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Abstract

Background : In this study, we comprehensively analyzed genes related to ferroptosis and iron
metabolism to construct diagnostic and prognostic models and explore the relationship with the immune
microenvironment in HCC.

Methods : Integrated analysis, cox regression and the least absolute shrinkage and selection operator
(LASSO) method of 104 ferroptosis- and iron metabolism-related genes and HCC-related RNA sequencing
were performed to identify HCC-related ferroptosis and iron metabolism genes.

Results : four genes (ABCB6, FLVCR1, SLC48A1 and SLC7A11) were identified to construct prognostic and
diagnostic models. Poorer overall survival (OS) was exhibited in the high-risk group than that in the low-
risk group in both the training cohort (P < 0.001, HR = 0.27) and test cohort (P < 0.001, HR = 0.27). The
diagnostic models successfully distinguished HCC from normal samples and proliferative nodule
samples. Compared with low-risk groups, high-risk groups had higher TMB; higher fractions of
macrophages, follicular helper T cells, memory B cells, and neutrophils; and exhibited higher expression
of CD83, B7H3, 0X40 and CD134L. As an inducer of ferroptosis, erastin inhibited HCC cell proliferation
and progression, and it was showed to affect Th17 cell differentiation and IL-17 signaling pathway
through bioinformatics analysis, indicating it a potential agent of cancer immunotherapy.

Conclusions: The prognostic and diagnostic models based on the four genes indicated superior
diagnostic and predictive performance, indicating new possibilities for individualized treatment of HCC
patients.

Background

As the most frequent primary malignant tumor of the liver[1], hepatocellular carcinoma (HCC) is ranked
as the sixth most commonly diagnosed neoplasm and is estimated to be the fourth leading cause of
cancer-related death worldwide[2]. The incidence and mortality of HCC are continuing to increase[3].
Based on multiple staging systems, HCC has made great progress in diagnosis and treatment, but most
HCC staging systems are currently based on tumor burden and stratification of the disease by
prognosis[4]. These systems lack sensitivity and have difficulty explaining the adverse biological
characteristics that affect treatment and survival response, which generally limits the treatment effect for
patients[5]. HCC is a highly complex, multistep process involving genetic mutations, chromosomal
aberrations, molecular signaling pathways, and epigenetic disorders[6]. Therefore, a better understanding
of the molecular changes, molecular mechanisms and characterization involved in tumorigenesis and the
identification of novel biomarkers that can individually predict the diagnosis and prognosis of tumors are
essential for personalized medicine[7].

Iron is a basic nutrient element in the human body, and it is indispensable for biological processes such
as cell metabolism, growth and proliferation[8]. The homeostasis of iron metabolism is stably regulated
through balanced absorption, systemic transport, and cellular uptake and storage[9]. Alterations in iron
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metabolism have a dual effect on tumor cells. Since most tumor cells have an increased demand for iron,
an increase in iron reserves within a certain range can promote the growth and proliferation of tumor
cells[10, 11], and there is a positive correlation between the risk of tumors and iron accumulation[12, 13],
but the excessive increase in iron concentration in the body leads to cell death caused by membrane lipid
peroxidation, termed ferroptosis[14]. Ferroptosis has anticancer functions that are useful in cancer
treatment[15]. Since the first demonstration in 2012, ferroptosis has received widespread attention as a
potential therapeutic pathway for cancer treatment. Various studies have determined the key role of
ferroptosis in killing tumor cells and inhibiting tumor growth[16, 17]. Some previous studies have also
confirmed the important significance of ferroptosis for the treatment and prognosis of liver cancer[18, 19],
but the detailed signal transduction pathways and key regulators of ferroptosis during the occurrence and
progression of HCC are unclear.

As an emerging feature of cancer, TMB was first emphasized in next-generation sequencing analysis[20].
TMB is defined as the total number of somatic coding mutations associated with the emergence of new
antigens that trigger antitumor immunity[21]. It is speculated that highly mutated tumors are more likely
to carry neoantigens, making them targets for activated immune cells[22]. Currently, immune checkpoint
inhibitor-based immunotherapy as an innovative therapy for multiple types of advanced cancer is
emerging, and TMB has been identified as an emerging biomarker that is sensitive to immune checkpoint
inhibitors[23]. TMB can help identify patients with some types of cancer that could benefit from
immunotherapy.

