity components can be distinguished; 

the translational image velocity is dependent on the 3-D 

depth of points on the surface (as well as image loca- 

tion) as the surface is not frontoparallel while rotational 

image velocity just depends on the image location. 

Hence, the two components of image velocity can be 

distinguished if image velocities are sampled at four or 

more different 3-D points. Because ~7 specifies a fronto- 

parallel plane for motions 5 and 6, the 3-D depth of all 

points on the surface are constant. If ff were changed 

to (1, 0, 1) the motion and structure could be recovered 

from a spatial distribution of image velocities at time 0. 

4 Experimental Results 

We present qualitative rather than quantitative results 

here; complete numerical results are in [Barron 1988]. 

We consider both minimal (the least amount of data 

needed to recover motion and structure) and least 

squares input. 

4.1 Using Minimal Input 

In this section we investigate the use of minimal full/ 

normal image velocity or Taylor series coefficients data 

in the computation of motion and structure. The two 

main questions of concern are "How sensitive is the 

computation to noisy input?" and "Can anything be 

done to reduce the noise sensitivity?" 

4.1.1 Using Minimal Image Velocity Input. Since four 

image velocities constitute minimal input for general 

motion we measure each image velocity at the four 

corners of a square centered at Ys at each of the four 

times specified by the temporal extent 4 For each motion 

we use a temporal extent 0-t  where t is varied from 

0 to 1 for motions 1-4, 7, and 8 and 0.3 to 1 for motions 

5 and 6. For motions W6-W10, DW6, DW8, and DWI0, 

t is fixed at 0. If Ys = (20, 20) the spatial extent is 

30.50 while if it is (0, 0) the spatial extent is 30.9 °. 

Average and worst case SVD results show that the 

computation of motion and structure is untenable. In- 

deed, even if the feasibility criterion of a maximum 

worst case error amplification factor of 3 were increased 

to 10 most of the motions are still not viable. Worst 

case error amplification factors ranged from a low of 

7 to a high of 317 for motions 1-8 and from 3.4 to 36 

for motions W6-DW10. Some of the motions, especially 

motion 5, had average and worst case error amplifica- 

tion factors in the 100s! However, we are able to make 

two important observations: 

1. The worst case error amplification factors observed 

from the SVD analysis and the corresponding non- 

linear simulations showed good agreement: the SVD 

amplification factors are good predictors for non- 

linear simulation behavior. We used 0% to 1.4% 

relative worst case image velocity error (because of 

the high error amplification factors, larger input 

error usually did not allow a convergence calcula- 

tion) and 0% initial-guess error in the nonlinear 

simulations. 

2. In general, worst case error amplification factors 

were at least 2-3 times higher than average case 

error amplification factors. However, the maximum 

of the random error amplification factors used in the 

computation of an average case error amplification 

factor for a particular motion was quite close to the 

worst case error amplification factor for that motion. 

Worst case error often occurred for minimal input. 

It seems that worst case analysis should be an impor- 

tant feature of any sensitivity analysis. 

The second question we posed, "Can anything be 

done to reduce the noise sensitivity?" can be answered 

more positively. In particular, we demonstrate that time 

helps. As the temporal extent is increased, the average 

and worst case error amplification factors decrease for 

most of the motions. As well, increasing the spatial 

extent helps for all motions. Indeed, for some of the 

motions a spatial extent of 700 (the full image plane) 

yield error amplification factors less than 3 (or, more 

commonly, in the 4-6 range). 

We are able to report numerous other results: 

(1) Worst case error amplification factors for full 

image velocities are only slightly larger than worst case 

difference error amplification factors where error is 

added to the image velocity differences only: worst case 

error is almost entirely due to error in the image veloc- 

ity differences. On the other hand, best case error 

amplification factors for full image velocities are only 

slightly smaller than worst case mean error amplifica- 

tion factors where error is added to the single image 

velocity mean only. This means that large image veloc- 

ity mean error can be handled with ease. Some types 

of autonomous vehicle motion, for example, hitting a 

rut in a road, could introduce this type of error into 

the image velocity input. 
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(2) It is reasonable to question the validity of our 
algorithm's underlying assumptions. As Thompson and 

Kearney [1986, p. 17] comment: 

Unrealistic assumptions are only justifiable when 

it can be shown that useful answers can be obtained 

in realistic situations despite violations in the 

assumptions. 

We test the violation of the planarity, rigidity, and same- 

surface assumptions by perturbing ff values in one of 

three ways: (a) by measuring the image velocities on 

two halves of a hinged surface, (b) by measuring the 

image velocities on a spherical surface, and (c) by per- 

turbing the ff values randomly. We test violation of the 

fixed-axis assumption by adding randomly generated 

error to ~ at each time an image velocity is measured 

while we test violation of the known-motion-type 

assumption by adding random error to ~and X3 at each 

time an image velocity is measured. We perform non- 

linear simulation, using assumption error scaled to be 

the same size as worst case image velocity error. The 

results show that the assumption error amplification fac- 

tors are usually significantly less than worst case error 

amplification factors. It seems that we should be more 

concerned with image velocity accuracy rather than with 

violation of the algorithm's underlying assumptions. 

(3) Another concern that may arise is the effect of 

conducting the motion and structure computation at 

various locations in the image plane. We use a 50x50 

pixel mask (measuring the image velocity at its four 

corners) centered at 17 image locations symmetrically 

distributed about the image plane. The results indicate 

that there is no preferred location for the best possible 

motion and structure computation. Theoretically, this 

makes sense as the image velocity accuracy is indepen- 

dent of image location for an ideal machine vision sys- 

tem. That is, we can measure the image velocities just 

as accurately (or more precisely, just as inaccurately) 

at the periphery as at the center of the image. Of course, 

this situation is not comparable to the human eye, where 
the concentration of processing cells is much more 

dense at the fovea than in the periphery. Lastly, we con- 

sider flow fields that exhibit an FOE (Focus of Expan- 
sion). For example, a flow field with the parameters 

given in table 3 exhibits a FOE at ~ = (0, 0) at time 

0. This flow field is similar to Regan and Beverley's 
FOE example [1982, figure 1, p. 195] and is shown in 
figure 12. It appears that it is just as difficult to recover 

motion and structure in the flow field's periphery as 

it is near its FOE. 

