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THE FENCHEL-MOREAU THEOREM FOR SET FUNCTIONS
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(Communicated by Paul S. Muhly)

ABSTRACT. The Fenchel-Moreau theorem for set functions is proved, and

some properties of subdifferential and conjugate functional of set functions are

investigated.

1. Introduction. Let (X,T,p) be a finite atomless measure space, and F a

proper real-valued set function defined on T (i.e. F(U) > —oo for all 0 € T and

F ^ oo). Let Dom F = {Q e T; F(Q) is finite}. The conjugate function F* of F is

defined by

(1) F*(/) = sup[(/,xn)-F(n)],        feLi(X,T,p),
ner

(2)        F**(n) = |

and the biconjugate function F** of F is defined by

suP/eLl (x,r,„) [(/, Xfi) - F*(/)]    if fi e Dom F,

+ 00 if n ^ Dom F.

By the definitions of F* and F**, we easily get that

(3) F**(Ü)<F(Ü)    for all fier.

The question arises that under what conditions, the equality in (3) holds. In

[1] the classical Fenchel-Moreau theorem shows that a function g, defined on a

topological vector space U, is convex and lower semicontinuous if and only if g(x) =

g**(x) for all x eU.

It is known that the Fenchel-Moreau theorem plays an important role in the

theory of optimization; many authors investigate this theorem in more general

cases, for example, one can consult Lai [6], Koshi and Komuro [7], Koshi, Lai, and

Komuro [8], and Zowe [12]. All of these papers showed that the Fenchel-Moreau

theorem holds for the functions defined on linear spaces. In this note, the function

is considered on a cr-algebra T of a measure space rather than on a linear space.

There is a good deal of difference between the Fenchel-Moreau theorem for the set

function on a cr-algebra and for the usual function on a linear space. In this note,

some properties of subdifferential and conjugate functions of set functions are also

established.

2. Preliminaries. Throughout this note, we assume that (X, T,p) is a finite

atomless measure space with Li(X,T,p) separable. Under these assumptions, for

any fi e T with p(fi) > 0, there exist a measurable set A C fi with p(A) > 0, and
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a countable sequence {fi„} in T such that {c„xn„} is dense in Li(fi, T,p), where

c„ 6 R, and xn„ is the characteristic function of fi„ e T.

DEFINITION  2.1.   A set function F: T —► R is called convex if for any given

A e [0,1] and fi, A e T, there exist sequences {fi„} and {An} with xn„ -* Axn\A

and xa„ ^ (1 - A)xA\n such that

ÏÏnT F(fin U A„ U (fi n A)) < AF(fi) + (1 - A)F(A),
n—»oo

where —► stands for convergence in the weak*-topology. Since (X, T, p) is a finite

measure space, any set fi 6 T can be identified with a characteristic function xn in

Li(x,T,p). Hence one can regard T as a subset xr = {xn: fi G T} of Li(X,T,p).

For each / G Li (X, T, p), the integral /n / dp is identified with the dual pair (/, xn)-

DEFINITION 2.2 [2]. A subfamily S? of measurable subsets in T is convex if

for any (fi, A, A) G S" x S? x [0,1], associated with sequences {fin} and {An} in

T with xn„ ^ Axn\A and xa„ ^ (1 - A)xA\n, there exist subsequences {fi„t} of

{fin} and {A„fc} of {A„} such that fi„fc U A„t U (fi n A) e 5? for all k.

DEFINITION 2.3. Let S? C T be a convex subfamily of measurable sets. A

set function F: S? —► R is called convex on 3? if for any given A G [0,1] and fi,

A e S?, the following inequality holds:

hm F(fi„ U A„ U (fi n A)) < AF(fi) + (1 - A)F(A)
n—»oo

for any sequences {fin}, {A„} with fi„ U A„ U (fi D A) e S? such that

Xnn ^ Axn\A,        Xa„ ^ (1 - A)xA\n-

We define w*-lower (-upper) semicontinuous and ^'-continuous of a set function

at a point fi in Dom F as follows:

DEFINITION 2.4. Let F: T -* RU {+00} be a set function with Dom F =¿7 C

r.
(i) F is called w*-lower semicontinuous at fi € S" if

-00 < F(fi) <   lim F(fin)
n—»oo

for any sequence fi„ G S? with xn„ —+ Xn-

(ii) F is called w*-upper semicontinuous at fi G S? if

hm F(fi„) < F(fi) < 00
n—»oo

for any sequence fi„ G S? with xn„ -* Xn-

(iii) F is called w* -continuous at fi G S" if

F(fi) =  lim F(fi„)
n—»00

for any sequence {fin} in S? with xn„ —* Xn-

DEFINITION 2.5 [4]. Let J/7 be a convex subfamily of subsets in V and F : S? —>

R a set function; a set \F,S?\ in R x Li(X,T,p), defined by

[F,«Pn = «;*-cl08urefKxn)GRxLoo(X)r,/u)|ne«5i!'and   Em F(fin) < 7
I ' n—»oo

for any sequence fi„ G S? with xn„ ^ Xn } ,

is called the epigraph of F on 5?.
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DEFINITION 2.6 [5]. An element / G Li(X,T,p) is called a subgradient of a

convex set function G at fio G T if it satisfies the inequaltiy

G(fi) > G(fi0) + (/, xn - Xn0)    for all fi G T.