Tumor immune microenvironment (TIME) mainly refers to immune cells and immune related molecules in
the tumor microenvironment. TIME plays a vital role in controlling iron metabolism and homeostasis[24].
Many cell types, such as Th1 cells, natural killer T (NKT) cells, monocytes and macrophages, are involved
in the maintenance of iron homeostasis[25]. In addition, ferroptosis was found to work synergistically
with immunoregulation in TIME. The lethal ferroptosis in tumor cells can expose tumor antigens, thereby
improving the immunogenicity of the microenvironment and enhancing the effectiveness of
immunotherapy[26]. And a study also confirmed that immunotherapy can activate CD8 + T cells in the
TIME to enhance the lipid peroxidation specific to ferroptosis in tumor cells, and the increase in
ferroptosis further promotes the anti-tumor efficacy of immunotherapy|[27].

In this study, we used high-throughput methodology technology to comprehensively analyze the genome
of HCC and thousands of molecular targets, identify iron metabolism and ferroptosis-related genes
closely associated with the prognosis of HCC, construct predictive models for the diagnosis and
prognosis of HCC, and explore the relationship with immune infiltration in HCC. Our findings may help
improve the early diagnosis rate of HCC and further improve the clinical outcomes of patients under
personalized treatment.

Methods

Acquisition of ferroptosis- and iron metabolism-related genes associated with HCC
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Ferroptosis-related genes were obtained in the ferroptosis pathway (map04216) from the KEGG
PATHWAY Database (https://www.genome.jp/kegg/pathway.html). Genes related to iron metabolism
were obtained in the pathway of iron uptake and transport (R-HSA-917937) from the Reactome Pathway
Database (https://reactome.org/) and cellular iron ion homeostasis (G0:0006879) from the AmiGo2
database (http://amigo.geneontology.org/amigo)[28]. We searched and comprehensively analyzed the
source literature of these genes, eliminated unrelated genes and added newly reported related genes, and
then integrated them for subsequent research.

Identifying differentially expressed genes (DEGs) between HCC and adjacent nontumor tissues

The mRNA-sequencing data of patients with HCC with clinical information were downloaded from the
TCGA database (including 370 HCC tissue samples and 50 normal tissue samples for a total of 10,000
encoding mMRNA sequences) and the ICGC database (including 202 normal samples and 243 HCC
samples for a total of 19,677 encoding mRNA sequences). Matching the mRNA-sequencing data with
ferroptosis- and iron metabolism-related genes and using limma, an R package, with an absolute log2-
fold change (FC)> 1 and an adjusted P value <0.05 to perform differential expression analysis, DEGs
related to ferroptosis and iron metabolism were thereby identified. Since the data of the TCGA database
and the ICGC database are open to the public and can be downloaded freely, and this study strictly
followed the publication guidelines and access policies of the databases, ethical review and approval
from an Ethics Committee are not required for the study.

Establishment and validation of a prognostic predictive signature

Using univariate Cox regression analysis to screen out genes related to OS in patients with HCC, genes
with a P value <0.05 were considered statistically significant and incorporated into the subsequent
LASSO Cox regression. In the LASSO-penalized Cox regression analysis, we adjusted the L1 penalty
parameter via 10-fold cross-validation to narrow the number of genes, and genes that appeared with a
repetition frequency greater than 900 times in 1000 substitution samplings were considered to be more
closely related to 0OS. Based on a multivariate Cox regression for these genes, we built a prognostic
signature. The prognostic risk score was determined using a linear combination of the regression
coefficient (B) in a multivariate Cox regression model and the expression levels of the genes. Prognostic
index (PI) = (B * expression level of ABCB6) + (B * expression level of FLVCR1) + (B * expression level of
SLC48A1) + (B * expression level of SLC7A11). X-tile software[29] was used to determine the optimal cut-
off value, which help divide patients with HCC into high-risk group and low-risk group and show the most
significant difference in prognosis between two groups. Kaplan-Meier (K-M) survival curves and time-
dependent receptor operating characteristic (ROC) curves were performed to evaluate the predictive
performance of the prognostic signature on OS.
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Independence of the prognostic signature from traditional clinical characteristics

Univariate and multivariate Cox regression analyses were performed to confirm whether the prognostic
signature was independent of other traditional clinical characteristics (including age, AFP, weight,
vascular tumor cell, sex, pathological grade and TNM stage) in predicting OS of patients with HCC.
Hazard ratios (HRs) and 95% confidence intervals (Cls) for each variable were calculated. P<0.05 was
considered statistically significant.

Construction and evaluation of a predictive nomogram

We integrated the independent predictive factors identified by multivariate Cox regression and
constructed a predictive nomogram and corresponding calibration maps using “rms” R software.
Calibration and discrimination were carried out to validate the calibration maps. The consistency index (C
Index), which was calculated via a bootstrap method with 1000 resamples, was used to evaluate the
prediction accuracy of the nomogram compared to the actual result and to graphically plot the actual
observed rate and the predicted rate of the nomogram to evaluate the calibration curves. The closer the
calibration curve is to the 45° line, which represents the best prediction, the better is the prognostic
prediction performance of the nomogram. ROC curve analysis was performed to validate the sensitivity
and specificity of the nomogram compared to a single independent predictor in predicting OS, and
decision curve analysis (DCA) was performed to evaluate the clinical benefit that the nomogram can
obtain compared to a single independent prognostic predictor. P<0.05 was considered statistically
significant.