Table 3. FOE parameters. 

~'= (0.5, 0,0) 
c7= (1, 1, 1) 
= (0, -0.5, 0) 
x3 = 2000 

(4) Just as we have examined the sensitivity of pure 

translation we can also examine the sensitivity of pure 

rotation, in particular, when fi" = (0, 0, 0) is known 

and ~" = (0, 0.2, 0). In this case neither ~ or ff can 

be recovered. Now we need only be concerned with 

a 3×3 linear system of equations (or an 8×3) system 

of equations if we use all four image velocities). Worst 

case error amplification factors for the 3 x3 system are 

less than 3 for spatial extents greater than about 40 o 

while for the 8×3 system they are less than 3 for spatial 

extents greater than about 20 o . Recovery of Sunder the 

pure rotation assumption is feasible. Even greater 

robustness can be obtained if larger rotational image 

velocity fields are available. 

(5) We consider three situations where computing a 

restricted set of motion and structure may be realistic: 

(a) If &" is accurately known, say by some device that 

measures centrifugal force, then we just need to 

compute fi" and ~'. 

(b) An autonomous vehicle may be able to measure its 

translation, U, and rotation, &,'accurately enough to 

leave us with the problem of computing 6~ from the 

image velocity field. In order to compute Fg(using 

2.1-5), we must also know X3 at the solution point 

Ys. X3 might be obtained by some active sensor, for 

example, a sonar or laser-beam device. We consider 

this a restricted form of the structure from motion 

problem (versus the more general motion and struc- 

ture from motion problem). (Of course, if we know 

fi'and ¢7 for some 3-D planar surface then we can 

use a spatiotemporal distribution of image velocities 

on that surface to recover both X3 and 6t" (effectively 

recovering X3 everywhere on the surface). This is 

an example of motion stereo, see (Barron, Jepson 

and Tsotsos (1987b, 1989) for more details.) 

(c) An autonomous vehicle's environment is restricted 

to the corridors of a building. In this case, u2, col, 

and ¢% are known to be zero; hence, there are only 

five independent motion and structure parameters 

in the general case and only four when pure transla- 
tion is assumed. Of course, the planarity assumption 
is satisfied for most of the vehicle's environment, 

as it is primarily composed of walls, floors, and 

ceilings. 
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Results are as follows: For (a) there is a significant 

reduction in error amplification factors when U is 

assumed known for motions 5-8. Indeed, the error 

amplification factors range from 6 to 24 when all four 

image velocities are used in the input. In the case of 

motions W6-DW10 all motions are solvable, exhibiting 

worst case error amplification factors less than 3 when 

all four image velocities are used in the input. For (b), 

worst case error amplification factors for ff are also 

much less than those for the corresponding sixteen gen- 

eral motions, ranging from 3 to 17 for motions 1-8 and 

0.2 to 1 for motions W6 to DW10. Interestingly, best 

and worst case error amplification factors (for minimal 

input data) are close for most of the motions. For (c), 

we examine motions 1-2 and 5-6 under the assumption 

of planar translation, vertical rotation. Using the mini- 

mal amount of image velocity data 2 or 21A image veloc- 

ities needed yields worst case error amplification fac- 

tors (from 16 to 220) that are actually larger than those 
observed in the initial sensitivity for the corresponding 

general motions. However, using all four image veloc- 

ities resulted in lower worst case error amplification 

factors than for the corresponding general motions. 

In all three cases, knowing something about the 

motion made the motion and structure calculation more 

viable (although not necessarily feasible). 

(6) The last set of results that we report for minimal 

image velocity input is the effect of the initial guess 

on the output. In particular, we demonstrate the follow- 

ing properties of our algorithm: 

(a) For 0% image velocity error we are able to solve 

motion and structure for large initial-guess error, 

up to 100% and more. More interestingly, we ob- 

served the presence of multiple (nondual) solutions 

for motions 5-7. These multiple solutions produced 

flow fields distinct from those for the original solu- 

tion but both sets of flow fields shared four common 

image velocities at the image locations and times 

at which the input was measured. Examples of mul- 

tiple solutions are reported in [Barron 1984 and 

1988]. Figure 19 shows the four flow fields gener- 

ated for solution ff = (0, 0, 0.496976), ff = (0, 0, 1), 

and &" = (0, 0.2, 0) at four times 0, 0.166667, 

0.333333, and 0.5 at X3 = 2000. Rather than show 
the flow fields generated by the multiple solution 

tT~t = (0.303559, -0.527817, 0.532987), &~ = 

(0.087906, 0.163232, 0.982664), and &~ = 

(-0.550745, -0.115147, 0.020988) again at X3 = 

2000, for the same four times, we show their dif- 

ferences (amplified by a factor of 5) in figure 20. 

(b) 

(c) 

We also observed the presence of dual solutions for 

motions W6, W8, W10, and 2. No multiple solutions 

were observed for these motions; it is unlikely that 

two distinct nonsingular flow fields would have four 

common image velocities. Again 0% image veloc- 

ity error and up to 100% initial-guess error was 

used in the nonlinear simulations. 

Finally, we performed nonlinear simulation, vary- 

ing worst case image velocity error from 0 % to 1.4 % 

for fixed initial-guess errors of 50% and 100%. For 

most solved runs, we observed that image velocity 

and initial-guess error are independent of each 

other. The other solved runs produced multiple 

solutions in the presence of nonzero image velocity 

error; these solutions are due to the initial-guess 

error as discussed in (a). 

