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THE FEFFERMAN METRIC
AND PSEUDOHERMITIAN INVARIANTS

JOHN M. LEE1

ABSTRACT. C. Fefferman has shown that a real strictly pseudoconvex hy-
persurface in complex n-space carries a natural conformai Lorentz metric on
a circle bundle over the manifold. This paper presents two intrinsic construc-
tions of the metric, valid on an abstract CR manifold. One is in terms of
tautologous differential forms on a natural circle bundle; the other is in terms
of Webster's pseudohermitian invariants. These results are applied to compute
the connection and curvature forms of the Fefferman metric explicitly.

1. Introduction. In 1976 C. Fefferman [5] showed that, if M is a real strictly
pseudoconvex hypersurface in Cn, M x S1 carries a Lorentz metric whose conformai
class is invariant under biholomorphisms. The null geodesies ( "light rays" ) of this
metric project to the biholomorphically invariant curves on M called chains. It
is therefore of considerable interest to find ways of characterizing the Fefferman
metric in terms of the intrinsic CR structure of M, thereby extending its definition
to abstract CR manifolds.

The first such characterization was obtained by D. Burns, K. Diederich, and
S. Shnider [2], who showed how to obtain the Fefferman metric from the Chern
connection in the Chern "CR structure bundle" of M. Their construction is difficult
to work with, however, since the metric appears first as a tensor in the very large
CR structure bundle Y, and one then shows that it descends to a circle bundle C
obtained as a quotient of Y.

Recently, F. Farris. [4] has given another construction of the Fefferman metric,
working only within the circle bundle G. His construction, however, required the
assumption of the existence of a closed (n + l,0)-form on M. It is easy to find
such a form when M is embedded in Cn+1, but H. Jacobowitz has shown [7a] that
there may not exist one on a general CR manifold. If there is no such form, Farris'
construction only gives the Fefferman metric at a point in terms of the coefficients
in a formal power series approximation to a closed (n + l,0)-form.

This paper presents two new characterizations of the Fefferman metric, valid
on an abstract CR manifold, which avoid these difficulties. Both characterizations
begin with a choice of a one-form annihilating the maximal complex subspace of
M (a "pseudohermitian structure"), and define Lorentz metrics on an intrinsically
defined circle bundle G over M.

The first characterization is in terms of differential forms which are intrinsic to
the circle bundle G and defined by simple normalizations relating them to the chosen
pseudohermitian structure. The second is in terms of the Webster connection forms
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412 J. M. LEE

of the pseudohermitian structure. It is then shown that these two Lorentz metrics
are the same, that they transform conformally under a change of pseudohermitian
structure, and that they agree with the Fefferman metric in case M is embedded
inCn+1.

The first of these two characterizations shows clearly the relation of the intrin-
sically defined metric to Fefferman's original extrinsic construction. In particular,
the two normalizations which characterize the metric on G correspond directly to
Fefferman's first and second formal power series solutions to the complex Monge-
Ampère equation. The second characterization makes the metric easily accessible
to intrinsic computations, using the formalism of Webster's pseudohermitian con-
nection and covariant derivatives.

In §2 we recall basic facts and notations concerning CR manifolds. §3 presents
the first characterization of the metric. §4 is a review of the Webster-Stanton con-
nection of a pseudohermitian structure, which is used in §5 to deduce the second
characterization. Finally, in §6 we apply these results to compute curvature in-
variants of the Fefferman metric in terms of Webster curvature invariants of the
corresponding pseudohermitian structure. In particular, it is shown that the scalar
curvature of the Fefferman metric is a constant multiple of the Webster scalar cur-
vature, and we state without proof a result showing the relationship of the Ricci
curvature of the Fefferman metric to Webster's Ricci and torsion tensors.

These characterizations of the metric and its curvature invariants will be of
value in further studies of the behavior of chains, since they allow the geodesic
equations to be written much more explicitly than has heretofore been possible. In
addition, R. Graham [6a] has recently applied these results to obtain a new proof
of Sparling's characterization of Lorentz metrics which arise as Fefferman metrics
of CR manifolds.

The simple relationships between the curvature of the Fefferman metric and that
of the Webster-Stanton connection suggest several interesting geometric problems
for CR manifolds. For example, the fact that the Webster scalar curvature and
Fefferman scalar curvature agree up to a constant multiple means that the Yamabe
problem for the Fefferman metric on C (i.e. to find a conformai representative
of the Fefferman metric which has constant scalar curvature) can be reduced to a
problem on the CR manifold M. While the former problem is decidedly nonelliptic,
the latter is at least subelliptic. This problem is the subject of a pair of joint papers
with D. Jerison [8, 9].

Similarly, one can ask whether one can choose the pseudohermitian structure
so that the Ricci tensor of the Fefferman metric assumes a particularly simple
form. The formula for Ricci tensor given in §6 shows that the Fefferman metric
is never Einstein; it is not clear at this point what is the natural normalization
for the Ricci tensor. On the other hand, one can ask whether a suitable choice of
pseudohermitian structure will make the Webster-Ricci tensor a scalar multiple of
the Levi form; this question will be dealt with in a forthcoming paper.

I am indebted to Richard Melrose, who first suggested the approach to the
Fefferman metric which evolved into the first characterization given here; to Frank
Farris, upon whose results the present work builds; to Robin Graham, who showed
me how to simplify the proof of Theorem 6.2; and especially to David Jerison,
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THE FEFFERMAN METRIC 413

whose suggestion to look for a CR-invariant Laplacian led to the key insight on
which this work is based (see [8, 9] for more on these matters).

2. Pseudohermitian structures. In this section we collect some facts and
notations concerning pseudohermitian structures on CR manifolds.