Internal and external validation of the expression characteristics of ferroptosis- and iron metabolism-
related genes

Wilcoxon signed rank tests in Prism 7.0 (GraphPad, San Diego, CA, USA) were used to validate the
expression characteristics of ferroptosis- and iron metabolism-related genes between HCC and normal
tissues in the HCC cohort from ICGC and GSE6764. P<0.05 was considered statistically significant.
Regression analysis was performed to explore the correction among the expression profiles of genes.
ROC curve analysis was performed to validate the predictive ability of the genes for OS.

Estimation of immune cell type fractions

Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) analysis was

used to quantitatively convert the transcriptome data of tumor tissue into the absolute abundance of
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immune cells and stromal cells to assess the proportion of 22 human immune cell subpopulations,
including seven T cell types, naive and memory B cells, plasma cells, NK cells, and myeloid subsets [30,
31]. Standard annotation files were adopted to organize gene expression characteristics. The R package
"CIBERSORT" was applied to convert mRNA data into the infiltration fractions of non-tumor cells in the
tumor microenvironment. For each sample, the sum of all estimated immune cell type scores is equal to
1.

Cell Culture

Human HCC cell lines (SK-HEP1 and SMMC-7721) were purchased from American Type Culture
Collection (ATCC) (Manassas, VA, USA). The cell lines were cultured in DMEM (Gibco, NYC, USA)
supplemented with 10% heat-inactivated fetal bovine serum (Gibco, NYC, USA) at 37°C and maintained in
a humidified cell incubator with an atmosphere of 5% CO2.

Cell Counting Kit-8 (CCK-8) assay

SK-HEP1 and SMMC-7721 cells were plated in a 96-well plate with 3000 cells per well and 5 wells as a set
and incubated in a humidified cell incubator with an atmosphere of 5% CO2 at 37°C for 24 hours. Then,
after treating the cells with 0-40 uM erastin for 72 hours, CCK-8 reagent was added, and incubation was
continued for another 2 hours. The OD was measured at 450 nm using a microplate reader.

Nude mouse xenograft assay

Male BALB/c-nude mice aged 4-6 weeks were purchased from Shanghai Slac Laboratory Animal Co. LTD
(Shanghai, China) for the construction of HCC xenograft mouse models. After resuspending in PBS,
SMMC-7721 cells (6 x 10 * 6/mouse) were injected subcutaneously into the ventral side of nude mice.
Nude mice were randomly divided into two groups (5 mice/group) and kept in a sterile environment with
12 hours of light/12 hours of darkness per day. One week after implantation, when the subcutaneous
tumor was visible to the naked eye (approximately 2 mm), mice were treated with 40 mg/kg erastin
(intraperitoneal injection, three times a week) or vehicle control (saline). The tumor volume (TV) was
calculated according to the following formula: TV (mm3) =L x W*2x 0.5

Quantitative real-time polymerase chain reaction (QRT-PCR)

Total RNA was extracted from SK-HEP1 cells and SMMC-7721 cells treated with erastin using TRIzol
reagent (Invitrogen, Carlsbad, USA) and reverse transcribed using a cDNA reverse transcription kit
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(TransGen, Guangzhou, China) in accordance with the manufacturer’s instructions, and the obtained
cDNA was amplified using a SYBR Green PCR kit (TransGen, Guangzhou, China). gqRT-PCR was performed
to detect expression levels in samples. The primers used for qRT-PCR were purchased from TsingKe
(Beijing China). Each experiment was repeated three times. The 2-AACT methodology was adopted to
calculate the expression of genes.

Statistical analysis

Student’s two-sided t-tests in Prism 7.0 (GraphPad, San Diego, CA, USA) were used to compare the
differences between two groups. The results are presented as the mean + standard deviation (SD) of at
least five independent experiments. P<0.05 was considered statistically significant.

Results

Identification of DEGs related to ferroptosis and iron metabolism in HCC

A total of 104 ferroptosis- and iron metabolism-related genes were identified to match the mRNA-
sequencing data in the TCGA and ICGC databases. Using limma with an absolute log2-fold change (FC)>
1 and an adjusted P value <0.05 to perform differential expression analysis, we identified 24 DEGs (17
upregulated and 7 downregulated) in TCGA (Figure 1A and 1C) and 16 DEGs (13 upregulated and 3
downregulated) in ICGC (Figure 1B and 1D) that were related to ferroptosis and iron metabolism in HCC.

