
doi: 10.2478/umcsmath-2014-0001

ANNALES
UNIVERS ITAT I S MARIAE CUR IE - SKŁODOWSKA

LUBL IN – POLONIA

VOL. LXVIII, NO. 1, 2014 SECTIO A 1–10

OM P. AHUJA and HALIT ORHAN

The Fekete–Szegö problem
for a class of analytic functions

defined by Carlson–Shaffer operator

Abstract. In the present investigation we solve Fekete–Szegö problem for
the generalized linear differential operator. In particular, our theorems con-
tain corresponding results for various subclasses of strongly starlike and
strongly convex functions.

1. Introduction. Let A be the family of all analytic functions f of the
form

(1.1) f(z) = z +

∞∑
n=2

anz
n

in the open unit disk U = {z ∈ C : |z| < 1}. Suppose S is a subfamily of
A consisting of functions that are univalent in U . For functions f, g ∈ A,
given by f(z) = z +

∑∞
n=2 anz

n and g(z) = z +
∑∞

n=2 bnz
n, we define the

Hadamard product (or convolution) of f(z) and g(z) by

(1.2) (f ∗ g)(z) = z +

∞∑
n=2

anbnz
n = (g ∗ f)(z), z ∈ U .

Carlson and Shaffer in [4] introduced a linear operator L(a, c) : A → A
defined by L(a, c)f(z) = φ(a, c; z) ∗ f(z), where the symbol ∗ denotes the
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convolution of two functions in A and where φ(a, c; z) is the well-known
incomplete beta function given by

φ(a, c; z) = z +
∞∑
n=2

(a)n−1

(c)n−1
zn, z ∈ U .

Here a and c are nonzero complex parameters and a, c �= −1,−2,−3, . . . .
Also, (λ)n denotes the Pochhammer symbol defined by

(λ)n =
Γ(λ+ n)

Γ(λ)
=

{
1, n = 0,

λ(λ+ 1) . . . (λ+ n− 1), n ∈ {1, 2, 3, . . .} .
We also note that L(a, a)f(z) = f(z), L(2, 1)f(z) = zf ′(z) and L(δ +
1, 1)f(z) = Dδf(z), where

Dδf(z) =
z

(1− z)δ+1
∗ f(z), δ > −1,

is the generalized Ruscheweyh derivative of function f in A [22]. The op-
erator L(a, c) is analytic in U and plays an important role in Geometric
Functions Theory; see for example [24], [14], [21] and [9].
The linear multiplier differential operator Dm(λ, ϕ)f was defined by the
authors in [7] as follows:

D0(λ, ϕ)f(z) = f(z),

D1(λ, ϕ)f(z) = D(λ, ϕ)f(z)

= λϕz2(f(z))′′ + (λ− ϕ)z(f(z))′ + (1− λ+ ϕ)f(z),

D2(λ, ϕ)f(z) = D(λ, ϕ)
(
D1(λ, ϕ)f(z)

)
,

...

Dm(λ, ϕ)f(z) = D(λ, ϕ)
(
Dm−1(λ, ϕ)f(z)

)
,

where λ ≥ ϕ ≥ 0 and m ∈ N0 = N ∪ {0}.
If f is given by (1.1), then from the definition of the operatorDm(λ,ϕ)f(z)
it is easy to see that

(1.3) Dm(λ, ϕ)f(z) = z +

∞∑
n=2

[1 + (λϕn+ λ− ϕ)(n− 1)]manz
n.