4.1.2 Using MinimaI Normal lmage Velocity lnput. The 

recovery of motion and structure from eight normal 

image velocities measured at eight times is also possible 

(or from five normal image velocities measured at five 

times if pure translation is assumed), provided that the 

flow field exhibits enough structure. Waxman and 

Ullman [1983, 1985] call this the "aperture problem in 

the large" versus the usual "aperture problem in the 

small" [Marr and Ullman 1981]. We measure eight nor- 

mal image velocities at the four corners of a square and 

the four midpoints of the square's sides. The normal 

image velocity data are generated in one of two ways: 

by either alternately using the horizontal and vertical 

components of the full image velocity at each of the 

eight image points and times or by computing eight unit 

random vectors, h, and then computing 17 n = (V. ~)~ 

for the Vvalues measured at each of the eight image 

points and times. 

Again, we perform SVD analysis and nonlinear simu- 

lation for all 16 motions and find good correlation be- 

tween predicted and observed worst case error amplifi- 

cation factors. Typically, normal image velocity error 

amplification factors are about twice as large as the cor- 

responding error amplification factors for full image 

velocity input when the same spatiotemporal extent is 

used. 

As in the previous section, we also observed multi- 
ple solutions (two distinct sets of eight normal image 

velocity flow fields shared eight common normal im- 

age velocities) for motions 1-2 and 5-8. Dual solutions 

were found for motions 7-8 and W6, W8, and W10 when 

the temporal extent is 0-0. Full details are in Barron 

[1988]. 
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Fig. 19. The full image velocity fields for the correct solution at four different times. The motion and structure parameters are ii t = (0, 0, 

0.496976), ~ = (0, 0, 1), U = (0, 0.2, 0), and X3 = 2000 at time 0 for image location Y = (20, 20). The correct observer velocity ~ is 

(0, 0, 1000). The flow fields are for type 2 motion. (a) shows the flow field for time 0 (top left comer), (b) the flow field at time 0.166667 

(top right comer), (e) the flow field at time 0.333333 (bottom left comer), and (d) the flow field at time 0.5 (d) bottom right comer. The 
four common image velocities (with the multiple solution) are (-0.078235, 0.121765) at (70, 70) at time 0 (labeled A); (-0.266381, 0.154889) 

at ( -30,  70) at time 0.166667 (labeled B); (-0.272344, -0.072344) at ( -30,  -30)  at time 0.333333 (labeled C); and (-0.028700, -0.073414) 

at (70, -30)  at time 0.5 (labeled D). 
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Fig. 20. The difference flow fields, (a) top left corner, (b) top right comer, (c) bottom left comer, and (d) bottom right comer, at the four 

times, 0, 0.166667, 0.333333, and 0.5 respectively. These flow fields were generated by subtracting the corresponding flow fields of the two solu- 
tions at each of the corresponding times. The motion and structure parameters for the second solution are ff = (0.303559, -0.527817, 0.532987), 

~" = (0.087906, 0.163232, 0.982664), U = (-0.550745, -0.115147, 0.020988), and X3 = 2000 at time 0 for image location Y = (20, 20). 
The image velocity differences at (70, 70) in the top left flow field at time 0 (labeled A); ( -30,  70) in the top right flow field at time 0.166667 
(labeled B): ( -30,  -30)  in the bottom left flow field at time 0.333333 (labeled C); and (70, -30)  in the bottom right flow field at time 0.5 

are all zero. The image velocity differences at all other points are nonzero. The magnitudes of the image velocity differences were scaled 

by 5, relative to the image velocity magnitudes shown in figure 19, to clearly show the distinctness of the two sets of flow fields. 
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4.1.3 Using Minimal Taylor Series Coefficient Input. 

In this section we report results obtained using minimal 

Taylor series coefficient input. Again, we emphasize 

that we are investigating the sensitivity of motion and 

structure to such input. Can techniques, such as the 

velocity functional method [Waxman and Wohn 1984, 

1985] or the fdters advocated by Eagelson [1989] meas- 

ure the data accurately enough? We can use either 

(22) 

o r  

(- 
O7 

g = L_ -Oy~ ' Oyz' Ot J (23) 

to compute motion and structure. At any single time, ~] 

fully specifies the flow field (see Waxman and Ullman 

1983, 1985; and Barton 1988] for a planar surface, gs 

coefficients estimated from a single image velocity field 

are identical to those measured from the image intensity 

data at the same time. We also note that we can measure 

the g] coefficients in time and can measure ~ at one 

time if we wish. 

The first observation we make is that small image 

velocity error corresponds to much larger Taylor series 

coefficient error. This means that the error amplifica- 

tion factors resulting from the use of Taylor series coef- 

ficient input will be considerably smaller than from the 

use of image velocity input. In other words a motion 

and structure calculation can tolerate higher Taylor 

series coefficient error than image velocity error. This 

is intuitively pleasing because we shouldn't expect to be 

able to measure image velocity derivatives as accurately 

as the image velocities themselves. 

Nonlinear simulation results for estimated and meas- 

ured Taylor series coefficients agree reasonably well 

with predicted SVD error amplification factors. Unfor- 

tunately, except for isolated cases, the computation of 

motion and structure is still not feasible for minimal 

Taylor series coefficient input. These isolated cases con- 

sist of about half the runs for motions 1-2, all runs for 

motions 3-4, about a quarter of the runs for motions 

7-8, and a few of Waxman and Ullman's planar motions. 

These feasible cases usually occurred for a spatial extent 

of 0 ° and for any of the temporal extents from 0-0 to 

0-1 used in the analysis when 0 Zv-YOylOyz was used and 

for large spatiotemporal extents when Ov-*/Ot was used. 

Even though minimal Taylor series coefficient input is 

still not generally feasible it is very encouraging. 