Note that the subgradient of a convex set function at a point fio is not unique;

usually it is a set of the following form:

aG(fio) = {/ G Li(X,T,p): G(fi) > G(fi0) + (/,Xn - Xn0) for all fi G T}.

The set dG(fio) is called the subdifferential of G at fio, and if dG(fio) ^ 0, G is
said to be subdifferential at fio- The subdifferential of a conjugate functional G* at

/o G Li(X, T, p) is defined by a subfamily of measurable subsets in T as follows:

dG*(f0) = {ÜeT:G*(f)> G*(/0) + (f - /0,Xn> for all / G Li(X,T,p)}.

It is remarkable that dG* is some different from [5].

3. Main results.

LEMMA 3.1 [4, (3)]. If, for any given sets fi, A G T, X G [0,1], and

L00(X,T,p)-sequences {xn„} and {xa„},

Xn„ ^ Axn\A,        Xa„ ^ (1 - A)xA\n,

then

(4) Xn„uA„u(nnA) ^ Axn + (1 - A)xa-

A subset A c R x xr is said to be convex if, for (r, xn), (s, Xa) G A and A G [0,1],

there exist sequences Vn(X) — fin U An U (fi n A) in T and tn in R such that (4)

holds and tn —* Xr + (1 — X)s.

LEMMA 3.2 [4, PROPOSITION 1]. Let S? be a convex subset ofT and F : 5^

—► R a convex set function.  Then [F,S^] is convex.

We modify the proof of this lemma given in [4] as follows:

Proof. Let
A = {(r,xn)|fiG^and ÏÏmF(fi„) < r},

where {fi„} is any sequence in S? such that xn„ -> Xn- Then A is convex. In fact,

for (r, xn), (s, Xa) in A and A G [0,1], since F is convex on the convex subfamily

S", there exists a sequence Vn(X) = fin U An U (fi n A) in S" associated with

(fi, A, A) G S" x S? x [0,1] such that

hm F(Vn) < AF(fi) + (1 - A)F(A) < Ar + (1 - X)s.
n—»oo

Thus there is a subsequence {Vn¡} of {Vn} such that

F(Vn,(X)) < Xr + (1 - A)s + 1/t = U,

say. Hence for any sequence {Uk} in ,5^ with Uk ^+ Vn,., and from the w*-upper

semicontinuity of F when F is convex (see Lemma 3.3), we have limA;-»oo F(Uk) <

F(Vn,) <U. So (U,Vni) e A and Xvni -» AXn + (1 - A)xa, ti-» Ar + (1-A)s (as

¿ —> oo). This shows that A is convex. It follows that the u>*-closure convex hull

of A coincides with the w*-closure A = [&*,F\ of A in R x L°°. Hence {&,F\ is

convex.    Q.E.D.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



88 H.-C. LAI AND L.-J. LIN

LEMMA 3.3. Let S^ c T be a convex subfamily in T. Then any convex set

function F: S" —* R is w*-upper semicontinuous on 5?.

PROOF. For any fi G ̂ , let {fi„} be a sequence in 5? such that

w*
Xn„ —» Xn = Xn\0!

where 0 is the empty set. Let each A„ = 0. Then xa„ —* (1 — l)X0\n- It follows

from Lemma 3.1 that

fim F(fi„) =  um F(fin U A„ U (fi n 0))
n—¡-oo n—*oo

<F(fi) + (l-l)F(0) = F(fi).

This shows that F is i¿>*-upper semicontinuous on S'.    Q.E.D.

From Lemma 3.3, the following corollary is immediate.

COROLLARY 3.4. Let S? c r be a convex subfamily of subsets. Then any

w*-lower semicontinuous set function F: S^ —► R is w*-continuous.

THEOREM 3.5. LetF: r —> RU{oo} be a proper convex set function onT, w*-

lower semicontinuous on its convex domain S*'.  Then dF(U) ^ 0 and DomF* ^

0.