Comprehensive analysis of the ferroptosis- and iron metabolism-related genes closely associated with
prognosis in HCC

We performed univariate Cox regression to explore the relationship between the expression of the 24
DEGs obtained from TCGA and prognosis using 371 HCC samples with OS rates and survival status in
TCGA. Sixteen DEGs were statistically significant (P < 0.05) and considered to be associated with the
prognosis of HCC. Then, LASSO Cox regression was applied to these genes. LASSO is a penalized
regression method that adjusts the regression coefficient with L1 penalty to reduce the final weight of
most potential indicators to zero, thereby decreasing the number of indicators with a final weight of
nonzero[32]. Based on the LASSO regression with 10-fold cross-validation, we screened 7 genes with a
repetition frequency greater than 900 times in 1000 substitution samplings (Figure 1E-F). Matching the 7
genes with 16 DEGs in ICGC, we finally determined that 4 genes (ABCB6, FLVCR1, SLC48A1 and
SLC7A11) were significantly associated with prognosis in HCC.
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Building the prognostic signature based on the four ferroptosis- and iron metabolism-related genes and
validating its predictive performance

Based on a multivariate Cox regression of the four genes (ABCB6, FLVCR1, SLC48A1 and SLC7A11), we
built a prognostic signature. Prognostic index (PI) = (0.135 * expression level of ABCB6) + (0.167 *
expression level of FLVCR1) + (0.051 * expression level of SLC48A1) + (0.083 * expression level of
SLC7A11). The optimal cut-off value was determined to be 1.4 using X-tile software and performed to
divide 370 patients with HCC in the HCC cohort from TCGA into the high-risk and low-risk groups (Figure
S1). 0S was significantly worse in the high-risk groups than that in the low-risk groups (P<0.001,
HR=3.70, 95% Cl:2.22-6.25) (Figure 2 A). Figure 2C shows the distribution of risk scores corresponding to
gene expression levels. The area under the curve (AUC) in the time-dependent ROC at 0.5, 1, 3 and 5 years
reached 0.73,0.77, 0.71 and 0.64 (Figure 2D), indicating great specificity and sensitivity of the prognostic
signature in predicting 0S. We then used the 243 HCC samples in the ICGC to validate the predictive
performance of the prognostic signature. Pl was calculated according to the formula mentioned earlier,
and the optimal cutoff value determined by X-tile software for dividing 243 HCC samples into the high-
risk group and low-risk group was 21.3. Consistent with the above results, patients with HCC in the high-
risk group had a significantly lower OS than those in the low-risk group (P<0.001, HR=2.70, 95% Cl: 1.49-
5.00) (Figure 2B). The risk score distribution and gene expression are shown in Figure 2E. The AUCs for
0.5-, 1-, 3-and 5-year OS were 0.72,0.67,0.73 and 0.62, respectively (Figure 2F).

Construction and validation of the predictive nomogram in the HCC cohort from TCGA

To determine whether the predictive ability of the prognostic signature in predicting OS was independent
of other traditional clinical characteristics (including age, AFP, weight, vascular tumor cell, sex,
pathological grade and TNM stage), we performed univariate and multivariate Cox regression analyses
on these variables using 370 HCC samples with clinical information in TCGA (Table S1). The results
determined that TNM stage (HR=2.038) and risk score of the prognostic signature (HR=1.258) were
independent predictive factors for predicting OS (Figure 3A). The proportional hazards of the two
independent predictive factors was exhibited in Figure S2. Based on the two independent predictive
factors, we constructed a predictive nomogram to quantify the prediction results of individual survival
probability at 1, 3 and 5 years (Figure 3B). The C index for the nomogram was 0.66, with 1000 cycles of
bootstrapping (95% Cl: 0.55-0.72), and the calibration curves of the nomogram showed great consistency
between the predicted OS rates and actual observations at 1, 3 and 5 years (Figure 3C-E).

We then performed ROC curve analysis to validate the predictive value of the nomogram. The AUCs for 1-,
3- and 5-year OS with the nomogram were 0.644, 0.694 and 0.667, respectively, superior to a single
independent predictive factor (Figure 3F-H). To further determine the value of the nomogram in clinical
decision making, we performed DCA. DCA is a new reliable evaluation tool that quantifies the clinical
value of a nomogram by analyzing the clinical results obtained from the decision based on the
nomogram and has important value in determining the diagnosis and adjusting the prognosis
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strategy[33]. We found that compared to a single independent predictive factor, the nomogram could
obtain the optimal net benefit at 1, 3 and 5 years (Figure 3 I-J).