Let M be a real, (2n+ l)-dimensional, orientable, C°° manifold. A CR structure
on M is an n-dimensional complex subbundle Ti,o of the complexified tangent
bundle CTM satisfying Tli0 D T0,x = {0}, where 7b,i = TXfi. We set

J7 = Re(Ti,0eT0,1),

so that H is a 2n (real) dimensional subbundle of TM. H carries a natural complex
structure map J : H -y H given by J(V + V) = i(V - V) for V G T1>0. We will
assume throughout that the CR structure is integrable, that is, Ti,o satisfies the
formal Frobenius condition [Ti,o,Ti,o] C Ti,o-

The most important example of an integrable CR structure is of course that
induced by an embedding M C C"+1, in which case Th0 = Ti,0Cn+1 n CTM.

The bundle Qq>° of complex (q, 0)-forms on M is defined by

Qq'° = {nGC/\qM: V\n = 0 for V G T0,i}.

Of particular interest is fin+1'°, which has complex fiber dimension one. We set
K = H""1"1'0, and call it the canonical bundle of M. If M obtains its CR structure
from an embedding in a complex manifold Q, K is naturally isomorphic to the
restriction of the canonical bundle Kq of (n + 1,0)-forms on fi.

Let E C T*M denote the real line bundle H1. Because we assume M is ori-
entable, and the complex structure J induces an orientation on H, E has a global
nonvanishing section. A choice of such a 1-form 9 is called a pseudohermitian
structure on M. Associated with 9 is the Hermitian form Lg on Ti,o:

Le(V,W) = -idO(V AW),
called the Levi form of 9. This can also be written

Lg(V,W) = dO(V A JW);
in this form Le extends by complex linearity to a symmetric form on CH, real on
H, which we denote also by Lg.

Of course, the Levi form depends on the choice of 9, but it is CR-invariant up to
a conformai multiple. If Lg is definite, M is said to be strictly pseudoconvex. In this
case, it is natural to orient E by declaring a section 9 to be positive if Lg is positive.
We will assume henceforth that M is strictly pseudoconvx and 9 is positive.

On a pseudohermitian manifold M there is a unique vector field T — Tg trans-
verse to H, defined by

(2.1) TJd0 = O,        T\B = 1.
This defines T uniquely because d9 is nondegenerate on H and thus has precisely
one null direction transverse to H.

Calculations on a pseudohermitian manifold are simplified if we work with special
coframes. If {91,..., 9n) are (1,0) forms whose restrictions to Ti ,0 form a basis for
Tx0, and such that T\9a = 0 for a = 1,..., n, we call {9a} an admissible coframe.
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414 J. M. LEE

Then {9,91,...,9n,9î,...,9n}, form a coframe for CTM. With respect to an
admissible coframe, the integrability condition and (2.1) imply that

(2.2) dß = iha-ß9a A 9$

for some hermitian matrix of functions (hag), which is positive definite if M is
strictly pseudoconvex. If {Zx,...,Zn} is the frame for Ti,o dual to {9a}, and
V = VaZa, W = WaZa are sections of Ti,o, then the Levi form is given by

Lg(V,W) = \haliVaW?.
There is a natural trace operation on 2-forms on M. If u is any 2-form, there is

a unique complex-linear map to: Tx>o —> TXß such that for all X, Y G Tlj0,

lj(X AY) = d9(ÜX AY).

We define Trw = Trw.   If {9a} is an admissible coframe and u> = i^ag9a A 90

(mod 9a A $1,90 A 6°, 9), one checks easily that Tr to = haß~ua-ß. This agrees with
the definition given by Chern in [3] except for a factor of i; we have chosen this
normalization so that Trw is real when co is.

M carries a natural volume form ip = 9Ad9n, nonvanishing because M is strictly
pseudoconvex, which induces an L2 inner product on functions:

i, v)e = /
Ja

uvip.
M

The Levi form induces a dual metric on H*, which we denote by L*e, and a norm
Me = Lgi00!00)- This in turn induces an I? inner product

(u,n)g = /   L*e(uj,r))ip
J M

on sections of H*. If r: T*M —► H* is the natural restriction map, and u G C°°(M),
we can define a secton d¡,u of H* by d¡,u = r o du.

We then define the real sublaplacian operator Ab on functions by

(Abu,v)g = \(dbu,dbv)g,        vgC^(M).

(A. Greenleaf, in [7], defined an operator A which is the negative of Ab.) Similarly,
if we let dbu denote the projection of d0u onto TqX, the complex Kohn-Spencer
Laplacian Ob is defined as in [10] by

(DbU,v)g = (dbU,1hv~)g, V G C?(M).
The sublaplacian Ab generalizes the operator to defined on the Heisenberg group

by Folland and Stein [6]. They show that in that case Ob — Zo + in-T on functions.
The analogous relation holds in general:

(2.3) THEOREM.   Dt = Ab + inT on functions.

PROOF. Choose an admissible coframe {9a} such that ha^ — 6aß. If w = u>a9a
and n = na9a are sections of T*0, we can consider them as (1,0) forms satisfying
T\lj — T\n = 0. Then Lg(oj,fj) = 2war]a, and it follows by an easy algebraic
manipulation that

Lg(w,fj)ip = 2in9 AuAfjA d9n~l.
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Thus if u G C°°(M), v G C^°(M) (considering dbu and dbv similarly as 1-forms),

(AbU,v)g = ^(dbU,dbv)g

(2.4) =9/   Lg(dbU + dbu,dbv + dbv)il)¿ J M

= in      9AdbuAdbvAd9n-1+in      9 A dbv A dbu Ad9n~1.
J M Jm

Now by Stokes' theorem,

0= /   d(v9AdbuAd9n-1)
Jm

= f 9AdbuAdvAd9n~x+ f vdbuAd9n- f v9 A ddbu A d9n~x.
Jm Jm Jm

But the first term above is equal to ¡M 9AdbuAdbv Ad9n~x by type considerations,
and the integrand in the second term is identically zero since it annihilates T. Thus