We define estimation error as the difference between 

estimated and actual Taylor series coefficients for a par- 

ticular spatiotemporal extent (the spatial extent is always 

nonzero). For larger temporal extents, this error is quite 

large--the estimated and measured Og/Ot differ signifi- 

cantly. We obtain nonlinear convergence for estimation 

errors of up to 40 %. The error amplification factors 

were about 1-2 but could be as high as 5. Of course, 

estimation error is not worst case error. 

A comparison of the worst case error amplification 

factors that result when O~70t or 0 2v-~0yl0Y2 is used to 

show that generally 02~'/OylOy2 is better than Ov-TOt. 

However, for these motions, Or-'~& was usually either 

much larger or much smaller than the other 7, Ov-'Dyl, 

and 0~70y2 coefficients. The one exception is motion 5, 

where Ozv-TOylOy2 is much smaller than Ov-70t and is 

closer to the size of the other coefficients and, as a 

result, produces slightly smaller worst case error ampli- 

fication factors than O770t. 

In the case of measured Taylor series coefficients we 

can collect all data at one image point and time (as 

suggested by Longuet-Higgins and Prazdny [1980] or 

Waxman and Ullman [1983, 1985]) or at four image 

points and times. Typically, the use of ~ (see equation 

(22)) at one point and time produced the best results. 

Using g~ (see equation (23)) measured for small spatio- 

temporal extents yields the largest error amplification 

factors but these are significantly reduced for larger 

spatiotemporal extents, g] can also be used for nonzero 

spatiotemporal extents, producing much better results 

than those observed from the use of g~. 

We have also examined the feasibility of computing 

motion and structure using actual Taylor series coeffi- 

cients at 17 symmetrically distributed image locations 

around the image. For a flow field arising from pure 

translation, motion and structure cannot be computed 

at the FOE if Ov-YOt is used; this is because the image 

velocity remains 0 at this point over time, producing 

two corresponding rows in the Jacobian, J, with all zero 

values. Although calculation of motion and structure 

is still not feasible in general, for some motions it is. 

For example, Regan and Beverley's flow field example 

(described in table 3) produced worst case error ampli- 

fication factors that were 3 or less when ~ was used. 

Again, no conclusions about whether computation of 

motion and structure is better at the image periphery 

or at its center can be drawn when using Taylor series 

coefficients. 
Two further comments concerning the use of meas- 

ured Taylor series coefficients are in order. First, we 
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did not observe any multiple solutions even when 100% 

initial guess error was used, although all runs solved. 

Second, we performed a mean and derivative analysis 

similar to the mean and difference analysis reported 

above. Worst mean error amplification factors are quite 

small (less than 0.9 in all cases). This means that a 

motion and structure computation is insensitive to shifts 

in the image velocity fields. For small spatiotemporal 

extents, worst case derivative error amplification factors 

approach worst case overall error amplification factors. 

However, as the spatiotemporal extent increases, worst 

case derivative error amplification factors become sig- 

nificantly smaller than worst case overall error amplifi- 

cation factors. It seems that mean and derivative error 

must interact in some unspecified manner to produce 

worst case error for Taylor series coefficients. 

4.1.4 Using Minimal Normal Taylor Series Coefficient 
Input. We measure normal Taylor series coefficients 

at the same times and image point offsets as earlier 

[Bah'on 1988]. In a similar manner as for normal image 

velocities, we measure horizontal/vertical (HV) and 

random normal Taylor series coefficients. A set of nor- 

mal Taylor series coefficients consists of two normal 

coefficients for each of ~ ,  O~n/Oy~, O~/Oy2, and O~n/Ot 
or 02~',/Oy~Oy2. As before, there is a good correlation 

between predicted and observed worst case error ampli- 

fication factors for minimal input data. Error amplifica- 

tion factors range from 1.7 to 552 for random normal 

Taylor series coefficient data and from 5 to 780 for hori- 

zontal/vertical normal Taylor series coefficient data. We 

also observed the presence of multiple solutions for 

motions 1, 5, 6, and 7 and dual solutions for some of 

Waxman and Ullman's planar motions. 

4.2 Using Least Squares Input 

As we have seen above, calculation of motion and struc- 

ture is not feasible for minimal input. In this section 

we report the results of our investigation when least 

squares input is used. The relevant question here is 

"How much least squares input is needed to obtain a 

feasible motion and strueture calculation?" Many re- 

searchers, for example Waxman and Ullman [1983, 

1985] have suggested that the use of least squares input 

can produce acceptable error amplification factors. A 

second related question is "With what kind of input 

and how much of it is needed?" 

The main tool used in our analysis of least squares 

input is SVD analysis. We compute average and worst 

case error amplification factors for various amounts of 

least squares input for full and normal image velocity 

and full and normal Taylor series coefficients. We con- 

struct least squares input by using multiple sets of mini- 

mal input data in our experiments. One advantage of 

using time-varying input is that it is easier to collect the 

volume of data needed for a feasible motion and struc- 

ture calculation over a period on time rather than at 

one time only. Lastly, we emphasize that all the experi- 

mental results presented in section 4.1 for minimal input 

also hold for least squares input. For example, increas- 

ing the spatial or temporal extent for least squares image 

velocity data will result in lower error amplification 

factors for most motions. 

4.2.1 Using Least Squares Image Velocity Input. In this 

and the next section we use a solution point Ys = (0, 0). 

We investigate least squares using 3, 6, and 24 sets of 

image velocity data. (Each set of image velocity consists 

of four image velocities.) The image points are distrib- 

uted within the same spatiotemporal extents used for 

minimal input (see [Barron 1988] for details on the 

image point distribution). Thus, 24 sets of image veloc- 

ity means we use 96 image velocities in total (we com- 

pute J192xs). We believe this is an upper limit on the 

number of image velocities we can realistically hope 

to measure for a single surface patch over a small range 

of times. 