It should be remarked that the Dm(λ, ϕ) is a generalization of many other
linear operators considered earlier. In particular, for f ∈ A we have the
following:
• Dm (1, 0) f(z) ≡ Dmf(z), the operator investigated by Sălăgean (see [23]).
• Dm (λ, 0) f(z) ≡ Dm (λ) f(z), the operator studied by Al-Oboudi (see [2]).
• Dm (λ, ϕ) f(z), the operator firstly considered for 0 ≤ ϕ ≤ λ ≤ 1, by
Răducanu and Orhan (see [20]). The operator Dm (λ, ϕ) f(z) is called
Răducanu–Orhan operator.
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Definition 1.1. The generalized linear operator L(m,λ, ϕ; a, c) : A → A is
given as

L(m,λ, ϕ; a, c)f(z) = φ(a, c; z) ∗Dm(λ, ϕ)f(z)

= z +

∞∑
n=2

Φm
n (λ, ϕ)

(a)n−1

(c)n−1
anz

n

where Φm
n (λ, ϕ) = [1+(λϕn+λ−ϕ)(n−1)]m, λ ≥ ϕ ≥ 0, m ∈ N0 = N∪{0}

and a, c �= −1,−2,−3, . . . .

We note here some special cases:
(1)L(0, λ, ϕ; a, c)f(z)=L(a, c)f(z) is the Carlson–Shaffer linear operator [4].
(2)L(0, λ, ϕ; δ+1, 1)f(z), δ ∈ N0, is the Ruscheweyh derivative operator [22].
(3)L(m,λ, ϕ; 1, 1)f(z), λ ≥ ϕ ≥ 0, m ∈ N0, is extended Raducanu–Orhan
operator [7].

(4)L(m,λ, 0; 1, 1)f(z), m ∈ N0, is the Al-Oboudi linear operator [2].
(5)L(m, 1, 0; 1, 1)f(z), m ∈ N0, is the Sălăgean derivative operator [23].
Now, by making use of the extended linear differential operator

L(m,λ, ϕ; a, c), we define a new subclass Q(m,λ, ϕ, β; a, c) of analytic func-
tions.

Definition 1.2. Let a, c be nonzero complex parameters such that a, c �=
−1,−2,−3, . . . , λ ≥ ϕ ≥ 0, m ∈ N0 = N ∪ {0}. Also, suppose 0 < β ≤ 1. A
function f given by (1.1) is said to be in the class Q(m,λ, ϕ, β; a, c) if

(1.4)
∣∣∣∣arg

(
z(L(m,λ, ϕ; a, c)f(z))′

L(m,λ, ϕ; a, c)f(z)

)∣∣∣∣ < π

2
β, z ∈ U .

This class includes a variety of well-known subclasses of A. For example,
Q(0, λ, ϕ, β; a, a) ≡ S∗

1(β)

=

{
z ∈ A :

∣∣∣∣arg
(
zf ′(z)
f(z)

)∣∣∣∣ < π

2
β, z ∈ U

}
; [3]

Q(0, λ, ϕ, β; 2, 1) ≡ K1(β)

=

{
f ∈ A :

∣∣∣∣arg
(
1 +

zf ′′(z)
f ′(z)

)∣∣∣∣ < π

2
β, z ∈ U

}
; [3]

Q(0, λ, ϕ, β, δ + 1, 1) ≡ R̃δ(β)

=

{
f ∈ A :

∣∣∣∣arg
(
z(Dδf(z))′

Dδf(z)

)∣∣∣∣ < π

2
β, z ∈ U

}
, δ ≥ 0; [6].

A function f in S∗
1(β) is called strongly starlike of order β. The class

K1(β) consists of strongly convex functions of order β. These observations
help us to conclude that the differential-integral representation given by
(1.4) is a generalization of the Carlson–Shaffer operator in [4] and includes
S∗
1(β) and K1(β) studied by Brannan and Kirwan in [3].
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In 1933, Fekete and Szegö [10] found the maximum value of
∣∣a3 − μa22

∣∣ as
a function of the real parameters μ, for functions belonging to the class S.
Since then, several researchers solved the Fekete–Szegö problem for various
sublasses of the class of S and related subclasses of functions in A. See,
for example [1], [5], [6], [7], [8], [11], [12], [13], [15], [16], [17], [18], [25]. In
the present paper, we solve Fekete–Szegö problem for functional

∣∣a3 − μa22
∣∣,

where μ is real or complex when f is in the family Q(m,λ, ϕ, β; a, c). In
particular, our theorems contain corresponding results for various subclasses
of strongly starlike and strongly convex and other several subclasses of A.
2. Preliminary results. Let P be the class of all analytic functions P
given by p(z) = 1 + c1z + c2z

2 + . . . with Re p(z) > 0 for z ∈ U . To prove
our main results we need the following lemmas.