The diagnostic models were established and validated for high specificity and sensitivity

A diagnostic model integrating the four genes was established to distinguish HCC from normal subjects
using a stepwise logistic regression method. Diagnostic scores were identified as follows: logit (P = HCC)
=-15.2439 + (-0.0327 x ABCB6 expression level) + (8.0880 x FLVCR1 expression level) + (3.1229 x
SLC48A1 expression level) + (0.1703 x SLC7A11 expression level). Applying the diagnostic model, there
was 92.00% sensitivity and 98.00% specificity in the HCC cohort from TCGA (containing 50 normal
samples and paired 50 HCC samples) (Figure 4A) and 88.07% sensitivity and 92.08% specificity in the
HCC cohort from ICGC (containing 202 normal samples and 243 HCC samples) (Figure 4B). ROCs in the
HCC cohort from TCGA (AUC=0.980) (Figure 4C) and ICGC (AUC=0.956) (Figure 4D) were also determined
to have great value in accurately distinguishing HCC from normal samples. Unsupervised hierarchical
clustering of the four genes indicated a superior ability to differentiate HCC from normal samples (Figure
4E and 4F).

Since nodules less than 2 cm in the liver were difficult to distinguish from HCC through radiological or
pathological examinations[34], we also constructed a diagnostic model based on the four genes in the
training cohort (GSE6764) (containing 35 HCC samples and 17 dysplastic nodule samples) for
differentiating nodules from HCC samples and validated it in the test cohort (GSE98620) (containing 49
HCC samples and 24 dysplastic nodule samples). Diagnostic scores were identified as follows: logit (P =
HCC) =-13.9106 + (1.3676 x ABCB6 expression level) + (-0.1018 x FLVCR1 expression level) + (-0.2817 x
SLC48A1 expression level) + (1.1909 x SLC7A11 expression level). The AUCs for the diagnostic model
reached 0.973 in the training cohort, with 97.14% sensitivity and 94.12% specificity (Figure 5A and 5C),
and 0.786 in the test cohort, with 79.59% sensitivity and 54.17% specificity (Figure 5B and 5D). Figures 5E
and 5F show unsupervised hierarchical clustering of the four genes.

Comparison of the immune microenvironment of patients with HCC between the high-risk and low-risk
groups

Since drugs targeting immune checkpoints have been shown to achieve antitumor effects by reversing
the immunosuppressive effects of tumors, the expression of immune checkpoints has attracted
widespread attention as a biomarker for identifying patients with HCC to receive immunotherapy[35]. The
TMB can be used to predict the efficacy of immune checkpoint blockade and has been proven to be a
biomarker for identifying patients who can benefit from immunotherapy in several cancer types[36]. In
this study, we analyzed the association between risk scores and TMB. Figures 6A and 6B indicate the
differences in TMB in somatic cells in patients with HCC between the high- and low-risk groups. Patients
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in the high-risk group had a higher TMB than patients in the low-risk group (Figure 6C). A higher OS rate
was obtained in patients with low risk and low TMB group than that in patients with high risk and high
TMB group (P<0.0001) (Figure 6D).

The differences in immune infiltration of 22 immune cell types obtained from 289 patients with HCC from
the TCGA database are shown in Figure 7A, which may represent an intrinsic feature that can
characterize individual differences. Patients with HCC in the high-risk group had higher ratios of MO
macrophages, follicular helper T cells, memory B cells, and neutrophils than those in the low-risk group (P
<0.05) (Figures 7C-F). Figure 7B shows the relationship between the risk score and the expression of
immune checkpoints. We found that the expression levels of CD83, B7H3, 0X40 and OX40L in the high-
risk group were significantly higher than those in the low-risk group (P <0.05) (Figure 7G-J), suggesting
that the poor prognosis of high-risk patients was partly due to the immunosuppressive microenvironment.
The results above indicated that abnormal immune infiltration and expression differences of immune
checkpoints in HCC can be used as prognostic indicators and targets for immunotherapy, with important
clinical significance.

Internal and external validation of the expression patterns and prognostic predictive performance of the
four ferroptosis- and iron metabolism-related genes

The expression levels of ABCB6, FLVCR1, SLC48A1, and SLC7A11 were significantly higher in the HCC
cohort from ICGC than in normal samples (P<0.001) (Figure 8A-D), which was consistent with the
predictive analysis of diagnosis and prognosis, demonstrating that the four genes were suitable for
constructing diagnostic and prognostic models. For further validation, we detected the expression
characteristics of the four genes in the GSE6764 cohort. The four genes presented markedly higher
expression in HCC than in dysplastic nodule samples, consistent with the findings above (Figure 8E-H). In
addition, the expression profiles of the four genes in multiple cell lines are shown in Figure 8I-L.