Qn—1(2.5) / 9AdbuAdbvAd9n-1 = [ v9AddbuAd9r
Jm Jm

On the other hand, differentiating du = dbu + dbu + Tu9, we obtain

ddbu = -d(dbu + Tu9),

and so, applying Stokes' theorem once more,

/   9AdbuA dbv A d9n~x = - j v9 A d(dbu + Tu9) A dti71'1
Jm Jm

=  i  9 A dv A (dbu + Tu9) A d9n~1 - [ v(dbu + Tu9) A ddn
Jm Jm

= I   9AdbvAdbuAd9n~1- f vTu9Ad9n.
Jm Jm

Inserting this into (2.4),

(Abii, v)g = 2in [ 9AdbvA dbu A d9n~x - in j   vTu9 A d9n
Jm Jm

— I   Lß(dbu,dbv)tp — in I   vTuip
Jm Jm

— (Obu — inTu, v)g.

Since this holds for all v G C£°(M), the theorem is proved.    D

3. The Fefferman metric: first characterization. We are now prepared to
give a direct construction of the Fefferman metric induced by a pseudohermitian
structure.

Let (M, 9) be a (2n + l)-dimensional, strictly pseudoconvex pseudohermitian
manifold, and K* the canonical bundle of M with the zero section deleted. We
define an intrinsic circle bundle G = Ä"*/R+ as the quotient of K* by the natural
R+ action to y-y Xto, and let it: C —» M be the projection. The Fefferman metric
will be defined on the total space of C.
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416 J. M. LEE

To simplify the notation, we will usually use the same symbol to denote both a
form on M and its lift to C (omitting the it* from the notation), making clear by
the context which is meant.

The pseudohermitian structure induces a number of canonical differential forms
on C, from which the metric will be constructed. First, since K is a bundle of
differential forms, it carries a natural tautologous (n + l)-form £, whose value at
any point to G K is the lift to K of w itself. The pseudohermitian structure 9 gives
rise to a natural embedding Lg : C —y K, as follows. A point in C is an equivalence
class of (n + l,0)-forms under multiplication by positive reals. Choose a unique
representative ft by means of the volume normalization

(3.1) in\\9 A (TJft) A (TJ?0) = 0 A d9n.

That this is possible is guaranteed by the following

(3.2) LEMMA.   If lo is any smooth, nonvanishing (n+ 1,0)-form on M, then

in2n\9 A (Tjw) A (Tjw) = X9 A d9n

for some smooth, strictly positive function X on M.

PROOF. Only the positivity of A needs to be checked. We can choose an ad-
missible coframe {9a} such that Tjw = 91 A ■ ■ ■ A 9n and d9 = ihQ^ea A 9$, where
(ha-Z) is positive definite. A straightforward exercise in linear algebra then shows
that

d9n = in\\det(hap)(T\uj) A (Tjw).

Since det(/i -g) > 0, wedging with 9 completes the proof.    D
Thus, for any equivalence class [w] G C, we set ig[oj] = ft, where ft is the

unique positive multiple of w satisfying (3.1). This embedding allows us to pull the
tautologous from £ back to C. Setting c = ¿J£, c is a globally defined (n + l)-form
onG.

We also define a canonical vertical vector field S on C as the tangent to the
natural S1 action on C, [co] i—> [eîow].

If ft is any (n+1,0)-form on (a subset of) M satisfying the volume normalization
(3.1), then we can lift ft to C and write c = e^ft, thereby defining 7 as a fiber
coordinate on C. It is obvious that d'y(5) = 1.

The major part of the Fefferman metric will be induced by the Levi form Lg.
First, Lg can be extended to a (degenerate) symmetric 2-tensor on all of TM, by
requiring Lg(T,V) = 0 for any V G TM. We then lift Lg to a tensor on G, still
denoted by Lg, which is degenerate on the two-dimensional subspace of TC spanned
by 5 and any lift of T.

Observe that, if o is any 1-form such that o~(S) ^ 0, the symmetric 2-tensor
Lg + 29 ■ a is nondegenerate on TC with Lorentz signature. If 7 is a local fiber
coordinate for G such that d~/(S) = 1, an obvious choice for o would be a constant
multiple of d'y; there is, however, nothing canonical about this choice. We are
going to determine a uniquely by means of intrinsic normalizations on C so that
the resulting metric is conformally invariant under changes in 9.

To describe the normalizations, we must introduce one more natural form on C.
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(3.3) LEMMA. There is a unique n-form n onC satisfying ç = 9 An, V\n = 0
for any lift V of T.

PROOF. Let V be a lift to C of T, and set r? = V\ç. Since S\ç — 0, this definition
is independent of the choice of V, and n is easily seen to satisfy the conclusions of
the lemma.    G

We can now specify the 1-form a uniquely.

(3.4) PROPOSITION.   There is a unique real 1-form a on C satisfying

(3.5) dç = i(n + 2)a A ç,
(3.6) o A dn A rj = (Tr da)ia A 9 A n A rj.

PROOF. Choose (locally) an (n + l,0)-form ft on M satisfying (3.1), and write
Ç = enib. where 7 is a local fiber coordinate on G.

The integrability of the CR structure of M implies that dft = i(n + 2)<70 A ft for
some 1-form tT0, which is determined only up to the addition of a (1,0)-form. If we
require that &o be real, then it is uniquely determined up to addition of a multiple
of 9. Thus on C

dç = en(id7 A ft + i(n + 2)o0 A ft)

= i(n + 2)(^-^d1 + o0j AC,

so o — d^/(n + 2) + <To satisfies (3.5) and is uniquely determined mod0. Observe
that for any such a, da is a form on M, so Tr da makes sense.