Lemma 2.1 ([19]). If p(z) = 1 + c1z + c2z
2 + . . . is in P , then

(i) |cn| ≤ 2 for n ≥ 1,

(ii)
∣∣c2 − 1

2c
2
1

∣∣ ≤ 2− |c1|2
2 .

Lemma 2.2. Let a and c be nonzero complex numbers with a, c �= −1,
−2,−3, . . . , λ ≥ ϕ ≥ 0 and m ∈ N0 = N ∪ {0}. If f ∈ Q(m,λ, ϕ, β; a, c) is
given by (1.1) then

(i) |a2| ≤ 2β |c|
Φm
2 (λ, ϕ) |a| ,

(ii) |a3| ≤

⎧⎪⎪⎨
⎪⎪⎩

β |c| |c+ 1|
Φm
3 (λ, ϕ) |a| |a+ 1| , β ≤ 1

3
,

3β2 |c| |c+ 1|
Φm
3 (λ, ϕ) |a| |a+ 1| , β ≥ 1

3
.

Proof. Let F (z) := L(m,λ, ϕ; a, c)f(z) := z +A2z
2 +A3z

3 + . . . . Since

zF ′(z)
F (z)

= pβ(z), p ∈ P

and so,

z(1 + 2A2z + 3A3z
2 + . . . )

z +A2z2 +A3z3 + . . .
= (1 + c1z + c2z

2 + . . . )β ,

which implies that

z + 2A2z
2 + 3A3z

3 + . . . = z + (βc1 +A2)z
2

+

(
βc2 +

β(β − 1)c21
2

+ βc1A2 +A3

)
z3 + . . . .

Equating the coefficients of z2 and z3, we have

(2.1) A2 = βc1,
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since

(2.2) A3 =
β

2

(
c2 − c21

2

)
+

3

4
β2c21.

(2.3)

F (z) = φ(a, c; z) ∗Dm(λ, ϕ)f(z) = z +

∞∑
n=2

Φm
n (λ, ϕ)

(a)n−1

(c)n−1
anz

n

= z +
∞∑
n=2

Φm
n (λ, ϕ)

Γ(a+ n− 1)Γ(c)

Γ(c+ n− 1)Γ(a)
anz

n,

so we have

βc1 = Φm
2 (λ, ϕ)

Γ(a+ 1)Γ(c)

Γ(c+ 1)Γ(a)
a2.

This yields

(2.4) a2 =
βcc1

aΦm
2 (λ, ϕ)

.

In view of Lemma 2.1 (i) we have

|a2| ≤ 2β |c|
|a|Φm

2 (λ, ϕ)
.

On comparing the coefficients of z3 in (2.3), we get

A3 = Φm
3 (λ, ϕ)

Γ(a+ 2)Γ(c)

Γ(a)Γ(c+ 2)
a3 = Φm

3 (λ, ϕ)
a(a+ 1)

c(c+ 1)
a3.

Using (2.2), we obtain

(2.5) a3 =
c(c+ 1)

Φm
3 (λ, ϕ)a(a+ 1)

(
β

2
(c2 − c21

2
) +

3

4
β2c21

)
.

Therefore, by applying Lemma 2.1 (ii), it follows that

|a3| ≤ |c| |(c+ 1)|β
4Φm

3 (λ, ϕ) |a| |(a+ 1)|
{
4− |c1|2 + 3β |c1|2

}
.

This inequality immediately proves the result. �

3. Main results. We first consider the functional
∣∣a3 − μa22

∣∣ for complex
parameter μ.

