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CORRELATION OF STOCK AND BOND

RETURNS: AN EQUILIBRIUM APPROACH

Henrik Hasseltoft∗

January 2009

Abstract

This paper presents an equilibrium model that provides a rational explanation for two

features of data that have been considered puzzling: The positive relation between US

dividend yields and nominal interest rates, often called the Fed-model, and the time-

varying correlation of US stock and bond returns. Key ingredients are time-varying

first and second moments of consumption growth, inflation, and dividend growth in

conjunction with Epstein-Zin and Weil recursive preferences. Historically in the US,

inflation has signalled low future consumption growth. The representative agent there-

fore dislikes positive inflation shocks and demands a positive risk premium for holding

assets that are poor inflation hedges, such as equity and nominal bonds. As a result,

risk premiums on equity and nominal bonds comove positively through their exposure

to macroeconomic volatility. This generates a positive correlation between dividend

yields and nominal yields and between stock and bond returns. High levels of macro

volatility in the late 1970s and early 1980s caused stock and bond returns to comove

strongly. The subsequent moderation in aggregate economic risk has brought correla-

tions lower. The model is able to produce correlations that can switch sign by including

the covariances between consumption growth, inflation, and dividend growth as state

variables.
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1 Introduction

The correlation between US stock and bond returns has varied substantially over time, reaching

highly positive levels in the late 1970s and early 1980s while turning negative in the late 1990s.

Several statistical models have been put forward to model the time variation but little work has

been done on explaining the phenomenon within an equilibrium model. A second feature of data

that has been considered puzzling is the highly positive correlation between US dividend yields and

nominal interest rates, a relation often referred to as the Fed-model.1 From the Gordon growth

formula, dividend yields are given by the real discount rate on equity minus the real dividend

growth rate. Since changes in expected inflation and bond risk premiums have been the main

source of variation in nominal yields (e.g. Campbell and Ammer, 1993, and Best et al., 1998), the

positive correlation observed in data implies that one or both of these components must either be

positively associated with real discount rates or negatively associated with real dividend growth

rates.2 However in the literature, it has been considered implausible for inflation to have rational

effects on any of these two real components of dividend yields. Instead, a behavioral explanation

in the form of inflation illusion (e.g., Modigliani and Cohn, 1979, and Campbell and Vuolteenaho,

2004) has been put forward.

I propose a representative agent asset pricing model that provides a rational explanation for

these two features of data. Key ingredients of the model are exogenous consumption growth,

inflation, and dividend growth in conjunction with Epstein and Zin (1989) and Weil (1989) recursive

preferences. In post 1952 US data, inflation has signalled low future consumption growth. The

representative agent therefore dislikes positive inflation shocks. As a result, the agent demands

a positive risk premium for holding assets that are poor hedges against inflation, for example

equity and nominal bonds. This mechanism causes risk premiums on equity and nominal bonds

to comove positively through their common exposure to macroeconomic volatility. Dividend yields

and nominal yields therefore become positively associated, allowing the model to match correlations

1The Fed-model is not endorsed by the Federal Reserve. The name comes from Ed Yardeni at Prudential Securities
in the mid 1990s following research reports at the Federal Reserve describing the relation.

2While the Gordon growth formula also can be written in nominal terms, changes in expected inflation is expected
to have offsetting effects on the nominal parts of the discount rate and the dividend growth rate. This leaves the real
components to explain the correlation.
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observed in data. The comovement of risk premiums is consistent with evidence in for example Fama

and French (1989) and Campbell and Ammer (1993). In particular, the model suggests that inflation

volatility plays a key role for determining risk premiums on both stocks and bonds. Similarly,

stock and bond returns move together through common changes in risk premiums. Changes in

macroeconomic risk, measured as time-varying second moments of consumption growth, inflation,

and dividend growth, are shown to account for a large part of changes in realized correlations

between stock and bond returns. The high correlations seen in the late 1970s and early 1980s

are attributed to high volatility of inflation and consumption growth. The subsequent drop in

correlations is explained by lower macroeconomic volatility. During the late 1990s, correlations

turned sharply negative. The model is able to produce correlations that can switch sign by including

the covariances between consumption growth, inflation, and dividend growth as state variables. The

negative correlations are partly captured by the model as a result of low economic volatility together

with a positive covariance between dividend growth and inflation. A series of small positive shocks

to inflation generated negative bond returns while positive cash flow shocks raised stock prices

through both higher dividend growth and a lower equity risk premium. The discount rate effect

on equity arises since positive cash flow shocks that occur during times of positive inflation shocks

(bad times) imply that equity is a hedge against periods of high marginal utility. While the model

performs well in capturing low-frequency movements in realized correlations, it is more challenging

for the model to predict quarter-to-quarter changes in correlations. Model-implied conditional

correlations predict realized quarterly correlations significantly and with an R2 of 13%. Including

the lagged realized correlation as explanatory variable does not drive out the significance of the

model forecast.

The dynamics of the model are presented in two specifications. In the first specification, I build

on Piazzesi and Schneider (2006) and model consumption growth and inflation as a VARMA(1,1)

process written in state-space form with all shocks in the economy being homoscedastic. I extend

their setup by also modeling dividend growth and introducing equity in to the model. I also

allow for the elasticity of intertemporal substitution (EIS) to be different from one and I provide
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approximate analytical solutions to the model.3 The codependence of consumption growth and

inflation is important for the results of the paper as it makes real asset prices and the price-

dividend ratio functions of expected inflation. This generates a direct channel through which the

Fed-model is explained. Both expected and unexpected inflation are estimated to have a negative

effect on future consumption growth which therefore leads to positive risk premiums on risky assets

such as equity and nominal bonds due to inflation shocks. When the EIS is above one, model-

implied price-dividend ratios are negatively related to expected inflation. This is supported by

empirical evidence provided in the paper.4 The specification also draws on the so called long-run

risk model of Bansal and Yaron (2004) in which expected real consumption growth contains a

small persistent component. However, their model does not consider inflation and its effect on real

consumption growth, the real pricing kernel, and therefore on risk premiums in the economy. I

show that the real effects of inflation are important to consider and therefore draws an important

distinction between the two models. Dividend growth is also modeled differently than in Bansal

and Yaron (2004). Rather than assuming expected dividend growth to be a function of expected

consumption growth, I allow expected dividend growth to be a separate state variable for price-

dividend ratios. This is shown to be important for explaining the two features in data as it drives

a wedge between stock and bond prices. Together with expected dividend growth, the conditional

means of consumption growth and inflation serve as state variables in the economy. In the second

specification, I extend the first by introducing heteroscedasticity. The volatility of shocks to the

three macro variables and their covariances are allowed to change over time, which enables me to

compute a time-varying conditional correlation between stock and bond returns. In addition to the

conditional first moments, the conditional variance of consumption growth, inflation, and dividend

growth, and their covariances serve as state variables in the second specification.

The main contributions of the paper are twofold. First, I show that the so called Fed-model

3Bansal et al. (2007a) and Attanasio and Vissing-Jorgensen (2003) estimate the EIS to be in excess of one while
Hall (1988) and Campbell (1999) document that it is close to zero. Lustig et al. (2008) provide evidence that the
wealth-consumption ratio varies over time, indicating that the EIS is not equal to one.

4It is well known in the literature that the so called long-run risk model of Bansal and Yaron (2004) needs an EIS
in excess of one to capture the negative relation between consumption volatility and price-dividend ratios, and the
positive relation between expected consumption growth and price-dividend ratios. The model in this paper needs
an EIS above one for a different reason, namely to capture the negative relation between price-dividend ratios and
expected inflation.
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can be explained within a rational consumption-based equilibrium model. This stands in contrast

to the hitherto dominant explanation in the form of inflation illusion. Second, I show that the

changing correlation between stock and bond returns to a large extent can be explained using the

same simple equilibrium model. To the best of my knowledge, this is the first equilibrium model

to provide a rational explanation of the Fed-model and the first consumption-based equilibrium

model that is able to account for a large part of changes in realized correlations between stock and

bond returns.

This paper builds on the literature of pricing stocks and bonds in equilibrium. Early contri-

butions include Cox et al. (1985), Mehra and Prescott (1985), Campbell (1986), and Dunn and

Singleton (1986). The recursive preferences of Epstein and Zin (1989) and Weil (1989) have been

used extensively in the asset-pricing literature (e.g., Campbell, 1993, 1996, 1999, Duffie et al., 1997,

and Restoy and Weil, 1998). Bansal and Yaron (2004) show that recursive preferences in conjunc-

tion with a time-varying first and second moment of consumption growth can explain the level of the

equity risk premium and its variation over time. Hasseltoft (2008) extends the long-run risk model

to the term structure of interest rates and shows that a calibrated version of the model is capable

of explaining deviations from the expectations hypothesis, the upward sloping nominal yield curve,

and the predictive power of the yield curve. It is also shown that the cyclicality of nominal interest

rates and yield spreads depend on the relative values of the EIS and the correlation between real

consumption growth and inflation. Bansal and Shaliastovich (2008) explain violations of both the

expectation hypothesis in bond markets and the uncovered interest rate parity in currency markets

using the long-run risk model. Piazzesi and Schneider (2006) make use of recursive preferences and

show that the nominal yield curve slopes up if inflation is bad news for future consumption growth.

They also explore the role of learning about macroeconomic fundamentals.

The positive correlation of US dividend yields and nominal interest rates, 0.30 for the period

1952-2007 and 0.74 for the period 1965-2007, is commonly known as the Fed-model. It is widely used

among practitioners as a tool for comparing the relative valuations of the stock and bond markets

and has received academic interest as rational explanations have been considered implausible. From

the Gordon growth model, the dividend yield is given by the real discount rate on equity minus the
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real dividend growth rate. Similarly, variations in nominal yields can be decomposed into changes

in real interest rates, inflation, and future excess returns. Evidence suggest that the latter two

components are the dominant factors (e.g. Campbell and Ammer, 1993, and Best et al., 1998).

For the positive correlation in data to arise, changes in inflation and bond risk premiums must

be negatively associated with real dividend growth rates and/or positively associated with real

discount rates. If the Gordon growth formula is written in nominal terms, changes in expected

inflation is expected to have offsetting effects on the nominal parts of dividend growth rates and

discount rates which leaves the real components to explain the high correlation. Surprisingly, none

of these explanations have found empirical support in the literature until recently. Instead an

explanation in the form of inflation illusion, originally put forward by Modigliani and Cohn (1979),

has found empirical support (e.g., Ritter and Warr, 2002, Asness, 2003, Campbell and Vuolteenaho,

2004, and Cohen et al., 2005). This explanation suggests that investors are irrational and fail to

properly adjust the expected nominal dividend growth rate with changes in expected inflation but

fully adjust the nominal discount rate. Alternatively, one can view it as investors are discounting

real cash flows with nominal interest rates. This implies that stocks are undervalued in periods of

high inflation from the viewpoint of a rational investor. In a recent empirical paper, Bekaert and

Engstrom (2008) argue that rational mechanisms are at work and ascribe the high correlation to

the large incidence of stagflation in US data. They show that the correlation between equity yields

and bond yields is mainly driven by a correlation between expected inflation and the equity risk

premium as periods of high expected inflation are associated with periods of high risk aversion and

high economic uncertainty. Hence, it seems that any rational equilibrium model that would like

to explain the Fed-model must contain a link between inflation and the equity risk premium. The

model in this paper contains exactly that.

The relation between stock and bond returns has received great academic interest and is of

central importance for asset allocation decisions. Early contributions focus on the unconditional

correlation. Shiller and Beltratti (1992) fail to match the observed comovement using a present-

value model. Campbell and Ammer (1993) decompose the variance of stock and bond returns and

find offsetting effects from changes in real interest rates, excess returns, and expected inflation.
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Barsky (1989) explore the role of changes in risk and productivity growth for the behavior of stock

and bond returns within a general equilibrium framework. Recently, the focus has shifted towards

understanding the conditional correlation of stock and bond returns which displays large time vari-

ation. Several statistical models have been put forward to shed light on the comovement. Scruggs

and Glabadanidis (2003) find that models that impose a constant correlation restriction on the

covariance matrix between stock and bond returns are strongly rejected. Connolly et al. (2005)

document a negative relation between stock market uncertainty and the future correlation of stock

and bond returns. Baele et al. (2007) attempt to explain the time-varying correlation using macro

factors but conclude that their factors fit the reality poorly and argue that liquidity factors help ex-

plain the time variation. Campbell et al. (2008) specify an exogenous process for the real stochastic

discount factor and estimate a term structure model using inflation and asset price data. One of

their state variables is the covariance between inflation and the real economy which they link to the

changing covariance of stock and bond returns and changes in bond risk premia. Nominal bonds

are expected to be a poor hedge against economic fluctuations when inflation is countercyclical

since it implies pro-cyclical bond returns. Investors therefore demand a positive risk premium to

hold them. David and Veronesi (2008) explore the role of learning about inflation and real earnings

for the second moments of stock and bond returns. They estimate their model using asset price

data as well and forecast the covariance of stock and bond returns quite accurately. In contrast to

these papers, I build on the traditional literature on consumption-based asset pricing and address

the issue of changing correlations using a consumption-based equilibrium model. This implies a

real stochastic discount factor that is based on consumption growth. Furthermore, only macro data

is used to estimate the model which provides a test of how much fundamental macro variables can

account for features of asset prices.

This paper is also related to the literature on whether stocks provide a hedge or not against

inflation. Several articles have established a negative relation between inflation and stock returns.

Fama and Schwert (1977) document that common stock returns are inversely related to expected

inflation. Fama (1981) argues that inflation proxies for real activity. He argues that higher expected

output increases both stock prices and the demand for real money. If the latter is not accommodated
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with a similar change in money supply, the quantity theory of money suggests a drop in the price

level. Hence, a negative relation between stock returns and inflation. Kaul (1987) stresses the

combination of money demand and counter-cyclical money supply effects for the stock return-

inflation relation. Boudoukh et al. (1994) explore the cross-sectional relation between stock returns

and inflation and find that non-cyclical industries tend to covary positively with inflation while

the reverse holds for cyclical industries. Pilotte (2003) documents that dividend yields and capital

gains are differently related to expected inflation.