To fix the multiple of 9, we use the second normalization (3.6). Observe that if
a' = a + f9, then

a' A dn A rj — a A dn A rj + f9 A dn A rj
= a A dn A rj - f(dç - d9 An) Arj
= a A dn A rj - i(n + 2) fa A 9 An Arj,

where the last equality follows because d9 An Arj = 0, being a (2n + 2)-form on C
which annihilates S. On the other hand,

da' = da + fd9    (mod0),        Tr da' = Tr da + nf,
(Tr da')ia' A 9 A n A rj = (Tr da)ia A 9 A n A rj + infa A9 An Arj.

Since the two sides of (3.6) transform by different multiplies of the nonzero volume
form if a A 9 An Arj, there is a unique choice of / such that a' = o + f9 satisfies
(3.6).

To see that / is real, it suffices to show that dn An is a real multiple oí i9 An An.
Contracting (3.1) with T and lifting to C yields

<Wn = in2n\ir*(T\ço) A it*(T\ç0) = in\\n A rj.

Differentiating this,
0 = in\\(dn Arj + (-l)nn A drj),

which says that in dn Arj is pure imaginary. On the other hand, it is immediate
that in (i9 An Arj) is imaginary, so we are done.    D
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Now define the metric g on C by

(3.7) g = Lg + 29 ■ a.
It is clear from the discussion above that g is a nondegenerate metric with Lorentz
signature, and is uniquely determined by the pseudohermitian structure 9.

Our main result is

(3.8) THEOREM. If 9 — e2^9 is another pseudohermitian structure on M, and
g is the associated Lorentz metric, then g = e2?g. Thus the conformai class of g is
a CR invariant of M.

This can be proved directly by deriving the transformation law for a from (3.5)
and (3.6). However, we defer the proof until §5, where we will be able to give a
simpler proof.

It is worth noting that the two normalizations (3.5) and (3.6) correspond directly
to the first two approximations to the solution of the Monge-Ampère equation usd
by Fefferman when he originally defined the metric. This will become clear in §5,
when the intrinsically defined metric g is related to Fefferman's extrinsic definition.

4. The Webster-Stanton connection. In [12], S. Webster showed there is
a natural connection in the bundle Ti,o adapted to a pseudohermitian structure.
This was subsequently extended to a connection to CTM by C. Stanton [11]. In
this section we recall the definition and main properties of the connection.

To define the connection, choose an admissible coframe {9a} and dual frame
{Za} for Ti,o. Webster showed that there are uniquely determined 1-forms w^r'3
on M satisfying
(4.1) d9ß =9aAujaß + 9ATß,
(4.2) wa0- + u~0a = dhap,
(4.3) T0Afi° = 0,

in which we have used the matrix hag to raise and lower indices, e.g. w-g = wQ'ï/i g.
By (4.3), we can write

(4.4) ra = Aai9~>

with Aai — Aia.
Covariant differentiation is defined by

(4.5) DZa = coaß <g> Zß,    DZâ = ujäß® Z¡¡,    DT = 0.
For a function / on M, we will write fa = Zaf, fa = Z^f, /o = Tf, so that
Df = df = fa9a + fäO" + fQe. The second covariant differential D2f of / is the
2-tensor with components

faß = faß = ZßZaf ~ U)a~l(Zß)Z-lf,      faß = faß = ZßZaf - U}a1(Zß)Z1f,

foa=7o~ä = ZaTf,    fa0 = fVo = TZaf-^(T)Z1f,    foo = T2f.
Observe that (2.2) and (4.1) imply

[Zß, Za] = iha-ßT + ua^(Zß)Z1 - utf(Za)Z¡t
[Z0, Za] = Loa1(Z3)Z1 - u>ß1(Za)Z1,

[Za,T] = ATaZ~-ua~<(T)Z^,
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and therefore

(4-6) faß ~ Ha = ihaßfo>      f<*ß ~ fß<* = °>       foa ~ faO = AZ1 afc.
In general, if Tßl'.'.'.ßlk are the components of a tensor of degree (k,l), its rth

covariant derivative DrT is the tensor of degree (k + r, I) with components which
we shall denote Tß\Z.ßkni...-ir.

The curvature of the Webster-Stanton connection, expressed in terms of the
coframe {9 = 90,9a,9«}, is

Hßa = Hßa = dcoßa - ußi A w^,

n0a = na° = n0^ = i%° = n0° = o.
Webster showed that Yl'ß can be written

(4.7)     n^ = RßapsOp A9W + Wßap9p A 9 - Wa && A9 + i9ß A ra - ít0 A 9a

where the coefficients satisfy

RßäpS — Raßcrp ~~ Raßvp — Rpäßöi      W/ï5-y — W-f50-
The Webster-Ricci tensor of (M,9) is the hermitian form p on Ti,o defined by

p(X,7) = RaßXaYß,

where X = XaZa, Y = YßZß, Ra-ß = R-^"1 a-g- The Webster scalar curvature is

(4.8) R = Raa = ha'ßRa-ß.

Observe that this can also be written
(4.9) R = TriTiQa = Tr¿dwQa.

The sublaplacian has a particularly simple expression in terms of covariant
derivatives.

(4.10) Proposition. lfueC°°(M), A6u = -(uaa + uôs).
PROOF. If v G GC°°(M), then from (2.4) and (2.5) we have

(Abu, v)e =in      9 A dbu A dbv A d0n_1 + in [ 9 A dbv A dbu A do""1
Jm Jm

= in /   v9 A ddbu A d9n~l - in [ v9 A ddbu A do""1.
Jm Jm

It is easy to check that if w is any 2-form,
n9 A w A d9n~1 = (Trw)0 A d9n,

and thus
(Abu,v)g = /   v(Tr iddbu - Triddbu)i¡>

Jm
= (Triddbu — Triddbu,v)g.