Theorem 3.1. Let a and c be complex parameters such that a, c �= 0,−1,
−2,−3, . . . , λ ≥ ϕ ≥ 0 and m ∈ N0 = N ∪ {0}. If f ∈ Q(m,λ, ϕ, β; a, c),
β ∈ (0, 1] and μ is a complex parameter, then

(3.1)
∣∣a3 − μa22

∣∣ ≤ β |c| |c+ 1|
Φm
3 (λ, ϕ) |a| |a+ 1| max

{
1,

βv(Φ, μ; a, c)

Φ2m
2 (λ, ϕ) |a| |c+ 1|

}
,

where v(Φ, μ; a, c) = 3Φ2m
2 (λ, ϕ)a(c+ 1)− 4Φm

3 (λ, ϕ)μc(a+ 1).
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Proof. From (2.4) and (2.5), it follows that

(3.2)

a3 − μa22 =
βc(c+ 1)

2Φm
3 (λ, ϕ)a(a+ 1)

(
c2 − 1

2
c21

)

+
β2c[3Φ2m

2 (λ, ϕ)a(c+ 1)− 4μΦm
3 (λ, ϕ)c(a+ 1)]

4Φm
3 (λ, ϕ)Φ2m

2 (λ, ϕ)a2(a+ 1)
c21.

Therefore, ∣∣a3 − μa22
∣∣ ≤ β |c| |c+ 1|

2Φm
3 (λ, ϕ) |a| |a+ 1|

∣∣∣∣c2 − 1

2
c21

∣∣∣∣
+

β2 |c| |v(Φ, μ; a, c)|
4Φm

3 (λ, ϕ)Φ2m
2 (λ, ϕ) |a|2 |a+ 1| |c1|

2 .

In view of Lemma 2.1 (ii), we obtain

(3.3)

∣∣a3 − μa22
∣∣ ≤ β |c| |c+ 1|

Φm
3 (λ, ϕ) |a| |a+ 1|

+
β |c| [β |v(Φ, μ; a, c)| − Φ2m

2 (λ, ϕ) |a| |c+ 1|]
4Φm

3 (λ, ϕ)Φ2m
2 (λ, ϕ) |a|2 |a+ 1| |c1|2 .

Suppose β |v(Φ, μ; a, c)| ≤ Φ2m
2 (λ, ϕ) |a| |c+ 1|. Then it immediately follows

that

(3.4)
∣∣a3 − μa22

∣∣ ≤ β |c| |c+ 1|
Φm
3 (λ, ϕ) |a| |a+ 1| .

On the other hand, if β |v(Φ, μ; a, c)| ≥ Φ2m
2 (λ, ϕ) |a| |c+ 1|, then using

Lemma 2.1 (i), we have∣∣a3 − μa22
∣∣ ≤ β |c| |c+ 1|

Φm
3 (λ, ϕ) |a| |a+ 1|(3.5)

+
β |c| [β |v(Φ, μ; a, c)| − Φ2m

2 (λ, ϕ) |a| |c+ 1|]
Φm
3 (λ, ϕ)Φ2m

2 (λ, ϕ) |a|2 |a+ 1|
=

β |a| |c| |c+ 1|Φ2m
2 (λ, ϕ) + β2 |c| |v(Φ, μ; a, c)| − β |a| |c| |c+ 1|Φ2m

2 (λ, ϕ)

Φm
3 (λ, ϕ)Φ2m

2 (λ, ϕ) |a|2 |a+ 1|

=
β2 |c| |v(Φ, μ; a, c)|

Φm
3 (λ, ϕ)Φ2m

2 (λ, ϕ) |a|2 |a+ 1| .

The result immediately follows from (3.4) and (3.5). �

Equality in (3.4) and (3.5) is attained, respectively, for functions in
Q(m,λ, ϕ, β; a, c) given by

z (L(m,λ, ϕ; a, c)f(z))′

L(m,λ, ϕ; a, c)f(z)
=

(
1+z2

1−z2

)β

,
z (L(m,λ, ϕ; a, c)f(z))′

L(m,λ, ϕ; a, c)f(z)
=

(
1+z

1−z

)β

.