2 The Model

This section describes the dynamics of consumption growth, inflation, and dividend growth, which

are presented in two specifications. Specification I models the first moments, assuming all macro

shocks have constant second moments. Specification II allows for heteroscedasticity and models

the second moments. Section 2.2 describes the preferences of the representative agent. Section 2.3

solves the model and provides solutions for equity and bond prices.

2.1 Dynamics

2.1.1 Specification I: Homoscedasticity

Consumption growth, inflation, and dividend growth are modeled in state-space form. Let zt+1 =

[∆ct+1, πt+1,∆dt+1]
′ denote the logarithmic consumption growth, inflation, and dividend growth

and let xt = [xc, xπ, xd]
′ represent the time-varying part of the conditional means. The components
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of xt serve as state variables in the economy. The following dynamics are assumed:

zt+1 = µ + xt + ηt+1, (1)

xt+1 = βxt + δηt+1, (2)

ηt+1 ∼ N.i.i.d. (0,Ω) ,

µ = [µc, µπ, µd]
′,

η = [ηc, ηπ, ηd]
′,

Ω =









σ2
c σcπ σcd

σcπ σ2
π σπd

σcd σπd σ2
d









.

All shocks in the economy are assumed to be homoscedastic, subject to the variance-covariance

matrix Ω. Shocks to inflation and consumption growth are correlated through σcπ, shocks to

consumption and dividend growth through σcd, and shocks to dividend growth and inflation through

σπd. The persistence of shocks and their effect on the conditional means are governed by β and δ:

β =









β1 β2 0

β3 β4 0

β5 0 β6









,

δ =









δ1 δ2 0

δ3 δ4 0

δ5 0 δ6









.

The state-space system can be written as a VARMA(1,1):

zt+1 − µ = β(zt − µ) + ηt+1 + αηt, (3)

where α is a 3-by-3 matrix. Taking the conditional mean of (3) and letting xt = β(zt − µ) + αηt

denote the conditional mean yields the state-space system above where δ = β + α.
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Consider first the relation between expected consumption growth and inflation, which follows

Piazzesi and Schneider (2006). The two conditional means are interdependent through β2 and

β3. This allows real asset prices and valuation ratios, for example the price-dividend ratio, to

be a function of expected inflation since the conditional mean of xc,t+1 depends on xπ,t. So if one

conjectures that asset prices are a function of expected consumption growth, it implies they also are

a function of expected inflation. Hence, xc,t and xπ,t both serve as state variables. This implies a

direct link between expected inflation and the real pricing kernel which therefore have implications

for risk premiums in the economy. This way of capturing the real effects of inflation is important for

explaining the Fed-model and the changing correlation of stock and bond returns. Specification I

nests dynamics used in other consumption-based equilibrium models. For example, Wachter (2006)

models consumption growth and inflation as two separate ARMA(1,1) processes with correlated

shocks. This translates into setting β2 = β3 = δ2 = δ3 = 0. Bansal and Yaron (2004) assume that

shocks to realized and expected consumption growth are different and uncorrelated. However, the

specification above nests their dynamics if one set the two shocks equal, leave out realized inflation

completely, and then set β2 = β3 = β4 = δ2 = δ3 = δ4 = 0. Hasseltoft (2008) models expected

inflation as an AR(1) process with lagged consumption shocks but keeping expected consumption

growth only a function of its own lag and shocks. This implies setting β2 = β3 = δ2 = 0.

The realized dividend growth rate is modeled analogously to consumption growth and inflation,

with an unconditional mean, µd, and a time-varying part, xd.
5 This specification is different

from the common approach in consumption-based models of modeling dividend growth rates as a

function of expected consumption growth times a leverage parameter (e.g., Abel, 1999, Bansal and

Yaron, 2004). Modeling dividend growth in such a way has the less desirable property of producing

a correlation equal to one between expected consumption growth and expected dividend growth.

The specification used in this paper breaks that link which makes the expected dividend growth

a state variable for price-dividend ratios. This drives a wedge between price-dividend ratios and

nominal interest rates in the model as it captures cash flow shocks affecting equity. This allows the

model to produce a realistic correlation between price-dividend ratios and nominal interest rates.

5Consumption and dividends are not cointegrated. Considering the long-run relation between consumption and
dividends is potentially important, as for example argued in Bansal et al. (2007b).
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It also improves the ability of the model to match the observed correlation between stock and bond

returns as it contributes to a low or even negative correlation between asset returns as discussed in

Section 6.

Expected dividend growth rates are allowed to depend on lagged expected consumption growth

through β5. The effect of expected dividend growth on future consumption growth and inflation,

entries (1,3) and (2,3) of β, are both set to zero. Relaxing the restriction would make expected

dividend growth rates a state variable for bond prices. The economic rationale for why changes in

cash flow growth rates should affect prices of Treasury bonds is not clear, and I therefore choose to

restrict the dynamics. The effect of expected inflation on future expected dividend growth rates,

entry (3,2) of β, is set to zero. This is done for two reasons. First, it emphasizes the effect inflation

has on risk premiums through its relation with future consumption growth. That is, the emphasis is

on one of the two rational channels that can generate a positive correlation between dividend yields

and nominal interest rates. Second, the unconditional correlation between dividend growth and

inflation is close to zero in data, indicating that the second possible rational channel of explaining

the Fed-model is less important. Empirical evidence provided in Bekaert and Engstrom (2008)

indicate that the relation between expected inflation and the cash flow component of dividend

yields plays a minor role.6 Similarly, the matrix δ is subject to the same restrictions.

2.1.2 Specification II: Heteroscedasticity

Empirical evidence suggests that inflation (e.g., Engle, 1982, and Bollerslev, 1986), consumption

growth (e.g., Kandel and Stambaugh 1990, and Bansal et al., 2005), and dividend growth (e.g.,

Bansal and Yaron, 2000) are all subject to heteroscedasticity. The volatilities of shocks to the

economy are therefore modeled as time varying, incorporating a notion of changing economic un-

certainty. The conditional second moments of the shocks are later used to compute the conditional

correlation between stock and bond returns.

The dynamics for the first moments are kept the same as above, but the conditional variance-

6I have estimated the system allowing for an interaction between expected inflation and future expected dividend
growth rates. The coefficient turns out to be negative but is not statistically different from zero at usual significance
levels.
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covariance matrix of the shocks are allowed to change over time. The variances and the covariances

are modeled as separate autoregressive processes subject to random shocks that are assumed to be

normally distributed and uncorrelated. Assume the macro shocks ηt+1 to be normally distributed

with mean zero and subject to the conditional variance-covariance matrix Ωt, which takes the form:

Ωt =









σ2
c,t σcπ,t σcd,t

σcπ,t σ2
π,t σπd,t

σcd,t σπd,t σ2
d,t









,

and let the variances and covariances follow:

σ2
c,t+1 = αc + φc(σ

2
c,t − αc) + τcǫc,t+1, (4)

σ2
π,t+1 = απ + φπ(σ

2
π,t − απ) + τπǫπ,t+1, (5)

σ2
d,t+1 = αd + φd(σ

2
d,t − αd) + τdǫd,t+1, (6)

σcπ,t+1 = αcπ + φcπ(σcπ,t − αcπ) + τcπǫcπ,t+1, (7)

σcd,t+1 = αcd + φcd(σcd,t − αcd) + τcdǫcd,t+1, (8)

σπd,t+1 = απd + φπd(σπd,t − απd) + τπdǫπd,t+1, (9)

where α denotes the unconditional mean of each process, the φ parameters govern the persistence of

shocks to the second moments, and the τ parameters determine the volatility of the second moments.

These dynamics are extensions of Bansal and Yaron (2004) who model consumption volatility as

in (4). The assumption of conditionally normal second moments is made out of convenience since

it allows for closed-form affine solutions of asset prices. These dynamics are therefore assumed for

modeling purposes. When estimating the second moments in Section 3, I use the diagonal VEC-

model of Bollerslev et al. (1988). The estimated parameters are then mapped into the dynamics

above.
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2.2 Investor Preferences

The representative agent in the economy has Epstein and Zin (1989) and Weil (1989) recursive

preferences:

Ut =

{

(1 − δ)C
1−γ
θ

t + δ(Et[U
1−γ
t+1 ])

1

θ

} θ
1−γ

, (10)

where θ = 1−γ

1− 1

ψ

, γ ≥ 0 denotes the risk aversion coefficient and ψ ≥ 0 the elasticity of intertemporal

substitution (EIS). The discount factor is represented by δ. This preference specification allows

time preferences to be separated from risk preferences. This stands in contrast to time-separable

expected utility in which the desire to smooth consumption over states and over time are interlinked.

The agent prefers early (late) resolution of risk when the risk aversion is larger (smaller) than the

reciprocal of the EIS. A preference for early resolution and an EIS above one imply that θ < 1.

This specification nests the time-separable power utility model for γ = 1
ψ

(i.e., θ = 1).

The agent is subject to the following budget constraint:

Wt+1 = Rc,t+1 (Wt − Ct) , (11)

where the agent’s total wealth is denoted Wt, Wt − Ct is the amount of wealth invested in asset

markets and Rc,t+1 denotes the gross return on the agents total wealth portfolio. This asset delivers

aggregate consumption as its dividends each period. Epstein and Zin (1989) show that this economy

implies an Euler equation for asset return Ri,t+1 in the form of:

Et[δ
θG

−θ
ψ

t+1R
−(1−θ)
c,t+1

︸ ︷︷ ︸

Mt+1

Ri,t+1] = 1, (12)

where Gt+1 denotes the aggregate gross growth rate of consumption and Mt+1 denotes the in-

tertemporal marginal rate of substitution (IMRS). The logarithm of the IMRS can be written

as:

mt+1 = θ ln (δ) −
θ

ψ
∆ct+1 − (1 − θ) rc,t+1, (13)

where lnRc,t+1 = rc,t+1 and lnGt+1 = ∆ct+1. Note that the IMRS depends on both consumption
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growth and on the return from the total wealth portfolio. Recall that θ = 1 under power utility,

which brings us back to the standard time-separable IMRS.

2.3 Solving the model

This section solves the model for the case of constant and time-varying second moments of the

macro shocks. The solutions are presented in Sections 2.3.1 and 2.3.2. Common to the two cases

are the returns on the aggregate wealth portfolio and the market portfolio, which are approximated

using the analytical solutions found in Campbell and Shiller (1988):

rc,t+1 = kc,0 + kc,1pct+1 − pct + ∆ct+1, (14)

rm,t+1 = kd,0 + kd,1pdt+1 − pdt + ∆dt+1, (15)

where pct and pdt denote the log price-consumption ratio and the log price-dividend ratio, and

the constants kc and kd are functions of the average level of pct and pdt, denoted p̄c and p̄d.7

Specifically, the constants are:

kc,1 =
exp(p̄c)

1 + exp(p̄c)
, (16)

kc,0 = ln(1 + exp(p̄c)) − kc,1p̄c, (17)

and similarly for the kd coefficients.

2.3.1 Specification I: Homoscedasticity

All asset prices and valuation ratios are conjectured to be functions of the time-varying conditional

means of the three macro variables. Starting with the log price-consumption ratio, it is conjectured

to be a linear function of expected consumption growth, xc, expected inflation, xπ, and expected

dividend growth, xd:

pct = Ac,0 +Ac,1xc,t +Ac,2xπ,t +Ac,3xd,t. (18)

7Bansal et al. (2007a) show that the approximate analytical solutions for the returns are close to the numerical
solutions and deliver similar model implications.
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Using the standard Euler equation together with the dynamics of consumption growth and inflation

one can solve for the coefficients. Appendix A.1 explains how to solve for the A-coefficients and

reports the expression for Ac,0. The remaining coefficients are given by:

Ac,1 =
1 + kc,1Ac,2β3 + kc,1Ac,3β5 −

1
ψ

1 − kc,1β1
,

Ac,2 =
kc,1β2(1 − 1

ψ
)

(1 − kc,1β4)(1 − kc,1β1) − k2
c,1β2β3

,

Ac,3 = 0.

First note that Ac,3 equals zero as a result of the restrictions imposed on the dynamics, which were

discussed in Section 2.1.1. Coefficient, Ac,1, measures the response of the price-consumption ratio to

changes in expected consumption growth. The denominator is positive given that β1 < 1 so its sign

depends on whether expected consumption growth implies good or bad news for future inflation, β3,

on whether the price-consumption ratio responds positively or negatively to inflation expectations,

Ac,2, and on whether the EIS, ψ, is above or below one. Setting β3 and/or Ac,2 equal to zero gives

the expression for Ac,1 found in Bansal and Yaron (2004). However, the influence of inflation on

real variables is key to the paper and represents an important distinction from the long-run risk

model. The denominator of Ac,2 is positive for plausible parameter values so its sign depends on

β2 and the EIS. For example, high inflation expectations will depress the price-consumption ratio

(Ac,2 < 0) when high inflation signals low future consumption growth, β2 < 0 , and the EIS is

above one. An EIS in excess of one implies that the intertemporal substitution effect dominates

the wealth effect. As high inflation signals low future returns, agents sell risky assets which leads

to lower valuation ratios. In the case of expected utility ( 1
ψ

= γ), a risk aversion coefficient above

one instead implies that the wealth effect dominates which results in a positive value of Ac,2 given

that β2 < 0. Section 4 provides empirical evidence that expected inflation is negatively related to

the price-consumption ratio and accounts for a large part of its variation.8

The following expression represents innovations to the real pricing kernel, where vector λ rep-

8The unobservable price-consumption ratio is proxied by the wealth-consumption ratio measured in Lustig et
al. (2008).
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resents the market prices of risk:

mt+1 − Et(mt+1) = ληcηc,t+1 + ληπηπ,t+1, (19)

ληc = −
θ

ψ
+ (θ − 1)(kc,1Ac,1δ1 + kc,1Ac,2δ3 + kc,1Ac,3δ5 + 1), (20)

ληπ = (θ − 1)(kc,1Ac,1δ2 + kc,1Ac,2δ4). (21)

The model allows both shocks to consumption growth and inflation to be priced. For example,

ληπ > 0 implies that the representative agent dislikes positive inflation shocks and therefore requires

a higher risk premium for assets that perform badly in periods of high inflation. Hence, this

represents an additional part of risk premiums in the economy compared to models in which only

consumption shocks are priced, e.g., Bansal and Yaron (2004). Recall that θ = 1 under power

utility, which means that inflation risk is not priced and the price of consumption risk collapses to

− 1
ψ

= −γ.