Since the four genes exhibited high expression in the tumor tissues, we explored the correlation among
the genes. The expression of ABCB6 had synergy with the expression of FLVCR1, as well as the
expression of ABCB6 and SLC7A11, ABCB6 and SLC48A1, and SLC48A1 and SLC7A11, which also had
the same positive correlation (Figure 9A-D). The correlation between the expression of the four genes by
HCC cells and the immune infiltrate is shown in Figure 9E-H. K-M curve analysis was performed to
validate the predictive value of the four genes in 0OS. Genes with high expression had lower OS rates than
those with low expression (Figure 91-L). ROCs validated the predictive performance with high sensitivity
and specificity (Figure 9M-P).

Inhibition of erastin on the proliferation and progression of HCC and its possible molecular mechanism
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As an inducer of ferroptosis, erastin was used to evaluate its influence on the development and
progression of HCC[37].The chemical formula of erastin was showed in Figure 10A. Performing the CCK-8
assay, we found that erastin inhibited cell proliferation in a dose-dependent manner (Figure 10B-C). To
evaluate the effect of erastin in vivo, we constructed subcutaneous HCC xenograft models in male
BALB/c nude mice by subcutaneous injection of SMMC-7721 cells. Then we treated tumor-bearing mice
with erastin and vehicle, respectively. To access the potential toxicity of elastin to organs, we also
performed the same elastin treatment on the non-tumor bearing male BALB/c nude mice. Figures 10D-F
indicates that erastin significantly inhibited the rate of tumor volume and weight gain in mice.
Importantly, we tested important organs (heart, liver, lung and kidneys) in tumor-bearing and non-tumor-
bearing mice treated with elastin and confirmed that elastin treatment is nontoxic (Figure 10G).
Compared with vehicle treated tumor-bearing mice, erastin-treated tumor-bearing mice did not undergo
significant changes in body weight (Figure 10H). Lower expression levels of Ki67 and N-cadherin were
exhibited in tumor tissues under erastin treatment (Figure 10I).

As it was determined that erastin inhibited the proliferation and progression of HCC, we explored the
possible molecular mechanism by which erastin achieves antitumor effects. In the Cancer Therapeutics
Response Portal (CTRP) database (http://portals.broadinstitute.org/ctrp/), 52 genes were shown to be
regulated by erastin, and their association is exhibited in Figure 11A. By performing Gene Ontology (GO)
(Figure 11B) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses
(Figure 11C) on these genes, we found that erastin could cause changes in signaling cascades, including
Th17 cell differentiation and the IL-17 signaling pathway (P<0.05). This result indicated that the IL-17
signaling pathway is a potential target affected by erastin in this study.

Discussion

As a major leading cause of cancer-related mortality worldwide, HCC presents a major health burden for
society[38]. Among the current multiple treatments, liver transplantation and tumor ablation are still the
only options that may lead to a cure[39]. However, most patients are diagnosed at an advanced stage,
and these treatments cannot be selected. The 5-year recurrence rate is very high even in patients who
have received liver resection or liver transplantation[40, 41], and the 5-year survival rate is still low[42].
Since HCC is a molecular heterogeneous malignant tumor, its molecular characteristics are related to
corresponding biological behaviors, including cell regeneration, microvascular invasion, and distant
metastasis[43], and play an important role in the prognosis of HCC. Therefore, it is necessary to identify
key molecular markers that affect the prognosis of HCC, thereby optimizing the early diagnosis of HCC
and strengthening treatment to improve the clinical outcome of HCC.

The development of high-throughput array technology provides an opportunity to explore novel genes
involved in the occurrence and progression of HCC[44]. Ferroptosis is a regulated autophagic cell death
process in which iron-dependent oxidation plays a key role[45]. Disturbances in iron metabolism cause
excessive intracellular iron storage and may induce ferroptosis[46]. Ferroptosis is regulated by several
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genes([47]. Previous studies have confirmed that ferroptosis is an effective mechanism for inducing HCC
cell death, but its specific molecular changes and mechanism of action are not fully understood[48, 49].