Since _
iddßu = id(ua9a) = -iuaß9a A 9ß    (mod 9a A 91, 0s A 0% 0),

it follows that Tr iddbu = -uaa, and similarly -Tr iddbu = -%a.  Thus Abu =
-(ua° + Uäa) as claimed.    G
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5. The Fefferman metric: second characterization. Using the Webster-
Stanton connection, we now give a second intrinsic characterization of the Fefferman
metric associated with a pseudohermitian structure 9. Let C — K*/R+ be the
circle bundle over M defined in §3. As in that section we will use a single symbol
to denote both a form on M and its lift to G.

Choose an admissible coframe {9a} over an open set U C M. Observe that

ft = (detha-p)1/26A01 A---AÖ"

is a nonvanishing (n + l,0)-form over U which satisfies the volume normalization
(3.1). Lifting ft to C, we can write the intrinsic (n + l)-form ç on C as ç — enÇo,
thus defining 7 as a local fiber coordinate on C.

(5.1) THEOREM.   The Lorentz metric g on C defined by (3.7) is also given by
(5.2) g = 9a -9a+29-a

in which

(5.3) a = -Ij (d7 + ^.a« - \h<*^ - ^R9

Thus (5.2) and (5.3) are independent of the choice of admissible coframe {9a}, and
are globally defined on M.

PROOF. It is immediate that Lg = 9a ■ 9a. Contracting (4.2) with ihaß, we see
that iujaa - (i/2)haßdhQß is real, and so a is real. So we need only verify that a,
defined by (5.3), satisfies the normalizations (3.5) and (3.6).

We compute

dç = idi A ç + endft,
dft = i(det ha^)1/2hQ^dha-^ A 9 A 91 A ■ ■ ■ A 9n

+ (det haß)1/2 ^(-l)a9 A 91 A ■ ■ ■ A d9a A ■ ■ ■ A 9n
a

= (±haZdhaß--waa)AC0.

On the other hand,

i(n + 2)o A ç = (idi - u>aa + ^haßdhaß) A ç,

so a satisfies (3.5).
Next observe that n = (det haß)x-/2ei~i9 A 91 A ■ ■ ■ A 9n, and

dn = i (¿7 + iujaa - ^haßdhaßJA r,    (mod^);

a A dri A^ = n~T2 {dl + lUJaa ~ l2ha~ßdh"ß ~ W+~T)Rd)

A i ( d7 + icoaa - ^haßdhaß ) An Arj

= - ni    .il ,R9Ad1Ar¡Arj.2(n+ l)(n + 2)
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On the other hand, using (4.9) and the fact that d(haßdhaß) = d2 log(det hag) = 0,

da = -i— (idujaa - n,   1   lSRdS - —^—-rdR A 6) ,
n + 2\ 2(n + l) 2(n+l) /

1 n 1
Trda=- Triduoaa ---.--^--R=--R.

n + 2 2(n + l)(n + 2) 2(n+l)
Thus

(Tr da)ia A 9 A n A rj = —.-—:-T^Ridi A9 An Arj.v        ' '     '     2(n+l)(n + 2)
Comparing this with (5.4) completes the proof.    G

The next step is to examine how the metric g, defined by either (3.7) or (5.2),
transforms under a change of pseudohermitian structure. First we must determine
the transformation law for the connection forms. Let 9 — e2?9 be a new choice of
pseudohermitian structure for M. Choose an admissible coframe {9a} for 9, with
dual frame {Za}. Recall the notation fa, fa0-, etc., for the covariant derivatives
of /, described in §4. All covariant derivatives will be taken with respect to the
coframe {9a} and the pseudohermitian structure 9.

One checks easily that
(5.5) 0a = ef(9a + 2ifa9)

satisfies ^_
ihaß9a A 9ß = e2f(d9 + 2df A 9) = d9,

and thus {9a} is an admissible coframe for 9, with the same matrix haß = haß.
We will compute the connection forms in terms of the coframe {9a}. Observe that,
for any 2-form w, Trw = e~2^Trw.

(5.6) Lemma.   With
aß* = ujßa + 2(fß9a - fa9ß) + ¿f (/^ - pej

(5.7) + i(Pß + fßa + 4f0P + 4S$PP)9,
(5.8) fffl = Äaß9ß,
where

(5.9) Äa0 = e~2f(Aa0 + 2ifa0 - 4ifafß),
we have
(5.10) d9a = 9ß ACoßa+9ATa,

(5.11) wQ^ + Zo-ßa = dha-ß,

(5.12) fa A9a=0,

and therefore ußa,fa are the Webster connection forms for 9.

PROOF. First, an easy calculation shows that Cjßa and fa, defined by (5.7) and
(5.8), satisfy (5.11) and (5.12). Differentiating (5.5),

d9a = ef(fß9ß A9a + fß-9ß A9a + fo0 A 9a + 2ifgfa9ß A 9
(5.13) + 2ifßfa0ß A 9 + 90 A ujßa + 9 A ra + 2iZ0fa90 A 0

+ 2iZßfa9ß A9-2fa90 A90).
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On the other hand,

¥ A Q0a = ef(9ß A uo0a + 2fg9ß A 9a - 2fa9ß A90 + p9a A (T - P9a A 9-,
+ i(Pß + fßa)9ß A 9 + \%fßP9ß A 9 + 4ipp9a A 9

+ 2ifß9 A io0a + Mfßfß9 A9a + 2ifaf~19 A 91)
modo A F

= ef(9ß A üj0a + f09ß A 9a - 2fa9ß A0g + f^eñ A9a + 2ifa09ß A 9
- f09a A9 + 2if0fa9ß A9- 2ifßio0a(Z1)9'1 A 9)

mod 9 A éP
= d9a    mode» A 6ñ,

where we have used (4.6), and the fact that fa0 = Z0fa + pu>~1a(Z0), which
follows from (4.2).