The log price-dividend ratio is conjectured to be a linear function of the same three state

variables as above:

pdt = Ad,0 +Ad,1xc,t +Ad,2xπ,t +Ad,3xd,t. (22)

Again, the coefficients are solved for using the standard Euler equation. Appendix A.2. describes

the derivations and reports the expression for Ad,0. The remaining coefficients are given by:

Ad,1 =
− θ
ψ

+ (θ − 1)(kc,1(Ac,1β1 +Ac,2β3 +Ac,3β5) −Ac,1 + 1) + kd,1(Ad,2β3 +Ad,3β5)

1 − kd,1β1
,

Ad,2 =
(1 − kd,1β1)X + Y

(1 − kd,1β4)(1 − kd,1β1) − k2
d,1β2β3

,

Ad,3 =
(θ − 1)Ac,3(kc,1β6 − 1) + 1

1 − kd,1β6
,

X = (θ − 1)(kc,1Ac,1β2 + kc,1Ac,2β4 −Ac,2),

Y = kd,1β2

[

−
θ

ψ
+ (θ − 1)(kc,1Ac,1β1 + kc,1Ac,2β3 −Ac,1 + 1) + kd,1Ad,3β5

]

,

Since Ac,3 equals zero, Ad,3 equals 1
1−kd,1β6

which is positive given that β6 < 1. This implies
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that higher expected dividend growth naturally raises price-dividend ratios. Coefficient Ad,2 is in

general negative when the EIS is above one and when high expected inflation is a signal of low

future consumption growth, β2 < 0. Expected consumption growth and price-dividend ratios are

in general positively associated (Ad,1 > 0) for high values of the EIS and negative values of β3,

provided that Ad,2 is negative. As for the price-consumption ratio, Section 4 provides empirical

evidence that expected inflation is negatively related to price-dividend ratios.

Real and nominal log bond prices are conjectured to be functions of the same state variables:

qt,n = D0,n +D1,nxc,t +D2,nxπ,t +D3,nxd,t, (23)

q$t,n = D$
0,n +D$

1,nxc,t +D$
2,nxπ,t +D$

3,nxd,t. (24)

Let yt,n = 1
n
qt,n and y$

t,n = 1
n
q$t,n denote the n-period continuously compounded real and nominal

yield. Then:

yt,n = −
1

n
(D0,n +D1,nxc,t +D2,nxπ,t +D3,nxd,t), (25)

y$
t,n = −

1

n
(D$

0,n +D$
1,nxc,t +D$

2,nxπ,t +D$
3,nxd,t), (26)

where the D-coefficients determine how yields respond to changes in expected consumption growth,

inflation, and dividend growth. Solving for nominal log bond prices requires the use of the nominal

log pricing kernel which is determined by the difference between the real log pricing kernel and the

inflation rate:

m$
t+1 = mt+1 − πt+1. (27)

Appendix A.3 and A.4 show how to solve for the coefficients and report the expressions for D0,n
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and D$
0,n. The remaining coefficients are given by:

D1,n = −
θ

ψ
+ (θ − 1)(kc,1Ac,1β1 + kc,1Ac,2β3 −Ac,1 + 1) +D1,n−1β1 +D2,n−1β3,

D2,n = (θ − 1)(kc,1Ac,1β2 + kc,1Ac,2β4 −Ac,2) +D1,n−1β2 +D2,n−1β4,

D3,n = 0,

D$
1,n = −

θ

ψ
+ (θ − 1)(kc,1Ac,1β1 + kc,1Ac,2β3 −Ac,1 + 1) +D$

1,n−1β1 +D$
2,n−1β3,

D$
2,n = (θ − 1)(kc,1Ac,1β2 + kc,1Ac,2β4 −Ac,2) +D$

1,n−1β2 +D$
2,n−1β4 − 1,

D$
3,n = 0,

where Di,0 and D$
i,0 equal zero for i = 1, 2, 3. For plausible parameter values, real yields in the

model increase in response to positive shocks to consumption growth. This suggests that D1,n is

negative and means that real bonds act as a hedge against bad times. They are therefore subject to

negative risk premiums in the economy which makes the real yield curve slope downwards. This is

supported by empirical evidence from UK-index linked bonds which have been trading since the mid

1980s (e.g., Evans, 1998, and Piazzesi and Schneider, 2006) Unfortunately, data for US index-linked

bonds only date back to 1997 but indicate a positively sloped yield curve. However, the rather short

sample period and the fact that the market was illiquid at the inception of trading warrants some

caution in interpreting the data. The pro-cyclical nature of real yields is also consistent with the

empirical findings of Chapman (1997) and Ang et al. (2008). Real yields decrease in response to

higher expected inflation if high inflation is bad news for future consumption growth, i.e., D2,n is

then positive. This is consistent with earlier studies such as Fama and Gibbons (1982), Pennacchi

(1991), and Boudoukh (1993). Ang et al. (2008) also document a negative relation between real

rates and expected inflation but find the correlation to be positive for longer horizons.

As expected, high expected inflation depresses nominal bond prices leading D$
2,n to be negative.

The reaction of nominal bonds to changes in expected consumption growth depends on the relation

between expected consumption growth and future inflation captured by β3. A positive β3 implies a

negative D$
1,n since high consumption growth then signals high future inflation which is bad news

for nominal bond returns. The economic intuition for why changes in dividend growth rates should
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affect bond prices is not clear, so both real and nominal bonds have a zero loading on xd. The zero

loadings arise due to the restrictions imposed on the dynamics in Section 2.1.1..

2.3.2 Specification II: Heteroscedasticity

Having solved for asset prices using the conditional means as state variables, this section conjectures

that asset prices also are functions of the conditional variances and covariances of consumption

growth, inflation, and dividend growth. The coefficients in front of the conditional means remain

the same as above, wherefore only the solutions for the second moments are reported.

The log price-consumption ratio is conjectured to be a linear function of the following state

variables:

pct = Ac,0+Ac,1xc,t+Ac,2xπ,t+Ac,3xd,t+Ac,4σ
2
c,t+Ac,5σ

2
π,t+Ac,6σ

2
d,t+Ac,7σcπ,t+Ac,8σcd,t+Ac,9σπd,t.

(28)

Appendix A.1 shows that the solutions are given by:

Ac,4 =
−0.5X2

θ(φckc,1 − 1)
,

Ac,5 =
−0.5Y 2

θ(φπkc,1 − 1)
,

Ac,6 = 0,

Ac,7 =
−XY

θ(φcπkc,1 − 1)
,

Ac,8 = 0,

Ac,9 = 0,

X = [ληc + kc,1(Ac,1δ1 +Ac,2δ3 +Ac,3δ5 + 1)] ,

Y = [ληπ + kc,1(Ac,1δ2 +Ac,2δ4)] ,

where ληc and ληπ are the market prices of risk, found in (20)-(21). For negative values of θ, that

is when the risk aversion and the IES both are above one, Ac,4 and Ac,5 are both negative since

φc, φπ, and kc,1 are all positive and less than one. Increased volatility of consumption growth and

inflation therefore depresses the log price-consumption ratio. The need for an IES above one to

19



capture the negative relations between the log price-consumption ratio and macro volatility is the

same as in the long-run risk model. The response of the price-consumption ratio to the covariance

of consumption growth and inflation, σcπ,t, is determined by X and Y which are closely related

to the market prices of risk of consumption and inflation shocks. For example, Ac,7 tends to be

positive when positive consumption shocks lower the marginal utility of the agent while positive

inflation shocks increase the marginal utility. A pro-cyclical inflation process is then associated with

a higher price-consumption ratio. The remaining coefficients are zero as a result of the restrictions

imposed on the dynamics.

The log price-dividend ratio is conjectured to be a function of same state variables:

pdt = Ad,0+Ad,1xc,t+Ad,2xπ,t+Ad,3xd,t+Ad,4σ
2
c,t+Ad,5σ

2
π,t+Ad,6σ

2
d,t+Ad,7σcπ,t+Ad,8σcd,t+Ad,9σπd,t.

(29)

Appendix A.2 shows that the solutions are given by:

Ad,4 =
0.5X2 + (θ − 1)Ac,4(kc,1φc − 1)

(1 − kd,1φc)
,

Ad,5 =
0.5Y 2 + (θ − 1)Ac,5(kc,1φπ − 1)

(1 − kd,1φπ)
,

Ad,6 =
0.5Z2 + (θ − 1)Ac,6(kc,1φd − 1)

(1 − kd,1φd)
,

Ad,7 =
XY + (θ − 1)Ac,7(kc,1φcπ − 1)

(1 − kd,1φcπ)
,

Ad,8 =
XZ + (θ − 1)Ac,8(kc,1φcd − 1)

(1 − kd,1φcd)
,

Ad,9 =
Y Z + (θ − 1)Ac,9(kc,1φπd − 1)

(1 − kd,1φπd)
,

X = [ληc + kd,1(Ad,1δ1 +Ad,2δ3 +Ad,3δ5)] ,

Y = [ληπ + kd,1(Ad,1δ2 +Ad,2δ4)] ,

Z = [kd,1Ad,3δ6 + 1] .

As for the price-consumption ratio above, a high value of the EIS is needed to produce a negative

relation between price-dividend ratios and macroeconomic volatility. The last three coefficients
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determine how the price-dividend ratio responds to changes in the covariances between the three

macro variables.

Similarly, the real and nominal log bond prices are conjectured to be functions of the same state

variables:

qt,n = D0,n+D1,nxc,t+D2,nxπ,t+D3,nxd,t+D4,nσ
2
c,t+D5,nσ

2
π,t+D6,nσ

2
d,t+D7,nσcπ,t+D8,nσcd,t+D9,nσπd,t,

(30)

q$t,n = D$
0,n+D

$
1,nxc,t+D

$
2,nxπ,t+D

$
3,nxd,t+D

$
4,nσ

2
c,t+D

$
5,nσ

2
π,t+D

$
6,nσ

2
d,t+D

$
7,nσcπ,t+D

$
8,nσcd,t+D

$
9,nσπd,t.

(31)

Appendix A.3 and A.4 show how to solve for the coefficients. The coefficients for real bonds

are for brevity reported in Appendix A.3 while the coefficients for nominal bonds are given by:

D$
4,n = (θ − 1)Ac,4(kc,1φc − 1) +D$

4,n−1φc + 0.5X2,

D$
5,n = (θ − 1)Ac,5(kc,1φπ − 1) +D$

5,n−1φπ + 0.5Y 2,

D$
6,n = 0,

D$
7,n = (θ − 1)Ac,7(kc,1φcπ − 1) +D$

7,n−1φcπ +XY,

D$
8,n = 0,

D$
9,n = 0,

X =
[

ληc +D$
1,n−1δ1 +D$

2,n−1δ3 +D$
3,n−1δ5

]

,

Y =
[

ληπ − 1 +D$
1,n−1δ2 +D$

2,n−1δ4

]

,

where Di,0 and D$
i,0 equal zero for i = 4, 5, ..., 9. An increase in the volatility of consumption

growth and inflation has a negative effect on bond prices, provided a high EIS and high values of

the persistence parameters. In that case, nominal bonds do not provide a hedge against periods

of high economic turbulence and higher macroeconomic volatility therefore raises nominal yields.

Coefficient D$
7,n determines how nominal yields response to changes in the covariance of consump-

tion growth and inflation and depends on the market prices of risk of consumption and inflation

shocks, the first terms in X and Y, and on whether bond prices increase or decrease in response
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to the shocks, the remaining terms in X and Y. A positive D$
7,n implies higher bond prices and

lower yields when inflation is procyclical. The volatility of dividend growth and the covariance

terms involving dividend growth have no effect on real and nominal bond prices. This is due to the

restrictions imposed on the δ matrix in Section 2.1.1..

3 Data and Estimation

This section explains the data used in the paper and the estimation of the homoscedastic and

heteroscedastic dynamics specified in Section 2.1. Preference parameters are calibrated to match

unconditional moments of asset prices and are therefore discussed in Section 4.

3.1 Data

Quarterly aggregate US consumption data on nondurables and services is collected from Bureau

of Economic Analysis for the period 1952-2007. Inflation is computed as in Piazzesi and Schneider

(2006) using the price index corresponding to the consumption data. Value-weighted market returns

(NYSE/AMEX/NASDAQ) are retrieved from CRSP. Nominal interest rates are collected from the

Fama-Bliss file in CRSP and from the website of J. Huston McCulloch. The former set of yields are

used to match unconditional moments and the latter are used for computing quarterly bond returns

since they make it possible to compute quarterly returns on a five year bond. Daily stock returns

and daily 5-year nominal interest rates for the period January 1962 - December 2007 are collected

from CRSP and the Federal Reserve Bank in St. Louis, respectively. The daily data is used for

computing the correlation between stock and bond returns within each quarter. Dividend growth is

computed using monthly CRSP returns including and excluding dividends. The procedure follows

Bansal et al. (2005) among others. Quarterly dividends are formed by summing dividends for each

quarter. To mitigate seasonalities, a moving four-quarter average is used. Real dividend growth

rates are found by taking the log first difference and deflating using the constructed inflation series.

Table 1 provides summary statistics of the data. Dividend growth displays the highest volatil-

ity of the three series, followed by inflation and consumption growth. Inflation displays positive

autocorrelations over both one and two years while the autocorrelations for consumption growth
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and inflation are not statistically different from zero. The unconditional correlation between infla-

tion and consumption growth is negative,−0.35, and statistically significant at the 10% level. The

correlation between consumption growth and dividend growth and between dividend growth and

inflation have a positive and negative sign, respectively.

3.2 Estimation

3.2.1 Specification I

The state space system for consumption growth, inflation, and dividend growth is estimated using

maximum likelihood (e.g., Hamilton, 1994) and quarterly US data for the period 1952:2 - 2007:4.