PROOF. It follows from Corollary 3.4 that F is «/-continuous on 5?. Thus for

any A G 5?, there is a sequence An in S? with xa„ ^+ Xa such that limn-^x, F(An)

= limtl_00F(An) = F(A) and (F(A),Xa) G \F,5^\ for all A G S?. In view of
Lemma 3.2 and the definition of epigraph, it has been proved that the epigraph

[F,S^\ of F is convex and w*-closed. Since for any r < F(fi), (r, xn) 4- \F^\-<

and from the separation theorem, it follows that there exists a nonzero continuous

linear functional (—a,f) G R x Li(X,T,p) such that

(5) (/,XA>-aC<(/,xn)-m-    for all (G,Xa) G \F,S?\.

In particular, when A = fi and C = F(fi), it is deduced that c*(F(fi) - r) > 0.

Since r < F(fi) is arbitrary, a > 0. Hence

(/,Xa) - ocC < </,xn> - oF(O)    for all (G,Xa) G \F,S?\.

Take C = F (A).  When both sides of the inequality (5) are divided by a > 0, we

then obtain

(6) (//a,XA>-F(A)<(//a,xn)-^(fi)    for all A G &.

As F is a proper set function, inequality (6) holds for all fi G T.  By taking the

supremum over all A G T, we get

F*(f/a)<(f/a,xn)-F(Q).

Since (from (6))

F(A) > F(fi) + (f/a, xa - Xn)    for all A G I\

it follows that f/a G öF(fi) ji 0 and f/a G DomF* ¿ 0.    Q.E.D.
The following theorem is the Fenchel-Moreau theorem for set functions.
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THEOREM 3.6. Let F be a proper convex w*-lower semicontinuous set function

on its convex domain S? .  Then F(fi) = F**(fi) for all fi G T.

PROOF. It follows from Corollary 3.4 that F is «/-continuous on S?. A similar

argument with the proof of Theorem 3.5, we see that (F(fi),xn) G \F,S?\ for all

fiG^.

For any r < F(fi), then the pair (r, xn) ^ \F^\- Since S? is a convex subfamily

of T and F: S? -* R is a convex set function, \F,S?\ is a convex «/-closed subset of

RxLoo(X, T, p). Applying the separation theorem, we can find a nonzero functional

(a, f) e R x Li (X, T, p) which strictly separates the point (r, xn) and the epigraph

[F, S?\. Thus there exists e > 0 such that

sup       ((a, f), (A, xa)) < {(a, f), (r, xn)) - e.
(A,xn)€[F,.^]

It follows that

(7) (/,XA) + Ac*<</,xn)+c*r-e

for A G S?, X > F (A). Note that a < 0; for otherwise letting A —► oo, it would

reduce to a contradiction. Actually, a < 0. For if fi G Dom F, then letting A = fi

and A = F(fi), we reduce from (7) that -a(F(fi) - r) > e > 0. Since r < F(fi),

it follows that a < 0. Next, let A = F(A) and then divide both sides of (7) by —a.

We obtain

</, Xa) - F(A) < (/, xn) - r + e/a,

where / = f / — a. By taking the supremum over A G T, we obtain

F*(f) <(f,xn)-r + e/a<oo,

and so / G DomF*. Thus

r<r-e/a< (f, Xn) - F*(/) < F**(fi).

This shows that for any r < F(fi), we have

(8) r<F**(fi).

As we take r = F(fi) - 6 for any given 6 > 0, we have

r = F(il)-6 <F(fi).

It follows from inequality (8) that

F(Q)-6 <F**(fi)   or   F(fi) <F**(fi) + é.

Since 6 is arbitrary,

(9) F(fi) < F** (fi)    for all fi G ̂ .

Consequently, from (9) and (3), we obtain

F**(fi) = F(fi)    for all fi G DomF = S".

While fi £ DomF = 5", F(fi) = F**(fi) = oo. Hence

F(fi) = F**(fi)    forallfiGT.    Q.E.D.

By the same argument used in [5], the following lemma is immediate.
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LEMMA 3.7.   Let F be a convex set function and F* the conjugate function of

F. Let Jo G Dom F* arad fi0 G DomF.  Then

f0edF(n0)    if and only if   F(fi0) + F*(/0) = </0, Xn0)-

Using Theorem 3.6, we obtain

THEOREM 3.8.   Let F be proper convex w*-lower semicontinuous set function

on its convex domain S? . If foe Dom F* and fi0 G S?, then

/o G dF(fio)    if and only if   fi0 G dF*(f0).

PROOF. It follows from Lemma 3.7 and Theorem 3.6 that

f0edF(n0)    if and only if   F(fi0) + F*(/0) = </o,Xn0),

that is, F**(fi0) + F*(/o) = (/o.xoo) and Q0 G dF*(f0).    Q.E.D.
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