To prove (5.10), therefore, it suffices to show that Aa0, defined by (5.9), satisfies

Äa0 = 2d9a(f A ¿g).

We observe first that

(5.14) T = e-2f(T + 2ipZ^-2ipZ~l),    Z0 = e~iZ0,

and so, using (5.13),

2d0Q(T A Zß) = 2e~3fd9a(T AZ0 + 2ipZ^ A Zß - 2ipZ1 A Zß)

= e-2f(2ifaf0 - 2ifßfa - 2ip^(Zß) + ra(Zß) - 2iZßfa + Aipty
= e-2f(A«0 - 2iP-ß + 4ifafß) = Äaß,

which proves (5.10).    G
Next we calculate the transformation law for the Webster scalar curvature R.

(5.15)   PROPOSITION.   The Webster scalar curvature R associated with 9 =
e2'9 is

R = e~2f(R + 2(n + l)Abf - 4n(n + l)fafa).

PROOF. From (5.7),

¿aa = uaa + in + 2)(fa9a - fjf) + i(f/ + faa + 4(n + l)faPW,

dCoaa = dwaa + (n + 2)(fa09ß A0a- f-&Ja A (F)

+ iif/ + faa + 4(n + l)faP)d9    (mod9a A 9^,9« A 0% 9),

R = Tridùaa = e~2f(R - (n+ 2)(faa + //) - n(f/ + faa + 4(n + l)faP))

= e~2f(R + 2(n + l)Abf - 4n(n + l)fafa).    □
The transformation law for a is now easy to compute.
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(5.16) PROPOSITION.   With 9 = e2f9 as above, the 1-form à associated with 9
is given by

a = o + i(fja-f09ß)-2fafa9.

PROOF. Using formula (5.5) for 9a, the (n + l,0)-form

ft = (det haß)1/29 A 91 A ■ ■ ■ A 9n = e^+^'ft

satisfies the volume normalization (3.1) for 9, and thus the canonical (n + l)-form
ç on C associated with 9 is

c~ = e^ft = e("+2)/e,

where 7 is the same fiber coordinate as before. Thus

1     /.    .   ..  „     t,„«„ 1       ÄS\(di + iCóaa - \haßdh-n - —l—-m\V 2 aß     2(n+l)     )

n + 2 V   '

n + 2

- + iwaa + i(n + 2)(fa9a - fß9ß) - (faa + // + 4(n + l)fafa)9

-\ha~ßdha-0 - 27-^T) (^ + 2(n + l)Ab/ - 4n(n + l)fafa)o)

= o- + i(fa9a-f09ß)-2fafa9.   D

(5.17) THEOREM. If g is the Lorentz metric induced by 9 = e2-^, then g =
e2fg. Thus the conformai class of g is a CR invariant of M.

PROOF. By Proposition (5.16),

g = 9a ■ 9a + 29 ■ 0

= e2f(9a ■ 9a + 2ifa9 ■ 9a - 2ifa0 ■ 9a + 4fafa92
+ 29 ■ a + 2ifa9 ■ 9a - 2if^9 ■ 9ß - 4fafa92)

= e2'g.    a

It remains to compare the metric g with the metric G defined extrinsically for a
hypersurface M in Cn+1 by Fefferman in [5]. Since both G and g are well defined
up to a conformai factor, it suffices to compare G and g for one particular choice
of pseudohermitian structure 9.

Suppose M is embedded as a hypersurface in Cn+1. The restriction of the
canonical bundle KCn+i to M is naturally isomorphic to the canonical bundle K of
M, and the section dz1 A- ■ -Adzn+l of Ä"c+i restricts to a nonvanishing section ft of
K. Writing any section of KCn+i as z°dzx A • • • Ad^™+1 defines z° as a holomorphic
fiber coordinate on KCn+i. Then 7 = arg2° gives a fiber coordinate on the circle
bundle A"¿n+1/R+, which restricts to a fiber coordinate on C = K*/R+.

Fefferman demonstrated the existence of a smooth defining function u for M
which satisfies the complex Monge-Ampère equation

(5.18) J(u) = (-l)n+1det u du/dzk
du/dzi    d2u/dz^dzk

= 1
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to second order along M. The Fefferman metric of M is then the Lorentz metric
on G given by

G =-^dzj ■ dzk + —^(du - du) • d7,
dzidz* n + 2K '     h

which obviously depends only on the second-order jet of u along M.
We give M the pseudohermitian structure defined by 9 = i(du - du)/2, and let

g be the Lorentz metric on C induced by 9, defined by (3.7).

(5.19) Theorem. G = g.