The three series are demeaned. The assumption of Gaussian error terms, η, gives a log-likelihood

function that is the sum of Gaussian densities. The following objective function is maximized:

T∑

t=1

[

−
1

2
n ln(2π) −

1

2
ln | Ω | −

1

2
η′

tΩ
−1ηt

]

, (32)

where ηt = zt − µ − xt−1, T equals the number of observations and n equals the dimension of

vector zt, 223 and 3 respectively. The likelihood function is evaluated by finding the state vector

recursively from xt+1 = βxt + δηt+1, where x0 is set equal to its unconditional mean of zero.

Table 2 presents the estimated parameter values. Negative values of β2 and δ2 imply that both

expected and unexpected inflation lead to lower future consumption growth. As a result, the agent

demands a positive risk premium on assets that are poor hedges against inflation, e.g. equity and

nominal bonds. It also makes price-dividend ratios negatively related to expected inflation. The

covariance of shocks to consumption growth and inflation is negative and statistically significant.

Using the estimated parameter values, the model is simulated 2,000 times in which each simulation

contains 223 quarters. The model-implied macro moments are displayed in Table 1 together with

the sample moments. The model provides an overall good fit to data.

Figure 1 depicts time series of realized and expected consumption growth, inflation, and dividend

growth using the fitted values from the estimation. The time-varying part of the conditional means

are extracted from data. The solid lines represent the sum of µ and x for each macro variable
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and the dashed lines are the realized values. The stagflation period in the 1970s is evident from

the spike in inflation and the sharp drop in consumption growth. Noteworthy is also the gradual

decline in inflation from 1980 up the beginning of the 2000s. The spike in dividend growth at the

end of the sample period is the result of a large difference between cum and ex-dividend market

returns obtained from CRSP for November 2004.9

Using the estimated parameters, it is straightforward to back out the implied macro shocks.

Figure 2 displays the squared shocks to the three macro variables, which provides an understanding

of how the macroeconomic volatility has changed over time. Consumption growth was subject to

several large shocks during the early part of the sample period while the magnitude of the shocks

have decreased over time, with the exception of spikes in the early 1980s and early 1990s. Inflation

experienced a period of large shocks during the 1970s and 1980s after which the size of the shocks

has decreased.

Figure 3 depicts the cross products of shocks to consumption growth and inflation, shocks

to consumption growth and dividend growth, and shocks to inflation and dividend growth. This

provides an understanding of how the covariances have changed over time. The period of stagflation

in the 1970s is evident from the first graph in which shocks to consumption growth and inflation

had opposite signs. After that period, the cross products have stayed close to zero. One can

also note that the product of shocks to consumption growth and inflation has stayed negative

throughout most of the sample period. The relation between shocks to consumption growth and

dividend growth has on the other hand stayed mostly positive, with the exception of the late 1980s.

Shocks to inflation and dividend growth were negatively correlated in the mid 1970s and positively

correlated in the late 1990s. As will be discussed later, the positive shocks to both dividend growth

and inflation in the late 1990s lead to negative correlations in the model between stock and bond

returns since higher dividend growth increases stock returns while bond returns suffer from positive

inflation shocks.

9The large shock to dividend growth stems from a very large special payment by Microsoft.
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3.2.2 Specification II

The objective of this section is to estimate processes for the time-varying conditional second mo-

ments. I choose to model the conditional variances and covariances as in the diagonal VEC-model

of Bollerslev et al. (1988). Let the macro shocks, ηt+1, be normally distributed with mean zero

and subject to the conditional variance-covariance matrix Ht. Let vech(Ht) be an operator that

stacks the columns of the lower triangular of the variance-covariance matrix. Then, every element

of vech(Ht) follows a univariate process:

hc,t = cc + acη
2
c,t + bchc,t−1, (33)

hcπ,t = ccπ + acπη
2
cπ,t + bcπhcπ,t−1, (34)

hcd,t = ccd + acdη
2
cd,t + bcdhcd,t−1, (35)

hπ,t = cπ + aπη
2
π,t + bπhπ,t−1, (36)

hπd,t = cπd + aπdη
2
πd,t + bπdhπd,t−1, (37)

hd,t = cd + adη
2
d,t + bdhd,t−1. (38)

The system is estimated using maximum likelihood and the shocks extracted from data in Section

3.2.1 are used as inputs. Table 3 presents the estimation results. The b parameters are all estimated

to be in excess of 0.80, indicating that the second moments are persistent processes. Using the

estimated parameters and the shocks, I compute time series of the implied conditional second

moments. Figure 4 plots the conditional volatilities and Figure 5 plots the conditional covariances.

The conditional volatility of consumption growth has been lower in the second half of the sample

with notable spikes in the early 1980s and 1990s. Inflation displayed high volatility in the late 1970s

and early 1980s after which the volatility declined. The current decade has seen an increase in the

volatility of inflation, up to levels last seen in the 1980s. Dividend growth experienced a period of

increased volatility from the mid 1980s to the mid 1990s and in the early 2000s. The conditional

covariance between inflation and dividend growth has been mostly negative with the exception of

the late 1950s and the late 1990s. The covariance between inflation and consumption growth is

estimated to have been negative throughout the entire sample period with a sharp drop in the mid
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1970s. Finally, the covariance between consumption growth and dividend growth has been positive

throughout the sample period.

The estimated parameter values are used when simulating the model. The mapping between

the VEC-model and the model’s dynamics for the second moments is done in the following way. A

GARCH model of the form ht = c+bht−1+aη2
t can be rewritten as ht = c+(a+b)ht−1+a(η2

t −ht−1)

where the last term can be viewed as a shock to volatility with mean zero, conditional on information

at time t − 1. Assuming for simplicity that the shock is normally distributed, the expression

maps into the model’s volatility dynamics specified in Section 2.1.2.. I therefore use the sum

of the estimated a and b for each second moment as persistence parameters in the model. The

unconditional mean of the second moments in the model, that is the α parameters in Section 2.1.2.,

are set as α = c
1−a−b for each process. The remaining parameter which governs the volatility of

volatility, τ , is set as to match the unconditional variance of the model’s second moments with the

ones estimated from data. The unconditional variance of the second moments within the model are

given by τ2

1−φ2 . The τ parameters are therefore set as τ =
√

V ar(h)(1 − φ2) for each of the second

moments. Table 4 presents the parameter values used for the model’s second moments.

4 Implications for Asset prices

Having estimated the dynamics, the three preference parameters remain to be determined. It is

well known from Bansal and Yaron (2004) that models using Epstein-Zin recursive preferences in

conjunction with persistent shocks to expected consumption growth can match the observed equity

premium for plausible values of risk aversion. However, as is discussed in for example Bansal and

Yaron (2000) and Hasseltoft (2008) these models are sensitive to the persistence of macro shocks.

A high persistence allows the model to lower the required risk aversion in order to match risk

premiums in the economy. The well-known downward bias of estimated persistence parameters in

finite samples (Kendall, 1954) also leads to a higher risk aversion needed for matching the level of

risk premiums (Bansal et al., 2007a).

I choose to use a risk aversion coefficient of 10 which seems to be a plausible level of risk

aversion in the literature. The discount factor, δ, is set to 0.997 and the EIS, ψ, is set to 1.5.
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The magnitude of the EIS is subject to controversy as mentioned earlier in the paper. It is know

in the literature that the so called long-run risk model needs an EIS above one to be able to

explain features of asset price data. The model presented in this paper needs an EIS in excess

of one for a different reason. Given that high inflation expectations are estimated to signal low

future consumption growth (β2 < 0), an EIS above one is needed to produce a negative relation

between expected inflation and the price-consumption ratio and the price-dividend ratio. This

implies that the intertemporal substitution effect dominates the wealth effect and agents therefore

sell risky assets in anticipation of lower future returns, yielding lower valuation ratios. The negative

signs are supported by empirical evidence by running a contemporaneous regression of a proxy for

the unobservable price-consumption ratio, stemming from Lustig et al. (2008), and the observed

price-dividend ratio onto the extracted state variables. Table 5 reports the results. Starting with

the price-consumption ratio, the results report a positive and statistically significant coefficient

when only xc is used as explanatory variable. This is also the case in the model if one set Ac,2

equal to zero and keeping the EIS above one. However, adding xπ as explanatory variable drives

out the significance of xc and changes the sign of the coefficient to negative while the coefficient

for xπ is negative and strongly significant. The R2 also increases from 13% to 32%. Results

for the price-dividend ratio are similar. Using only xc as explanatory variable yields a positive

and statistically significant slope coefficient. However, adding expected inflation drives out the

significance of expected consumption growth and changes it sign to negative. Expected inflation

enters negative and highly significant while the R2 increases from 3% to 13%. Expected dividend

growth enters positive, as it is in the model, but is not statistically significant.

Table 6 reports the implied unconditional moments of asset prices. The average equity excess

return implied by the homoscedastic model when using the estimated parameter values to simulate

the model, is 0.24% which is much lower than the 5.52% observed in data. The average yield spread

between a 5-year bond and a 3-month bond implied by the model is 0.15% compared to 0.96% in

data. However, Table 6 shows that by increasing the persistence parameter of inflation, β4, to

1.055 which is less than one standard error away from the point estimate, the model generates an
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average equity excess return of 4.16% and a slope of the yield curve of 1.50%.10 The risk aversion is

kept at 10 for the calibrated model. This highlights the sensitivity of the model to the persistence

in the macro variables and also shows that the model is able to give a reasonable match to data

using parameter values that are close to the point estimates. Model-implied dividend yields have

a correlation of 0.34 with observed dividend yields and the correlation of model yields with actual

yields are 0.72, 0.65, and 0.30 for the short rate, the 5-year rate, and the yield spread respectively.

Turning to the heteroscedastic model (Specification II), I set the preference parameters as

above. Again, I evaluate the model implications using both the estimated parameter values and

the calibrated value of β4. The last two columns of Table 6 report the asset pricing implications.

Using the point estimates, the model generates an equity premium of 0.14% and a yield curve slope

of 0.23%. Both values are smaller than those observed in data. However, the sensitivity of the

model to a small increase in inflation persistence is highlighted in the last column. Setting β4 equal

to 1.055 results in an average equity premium of 5.03% and a yield curve slope of 1.66%. The

unconditional moments of the model are sensitive to small alterations in other parameters as well,

suggesting that a more extensive calibration exercise is likely to yield an even better match to data.

For example, Hasseltoft (2008) shows that these type of models also are sensitive to changes in the

persistence of volatility shocks.

5 Explaining the Fed-model

The so called Fed-model refers to the positive correlation between US dividend yields and US

nominal interest rates. Figure 6 plots the US dividend yield and the 5-year nominal Treasury

yield for the period 1952-2007. The two series display an unconditional correlation of 0.30 for the

entire sample period, but 0.74 for the period 1965-2007. This phenomenon has been considered

puzzling since it implies that changes in expected inflation and bond risk premiums, which have

been the main drivers of nominal interest rates (e.g. Campbell and Ammer, 1993, and Best et al.,

1998), should be associated with movements in dividend yields. The puzzle can be illustrated by

10The model-implied autocorrelations of inflation when setting β4 equal to 1.055 are 0.77 and 0.66 for a one-year
and two-year horizon, respectively.
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considering the Gordon growth model that expresses the dividend-price ratio in steady state as:

D

P
= R−G, (39)

where R is the real discount rate on equities and G is the real dividend growth rate. The real

discount, R, can be decomposed into the real risk free rate and the equity risk premium. For the

positive correlations in data to arise, expected inflation and bond risk premiums must be either

positively associated with real interest rates and equity risk premiums or negatively correlated with

dividend growth rates. Surprisingly, the literature has considered any of these explanations to be

unlikely. Instead, an explanation in the form of inflation illusion has found wide support (e.g.,

Ritter and Warr, 2002, Asness, 2003, Campbell and Vuolteenaho, 2004, and Cohen et al., 2005).

This entails irrational investors who fail to adjust the expected nominal dividend growth for changes

in inflation but they adjust the nominal discount rate. In effect, investors discount real cash flows

using nominal interest rates, leading equities to be undervalued from the viewpoint of a rational

investor in times of high inflation. However in a recent empirical paper, Bekaert and Engstrom

(2008) argue that rational mechanisms are at work. Using a vector autoregressive framework,

they ascribe the high correlation of dividend yields and bond yields to mainly a positive relation

between expected inflation and the equity risk premium. They proxy the equity risk premium with

a measure of economic uncertainty and a consumption-based measure of risk aversion and find

that they are both positively correlated with expected inflation. Using cross-country data, they

further argue that the correlation between dividend yields and bond yields are higher in countries

with a higher average incidence of stagflation. Hence, any equilibrium model that tries to explain

the Fed-model seems to need a link between expected inflation and the equity risk premium. The

model presented in this paper contains such a link.

As the objective of this section is explain the unconditional correlation between dividend yields

and nominal yields, it suffices to analyze the homoscedastic case of the model. Consider the

unconditional correlation between the log dividend yield, dpt and the nominal yield on a bond with
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a maturity of n periods, y$
n,t:

Cov(dpt, y
$
t,n) = Cov(−pdt, y

$
t,n), (40)

= Cov(−Ad,1xc,t −Ad,2xπ,t −Ad,3xd,t,−
1

n
(D$

1,nxc,t +D$
2,nxπ,t +D$

3,nxd,t)),

= Aσ2
xc

+Bσ2
xπ

+ Cσ2
xd

+Dσxcxπ + Eσxcxd + Fσxπxd ,

A = (−Ad,1)(−
D$

1,n

n
),

B = (−Ad,2)(−
D$

2,n

n
),

C = (−Ad,3)(−
D$

3,n

n
),

D =

(

(−Ad,1)(−
D$

2,n

n
) + (−Ad,2)(−

D$
1,n

n
)

)

,

E =

(

(−Ad,1)(−
D$

3,n

n
) + (−Ad,3)(−

D$
1,n

n
)

)

,

F =

(

(−Ad,2)(−
D$

3,n

n
) + (−Ad,3)(−

D$
2,n

n
)

)

.