While the use of least squares image velocity data 

is helpful in reducing worst case error amplification 

factors it still does not make motion and structure com- 

putations feasible in general, although motions 3, 4, 

and DW10 are now feasible. It would seem that the 

tradeoff of obtaining a worst case error amplification 

factor of 3 or less and the necessary increase in the 

amount of data and the spatial and temporal extents of 

the measurements required is unreasonable. Using 

more than 100 image velocities, a larger spatial extent 

than 30.9 degrees (already about 1/5 of the image) or 

a larger temporal extent (the underlying assumptions 

such as local planarity and the fixed-axis assumption 

may be violated) is not realistic for most motions. On 

the other hand, average SVD amplification results for 

24 sets of image velocities are most encouraging; all 

motions except motion 5 are feasible (motion 5 is feasi- 

ble when the temporal extent exceeds 0-0.5). In fact, 

except for motion 5 average case error amplification 

factors ranged from 0.1 to 1. If we examine the eight 

error amplification factors that result from the SVD of 

J we see that only one (or sometimes two) of the factors 
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are large, the others are often around 1 or less. It seems 

that worst case error directions occupy only a small 

part of the overall error direction space. This suggests 

that average error analysis rather than worst case error 

analysis may be a more appropriate type of analysis for 

least squares image velocity input. This is an important 

observation: all researchers, including [Waxman and 

Ullman 1983, 1985; Waxman and Wohn 1984, 1985; 

Subbarao 1986; Bandyopadhyay 1986] and others, used 

random noise in the input to their motion and structure 

algorithms. Least squares has another effect: local 

anomalies in error amplification factors that occur when 

minimal image velocity data are used to compute motion 

and structure around the image, that is, an error ampli- 

fication factor much higher than its neighbors' error 

amplification factors, are smoothed out. 

4.2.2 Using Least Squares Normal Image Velocity 

Input. As in the minimal input case we use two types 

of normal image velocity data: horizontal/vertical and 

random. One reason to use normal image velocities 

directly in the computation of motion and structure is 

because it is easier to measure normal rather than full 

image velocity data from most image sequences (due to 

the aperture problem [Horn and Shunk 1981; Marr and 

Ullman 1981]). Another of our goals in using normal 

image velocity data was to test the velocity functional 

method [Waxman and Wohn 1984, 1985]. The velocity 

functional method was introduced as a way of comput- 

ing the "observables" from a normal image velocity 

field. These observables were then used in the subse- 

quent motion and structure calculation. We carried the 

investigation one step further: we are interested in com- 

puting motion and structure directly from least-squares 

normal image velocity input. This combines the veloc- 

ity functional method and the motion and structure 

computation from the "observables" into one computa- 

tion. We found that even when 96 normal image veloci- 

ties were used the motion and structure computation 

was only feasible for motions 3, 4, and DW10 (for worst 

case error in the input). Waxman and Wohn suggest 

the use of several hundred normal image velocities. This 

may be unreasonable, especially since the measurement 

is carried out at one time. We obtained worst case error 

amplifications of about 10-20 for their motions (with 

the exception of motion DW10 that exhibited an error 

amplification less than 2) when 96 normal image veloc- 

ities were used. However, when average SVD analysis 

was performed the error amplification ranged from 0.1 

to 2 or less for all motions, except motion 5 (where 

the average error amplification ranged from just over 

2 to just under 14). Waxman and Wohn report 5 % out- 

put error given 10% random input error for typical 

runs. (Depending on the L2 of the input and output vec- 

tors, this is approximately equivalent to an error ampli- 

fication factor ranging from 0.5 and 2.0). 

4. 2.3 Using Least Squares Taylor Series Coefficient 

Input. The use of worst case least squares Taylor series 

coefficient data yields feasible motion and structure 

computations for all the motions except motion 5. We 

use two-point formulations when computing motion and 

structure from actual Taylor series coefficients: the first 

is the same as for the least squares image velocity data 

and the second measures each set of Taylor series coef- 

ficients at a particular image point and time. The same 

spatiotemporal extents are used for both point formula- 

tions. Estimated Taylor series coefficients are computed 

using image velocities measured at the first point formu- 

lation. (See [Barron 1988] for complete details.) The 

error amplification factors for the two point formula- 

tions are very similar. All motions, with the exception 

of motion 5, are feasible using only 6 sets of Taylor 

series coefficients, a reasonable amount of data to meas- 

ure, especially in time. Motion 5 becomes feasible if 

average case error is present in the input. It seems that 

actual Taylor series coefficients are a bit better than 

estimated Taylor series coefficients: the worst case error 

amplifications are slightly smaller and various actual 

Taylor series coefficient pairs can be measured at a large 

number of spatialtemporal extents or complete sets can 

be measured at individual image locations and times. 

Hence the use of actual Taylor series coefficients is 

more flexible than the use of estimated Taylor series 

coefficients. At the beginning of section 4.1.3 we de- 

scribed the relationship between error in a minimal 

image velocity set and its corresponding estimated 

Taylor series coefficients. Small image velocity error 

corresponds to much larger Taylor series coefficient 

error. Hence, it is not surprising that Taylor series coef- 

ficients are more robust than image velocities for motion 

and structure computations when there is noise in the 

input. The problem of image velocity computation has 

been addressed by many researchers (see section 1.2 

for references), only now are there encouraging results 

[Anandan 1989; Fleet and Jepson 1990; Heeger 1988]. 

We suggest that a second approach might be to measure 
actual Taylor series coefficients directly from the raw 

time-varying data. The design of spatiotemporal filters 

to perform this task seems appropriate. There is some 
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progress toward this goal. Eagleson [1989] has designed 

filters that measure image translation, divergence, curl, 

and shear. The divergence, curl, and shear components 

can be shown to be equivalent to the first-order spatial 

image velocity derivatives [Longuet-Higgins and 

Prazdny 1980 and Barton 1984]. 