PROOF. A calculation shows that the (n + l,0)-form ft = dzl A ■ ■ ■ A dzn+1
satisfies the volume normalization (3.1) with respect to 9 if and only if u satisfies
(5.18) along M (cf. [4]). F. Farris showed in [4] that the Lorentz metric

90^Le + n^2e-dl+rT+-ia^^

in which Qf0 G G°° (M) is defined by

(5.20) d(TJft) A (rj?0) = ia(09 A (Tjft) A (T\ç0),
agrees with the Fefferman metric G. Thus to prove that g — G it suffices to show
that

1     . 1
2(n+l)'

for this choice of 9.
Writing the canonical (n + l)-form on G as ç = e'^ft, and using the fact that ft

is closed, we have dç = idq A ç. Thus (5.21) satisfies the first normalization (3.5).
To see that it also satisfies the second, we calculate:

Trda=^T)ai0,     r, = e^(Tjft),

dr, = e^(id1A(T\Ço)+d(T\ç0)),
and therefore the second normalization (3.6) for this a is equivalent to

a,0d1A9A(T\ç0)A(T\ç0)

(5-21) CT = zzT^di + unrr^a^O

2(n+l)(n + 2)
1 2dl + W+~T)a<°e) A {idl A (TJfo) + d(TJfo)) A (TJ?o)

^d7 A d(TJft) A (TJ?0) + 2(^Vt)q*>0 A d7 A (Tjft) A (TJ?0)
or

¿oCod7 A 9 A (Tjft) A (TJ?0) = d7 A d(TJft) A (TJ?0).
But this is just the wedge product of equation (5.20) with d7, which proves the
result.    G

It follows from the above proof and from the arguments in [4] that (5.21) satisfies
(3.5) iff u satisfies (5.18) along M, and satisfies (3.6) iff u satisfies (5.18) to second
order. This is the sense in which the two normalizations of a correspond to the first
and second formal power series solutions to the complex Monge-Ampère equation.
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6. Curvature of the Fefferman metric. In this section we use the charac-
terizations of the Fefferman metric introduced in §§3 and 5 to compute curvature
invariants of the metric in terms of pseudohermitian invariants of M.

We begin by comparing the Laplace-Beltrami operator D of g to the sublaplacian
Ab. Since g is invariant under the natural S1 action on C, □ pushes forward to
an operator i,D on M in the following way. For u G C°°(M), we set (7r,D)u =
D(ir*u), which descends to a function on M since ir*u is constant on fibers of G
and D is 51-invariant. Then we have the following result:

(6.1) Proposition. irt\J = 2Ab.

PROOF. Recall that D is defined on functions by

/ (\3u)vß = /  g*(du,dv)ß
Je Je

for all v G Cf(C), where p, denotes the metric volume form on C. Let ft be
a volume-normalized (n + l,0)-form on M, so that ç = e'^ft is the canonical
(n + l)-form on C, and tp = 9 A d9n~1. We claim that p, = cnd^ A i/> for some
universal constant c„. If {9a} is an admissible coframe in which haß = 8a-s, then
i> = in\\9 A 9X A ■ ■ ■ A 9n A 0T A ■ ■ ■ A 0".

From formula (5.2) for g it follows that {Re0a,Im0a,2-1</2(0 + <r), 2-1/2(0-ct)}
is an orthonormal coframe for g, and so for some universal constants bn,cn

H = bna A 9 A 9l A ■ ■ ■ A 9n A 9T A ■ ■ ■ A 0" = cnd7 A tp-

Let {N,Wa,W-ä-,Z} be the dual frame to {9,9a, 9°, a} on G. Note that S =
S/(n + 2), and N is the unique lift of T such that Lg(N, N) = 0. The dual metric
g* to g is g* = L*e + 2N ■ E. Thus for u G C°°(M), v G C™(M), g*(ir*du,ir*dv) =
Lß(dbu,dbv), and so

/   ((ir*\3)u)vip = — / (D(7r*u))7r*tJd7 A^
Jm 2n Jc

= 2/   9* i** du, ir*dv)d~j Alp = —      Lg(dbu,dbv)d"i Aip

=       L*6(dbu,dbv)i) = 2 I   (Abu)vip.    D
Jm Jm

We turn now to the scalar curvature. Let K denote the scalar curvature of g on
C, and R the Webster scalar curvature of 0 on M. Note that by the S1 invariance
of g, K is constant on the fibers of C, and thus descends to a function tt„K on M.

(6.2) THEOREM.   7r*Ä: = 2(2n+l)n/(n+l).

PROOF. This will follow from Theorem 6.6, but we present here an easier proof
using invariant theory.

Suppose 0 = e2-^0 is a new pseudohermitian structure on M. A standard cal-
culation (cf., for example, [1]) shows that, under the conformai change of metric
g — e2fg, K transforms by

K = e~2f(K + 2(2n + 1)D(tt*/) - 2n(2n + l)g*(ir*df,ir*df))
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(recall that dim G = 2n + 2). On the other hand, Proposition 5.15 shows that

R = e~2f(R + 2(n + l)Abf - n(n + l)L*e(dbf, dbf)).
Consider the function Dg = irtK - 2(2n + l)R/(n + 1), defined on M for any
pseudohermitian structure 0. Then Proposition 6.1 and the above calculations
show that if 0 = e2^9, Dg = e~2^Dg. In other words, the assignment 0 i-> Dg
determines a scalar invariant of the CR structure of M (of weight 2). We will show
that Dg is identically zero, which proves the theorem.

Using the Moser normal form [3] for M at a point p G M, we can embed M locally
in Cn+1 with coordinates (w = u + iv, z1,..., zn) such that M is approximated to
arbitrarily high order at p by the power series

0 = p(w,z) = -v + \z\2+     J2     J2aABmzA*Bum>
|A|,|B|>2   m

where A, B are multi-indices. The coefficients aABm are determined up to a finite-
dimensional symmetry group by additional normalizations. Since Dg(0) depends
only on the value of 0 at 0, we can calculate it by choosing any normal form with
0 = i(dp - dp)/2 at 0.