Given the estimated and calibrated parameters, the second term is dominating which means that

shocks to inflation serve as the main determinant for the covariance between dividend yields and

nominal yields. Specifically, B is positive indicating that the covariance is increasing in the volatility

of inflation. Coefficient A is also positive meaning that macroeconomic volatility in general is

suggested to play a key role for explaining the Fed-model. The loading on dividend volatility is

zero since expected dividend growth only affects dividend yields and not bond prices, i.e. C equals

zero. Coefficient D is positive while both E and F are negative. For example, periods in which both

dividend growth and inflation increase imply lower dividend yields through higher cash flows and

higher nominal yields through higher inflation. This generates a negative covariance between the

two variables. As mentioned above, variations in dividend yields can be decomposed into changes

in real interest rates, risk premiums, and dividend growth while changes in nominal yields can be

decomposed into changes in real interest rates, inflation, and risk premiums. While variations in

real interest rates is likely to induce a positive correlation between the two, it has been shown that

changes in real rates contributes little to changes in asset prices (e.g. Campbell and Ammer, 1993).
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Instead a likely channel for the positive correlation to arise is through common changes in risk

premiums.

Consider the equity risk premium for the homoscedastic case:

Et[rm,t+1 − rf,t] +
1

2
V art[rm,t+1] = −Covt[mt+1, rm,t+1], (41)

= −Covt[Aηc,t+1 +Bηπ,t+1, Cηc,t+1 +Dηπ,t+1 + Eηd,t+1],

= −[ACσ2
c +BDσ2

π + (AD +BC)σcπ +AEσcd +BEσπd],

A = ληc ,

B = ληπ ,

C = kd,1Ad,1δ1 + kd,1Ad,2δ3 + kd,1Ad,3δ5,

D = kd,1Ad,1δ2 + kd,1Ad,2δ4,

E = kd,1Ad,3δ6 + 1,

which is determined by the conditional covariance between the real pricing kernel and the real

market return. As positive inflation shocks signal worse economic conditions, the marginal utility

is increasing in shocks to inflation. The representative agent therefore dislikes higher inflation and

the market price of inflation risk, ληπ , has therefore a positive sign. The market return on the

other hand decreases in response to inflation shocks, D < 0, implying that stocks are a poor hedge

against inflation. Inflation shocks therefore cause a negative conditional covariance between mt+1

and rm,t+1 and contributes to a positive equity risk premium. This part of the equity risk premium

is absent in models that do not consider the real effects of inflation, for example the long-run risk

model.

The yield on a nominal bond can be written as the sum of the corresponding real yield, the

expected inflation over the bond’s maturity, the inflation risk premium, and a Jensen’s inequality

term. The following holds for the nominal short rate:

y$
t,3m = yt,3m + Et(πt+1) + Covt(mt+1, πt+1) −

1

2
V art(πt+1),
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where the covariance term represents the inflation risk premium. Positive inflation shocks that

occur during periods of high marginal utility imply a positive inflation risk premium as nominal

bonds then perform badly in bad times. Nominal yields therefore increase as a result. Solving for

the inflation risk premium in the model yields:

Covt(mt+1, πt+1) = Covt(Aηc,t+1 +Bηπ,t+1, ηπ,t+1), (42)

= Bσ2
π +Aσcπ,

A = ληc ,

B = ληπ .

Recall that the price of inflation risk, ληπ , is positive, so higher inflation volatility raises risk

premiums on nominal bonds. The price of consumption risk, ληc , is negative so a counter-cyclical

inflation process contributes to a higher inflation risk premium. This arises since bonds then perform

badly in periods of low consumption growth. That is, bond returns are procyclical. Analyzing risk

premiums on equity and bonds jointly suggests that risk premiums on both assets load positively

on the unconditional volatility of inflation. In fact, dividend yields and nominal yields become

positively correlated in the model mainly through the positive correlation of risk premiums on

equity and bonds.

Table 7 reports observed and model-implied correlations for both the homoscedastic and het-

eroscedastic case. The model produces a high comovement between dividend yields and 5-year

nominal interest rates. The correlation coefficients for the homoscedastic case are 0.82 for the

whole sample period and 0.81 for the period 1965-2007 compared to 0.30 and 0.74 in data. The

heteroscedastic model generates similar coefficients, 0.73 and 0.72. The model reproduces the high

correlations observed in data solely through rational channels, mainly the common effect of in-

flation on equity and bond risk premiums. Turning off the effect of inflation being bad news for

consumption growth, i.e., setting β2 = 0, reduces the model-implied correlation drastically to 0.17.
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Recall the expressions for the log price-dividend ratio and for the 5-year log nominal bond price:

pdt = Ad,0 +Ad,1xc,t +Ad,2xπ,t +Ad,3xd,t,

q$5y,t = D$
0,5y +D$

1,5yxc,t +D$
2,5yxπ,t +D$

3,5yxd,t.

The fact that an increase in both expected and unexpected inflation imply bad news for future

consumption growth leads to positive risk premiums on equity and a negative relation between

inflation and price-dividend ratios. That is, coefficient Ad,2 is negative. As expected, nominal bond

prices decline in response to higher inflation which implies that D$
2,5y is negative. Hence, dividend

yields and nominal yields become positively associated.

6 Explaining the correlation of stock and bond returns

The unconditional correlation of US stock and bond returns for the period 1952:2-2007:4 is slightly

positive, 0.10. However, it has varied substantially through time. Figure 7 displays a 20-quarter

rolling correlation between nominal US stock returns and nominal returns on the 5-year US Treasury

bond. The 1950s and early 1960s experienced negative correlations which turned positive during

the 1970s and early 1980s. The comovement of stock and bond returns declined sharply in 1987 at

the time of the stock market crash. The correlation subsequently turned positive in the early 1990s

before the stock market boom in the late 1990s evolved with associated negative correlations. The

correlations remained negative in the early 2000, at the time stock prices were falling and the Federal

Reserve were lowering short rates in response to lower economic activity. This section makes use

of the heteroscedastic case of the model since the objective is to explain the changing conditional

correlations. Risk premiums on equity and bonds are therefore time varying in this section. Before

exploring the implications of the model for the correlation of stock and bond returns, consider the
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equity risk premium for the heteroscedastic case:

Et[rm,t+1 − rf,t] +
1

2
V art[rm,t+1] = −Covt[mt+1, rm,t+1], (43)

= −[ACσ2
c,t +BDσ2

π,t + (AD +BC)σcπ,t +AEσcd,t +BEσπd,t + F ],

F = (θ − 1)kc,1kd,1(Ac,4Ad,4τ
2
c +Ac,5Ad,5τ

2
π +Ac,6Ad,6τ

2
d +Ac,7Ad,7τ

2
cπ

+Ac,8Ad,8τ
2
cd +Ac,9Ad,9τ

2
πd),

where coefficients A-E are the same as in (41). Risk premiums on equity vary over time in response

to changes in the second moments of consumption growth, inflation, and dividend growth. The

dominant factors for determining risk premiums on equity is inflation volatility, σ2
π,t, followed by

the covariance between dividend growth and inflation, σπd,t. Expected excess returns increase

as the volatility of inflation increases. That is, stocks are risky assets as they perform badly in

periods of high macroeconomic volatility. This relates to the so called long-run risk model in

which consumption volatility plays an important role. However in contrast to that model, inflation

volatility turns out to be the major driver of risk premiums when the real effects of inflation

are taken into account. A positive conditional covariance between dividend growth and inflation

contributes to a lower equity risk premium since high dividend growth in bad inflationary times

implies that stocks are a good hedge. As will be discussed below, a positive σπd,t is suggested to

have played an important role for making stock and bond returns negatively correlated in the late

1990s.

Solving for the inflation risk premium in the heteroscedastic case yields:

Covt(mt+1, πt+1) = Covt(Aηc,t+1 +Bηπ,t+1, ηπ,t+1), (44)

= Bσ2
π,t +Aσcπ,t,

where A and B are the same as in (42). Again, inflation volatility is the dominant factor. As

discussed in Section 5, inflation volatility moves risk premiums on equity and bonds in the same

direction suggesting that their returns should be positively correlated through their common expo-
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sure to macroeconomic risk. A highly volatile inflation rate implies that macro risk becomes the

main determinant for changes in risk premiums. When inflation is less volatile, its effect on risk

premiums is less dominant which leaves room for other factors to affect the comovement between

asset returns. One such factor is changes in dividend growth that only affects equity in the model.

I choose to analyze the correlation between stock and bond returns in two different ways. First,

I analyze the model-implied conditional correlations. Second, I compute rolling correlations of

model-implied realized returns and compare to rolling correlations of actual returns.

The heteroscedastic dynamics in Specification II allow me to compute time-varying conditional

correlations implied by the model. First consider the model-implied quarterly conditional covariance

between nominal stock returns and returns on a 5-year nominal bond:

Covt(rm,t+1 + πt+1, h
$
t+1,60m) = A+Bσ2

c,t + Cσ2
π,t +Dσcπ,t + Eσcd,t + Fσπd,t, (45)

where h$
t+1,60m = q$t+1,57m−q$t,60m and where the expressions for the coefficients A to F are different

from the ones used above. The two most important factors to consider are again the volatility of

inflation and the covariance between inflation and dividend growth. Coefficient C is by far the

largest indicating that changes in inflation volatility has the strongest effect on the covariance

between asset returns. This stems from its common effect on equity and bond risk premiums.

The covariance of returns react negatively to periods in which dividend growth and inflation are

positively associated since higher dividend growth raises stock returns while bond returns suffer

from an increase in inflation, i.e., coefficient F is negative. A period of rising dividend growth

together with an increase in inflation does not only lead to an outperformance of stocks versus

bonds due to higher cash flows. A positive covariance between the two also lowers the equity risk

premium since high dividend growth in bad inflationary times imply that stocks are a good hedge

against less favorable times. Given that inflation volatility is low, a positive covariance between

dividend growth and inflation can therefore generate a negative correlation between stock and bond

returns. This is what the model suggests happened during the late 1990s. Note that the variance of

the macroeconomic variables only contributes to a positive covariance in the model. The covariance

terms are therefore important as they allow the model-implied correlations to switch sign.
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Dividing the conditional covariance by the product of the conditional volatility of stock and

bond returns allows me to compute conditional correlations. I use the extracted second moments

from Section 3.2.2. to compute a time series of model-implied correlations. Figure 8 plots the

model-implied quarterly conditional correlations. The model generates low conditional correlations

in the beginning of the sample, highly positive correlations during the late 1970s and early 1980s

and subsequently lower correlations. The model predicts correlations close to zero in the late

1990s, falling short of the sharply negative realized correlations observed for the same period.

Similarly, the model did not foresee the negative correlations that occurred during the late 1950s.

To evaluate the predictive ability of the model, I regress observed correlations within each quarter,

that is between time t to t + 1, computed using daily data onto the model-implied conditional

correlation at time t. Table 8 reports the results. The regression yields a statistically significant

coefficient and an R2
adj of 13%. For comparison, regressing the observed quarterly correlation

onto its own lag yields a statistically significant slope coefficient and an R2
adj of 38%. The last

regression in the table includes the model forecast as an independent variable together with the

lagged observed correlation. Including the model’s prediction increases the R2 from 38% to 41%

while the model coefficient remains statistically significant. The model therefore seems to contain

information beyond what is included in lagged correlations. Restricting the time period to 1970-

2007 improves the model’s ability to explain variations in future correlations, raising the R2 from

13% to 20%.11

Next I consider the implications of the model for realized stock and bond returns. Nominal

quarterly stock returns are formed as: r$m,t+1 = k0,m+ k1,mpdt+1 − pdt+∆dt+1 +πt+1 and nominal

quarterly returns for the 5-year bond are computed as the difference between the 57-month log

bond price and the 60-month log bond price, h$t+1,60m = q$t+1,57m − q$t,60m. I then form 20-quarter

rolling correlations of the returns. Figure 9 displays model correlations vs. correlations of actual

returns. The model correlations fit data quite well with a correlation between the two series of

0.71. The model therefore seems to capture low-frequency movements in realized correlations

quite accurately. The late 1970s and early 1980s experienced high levels of volatility in both

11Regression results for the subperiod are not reported in order to conserve space, but are available upon request.
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consumption growth and inflation which made both stocks and bonds risky, generating a high

positive correlation of returns. Volatility levels gradually decreased during the 1980s with the

result of a gradual decline in the correlation. The downturn in model-implied correlations in

the late 1980s are mainly due to an increase in the volatility of stock returns as the volatility

of dividend growth increased sharply during that period. The early 1990s saw a spike in the

correlations as consumption growth volatility increased sharply together with lower stock return

volatility. Subsequently, up to year 2000, macroeconomic volatility decreased to historically low

levels with the effect of lower correlations. The negative model correlations in the late 1990s arise

as a result of low economic volatility together with a positive covariance between dividend growth

and inflation. This positive covariance has two effects on equity returns in the model. For example,

consider a period in which both dividend growth and inflation increase. First, stock returns respond

positively through higher cash flows. Second, it lowers the equity risk premium since positive cash

flow shocks that occur in bad times (rising inflation) imply that stocks are a hedge against bad

inflationary times. At the same time, a slowly increasing inflation rate in the late 1990s made

bonds perform badly, yielding negative bond returns. The model therefore attributes the negative

correlations to an outperformance of stocks vs. bonds through higher cash flows and a lower equity

risk premium together with a series of small positive inflation shocks. The fact that the model

does not predict negative correlations in the late 1990s but capture some of the negative realized

correlations is due to a higher covariance of dividend growth and inflation than expected. The

model-implied correlations increased sharply in the early 2000s as the volatility of inflation started

to pick up. However, in data the correlations remained negative as stock prices fell and the Federal

Reserve started cutting interest rates to stimulate the economy, yielding positive bond returns.