In the next result we consider the cases where μ is a real parameter.
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Theorem 3.2. Let a, c ∈ (0,∞), β ∈ (0, 1], λ ≥ ϕ ≥ 0 and m ∈ N0 =
N∪ {0}. If f ∈ Q(m,λ, ϕ, β; a, c) and f is given by (1.1) then for real μ we
have

∣∣a3 − μa22
∣∣ ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β2c[3a(c+1)Φ2m
2 (λ,ϕ)−4μc(a+1)Φm

3 (λ,ϕ)]

Φm
3 (λ,φ)Φ2m

2 (λ,φ)a2(a+1)
,

if μ ≤ (3β−1)a(c+1)Φ2m
2 (λ,ϕ)

4βc(a+1)Φm
3 (λ,ϕ) ,

βc(c+1)
Φm

3 (λ,ϕ)a(a+1) ,

if (3β−1)a(c+1)Φ2m
2 (λ,ϕ)

4βc(a+1)Φm
3 (λ,ϕ) ≤ μ ≤ (3β+1)a(c+1)Φ2m

2 (λ,ϕ)
4βc(a+1)Φm

3 (λ,ϕ) ,

β2c(4μc(a+1)Φm
3 (λ,ϕ)−3a(c+1)Φ2m

2 (λ,ϕ))
Φm

3 (λ,ϕ)Φ2m
2 (λ,ϕ)a2(a+1)

,

if μ ≥ (3β+1)a(c+1)Φ2m
2 (λ,ϕ)

4βc(a+1)Φm
3 (λ,ϕ) .

Proof. In view of (3.3), we need to consider two main cases.

Case 1. Let μ ≤ 3Φ2m
2 (λ,ϕ)a(c+1)

4Φm
3 (λ,ϕ)c(a+1) . Then (3.3) gives

(3.6)

∣∣a3 − μa22
∣∣ ≤ βc(c+ 1)

Φm
3 (λ, ϕ)a(a+ 1)

+
βc[(3β − 1)a(c+ 1)Φ2m

2 (λ, ϕ)− 4βμc(a+ 1)Φm
3 (λ, ϕ)]

4Φm
3 (λ, ϕ)Φ2m

2 (λ, ϕ)a2(a+ 1)
|c1|2

and by using the fact that |c1| ≤ 2, we obtain

∣∣a3 − μa22
∣∣ ≤ β2c[3a(c+ 1)Φ2m

2 (λ, ϕ)− 4μc(a+ 1)Φm
3 (λ, ϕ)]

Φm
3 (λ, ϕ)Φ2m

2 (λ, ϕ)a2(a+ 1)
,

provided that

μ ≤ (3β − 1)a(c+ 1)Φ2m
2 (λ, ϕ)

4βc(a+ 1)Φm
3 (λ, ϕ)

.

On the other hand, if

μ ≥ (3β − 1)a(c+ 1)Φ2m
2 (λ, ϕ)

4βc(a+ 1)Φm
3 (λ, ϕ)

,

then the inequality (3.6) reduces to∣∣a3 − μa22
∣∣ ≤ βc(c+ 1)

Φm
3 (λ, ϕ)a(a+ 1)

− βc[4μβc(a+ 1)Φm
3 (λ, ϕ)− (3β − 1)a(c+ 1)Φ2m

2 (λ, ϕ)]

4Φm
3 (λ, ϕ)Φ2m

2 (λ, ϕ)a2(a+ 1)
|c1|2

≤ βc(c+ 1)

Φm
3 (λ, ϕ)a(a+ 1)

.