We note first that the vector field T associated with 0 is determined by the
relations

T\ddp = T\dp = 0,       TJ0 = 1.
Since ddp = £1 • dz^ A dz^ and dp = —dv at 0, one can verify that the Taylor

coefficients of the components of T in terms of {d/du,d/dv,d/dz^,d/dz3} are
given by polynomials in the aABm- We can take {9a = dza — (Tza)9) as an
admissible coframe. With respect to this coframe, the Taylor coefficients of the
connection forms coaß and curvature forms Haß at 0 are again given by polynomials
in the aABm- It then follows from the discussion in §§4 and 5 that the values of
R and K, and thus also of Dg, at 0 are given by a universal polynomial in the
coefficients aABm-

Now the coordinate change w — e2Xw, z — exz, with À a real constant, yields
the normal form

p = -v+[¡[2+ J2 J2aABm¿A*Büm
|A|,|ß|>2   m

= e2A|_u+|Ä|2+       £      J2e{lAl + ]B¡+2m~2)Xa¿BmZAZBUm
\ |A|,|B|>2   m

which shows we can take aABm = e"(|A|+|ß|+2m_2)AaAßm, so that p = e2Xp and
0 = e2A0.

From the preceding discussion,

D§(0) = P(äABm) = P(e-dAl + lßl+2m-2) VSm) = e-2XP(aABm)-

Since aABm — 0 for |A| + \B] < 4, this means that P can involve only the lowest-
order terms aABm, with |A| = |f?| = 2 and m — 0, and P must be linear in these
terms.

Now the symmetry group H of the normal form contains the unitary group U(n)
acting on the z variables, and under this representation the coefficients a abo with
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|A| = |5| = 2 transform as the components of a tensor of bidegree (2,2) on Cn.
Thus by classical invariant theory, the only nontrivial linear scalar invariant under
U(n) is the complete contraction

J2 haißlha*ß*a{aia:i)i0l02]o-

But by the normalization conditions defining the normal form (cf. [3]), this trace
is already zero. Thus P is the zero polynomial.    G

It is remarkable that, although the Fefferman metric depends on two deriva-
tives of the CR structure (as represented, say, by a coframe {0,0Q}) and therefore
its curvature depends on four derivatives, its scalar curvature turns out, through
nonobvious cancellations, to involve only two derivatives.

Next we compute the connection 1-forms of the Fefferman metric. We will work
with the frame for the complexified tangent bundle CTG

(Xo,- -- ,X2n+l) = (N,YX,

dual to the coframe

(?,...,(?n+1) = (0,01,.

Y   Y- , Yn, L)

,0V)-
Let us write Za = ir*Ya G TXß.

With respect to this frame, the metric is represented by the matrix:

Í9]k)

0
0

2 haß
0

0
2 naß

0
o

(Here and in the remainder of this section, we let lower case Greek indices run from
1 to n, lower case Roman indices from 0 to 2n + 1, and write ä = a + n.)

The Levi-Civita connection (4>jk) of the metric is determined by the structure
equations

(6.3) d^ = ik A (ßkZ
(6.4) <t>jlQtk + 4>klgij = dgjk-

(6.5) PROPOSITION.   The Levi-Civita connection of g is given by

id>ñ
o

2 9 a
- í-fí—2°a

0

ia ß

Kß
0

i9ß

-iaß
0

-i9ß

0

where

= <hß = wa" + iKa09 + iSßa,    aQ

K - =a0     n + 2 2(n+l)Rh«0 Ca

iAai9~< + Ka^ + Ca9
2     („, i

n + 2 Wa + 2(n + l) ZaR

wa = w00 = wß ßa'
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Here Aai,Raß,R, and Waß^ are the pseudohermitian invariants defined in (4.4),
(4.7) and (4.8).

PROOF. The fact that (4>3k) satisfies (6.4) is a straightforward matrix calcula-
tion, using (4.2) and the fact that Ka0- = K0ä = K-ga.

To verify (6.3), we compute

£¿ a <j>3° =9aAl-9a-9*Al-9ñ = iha-09a A 9ß = d9,

fi A <t>j0 = 0 A iaß + 9a A <f>aß + 0" A <p^ + a A i90
= 0 A i(-iA0^ + K0^ + C09)

+ 9a A (coaß + iKa09 + iSßa) +oA i9ß

= 9aAuja0 + 9ATß = d9ß,

£¿ A^2íl+1 =0" AÍffa-05 A'-Oñ

= ~Aal9a A 91 + ^Kal9a A 0^ + l-Ca9a A 9 - ^A^9" A 9^

-l-Ka19"A9i-l-Cc79«A9

= iKa^9a A 0^ + l.Ca9a A 0 - Jg«0" A 0.

On the other hand, from (5.3) and (4.7),

da = —*— (iduoaa - 0.  1   ,.dfl A 0 - -^-—Rd9
n + 2 \ 2(n+ 1) 2(n + 1)

iRa^9a A 07 + iWa9a A 0 - zWs05 A 0 - „,_*   ^ZaR9a A 9n + 2y^a^ ■   —a- -a- 2(tt + 1) '

-2^0° A 0 - „,   1   .JRha~9a A 9~<

= iKal9a A 9~i + ^Ca9a A 0 - -G50a A 0.

2(n+l)   Q 2(n+l)

|Ga0«A0-|

So d£2n+1 = da = p' A ¿¿2n+1, and (<£,■*) satisfies (6.3).    G
Finally, we state the following formula for the Ricci tensor of the Fefferman

metric. The proof is a very long and laborious calculation based on Preposition
6.5, and is omitted here.

(6.6) THEOREM.   The Ricci tensor of the Fefferman metric is

p =--fig + n0'ï • (a1 + C70) + nßn ■ (o*¡ + G70) + 2ncr2 + A0

where

X = 2Ka-0K«ê - 2Aa0A°ß + ^ImA^ - (>> + ^ + 2)A6fi.
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This result yields another proof of Theorem 6.2, simply by contracting pjk with
9jk-

This expression for the Ricci tensor shows, for example, that the Fefferman
metric is never Einstein. It is hoped that the simple relationship of the Ricci tensor
to the pseudohermitian invariants of M will contribute to a better understanding
of the geometry of the Fefferman metric.
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