This is not the first paper to have difficulties explaining and matching the extent of the negative

correlations observed throughout the current decade. The unconditional correlation of stock and

bond returns is 0.25 in the model, which is somewhat higher than the 0.10 observed in data.
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7 Conclusion

This paper proposes a consumption-based equilibrium model that to a large extent can explain two

features of data that have been considered puzzling. First, the paper shows that the strikingly high

correlation between US dividend yields and nominal interest can be explained within a rational

model through a risk-premium channel. This stands in contrast to the hitherto dominant explana-

tion in the form of inflation illusion. Second, the model attributes a large part of changes in realized

correlations between stock and bond returns to changes in macroeconomic risk. High volatility of

consumption growth and inflation caused stock and bond returns to comove strongly in the late

1970s and early 1980s. Risk premiums on both equity and bonds in the model react similarly to

changes in macroeconomic volatility, making their returns positively correlated. The subsequent

decline in aggregate economic risk from the early 1980s until 2000 is suggested to have brought

correlations lower. The negative correlations observed in the late 1990s are partly attributed to

low levels of macroeconomic volatility in conjunction with a positive covariance between dividend

growth and inflation.

However, there are still some unresolved issues from the perspective of the model. First, the

estimated negative relation between consumption growth and inflation is a statistical relation. The

model is silent on what the actual underlying mechanisms are. A possible explanation would be

monetary policy through which a central bank, keen on bringing down inflation expectations, raise

short rates such that consumption growth contracts in the following periods. An interesting area

for future research would be to examine the role of monetary policy for explaining the so called

Fed-model and correlations between asset returns, but also its role for determining risk premiums

in general.

Second, starting in year 2000, inflation volatility started to increase and has today reached

levels last seen in the early 1980s. This implies a positive correlation between stock and bond

returns in the model. However, correlations in data have remained negative throughout the current

decade which suggests that other forces are at work. The extent of the negative correlations have

puzzled many others in the literature as well and warrants a further investigation. A particularly

interesting period to analyze is the recent financial crisis in which stock and bond returns have
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tended to be negatively correlated. Expecting consumption-based models to fully explain asset

correlations during such extreme periods is perhaps too much to hope for. Instead, modeling so

called liquidity factors jointly with macro factors is likely to yield more insights into so called

“flight-to-safety”periods.
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8 Appendix

Sections A.1 - A.4 solve the model using approximate analytical solutions for the case of het-

eroscedasticity (Specification II). Coefficients for the conditional first moments, xc, xπ, xd, are the

same for the homoscedastic Specification I and for the heteroscedastic Specification II.

A.1 The price-consumption ratio

The coefficients governing the price-consumption ratio are derived using the logarithm of the in-

tertemporal marginal rate of substitution, mt+1 = θ ln (δ) − θ
ψ
∆ct+1 + (θ − 1)rc,t+1, together

with the dynamics of consumption growth and inflation in Section 2.1.1, the volatility dynam-

ics in Section 2.1.2., and the approximation of the return on the consumption paying asset,

rc,t+1 = kc,0 + kc,1pct+1 − pct + ∆ct+1, where pct = Ac,0 +Ac,1xc,t +Ac,2xπ,t +Ac,3xd,t +Ac,4σ
2
c,t +

Ac,5σ
2
π,t+Ac,6σ

2
d,t+Ac,7σcπ,t+Ac,8σcd,t+Ac,9σπd,t. Consider the Euler equation for the consumption

claim:

Et

[

exp(θ ln(δ) −
θ

ψ
∆ct+1 + (θ − 1)rc,t+1 + rc,t+1)

]

= 1.

Due to the conditional normality of ∆c and the state variables, and therefore also rc, the log Euler

condition can be written as:

Et [mt+1 + rc,t+1] +
1

2
V art [mt+1 + rc,t+1] = 0.
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The conditional mean is given by:

Et [mt+1 + rc,t+1] = θ ln(δ) −
θ

ψ
µc + θ(kc,0 + kc,1(Ac,0 +Ac,4αc(1 − φc) +Ac,5απ(1 − φπ) +

Ac,6αd(1 − φd) +Ac,7αcπ(1 − φcπ) +Ac,8αcd(1 − φcd) +Ac,9απd(1 − φπd)) −Ac,0 + µc) +

xc,t

[

−
θ

ψ
+ θ(kc,1Ac,1β1 + kc,1Ac,2β3 + kc,1Ac,3β5 −Ac,1 + 1)

]

+

xπ,t [θ(kc,1Ac,1β2 + kc,1Ac,2β4 −Ac,2)] + xd,t [θAc,3(kc,1β6 − 1)] +

σ2
c,t [θAc,4(kc,1φc − 1)] + σ2

π,t [θAc,5(kc,1φπ − 1)] +

σ2
d,t [θAc,6(kc,1φd − 1)] + σcπ,t [θAc,7(kc,1φcπ − 1)] +

σcd,t [θAc,8(kc,1φcd − 1)] + σπd,t [θAc,9(kc,1φπd − 1)] .

and the conditional variance is given by:

V art [mt+1 + rc,t+1] = σ2
c,tX

2 + σ2
π,tY

2 + σ2
d,tZ

2 + 2σcπ,tXY + 2σcd,tXZ + 2σπd,tY Z +

(θkc,1Ac,4τc)
2 + (θkc,1Ac,5τπ)

2 + (θkc,1Ac,6τd)
2 + (θkc,1Ac,7τcπ)

2 +

(θkc,1Ac,8τcd)
2 + (θkc,1Ac,9τπd)

2,

X =

[

−
θ

ψ
+ θ(kc,1Ac,1δ1 + kc,1Ac,2δ3 + kc,1Ac,3δ5 + 1)

]

,

Y = [θ(kc,1Ac,1δ2 + kc,1Ac,2δ4)] ,

Z = [θ(kc,1Ac,3δ6)] .
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Setting the conditional moments equal to zero and solving for the Ac-coefficients yield the following

expressions:

Ac,0 = (θ(1 − kc,1))
−1

[

θ ln(δ) −
θ

ψ
µc + θ(kc,0 + kc,1(Ac,4αc(1 − φc) +Ac,5απ(1 − φπ) +

Ac,6αd(1 − φd) +Ac,7αcπ(1 − φcπ) +Ac,8αcd(1 − φcd) +Ac,9απd(1 − φπd)) + µc) +

0.5((θkc,1Ac,4τc)
2 + (θkc,1Ac,5τπ)

2 + (θkc,1Ac,6τd)
2 + (θkc,1Ac,7τcπ)

2 +

(θkc,1Ac,8τcd)
2 + (θkc,1Ac,9τπd)

2)

]

,

Ac,1 =
1 + kc,1Ac,2β3 + kc,1Ac,3β5 −

1
ψ

1 − kc,1β1
,

Ac,2 =
kc,1Ac,1β2

1 − kc,1β4
,

Ac,3 = 0,

Ac,4 =
−0.5X2

θ(kc,1φc − 1)
,

Ac,5 =
−0.5Y 2

θ(kc,1φπ − 1)
,

Ac,6 =
−0.5Z2

θ(kc,1φd − 1)
,

Ac,7 =
−XY

θ(kc,1φcπ − 1)
,

Ac,8 =
−XZ

θ(kc,1φcd − 1)
,

Ac,9 =
−Y Z

θ(kc,1φπd − 1)
,

where X,Y, and Z are determined as above. Coefficients Ac,6, Ac,8, and Ac,9 are zero since Ac,3

equals zero. Note that Ac,1 and Ac,2 are determined jointly. Solving the simultaneous equation

system by substituting Ac,1 into Ac,2 returns:

Ac,2 =
kc,1β2(1 − 1

ψ
)

(1 − kc,1β4)(1 − kc,1β1) − k2
c,1β2β3

.
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The homoscedastic dynamics (Specification I) has a different Ac,0 term, namely:

Ac,0 =

[

θ ln(δ) − θ
ψ
µc + θ(kc,0 + µc) + 0.5(σ2

cX
2 + σ2

πY
2 + σ2

dZ
2 + 2σcπXY + 2σcdXZ + 2σπdY Z)

]

θ(1 − kc,1)
,

where X,Y, and Z are determined as above.

A.2 The price-dividend ratio

The coefficients governing the price-dividend ratio are found in an analogous manner. The Euler

condition for the market return, rm,t+1, is written as:

Et [mt+1 + rm,t+1] +
1

2
V art [mt+1 + rm,t+1] ,

where rm,t+1 = kd,0 + kd,1pdt+1 − pdt + ∆dt+1 and pdt = Ad,0 + Ad,1xc,t + Ad,2xπ,t + Ad,3xd,t +

Ad,4σ
2
c,t+Ad,5σ

2
π,t+Ad,6σ

2
d,t+Ad,7σcπ,t+Ad,8σcd,t+Ad,9σπd,t. Coefficients kd,0 and kd,1 are defined

as:

kd,0 = ln(1 + exp(p̄d)) − kd,1p̄d,

kd,1 =
exp(p̄d)

1 + exp(p̄d)
.
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Using the dynamics of consumption growth, inflation, dividend growth, and the second moments,

the conditional mean is given by:

Et [mt+1 + rm,t+1] = θ ln(δ) −
θ

ψ
µc + (θ − 1)(kc,0 + kc,1(Ac,0 +Ac,4αc(1 − φc) +Ac,5απ(1 − φπ) +

Ac,6αd(1 − φd) +Ac,7αcπ(1 − φcπ) +Ac,8αcd(1 − φcd) +Ac,9απd(1 − φπd)) −Ac,0 + µc) +

+kd,0 + kd,1(Ad,0 +Ad,4αc(1 − φc) +Ad,5απ(1 − φπ) +Ad,6αd(1 − φd) +

Ad,7αcπ(1 − φcπ) +Ad,8αcd(1 − φcd) +Ad,9απd(1 − φπd)) −Ad,0 + µd +

xc,t

[

−
θ

ψ
+ (θ − 1)(kc,1Ac,1β1 + kc,1Ac,2β3 + kc,1Ac,3β5 −Ac,1 + 1) + kd,1Ad,1β1+

kd,1Ad,2β3 + kd,1Ad,3β5 −Ad,1

]

+

xπ,t [(θ − 1)(kd,1Ad,1β2 + kd,1Ad,2β4 −Ad,2) + kd,1Ad,1β2 + kd,1Ad,2β4 −Ad,2] +

xd,t [(θ − 1)Ac,3(kc,1β6 − 1) + kd,1Ad,3β6 −Ad,3 + 1] ,

σ2
c,t [(θ − 1)Ac,4(kc,1φc − 1) +Ad,4(kd,1φc − 1)] ,

σ2
π,t [(θ − 1)Ac,5(kc,1φπ − 1) +Ad,5(kd,1φπ − 1)] ,

σ2
d,t [(θ − 1)Ac,6(kc,1φd − 1) +Ad,6(kd,1φd − 1)] ,

σ2
cπ,t [(θ − 1)Ac,7(kc,1φcπ − 1) +Ad,7(kd,1φcπ − 1)] ,

σ2
cd,t [(θ − 1)Ac,8(kc,1φcd − 1) +Ad,8(kd,1φcd − 1)] ,

σ2
πd,t [(θ − 1)Ac,9(kc,1φπd − 1) +Ad,9(kd,1φπd − 1)] .
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The conditional variance is given by:

V art [mt+1 + rm,t+1] = σ2
c,tX

2 + σ2
π,tY

2 + σ2
d,tZ

2 + 2σcπ,tXY + 2σcd,tXZ + 2σπd,tY Z +

((θ − 1)kc,1Ac,4τc + kd,1Ad,4τc)
2 + ((θ − 1)kc,1Ac,5τπ + kd,1Ad,5τπ)

2 +

((θ − 1)kc,1Ac,6τd + kd,1Ad,6τd)
2 + ((θ − 1)kc,1Ac,7τcπ + kd,1Ad,7τcπ)

2 +

((θ − 1)kc,1Ac,8τcd + kd,1Ad,8τcd)
2 + ((θ − 1)kc,1Ac,9τπd + kd,1Ad,9τπd)

2,

X =

[

−
θ

ψ
+ (θ − 1)(kc,1Ac,1δ1 + kc,1Ac,2δ3 + kc,1Ac,3δ5 + 1)+

kd,1Ad,1δ1 + kd,1Ad,2δ3 + kd,1Ad,3δ5

]

,

Y = [(θ − 1)(kc,1Ac,1δ2 + kc,1Ac,2δ4) + kd,1Ad,1δ2 + kd,1Ad,2δ4] ,

Z = [(θ − 1)(kc,1Ac,3δ6) + kd,1Ad,3δ6 + 1] .
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Setting the conditional moments equal to zero and solving for the Ad-coefficients yield the following

expressions:

Ad,0 = (1 − kd,1)
−1

[

θ ln(δ) −
θ

ψ
µc + (θ − 1)(kc,0 + kc,1(Ac,0 +Ac,4αc(1 − φc) +Ac,5απ(1 − φπ) +

Ac,6αd(1 − φd) +Ac,7αcπ(1 − φcπ) +Ac,8αcd(1 − φcd) +Ac,9απd(1 − φπd)) −Ac,0 + µc) + kd,0 +

kd,1(Ad,4αc(1 − φc) +Ad,5απ(1 − φπ) +Ad,6αd(1 − φd) +

Ad,7αcπ(1 − φcπ) +Ad,8αcd(1 − φcd) +Ad,9απd(1 − φπd)) + µd +

0.5(((θ − 1)kc,1Ac,4τc + kd,1Ad,4τc)
2 + ((θ − 1)kc,1Ac,5τπ + kd,1Ad,5τπ)

2 +

((θ − 1)kc,1Ac,6τd + kd,1Ad,6τd)
2 + ((θ − 1)kc,1Ac,7τcπ + kd,1Ad,7τcπ)

2 +

((θ − 1)kc,1Ac,8τcd + kd,1Ad,8τcd)
2 + ((θ − 1)kc,1Ac,9τπd + kd,1Ad,9τπd)

2)

]

,

Ad,1 =
− θ
ψ

+ (θ − 1)(kc,1Ac,1β1 + kc,1Ac,2β3 + kc,1Ac,3β5 −Ac,1 + 1) + kd,1Ad,2β3 + kd,1Ad,3β5

1 − kd,1β1
,

Ad,2 =
(θ − 1)(kc,1Ac,1β2 + kc,1Ac,2β4 −Ac,2) + kd,1Ad,1β2

1 − kd,1β4
,

Ad,3 =
(θ − 1)Ac,3(kc,1β6 − 1) + 1

1 − kd,1β6
,

Ad,4 =
(θ − 1)Ac,4(kc,1φc − 1) + 0.5X2

1 − kd,1φc
,

Ad,5 =
(θ − 1)Ac,5(kc,1φπ − 1) + 0.5Y 2

1 − kd,1φπ
,

Ad,6 =
(θ − 1)Ac,6(kc,1φd − 1) + 0.5Z2

1 − kd,1φd
,

Ad,7 =
(θ − 1)Ac,7(kc,1φcπ − 1) +XY

1 − kd,1φcπ
,

Ad,8 =
(θ − 1)Ac,8(kc,1φcd − 1) +XZ

1 − kd,1φcd
,

Ad,9 =
(θ − 1)Ac,9(kc,1φπd − 1) + ZY

1 − kd,1φπd
,
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where X,Y, and Z are determined as above. Similar to the consumption paying asset, Ad,1 and Ad,2

are determined jointly. Substituting Ad,1 into Ad,2 yields:

Ad,2 =
(1 − kd,1β1)X + Y

(1 − kd,1β4)(1 − kd,1β1) − k2
d,1β2β3

,

X = (θ − 1)(kc,1Ac,1β2 + kc,1Ac,2β4 −Ac,2),

Y = kd,1β2

[

−
θ

ψ
+ (θ − 1)(kc,1Ac,1β1 + kc,1Ac,2β3 + kc,1Ac,3β5 −Ac,1 + 1) + kd,1Ad,3β5

]

.