In this study, we aimed to analyze HCC-related RNA sequences obtained through high-throughput array
technology using Cox proportional hazards regression and LASSO methods to determine ferroptosis- and
iron metabolism-related genes that were associated with the prognosis of HCC. We found that the
prognosis model constructed by four genes (ABCB6, FLVCR1, SLC48A1 and SLC7A11) independently
predicted the prognosis of patients with HCC with superior prediction performance. ABCB6 belongs to the
B subfamily of ABC transporters, which is a porphyrin energy-dependent transporter[50]. Gene expression
analysis and animal experiments show that loss of Abcb6 can cause up-regulation of heme and iron
pathways crucial for normal development[51]. ABCB6 expression plays an important role in the
coordination of iron homeostasis[52]. And previous studies have reported a correlation between hepatitis
C virus-associated hepatocellular carcinoma and increased ABCB6 mRNA levels. ABCB6 mMRNA and DNA
methylation levels help predict early intrahepatic recurrence[53]. Feline leukemia virus subgroup C
receptor 1, encoded by FLVCR1, plays an important role in iron metabolism, participating in the outflow of
iron metabolism, preventing oxidative damage caused by excessive iron[54]. Clinical analysis found that
FLVCR1 was significantly negatively correlated with maternal iron levels and placental iron concentration,
suggesting that FLVCR1 is essential for iron homeostasis and iron metabolism[55]. Studies also found
that FLVCR1 expression is correlated with the prognosis of HCC[56]. SLC48A1 is an endosomal heme
transporter that participates in the process of heme iron transport in iron metabolism[57]. Lipid peroxide
is triggered by lipid peroxidation, and this process is strictly regulated by SLC7A11 (a key component of
the cystine-glutamate antiporter); when lipid peroxide is excessively accumulated, ferroptosis can be
induced[58, 59]. It was reported that the expression of SLC7A11 is related to the prognosis of HCC[60]. In
the study, the corresponding nomogram also helps clinicians make better clinical decisions and develop
treatment strategies by the four-gene model. The diagnostic models based on the four genes were useful
for the early diagnosis of HCC with high specificity and sensitivity.

Immunotherapy is a tumor treatment method that uses the body’s own immune system to produce an
antitumor response[61]. In order to avoid the antitumor immune response during the development of
many types of tumors, immunosuppressive mechanisms will be initiated, and with increased
immunosuppressive cells and immunosuppressive molecules, low-immunogenic cancer cells will be
selected and an immunosuppressive network (immune escape) will be established[62]. By blocking
immunosuppressive mechanisms and the function of immunosuppressive cells, potential antitumor
immune responses can be triggered[63]. In recent years, manipulation of immune checkpoints or
pathways has become an important and effective form of immunotherapy[61], and high TMB has been
identified to correlate with good outcomes of immune checkpoint inhibitor treatments[64]. In this study,
we found that patients with HCC with high risk scores identified by the ferroptosis and iron metabolism
signatures had higher TMB levels and higher proportions of MO macrophages, follicular helper T cells,
memory B cells and neutrophils, confirming that ferroptosis and iron metabolism have a regulatory effect
on the TIME, and also may indicate that the poor prognosis in the high-risk group may be due to a
stronger immunosuppressive effect. When detecting immune checkpoints, higher expression of CD83,
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B7H3, 0X40 and OX40L was exhibited in the high-risk group. These differences promote the growth and
progression of HCC, leading to a poor prognosis for HCC. In addition, the findings above suggest that
patients in the high-risk group may benefit more from immune checkpoint inhibitor therapy than patients
in the low-risk group. This provides new insight for tumor immunotherapy.

Erastin has been determined to be an inducer of ferroptosis in previous studies and has been identified as
an inhibitor of cystine/glutamate antiporter (xCT) and glutathione synthesis[65, 66]. In this study, we
found that erastin has an antitumor effect by inhibiting the proliferation and progression of HCC cells.
Erastin treatment has been shown to inhibit tumor growth in mouse tumor models, which provides new
ideas for the treatment of HCC. In addition, erastin could change TH17 cell differentiation and the IL-17
signaling pathway by bioinformatics analysis. IL-17 is a universal cytokine in the tumor
microenvironment. In existing tumors, IL-17 achieves an antitumor effect by activating immune cells and
inducing indirect immunity[66, 67]. The regulatory potential of the IL-17 immune axis makes IL-17 a
compelling target in cancer immunotherapy. These results suggest that the ferroptosis inducer erastin
may be regarded as a potential agent of cancer immunotherapy.