Case 2. Assume that μ ≥ 3Φ2m
2 (λ,ϕ)a(c+1)

4Φm
3 (λ,ϕ)c(a+1) . In this case, note that

v(Φ, μ; a, c) = 4Φm
3 (λ, ϕ)μc(a+ 1)− 3Φ2m

2 (λ, ϕ)a(c+ 1)
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and (3.3) reduces to

(3.7)

∣∣a3 − μa22
∣∣ ≤ βc(c+ 1)

Φm
3 (λ, ϕ)a(a+ 1)

+
βc[4βμc(a+ 1)Φm

3 (λ, ϕ)− (3β + 1)a(c+ 1)Φ2m
2 (λ, ϕ)]

4Φm
3 (λ, ϕ)Φ2m

2 (λ, ϕ)a2(a+ 1)
|c1|2 .

Again, using the fact that |c1| ≤ 2, we obtain

∣∣a3 − μa22
∣∣ ≤ β2c[4μc(a+ 1)Φm

3 (λ, ϕ)− 3a(c+ 1)Φ2m
2 (λ, ϕ)]

Φm
3 (λ, ϕ)Φ2m

2 (λ, ϕ)a2(a+ 1)
,

where we have also used the condition that

μ ≥ (3β + 1)a(c+ 1)Φ2m
2 (λ, ϕ)

4βc(a+ 1)Φm
3 (λ, ϕ)

.

On the other hand, if

μ ≤ (3β + 1)a(c+ 1)Φ2m
2 (λ, ϕ)

4βc(a+ 1)Φm
3 (λ, ϕ)

,

then (3.7) yields

∣∣a3 − μa22
∣∣ ≤ βc(c+ 1)

Φm
3 (λ, ϕ)a(a+ 1)

− βc[(3β + 1)a(c+ 1)Φ2m
2 (λ, ϕ)− 4μβc(a+ 1)Φm

3 (λ, ϕ)]

4Φm
3 (λ, ϕ)Φ2m

2 (λ, ϕ)a2(a+ 1)
|c1|2

≤ βc(c+ 1)

Φm
3 (λ, ϕ)a(a+ 1)

.

Finally, we observe that

(3β − 1)a(c+ 1)Φ2m
2 (λ, ϕ)

4βc(a+ 1)Φm
3 (λ, ϕ)

≤ μ ≤ 3a(c+ 1)Φ2m
2 (λ, ϕ)

4c(a+ 1)Φm
3 (λ, ϕ)

≤ (3β + 1)a(c+ 1)Φ2m
2 (λ, ϕ)

4βc(a+ 1)Φm
3 (λ, ϕ)

.

Thus the proof is complete. �

Corollary 3.3. Let a, c ∈ (0,∞), λ ≥ ϕ ≥ 0, m ∈ N0 = N ∪ {0} and

0 < β ≤ 3a(c+ 1)Φ2m
2 (λ, ϕ)

9a(c+ 1)Φ2m
2 (λ, ϕ)− 8c(a+ 1)Φm

3 (λ, ϕ)
.

If f ∈ Q(m,λ, ϕ, β; a, c) and f is given by (1.1), then

|a3| − |a2| ≤ βc(c+ 1)

Φm
3 (λ, ϕ)a(a+ 1)

.
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Proof. Since
(3β − 1)a(c+ 1)Φ2m

2 (λ, ϕ)

4c(a+ 1)βΦm
3 (λ, ϕ)

≤ 2

3

for

β ≤ 3a(c+ 1)Φ2m
2 (λ, ϕ)

9a(c+ 1)Φ2m
2 (λ, ϕ)− 8c(a+ 1)Φm

3 (λ, ϕ)

and

|a3| − |a2| ≤
∣∣∣∣a3 − 2

3
a22

∣∣∣∣+ 2

3
|a2|2 − |a2| ,

from Theorem 3.2 it follows that

|a3| − |a2| ≤ βc(c+ 1)

Φm
3 (λ, ϕ)a(a+ 1)

+
2

3
|a2|2 − |a2| .

Setting |a2| := x ∈ [0, 2βc/a], we can write

|a3| − |a2| ≤ βc(c+ 1)

Φm
3 (λ, ϕ)a(a+ 1)

+
2

3
x2 − x := Ω(x).

Since Ω(x) attains its maximum value at x = 0, the result follows. �
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