The homoscedastic dynamics (Specification I) has a different Ad,0 term, namely:

Ad,0 = ((1 − kd,1))
−1[θ ln(δ) −

θ

ψ
µc + (θ − 1)(kc,0 + kc,1Ac,0 −Ac,0 + µc) + kd,0 + µd +

0.5(σ2
cX

2 + σ2
πY

2 + σ2
dZ

2 + 2σcπXY + 2σcdXZ + 2σπdY Z)]

where X,Y, and Z are determined as for conditional variance above.

A.3 Real bonds

The Euler condition for a real bond takes the form:

Qt,n = Et [Mt+1Qt+1,n−1] ,

where Qt,n = exp(D0,n+D1,nxc,t+D2,nxπ,t+D3,nxd,t+D4,nσ
$
c,t+D5,nσ

$
π,t+D6,nσ

$
d,t+D7,nσcπ,t+

D8,nσcd,t +D9,nσπd,t). Again, using the conditional lognormality of the state variables:

qt,n = Et [mt+1 + qt+1,n−1] +
1

2
V art [mt+1 + qt+1,n−1] .
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The conditional mean is given by:

Et [mt+1 + qt+1,n−1] = θ ln(δ) −
θ

ψ
µc + (θ − 1)(kc,0 + kc,1(Ac,0 +Ac,4αc(1 − φc) +Ac,5απ(1 − φπ) +

Ac,6αd(1 − φd) +Ac,7αcπ(1 − φcπ) +Ac,8αcd(1 − φcd) +Ac,9απd(1 − φπd)) −Ac,0 + µc) +D0,n−1 +

D4,n−1αc(1 − φc) +D5,n−1απ(1 − φπ) +D6,n−1αd(1 − φd) +

D7,n−1αcπ(1 − φcπ) +D8,n−1αcd(1 − φcd) +D9,n−1απd(1 − φπd) +

xc,t

[

−
θ

ψ
+ (θ − 1)(kc,1Ac,1β1 + kc,1Ac,2β3 + kc,1Ac,3β5 −Ac,1 + 1) +D1,n−1β1 +D2,n−1β3 +D3,n−1β5

]

+

xπ,t [(θ − 1)(kc,1Ac,1β2 + kc,1Ac,2β4 −Ac,2) +D1,n−1β2 +D2,n−1β4] +

xd,t [(θ − 1)Ac,3(kc,1β6 − 1) +D3,n−1β6] +

σ2
c,t [(θ − 1)Ac,4(kc,1φc − 1) +D4,n−1φc] +

σ2
π,t [(θ − 1)Ac,5(kc,1φπ − 1) +D5,n−1φπ] +

σ2
d,t [(θ − 1)Ac,6(kc,1φd − 1) +D6,n−1φd] +

σcπ,t [(θ − 1)Ac,7(kc,1φcπ − 1) +D7,n−1φcπ] +

σcd,t [(θ − 1)Ac,8(kc,1φcd − 1) +D8,n−1φcd] +

σπd,t [(θ − 1)Ac,9(kc,1φπc − 1) +D9,n−1φπc] ,

and the conditional variance by:

V art [mt+1 + qt+1,n−1] = σ2
c,tX

2 + σ2
π,tY

2 + σ2
d,tZ

2 + 2σcπ,tXY + 2σcd,tXZ + 2σπd,tY Z +

((θ − 1)kc,1Ac,4τc +D4,n−1τc)
2 + ((θ − 1)kc,1Ac,5τπ +D5,n−1τπ)

2 + ((θ − 1)kc,1Ac,6τd +D6,n−1τd)
2 +

((θ − 1)kc,1Ac,7τcπ +D7,n−1τcπ)
2 + ((θ − 1)kc,1Ac,8τcd +D8,n−1τcd)

2 + ((θ − 1)kc,1Ac,9τπd +D9,n−1τπd)
2,

X =

[

−
θ

ψ
+ (θ − 1)(kc,1Ac,1δ1 + kc,1Ac,2δ3 + kc,1Ac,3δ5 + 1) +D1,n−1δ1 +D2,n−1δ3 +D3,n−1δ5

]

,

Y = [(θ − 1)(kc,1Ac,1δ2 + kc,1Ac,2δ4) +D1,n−1δ2 +D2,n−1δ4] ,

Z = [(θ − 1)(kc,1Ac,3δ6) +D3,n−1δ6] .
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Matching the coefficients gives:

D0,n = θ ln(δ) −
θ

ψ
µc + (θ − 1)(kc,0 + kc,1(Ac,0 +Ac,4αc(1 − φc) +Ac,5απ(1 − φπ) +

Ac,6αd(1 − φd) +Ac,7αcπ(1 − φcπ) +Ac,8αcd(1 − φcd) +Ac,9απd(1 − φπd)) −Ac,0 + µc) +D0,n−1 +

D4,n−1αc(1 − φc) +D5,n−1απ(1 − φπ) +D6,n−1αd(1 − φd) +

D7,n−1αcπ(1 − φcπ) +D8,n−1αcd(1 − φcd) +D9,n−1απd(1 − φπd) +

0.5(((θ − 1)kc,1Ac,4τc +D4,n−1τc)
2 + ((θ − 1)kc,1Ac,5τπ +D5,n−1τπ)

2 +

((θ − 1)kc,1Ac,6τd +D6,n−1τd)
2 + ((θ − 1)kc,1Ac,7τcπ +D7,n−1τcπ)

2 + ((θ − 1)kc,1Ac,8τcd +D8,n−1τcd)
2 +

((θ − 1)kc,1Ac,9τπd +D9,n−1τπd)
2),

D1,n = −
θ

ψ
+ (θ − 1)(kc,1Ac,1β1 + kc,1Ac,2β3 + kc,1Ac,3β5 −Ac,1 + 1) +D1,n−1β1 +D2,n−1β3,

D2,n = (θ − 1)(kc,1Ac,1β2 + kc,1Ac,2β4 −Ac,2) +D1,n−1β2 +D2,n−1β4,

D3,n = (θ − 1)Ac,3(kc,1β6 − 1) +D3,n−1β6,

D4,n = (θ − 1)Ac,4(kc,1φc − 1) +D4,n−1φc + 0.5X2,

D5,n = (θ − 1)Ac,5(kc,1φπ − 1) +D5,n−1φπ + 0.5Y 2,

D6,n = (θ − 1)Ac,6(kc,1φd − 1) +D6,n−1φd + 0.5Z2,

D7,n = (θ − 1)Ac,7(kc,1φcπ − 1) +D7,n−1φcπ +XY,

D8,n = (θ − 1)Ac,8(kc,1φcd − 1) +D8,n−1φcd +XZ,

D9,n = (θ − 1)Ac,9(kc,1φπd − 1) +D9,n−1φπd + Y Z.

The coefficients are computed recursively using the fact that Di,0 = 0 for i = 0, 1, 2. Note that

coefficients D3,n, D6,n, D8,n, and D9,n are zero since Ac,3, Ac,6, Ac,8, and Ac,9 equal zero. The ho-

moscedastic dynamics (Specification I) has a different D0,n term, namely:

D0,n = θ ln(δ) −
θ

ψ
µc + (θ − 1)(kc,0 + kc,1Ac,0 −Ac,0 + µc) +D0,n−1 +

0.5(σ2
cX

2 + σ2
πY

2 + σ2
dZ

2 + 2σcπXY + 2σcdXZ + 2σπdY Z)

where X,Y, and Z are determined as for conditional variance above.
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A.4 Nominal bonds

The Euler condition for the real price of a nominal bond is:

Q$
t,n

Πt
= Et

[

Mt+1

Q$
t+1,n−1

Πt+1

]

,

Q$
t,n = Et

[

Mt+1

Q$
t+1,n−1Πt

Πt+1

]

,

where the following is conjectured: Q$
t,n = exp(D$

0,n + D$
1,nxc,t + D$

2,nxπ,t + D$
3,nxd,t + D$

4,nσ
2
c,t +

D$
5,nσ

2
π,t+D$

6,nσ
2
d,t+D$

7,nσcπ,t+D$
8,nσcd,t+D$

9,nσπd,t). Taking logs and again using the conditional

lognormality yields:

q$t,n = Et

[

mt+1 − πt+1 + q$t+1,n−1

]

+
1

2
V art

[

mt+1 − πt+1 + q$t+1,n−1

]

.
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The conditional mean is given by:

Et

[

mt+1 − πt+1 + q$t+1,n−1

]

= θ ln(δ) −
θ

ψ
µc + (θ − 1)(kc,0 + kc,1(Ac,0 +Ac,4αc(1 − φc) +

Ac,5απ(1 − φπ) +Ac,6αd(1 − φd) +Ac,7αcπ(1 − φcπ) +Ac,8αcd(1 − φcd) +Ac,9απd(1 − φπd)) −Ac,0 + µc) −

µπ +D$
0,n−1 +D$

4,n−1αc(1 − φc) +D$
5,n−1απ(1 − φπ) +D$

6,n−1αd(1 − φd) +

D$
7,n−1αcπ(1 − φcπ) +D$

8,n−1αcd(1 − φcd) +D$
9,n−1απd(1 − φπd) +

xc,t

[

−
θ

ψ
+ (θ − 1)(kc,1Ac,1β1 + kc,1Ac,2β3 + kc,1Ac,3β5 −Ac,1 + 1) +D$

1,n−1β1 +D$
2,n−1β3

]

+

xπ,t

[

(θ − 1)(kc,1Ac,1β2 + kc,1Ac,2β4 −Ac,2) − 1 +D$
1,n−1β2 +D$

2,n−1β4

]

,

xd,t

[

(θ − 1)Ac,3(kc,1β6 − 1) +D$
3,n−1β6

]

+

σ2
c,t

[

(θ − 1)Ac,4(kc,1φc − 1) +D$
4,n−1φc

]

+

σ2
π,t

[

(θ − 1)Ac,5(kc,1φπ − 1) +D$
5,n−1φπ

]

+

σ2
d,t

[

(θ − 1)Ac,6(kc,1φd − 1) +D$
6,n−1φd

]

+

σcπ,t

[

(θ − 1)Ac,7(kc,1φcπ − 1) +D$
7,n−1φcπ

]

+

σcd,t

[

(θ − 1)Ac,8(kc,1φcd − 1) +D$
8,n−1φcd

]

+

σπd,t

[

(θ − 1)Ac,9(kc,1φπc − 1) +D$
9,n−1φπc

]

,

and the conditional variance by:

V art

[

mt+1 − πt+1 + q$t+1,n−1

]

= σ2
c,tX

2 + σ2
π,tY

2 + σ2
d,tZ

2 + 2σcπ,tXY + 2σcd,tXZ + 2σπd,tY Z +

((θ − 1)kc,1Ac,4τc +D$
4,n−1τc)

2 + ((θ − 1)kc,1Ac,5τπ +D$
5,n−1τπ)

2 +

((θ − 1)kc,1Ac,6τd +D$
6,n−1τd)

2 + ((θ − 1)kc,1Ac,7τcπ +D$
7,n−1τcπ)

2 +

((θ − 1)kc,1Ac,8τcd +D$
8,n−1τcd)

2 + ((θ − 1)kc,1Ac,9τπd +D$
9,n−1τπd)

2,

X =

[

−
θ

ψ
+ (θ − 1)(kc,1Ac,1δ1 + kc,1Ac,2δ3 + kc,1Ac,3δ5 + 1) +D$

1,n−1δ1 +D$
2,n−1δ3 +D$

3,n−1δ5

]

,

Y =
[

(θ − 1)(kc,1Ac,1δ2 + kc,1Ac,2δ4) − 1 +D$
1,n−1δ2 +D$

2,n−1δ4

]

,

Z =
[

(θ − 1)(kc,1Ac,3δ6) +D$
3,n−1δ6

]

.
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Matching the coefficients gives:

D$
0,n = θ ln(δ) −

θ

ψ
µc + (θ − 1)(kc,0 + kc,1(Ac,0 +Ac,4αc(1 − φc) +

Ac,5απ(1 − φπ) +Ac,6αd(1 − φd) +Ac,7αcπ(1 − φcπ) +Ac,8αcd(1 − φcd) +Ac,9απd(1 − φπd)) −

Ac,0 + µc) − µπ +D$
0,n−1 +D$

4,n−1αc(1 − φc) +D$
5,n−1απ(1 − φπ) +D$

6,n−1αd(1 − φd) +

D$
7,n−1αcπ(1 − φcπ) +D$

8,n−1αcd(1 − φcd) +D$
9,n−1απd(1 − φπd) +

0.5(((θ − 1)kc,1Ac,4τc +D$
4,n−1τc)

2 + ((θ − 1)kc,1Ac,5τπ +D$
5,n−1τπ)

2 +

((θ − 1)kc,1Ac,6τd +D$
6,n−1τd)

2 + ((θ − 1)kc,1Ac,7τcπ +D$
7,n−1τcπ)

2 +

((θ − 1)kc,1Ac,8τcd +D$
8,n−1τcd)

2 + ((θ − 1)kc,1Ac,9τπd +D$
9,n−1τπd)

2),

D$
1,n = −

θ

ψ
+ (θ − 1)(kc,1Ac,1β1 + kc,1Ac,2β3 + kc,1Ac,3β5 −Ac,1 + 1) +D$

1,n−1β1 +D$
2,n−1β3,

D$
2,n = (θ − 1)(kc,1Ac,1β2 + kc,1Ac,2β4 −Ac,2) − 1 +D$

1,n−1β2 +D$
2,n−1β4,

D$
3,n = (θ − 1)Ac,3(kc,1β6 − 1) +D$

3,n−1β6,

D$
4,n = (θ − 1)Ac,4(kc,1φc − 1) +D$

4,n−1φc + 0.5X2,

D$
5,n = (θ − 1)Ac,5(kc,1φπ − 1) +D$

5,n−1φπ + 0.5Y 2,

D$
6,n = (θ − 1)Ac,6(kc,1φd − 1) +D$

6,n−1φd + 0.5Z2,

D$
7,n = (θ − 1)Ac,7(kc,1φcπ − 1) +D$

7,n−1φcπ +XY,

D$
8,n = (θ − 1)Ac,8(kc,1φcd − 1) +D$

8,n−1φcd +XZ,

D$
9,n = (θ − 1)Ac,9(kc,1φπd − 1) +D$

9,n−1φπd + Y Z.