4.2.4 Using Least Squares Normal Taylor Series Coeffi- 

cient lnput. Again, because of the aperture problem 

it may be easier to measure normal Taylor series coeffi- 

cients rather than full Taylor series coefficients. With 

the exception of motion 5, these are feasible for worst 

case input error, provided all 96 normal Taylor series 

coefficients are used. This includes both horizontal/ 

vertical and random normal Taylor coefficient series 

data measured for both point formulations. Motion 5 

is feasible if average Taylor series coefficient error is 

used. Since the spatiotemporal filters that would meas- 

ure this type of data would do so locally, we believe 

that this type of data is the most practical for motion 

and structure calculations. 

4.3 The Stability of Motion and Structure 

We have observed that error amplification factors de- 

crease for increasing spatiotemporal extents. In addition, 

as the amount of input data is increased not only is the 

error amplification reduced but the condition number 

also decreases. This means that least squares motion 

and structure computations become both more feasible 

and more robust than when the corresponding calcula- 

tion is performed on a minimal set of input data. Thus, 

least squares not only produces small error amplifica- 

tion factors but also lower condition numbers. Our 

feasibility criterion is thus satisfied. 

5 Conclusions 

We reiterate the main contributions of this research: 

(1) We have formulated a motion and structure algo- 

rithm that uses full/normal imge velocity data and 

full/normal Taylor series coefficient data as its input. 

Measuring this input over time usually results in lower 

sensitivity to input error, allows us to analyze some 

motions that are singular at one time, and allows us 
to collect larger amounts of input data for a least squares 
calculation. 

(2) We have conducted an extensive sensitivity anal- 

ysis for both minimal and least squares input for the 

four types of input for best (in the minimal case), aver- 

age, and worst case error. We found that in the least 

squares case, both average/worst case normal image 

velocity data were about 20 % worse than average/worst 

case full image velocity data, worst case normal Taylor 

series coefficient data were about 40 % worse than worst 

case full Taylor series coefficient data, and average nor- 

mal image velocity data are about the same as worst 

case normal Taylor series coefficient data. (Worst case 

normal image velocity data were 5 to 10 times worse 

than worst case normal Taylor series coefficient data.) 

We stated the conditions under which we consider a 

motion and structure computation to be feasible and 

conclude that: 

(a) Motion and structure can be feasibly recovered in 

the average case if full/normal least squares image 

velocity data are used. 

(b) Motion and structure can be feasibly recovered in 

the worst case if full/normal least squares Taylor 

series coefficient data are used. 

Indeed, since most of the motions exhibit p values less 

than 1 for average or worst case input we can conclude 

that motion and structure may even be useful for auton- 

omous vehicle navigation. Further, we recommend the 

following: use normal Taylor series coefficient data 

measured over time to compute motion and structure. 

The design of filters to measure this normal data locally 

from an image sequence is advocated as an area of 

future research. 

6 Other Work 

We are currently investigating the recovery of motion 

and structure from realistic images using image velocity 

data computed by the filtering techniques of Heeger 

[1988], Waxman et al. [1988], Anandan [1989], Fleet 

and Jepson [1990] and some others (on the Yosemite fly- 

through sequence, produced by Lynn Quam at SRI, on 

image sequences created by Fleet and Jepson and on 

image sequences obtained from an ALV [Dutta et al. 

1989]. Also, spatiotemporal filters that measure image 

velocity and first-order spatial image velocity deriva- 

tives are currently being designed at the University of 

Western Ontario [Eagelson 1989]. Measurements from 

all these (and other) techniques can be used in testing 

our motion and structure algorithm. We have devised 
binocular motion and structure algorithms that use 

time-varying image velocity information from a binocu- 

lar image sequence [Barron et al. 1987b] or use inde- 

pendently computed left and right monocular solutions 

[Barron et al. 1989]. We are currently performing a 

sensitivity analysis. 



268 Barron, Jepson and Tsotsos 

Acknowledgments 

We gratefully acknowledge financial support from the 

Natural Science and Engineering Council of Canada 
(NSERC) and the Information Technology Research 
Center (ITRC) of Ontario. 

References 

Adiv, G. 1984. Determining 3-D motion and structure from optical 
flow generated by several moving objects. COINS Tech. Rept. 
84-07, University of Massachusetts, April. (Also PAMI 7 (4): 

384-401, 1985.) 

Aloimonos, J., and Brown, C.M. 1984. Direct processing of curvi- 
linear sensor motion from a sequence of perspective images. In 
Proc. 2nd Workshop on Comput. Vision: Representation and Con- 

trol, Annapolis, pp. 72-77. 

Aloimonos, J.Y., and Rigoutsos, I. 1986. Determining the 3-D motion 
of a rigid planar patch without correspondence, under perspective 

projection. In Proc. Workshop on Motion: Representation and Anal- 

ysis, Kiawah Island, S.C, May 7-9. 
Aloimonos, Y., Weiss, I., and Bandyopadhyay, A. 1987. Active vision. 

In Proc 1st Intern. Conf. Comput. Vision, London, pp. 35-54. 
Anandan, P. 1989. A computational framework and an algorithm for 

the measurement of visual motion. Intern. J. Comput. Vision 2 (3): 

283-310. 
Bandyopadhyay, 1986. A computational study of rigid motion percep- 

tion. Ph.D. Thesis, TR-2U, Dept. of Computer Science, Umversity 

of Rochester, NY, December. 
Bandyopadhyay, A., and Aloimonos, J. 1985. Perception of rigid 

motion from spatio-temporal derivatives of optical flow, TR-157, 

Dept. of Computer Science, University of Rochester, NY, March. 
Ban-on, J.L. 1984. A survey of approaches for determining optic flow, 

environmental layout and egomotion. RBCV-TR-84-5, Dept. of 
Computer Science, University of Toronto, November. 