Conclusion

In summary, we identified four ferroptosis- and iron metabolism-related genes with great predictive value
in the OS of HCC, and the prognostic and diagnostic models based on the four genes indicated superior
diagnostic and predictive performance. As an inducer of ferroptosis, erastin showed an antitumor effect
by inhibiting the proliferation and progression of HCC. Through bioinformatics analysis, erastin was
shown to affect TH17 cell differentiation and the IL-17 signaling pathway, indicating that it is a potential
targeted drug for immunotherapy.
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Figure 1

Heatmap, volcano plot and LASSO Cox regression identified the DEGs closely associated with prognosis
in HCC. A and C Gene expression levels in the TCGA database. B and D Gene expression levels in the
ICGC database. E and F LASSO Cox regression was performed to identify the DEGs closely related to the
prognosis of HCC.
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Figure 2

K-M survival analysis, risk score distribution and time-dependent ROC curves of a prognostic model in the
HCC cohort from TCGA (A, C-D) and ICGC (B, E-F). A and B K-M survival curves indicated that the OS in
the high-risk group was markedly poorer than that in the low-risk group (P<0.001). C and E Distribution of
risk scores under different gene expression characteristics in HCC. D and F Time-dependent ROC curve
analysis for measuring the predictive performance on 0S.
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Construction and validation of a predictive nomogram. A Univariate and multivariate Cox regression
confirmed that the prognostic signature and TNM stage were independent prognostic predictors. B The
nomogram for predicting the OS of patients with HCC at 1, 3, and 5 years. C-E Calibration curves of the
nomogram for OS prediction at 1, 3, and 5 years. F-H ROC curves to evaluate the predictive ability of the
nomogram. I-K DCA curves determined that the nomogram can provide optimal clinical decision-making
benefits.
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A diagnostic model for distinguishing HCC from normal samples in the HCC cohort from TCGA (A, C and
E) and ICGC (B, D and F). A and B Confusion matrix for the binary classification results of the diagnostic
model. C and D ROC curves for evaluating the predictive performance of the diagnostic model. E and F
Unsupervised hierarchical clustering of the four ferroptosis- and iron metabolism-related genes for the
diagnostic model.
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A diagnostic model for distinguishing HCC from dysplastic nodules in the training dataset (GSE6764) (A,
C and E) and validation dataset (GSE98620) (B, D and F). A and B Confusion matrix for the binary
classification results of the diagnostic model. C and D ROC curves for evaluating the predictive
performance of the diagnostic model. E and F Unsupervised hierarchical clustering of the four ferroptosis-

and iron metabolism-related genes for the diagnostic model.
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Figure 6

Correlations between risk scores and TMB and the predictive performance of TMB on OS. A-B The
differences in TMB in somatic cells in patients with HCC between the high- and low-risk groups. C The
high-risk group showed a higher TMB than the low-risk group. D OS rates in patients with low risk and low
TMB were higher than those in patients with high risk and high TMB.
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The landscape of immune infiltration and expression of immune checkpoints in patients with HCC with
different risk scores. A The correlations between risk score and immune infiltration of 22 immune cell
types in patients with HCC. B The relationship between the risk score and the expression of immune
checkpoints. C-F Violin plots visualizing fractions of different immune cells in the high-risk and low-risk
groups. G-J Violin plots visualizing the expression of immune checkpoints in the high-risk and low-risk

groups.
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Figure 8

Validation of the expression patterns of the four ferroptosis- and iron metabolism-related genes. A-D
Expression levels of the four genes in HCC and normal samples in the HCC cohort from ICGC. E-H
Expression levels of the four genes in HCC and dysplastic nodule samples in the GSE6764 cohort. I-L The
expression characteristics of the four genes in multiple types of HCC cell lines.
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Figure 9

Regression analysis of expression levels among the four genes, correlations between genes and the

density of the immune infiltrate, and predictive performance of genes on OS. A-D There was a synergistic
effect among the expression levels of genes. E-H The impact of the expression of ABCB6 (E), FLVCR1 (F),
SLC48A1 (G) and SLC7A11 (H) on infiltration by different immune cells. I-L K-M survival curves show the
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0S in the high-expression group and low-expression group. M-P Time-dependent ROC curve analysis for
evaluating the predictive accuracy of the four genes for 0.5-, 1-, 3- and 5-year OS.
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Figure 10

Inhibition by erastin of the proliferation and progression of HCC in vivo and in vitro. A The chemical
formula of erastin. B-C The CCK-8 assay showed that erastin inhibited the proliferation of SK-HEP1 cells
(A) and SMMC-7721 cells (B) in a dose-dependent manner. D-F The original tumors (D), tumor volume (E)
and tumor weight (F) under erastin treatment. G Histological changes of heart, liver, lung and kidneys in
tumor-bearing and non-bearing mice under elastin treatment. H Weight change of mice under erastin
treatment over time. | Pathological characteristics of tumor tissues and expression of Ki67 and N-
cadherin in tumor tissues under erastin treatment.
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Figure 11

Possible molecular mechanism by which erastin inhibits the proliferation and progression of HCC. A The
interaction of proteins regulated by erastin. B-C GO analysis (B) and KEGG pathway analysis (C) of the
potential targets of erastin.
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