The coefficients are computed recursively using the fact that D$
i,0 = 0 for i = 0, 1, 2. Note that

coefficients D$
3,n, D

$
6,n, D

$
8,n, and D$

9,n are zero since Ac,3, Ac,6, Ac,8, and Ac,9 equal zero. The ho-

moscedastic dynamics (Specification I) has a different D$
0,n term, namely:

D$
0,n = θ ln(δ) −

θ

ψ
µc + (θ − 1)(kc,0 + kc,1Ac,0 −Ac,0 + µc) +D$

0,n−1 +

0.5(σ2
cX

2 + σ2
πY

2 + σ2
dZ

2 + 2σcπXY + 2σcdXZ + 2σπdY Z)

where X,Y, and Z are determined as for conditional variance above.
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A.5 Conditional covariance of stock and bond returns

The conditional covariance between nominal stock and bond returns can be written as:

Covt[rm,t+1 + πt+1, h
$
t+1,n−1] = Covt[kd,1pdt+1 + ∆dt+1 + πt+1, q

$
t+1,n−1]

= Covt[kd,1(Ad,1xc,t+1 +Ad,2xπ,t+1 +Ad,3xd,t+1 +Ad,4σ
2
c,t +

Ad,5σ
2
π,t +Ad,6σ

2
d,t +Ad,7σcπ,t +Ad,8σcd,t +Ad,9σπd,t) + ηd,t+1 + ηπ,t+1,

D$
1,n−1xc,t +D$

2,n−1xπ,t +D$
3,n−1xd,t +D$

4,n−1σ
2
c,t +D$

5,n−1σ
2
π,t +

D$
6,n−1σ

2
d,t +D$

7,n−1σcπ,t +D$
8,n−1σcd,t +D$

9,n−1σπd,t]

= Covt[ηc,t+1(kd,1δ1Ad,1 + kd,1δ3Ad,2 + kd,1Ad,3δ5) +

ηπ,t+1(kd,1δ2Ad,1 + kd,1δ4Ad,2 + 1) +

ηd,t+1(kd,1δ6Ad,3 + 1) + kd,1(Ad,4τcǫc,t+1 +Ad,5τπǫπ,t+1 +Ad,6τdǫd,t+1 +

Ad,7τcπǫcπ,t+1 +Ad,8τcdǫcd,t+1 +Ad,9τπdǫπd,t+1),

ηc,t+1(D
$
1,n−1δ1 +D$

2,n−1δ3 +D$
3,n−1δ5) + ηπ,t+1(D

$
1,n−1δ2 +D$

2,n−1δ4) +

ηd,t+1(D
$
3,n−1δ6) +D$

4,n−1τcǫc,t+1 +D$
5,n−1τπǫπ,t+1 +D$

6,n−1τdǫd,t+1 +

D$
7,n−1τcπǫcπ,t+1 +D$

8,n−1τcdǫcd,t+1 +D$
9,n−1τπdǫπd,t+1]

= A+BV art[ηc,t+1] + CV art[ηπ,t+1] +DCovt[ηc,t+1, ηπ,t+1] +

ECovt[ηc,t+1, ηd,t+1] + FCovt[ηπ,t+1, ηd,t+1],

A = kd,1(Ad,4D
$
4,n−1τ

2
c +Ad,5D

$
5,n−1τ

2
π +Ad,6D

$
6,n−1τ

2
d +Ad,7D

$
7,n−1τ

2
cπ +

Ad,8D
$
8,n−1τ

2
cd +Ad,9D

$
9,n−1τ

2
πd),

B = (kd,1δ1Ad,1 + kd,1δ3Ad,2 + kd,1Ad,3δ5)(D
$
1,n−1δ1 +D$

2,n−1δ3 +D$
3,n−1δ5),

C = (kd,1δ2Ad,1 + kd,1δ4Ad,2 + 1)(D$
1,n−1δ2 +D$

2,n−1δ4),

D = (kd,1δ1Ad,1 + kd,1δ3Ad,2 + kd,1Ad,3δ5)(D
$
1,n−1δ2 +D$

2,n−1δ4) +

(kd,1δ2Ad,1 + kd,1δ4Ad,2 + 1)(D$
1,n−1δ1 +D$

2,n−1δ3 +D$
3,n−1δ5),

E = (kd,1δ1Ad,1 + kd,1δ3Ad,2 + kd,1Ad,3δ5)(D
$
3,n−1δ6) +

(kd,1δ6Ad,3 + 1)(D$
1,n−1δ1 +D$

2,n−1δ3 +D$
3,n−1δ5),

F = (kd,1δ2Ad,1 + kd,1δ4Ad,2 + 1)(D$
3,n−1δ6) +

(kd,1δ6Ad,3 + 1)(D$
1,n−1δ2 +D$

2,n−1δ4).
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Table 1: Macro Moments

Sample Model

Moment SE Mean 5% 95%

Consumption growth, ∆c

Mean 0.81 (0.05) 0.81 0.72 0.90
Std.Dev. 0.47 (0.04) 0.46 0.42 0.50
AC(4) 0.04 (0.07) 0.07 –0.06 0.20
AC(8) –0.13 (0.07) 0.00 –0.12 0.13

Dividend growth, ∆d

Mean 0.45 (0.19) 0.45 –0.01 0.91
Std.Dev. 1.91 (0.28) 1.92 1.72 2.13
AC(4) 0.02 (0.17) 0.17 0.04 0.32
AC(8) 0.08 (0.10) 0.07 –0.07 0.23

Inflation, π

Mean 0.92 (0.09) 0.92 0.54 1.30
Std.Dev. 0.62 (0.08) 0.56 0.43 0.73
AC(4) 0.70 (0.10) 0.60 0.40 0.77
AC(8) 0.50 (0.11) 0.43 0.17 0.67

Correlations
∆c and ∆d 0.15 (0.14) 0.08 –0.05 0.21
∆c and π –0.35 (0.19) –0.36 –0.48 –0.23
∆d and π –0.16 (0.14) –0.01 –0.21 0.19

This table presents unconditional moments of observed and model-implied data. Means and percentiles for the
model are computed over 2,000 simulations each containing 223 quarters. AC(k) denotes the autocorrelation for
k lags. Standard errors, denoted SE, are computed as in Newey West (1987), using four lags. The sample period
is 1952:2 to 2007:4.
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Table 2: Estimated Parameters: Specification I

Estimate SE

β1 0.533 (0.157)
β2 –0.104 (0.052)
β3 0.281 (0.122)
β4 1.019 (0.038)
β5 0.564 (0.413)
β6 0.799 (0.071)
δ1 0.245 (0.068)
δ2 –0.107 (0.092)
δ3 0.076 (0.050)
δ4 0.495 (0.064)
δ5 –0.203 (0.235)
δ6 0.295 (0.055)
σ2
c 0.183 (0.017)
σ2
π 0.100 (0.009)
σ2
d 2.873 (0.271)
σc,π –0.039 (0.009)
σc,d 0.089 (0.048)
σπ,d –0.062 (0.036)

This table presents results from estimating the parameters in Section 2.1.1 using maximum likelihood. The
sample period is 1952:2 to 2007:4.
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Table 3: Estimated Parameters: Specification II

Estimate SE

cc 0.003 (0.004)
ccπ –0.003 (0.003)
ccd 0.013 (0.162)
cπ 0.003 (0.002)
cπd –0.004 (0.009)
cd 0.086 (0.052)
bc 0.916 (0.052)
bcπ 0.874 (0.115)
bcd 0.816 (2.286)
bπ 0.881 (0.039)
bπd 0.841 (0.297)
bd 0.810 (0.052)
ac 0.072 (0.041)
acπ 0.051 (0.042)
acd 0.012 (0.113)
aπ 0.090 (0.034)
aπd 0.054 (0.078)
ad 0.170 (0.042)

This table presents results from estimating the parameters of the diagonal VEC-model in Section 3.2.2. using
maximum likelihood. The sample period is 1952:2 to 2007:4.
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Table 4: Parameters governing the model’s second moments

Value

αc 0.0000260
αcπ –0.0000034
αcd 0.0000073
απ 0.0000114
απd –0.0000037
αd 0.0004284
φc 0.988
φcπ 0.924
φcd 0.828
φπ 0.970
φπd 0.896
φd 0.980
τc 1.16*10−6

τcπ 8.35*10−7

τcd 4.79*10−7

τπ 1.08*10−6

τπd 1.59*10−6

τd 9.17*10−5

This table presents the parameter values used for the second moments within the model. They are set as to match
the first two moments of the model’s second moments with the ones estimated from data. Section 3.2.2. describes
in detail how the parameters are set.
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Table 5: Regressing observed valuation ratios on estimated state variables

pct pct pdt pdt

β t-stat β t-stat β t-stat β t-stat

Explanatory variables

xc,t 0.35 3.73 –0.00 –0.03 0.41 2.17 –0.20 –0.71
xπ,t –0.18 –5.76 –0.31 –3.26
xd,t 0.01 0.15
R2
adj 0.13 0.32 0.03 0.13

This table presents regression results from regressing the observed log price-consumption ratio (pc) and the log
price-dividend ratio (pd) onto the extracted state variables, xc, xπ, and xd. The regressions are run contempora-
neously. As a proxy for the price-consumption ratio, the wealth-consumption ratio in Lustig et al. (2008) is used.
All variables are measured on a quarterly basis. The sample period is 1952:2 to 2006:4. T-stats are based on
heteroscedasticity robust standard errors.
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Table 7: Explaining the Fed Model

Sample Specification I Specification II

Corr(DP, y60m) 1952-2007 0.30 0.82 0.73
Corr(DP, y60m) 1965-2007 0.74 0.81 0.72

This table presents correlation coefficients between dividend-price ratios and 60-month nominal yields in data
and from the model. Specification I and Specification II refer to the estimated homoscedastic and heteroscedastic
model, respectively. The sample periods are 1952:2 to 2007:4 and 1965:1 to 2007:4.

Table 8: Predicting quarterly correlations

CorrData,t:t+1 CorrData,t:t+1 CorrData,t:t+1

β t-stat β t-stat β t-stat

Explanatory variables

CorrModel,t 0.78 4.84 0.40 3.93
CorrData,t−1:t 0.63 9.00 0.57 7.21
R2
adj 0.13 0.38 0.41

This table presents regression results from regressing observed quarterly correlations between US stock and bond
returns for time t to t + 1 (CORRData,t:t+1) onto its own lagged value (CORRData,t−1:t) and the model-implied
conditional correlation at time t (CORRModel,t). Observed quarterly correlations are computed using daily stock
and bond returns within that particular quarter. The sample period is 1962:1 to 2007:4. T-stats are based on
heteroscedasticity robust standard errors.
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Figure 1: Consumption growth, inflation, and dividend growth. The figure displays realized quarterly consumption
growth, inflation, and dividend growth and the extracted conditional means using the estimated parameters from the
maximum likelihood estimation. Growth rates are expressed in quarterly units.
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Figure 2: Squared shocks to consumption growth, inflation, and dividend growth. The figure displays squared
shocks to quarterly consumption growth, inflation, and dividend growth. All shocks are extracted from the estimated
dynamics in Section 3.2.1.
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Figure 3: Cross product of shocks to consumption growth, inflation, and dividend growth. The figure displays
cross products of shocks to consumption growth and inflation, to consumption growth and dividend growth, and to
inflation and dividend growth. All shocks are extracted from the estimated dynamics in Section 3.2.1.
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Figure 4: Conditional volatilities of macro variables. The figure displays the conditional standard deviation of
consumption growth, inflation, and dividend growth. The volatilities are expressed in quarterly units and stem from
the estimated diagonal VEC-model in Section 3.2.2.
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Figure 5: Conditional covariances of macro variables. The figure displays the conditional covariance of consumption
growth and inflation, of consumption growth and dividend growth, and of inflation and dividend growth. The
covariances are expressed in quarterly units and stem from the estimated diagonal VEC-model in Section 3.2.2.
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Figure 6: Dividend yields and the 5-year Treasury rate. The figure displays the nominal US 5-year Treasury rate
and the US aggregate dividend yield.
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Figure 7: Observed correlation of stock and bond returns. The figure displays a 20-quarter rolling correlation of
returns on US stocks and 5-year US Treasury bonds.
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Figure 8: Model-implied conditional correlation of stock and bond returns. The figure displays quarterly model-
implied conditional correlations of stock and bond returns.
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Figure 9: Observed and model-implied correlations of stock and bond returns. The figure displays 20-quarter rolling
correlations of stock and bond returns implied from the model and observed in data. The solid line represents model
correlations and the dashed line sample correlations.

73