Barron, J.L. 1988, Computing motion and structure from noisy time- 
varying image velocity information. Ph.D. thesis, Dept. of Com- 

puter Science, University of Toronto, June. (Also TBCV-TR-88-24, 

Dept. of Computer Science, University of Toronto, August.) 
Barron, J.L., Jepson, A.D., and Tsotsos, J.K. 1987a. The sensitivity 

of motion and structure computations. In Proc. 6th Amer. Assoc. 

Artif. Intell. Conf., Seattle, July, pp. 700-705. 
Barron, J.L., Jepson, A.D., and Tsotsos, J.K. 1987b. Determining 

egomotion and environmental layout from noisy time-varying image 
velocity in binocular image sequences. In Proc. lOth Intern. Joint 

Conf. Artif lntell., Milan, pp. 822-825. 
Barron, J.L., Jepson, A.D., and Tsotsos, J.K. 1987c. Determination 

of egomotion and environmental layout from noisy time-varying 
image velocity in monocular image sequences. In Proc. ICIAP, 

Sicily, Italy, September, pp. 425-432. 
Barron, J.L., Jepson, A.D., and Tsotsos, J.K. 1988. The feasibility 

of motion and structure computations. In Proc. 2nd Intern. Conf. 

Comput. Vision, Tampa, FL, December, pp. 651-657. 
Barron, J.L., Jepson, A.D. and Tsotsos, J.K. 1989. Computing binoc- 

ular motion and structure from monocular motion and structure. 

In Proc. IC1AP, Positano, Italy, September, pp. 399-406. 

Broida, T.J., and Chellappa, R. 1986. Kinematics of a rigid object 
from a sequence of noisy images: A batch approach. In Proc. Conf. 

Comput. Vision Pat. Recog., Miami Beach, FL, pp. 176-182. 
Bruss, A.R., and Horn B.K.P. 1983. Passive Navigation. Comput. 

Vision, Graphics, Image Process. 21: 3-20. 

Buxton, B.E, Buxton, H., Murray, D.W., and Williams, N.S. 1984. 

3-D solutions to the aperture problem. In T. O'Shea (ed.), Advances 

in Artificial Intelligence. Elsevier Science Publishers B.V.: North 
Holland, pp. 631-640. 

Dennis, J.E., and Schnabel, R.B. 1983. Numerical Methods for 

Unconstrained Optimization and Nonlinear Equations. Prentice 
Hall: Englewood Cliffs, NJ. 

Dreschler, L.S., and Hagel, H.-H. 1982. Volumetric model and 3-D 

trajectory of a moving car derived from monocular TV-frame 
sequences of a street scene. Comput. Graphics Image Process. 20: 

199-228. 
Dutta, R., Manmatha, R., Williams, L.R., and Riseman, E.M. 1989. 

A data set for quantitative motion analysis. In Proc. Conf. Comput. 

Vision Part. Recog., San Diego, June, pp. 159-164. 
Eagleson, R. 1989. Measurement of motion-induced image deforma- 

tions: Spatio-temporal filters for translation, divergence, curl and 
shear. In Proc. of Vision Interface '89, London, Ontario, June, pp. 

61-69. 
Fang, J.-Q., and Huang, T.S. 1984. Solving three-dimensional small- 

rotation motion equations: Uniqueness, algorithms and numerical 
results. Comput. Vision, Graphics, Image Process. 26: 183-206. 

Fang, J.-Q., and Huang, T.S. 1984. Some experiments on estimating 
the 3-D motion parameters of a rigid body from two consecutive 

image frames. IEEE Trans. Patt. Anal Mach. InteU. (PAMI) 6 (5): 

545-554. 
Fleet, D.J., and Jepson, A.D. 1990. Computation of component image 

velocity from local phase information. Intern J. Comput. Vision 

5 (1): 77-104. (See also RBCV-TR-89-27, Dept. of Computer Sci- 
ence, University of Toronto, March, 1989.) 

Gibson, J.J. 1957. Optical motions and transformations as stimuli 

for visual perception. Psychological Review 64 (5): 288-295. 

Hay, J.C. 1966. Optical motions and space perception: An extension 
of Gibson's analysis. Psychological Review 73 (6): 550-565. 

Heeger, D.J. 1988. Optical flow using spatiotemporaI filters. Intern. 

J. Comput. Vision 1 (4): 279-302. 
Horn, B.K.P, 1986. Robot Vision, MIT Press: Cambridge, MA. 
Horn, B.K.P., and Schunck, B.G. 1981. Determining optical flow. 

Artificial Intelligence 17: 185-203. 
Horn, B.K.P,, and Weldon, E.J. 1988. Direct methods for recovering 

motion. Intern. J. Comput. Vision 2 (1): 51-76. 
Kanatani, K. 1985. Structure from motion without correspondence: 

General principle. In Proc 9th Intern. Joint Conf. Artif lntell., 

Los Angeles, pp. 886-888. 
Lawton, D.T. 1983. Processing translational motion sequences. 

Comput. Graphics Image Process. 22: 116-144. 
Longuet-Higgins, H.C. 1981. A computer algorithm for reconstruct- 

ing a scene from two projections. Nature 293, September, pp. 

133-135. 
Longuet-Higgins, H.C., and Prazdny, K. 1980. The interpretation of 

a moving image. In Proc. Roy. Soc. (London) B208: 385-397. 
Marr, D., and Ullman, S. 1981. Directional selectivity and its use 

in early visual processing. Proc. Roy. Soc. (London) B211: 151-180. 
Matthies, L., Szeliski, R., and Kanade, T. 1989. Kalman filter-based 

algorithms for estimating depth from image sequences. Intern. J. 

Comput. Vision 3 (3): 209-238. 



The Feasibility of Motion and Structure from Noisy Time-Varying Image Velocity Information 269 

Negahdaripour, S., and Horn, B.K.E 1987. Direct passive navigation. 

1EEE Trans. PAMI 9 (1): 168-176. 
Prazdny, K. 1979. Motion and structure from optical flow. In Proc. 

6th lntern. Joint Conf. Artifl lntell., Tokyo, pp. 702-704. 
Regan, D. and Beverle); K.I. 1982. How do we avoid confounding 

the direction we are looking and the direction we are moving. Sci- 

ence 215: 194-196. 
Roach, J.W., and Aggarwal, J.K. 1980. Determining the movement 

of objects from a sequence of images. IEEE Trans. PAMI 2 (6): 

554-562. 

Shariat, H., and Price, K.E. 1986a. How to use more than two frames 

to estimate motion. In Proc. IEEE Workshop on Motion: Represen- 

tation and Analysis, Charleston, SC, May, pp. 119-124. 

Shariat, H., and Price, K.E., 1986b. Results of motion estimation 

with more than 2 frames. In Proc. DARPA Image Understanding 

Workshop, Miami, FL, pp. 694-703. 

Spetsakas, M.E., and Aloimonos, J. 1988. Optimal computing of struc- 

ture from motion using point correspondences in two frames. CAR- 

TR-389 (CS-TR-2101), Computer Vision Lab, Center for Automa- 

tion Research, University of Maryland. 

Subbarao, M. 1986. Interpretation of visual motion: A computational 

study. Ph.D. thesis, CAR-TR-221, Center for Automation Research, 

University of Maryland, Setpember. 

Subbarao, M., and Waxman, A.M. 1985. On the uniqueness of image 
flow solutions for planar surfaces in motion. CAR-TR-114 (CS-TR- 

1485), Center for Automation Research, University of Maryland. 

(Also, 3rd Workshop on Computer Vision: Representation and Con- 

trol, 1985. pp. 129-140.) 

Synder, M.A. 1986. The accuracy of 3-D parameters in 

correspondence-based techniques. Dept. of Computer and Informa- 

tion Science, University of Massachusetts, June. 

Thompson, W.B., and Kearuey, LK. 1986. Inexact vision. In Proc. 

Workshop on Motion: Representation and Analysis, May 7--9, 

Charleston, SC, pp. 15-21. 

Tsai, R.Y., and Huang, T.S. 1984. Uniqueness and estimation of three- 

dimensional motion parameters of rigid objects with curved sur- 
faces. Trans. IEEE PAMI 6 (1): 13-27. 

Tsai, R.Y., Huang, T.S., and Zhu, W.-L. 1982. Estimating three- 

dimensional motion parameters of a rigid planar patch II: Singular 

value decomposition. 1EEE Trans. Acoustics, Speech and Signal 

Process. 30 (4): 525-534. 

Ullman, S. 1979. The Interpretation of Visual Motion. MIT Press: 

Cambridge, MA. 

Verri, A., and Poggio, T. 1987. Against quantitative optical flow. In 

Proc. 1st Intern. Confi Comput. Vision, London, pp. 171-180. 

Waxman, A.M., and Ullman, S. 1983. Surface structure and 3-D 
motion from image flow: A kinematic analysis, CAR-TR-24, Center 

for Automation Research, University of Maryland, October. 

Waxman, A.M., and Ullman, S., 1985. Surface structure and three- 

dimensional motion from image flow kinematics. Intern. J. Robotics 

Res. 4 (3): 72-94. 

Waxman, A.M., and Wohn, K. 1984. Contour evolution, neighbour- 
hood deformation and global image flow: Planar surfaces in motion. 

CAR-TR-58, Center for Automation Research, University of 
Maryland, April. 

Waxman, A.M., and Wohn, K. 1985. Contour evolution, neighbour- 

hood deformation and global image flow: Planar surfaces in motion. 

Intern. J. Rohotzcs Res. 4 (3): 95-108. 

Waxman, A.M., Kamgar-Parsi, B., and Snbbarao, M. 1987. Closed- 

form solutions to image flow equations. In Proc. 1st Intern. Conf. 

Comput. Vision, London, pp. 12-24. 

Waxman, A.M., ~#h, J., and Bergholm, E 1988. Convected activation 

profiles and the measurement of visual motion. In Proc. Conf. Com- 

put. Vision Part. Recog., Ann Arbor. 

Webb. J.A., and Aggarwal, J.K. 1981. Visually interpreting the motaon 

of objects in space, IEEE Computer 14: 40-46. 

Wu, J.L, Rink, R.E., Caelli, T.M., and Gourishankar, V.G. 1989. 

Recovery of the 3-D location and motion of a rigid object through 

camera image (An Extended Kalman Filter Approach). Intern. J, 

Comput. Vision 2 (4): 373-394. 

N o ~ s  

~Of course, we must still be able to solve surface-to-surface corre- 

spondence, i.e., we must be able to group together all image velocities 

distributed locally m space and time that belong to the same planar 

surface. See Adiv [1984] for one approach to this problem. 

2Givenf = 1 and that the minimum/maximum horizontal/vertical 

coordinates of the image are +lhf, if we assume a 256×256 pixel 

image coordinate system, Ys = (20, 20) in pixels corresponds to ~s 

= (0, 078125, 0.078125, 1) infunits. We use pixel image locations 

here because these can be expressed as simple integers and are more 

intuitive. 

3Note that all the flow figures are scaled by some value. For exam- 

ple, the image velocities in Figures 7-10 are unscaled (a scale factor 

of 1) while the image velocity derivatives of Figure 11 are actually 

4 times longer than shown (the scale factor is 0.25). Different scale 

factors mean comparison of the vector magnitudes must be adjusted 
accordingly. 

4If pure translation is assumed we only need 21/2 image velocities. 

In this case we let the LU decomposition of J choose the 2V2 image 

velocities to be used in the motion and structure computation. 


