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Abstract

To design a control strategy for iLeg, an exoskeleton robot developed for lower limb rehabilitation aiming at

investigating the feasibility of integrating functional electrical stimulation (FES) with robot-based rehabilitation

training, an FES-assisted training strategy combined with impedance control, has been proposed in this paper.

Through impedance control, an active compliance of the robot is established, and the patient’s voluntary effort to

accomplish the training task is inspired. During the training process, the patient’s related muscles are applied with FES

which provides an extra assistance to the patient. The intensity of the FES is properly chosen in order to induce a

desired active torque which is proportional to the voluntary effort extracted from the electromyography signals of the

related muscles using back propagation neural networks. This kind of enhancement serves as a positive feedback

which reminds the patient of the correct attempt to fulfill the desired motion. FES control is conducted by a

combination of neural network-based feedforward controller and a PD feedback controller. Simulation conducted

using Matlab and the experiment with a spinal cord injury subject and a healthy subject have shown satisfactory

results which verify the feasibility of this control strategy.
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Introduction

Background and literature review
Spinal cord injury (SCI) and stroke are the two main types

of central nervous system injury which usually results in

motor disorder such as paralysis and hemiparesis, cogni-

tive dysfunction, as well as psychological problems. SCI is

mainly caused by various kinds of accidents, while stroke

is caused by an interruption of blood flow to the brain or

an obstruction within a blood vessel in supplying blood

to the brain [1,2]. Rehabilitation is one of the prime treat-

ments for SCI and stroke patients, aiming to provoke the

motor plasticity and to actuate these patients to relearn

the use of their limbs. According to the rehabilitation the-

ory, the resulting sensory feedback of the patient is asso-

ciated with the cortical changes that can bring recovery of

functional movement during the rehabilitation process so
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that the functional deficits and the risk of consequential

injuries can be minimized [3-6].

Traditional rehabilitation is labor-intensive and requires

several therapists to manually help the patient to per-

form training, especially for lower limb rehabilitation.

Therefore, it imposes an enormous economic burden to

any country’s health care system [5]. Meanwhile, there

are a number of factors which have been found to con-

tribute to faster motor recovery, all of which have not

been taken full advantage of due to the lack of rehabilita-

tion services [7]. Modern robotics technology has offered

us a more convenient and efficient opportunity to carry

out rehabilitation training, known as rehabilitation robot.

Rehabilitation robot is amechatronics systemwhich could

be used to replace the physical training effort of the ther-

apists, allowing more intensive and repetitive motions [5].

Since research has identified the treatment intensity as

a critical element for successful therapeutic outcomes,

the robotic-assisted rehabilitation is likely to increase the

training effect [8,9]. What is more, various kinds of sen-

sors installed on the robot feed back the signals of interest,
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such as the force signal, electromyography (EMG) signal,

and heart rate. Thereby, the states of the patient dur-

ing training can be monitored. By measuring the force or

EMG signal, it is possible for the robot to perceive the

voluntary effort of the patient and to adjust the training

pattern accordingly in order to actuate the participation of

the patient [10,11].

Several training strategies for rehabilitation robot have

been presented in recent years. These control strategies

can be categorized into two types. The first one is the

position-based passive training which is widely used for

its simplicity. However, robot based on this training strat-

egy only moves the patient along predefined, fixed tra-

jectories, and the guidance provided by the robot is so

strong that it suppresses the voluntary motor control of

the patient [12]. Therefore, this strategy is less likely to

motivate the patient. The second one is the impedance-

based active training. The rehabilitation robot designed

for this type executes a task by amplifying human force

or supplying the human operator with an assisting force

[13,14]. Under this type of control strategy, an active

compliance environment between the patient and the

robot is established, while the assistant level can be

adjusted by the impedance parameters. When the move-

ment of the patient deviates from the predefined trajec-

tory, a restoring force is generated using an appropriately

designed impedance and then applied to the patient [6].

Unlike position-based training, impedance-based training

is position error-tolerated, because research has empha-

sized that the kinematic errors generated during move-

ment are a fundamental neural signal that drives motor

adaptation [15].

On of the most commonly used technology for rehabili-

tation is the functional electrical stimulation (FES), which

uses short electrical pulses to generate FES-induced con-

traction of the paralyzed muscles, and the level of the

contraction can be controlled by modulating the intensity

of FES [16], and the therapeutic effect of FES in reha-

bilitation is known to be increased when associated with

a person’s voluntary effort [17]. For this reason, some

researchers has integrated FES into robotic-based reha-

bilitation to improve the training efficiency [3,18,19], in

which an extra actuator besides the motor of the robot

is available (considering the muscle under FES as a ‘soft

motor’). Therefore, the robot-generated assistance can be

partially compensated by the FES-induced contraction of

the muscle resulting in an increase of the muscle activity.

If the level of FES assistance is regulated by the voluntary

effort of the patient, a higher degree of functional recovery

can be expected [3,20].

iLeg is a horizontal exoskeleton robot designed for

lower limb rehabilitation. To develop a control strategy

for iLeg, an FES-assisted training strategy combined with

impedance control is introduced in this paper, aiming to

achieve two goals. The first one is to create a compliance

environment to inspire the voluntary effort of the patient,

and the second one is to provide assistance through FES

rather than purely through robot. Active compliance is

guaranteed by impedance control in order to establish a

soft interaction between the patient and the robot. The

velocity of the movement depends on the measured vol-

untary effort. Basically, if no voluntary effort is measured,

the rehabilitation robot only provides minimal assistance

which is just sufficient to counterbalance the weight of

the limb. The FES assistance, which is proportional to the

patient’s voluntary effort, is applied to the patient. This

kind of enhancement serves as a positive feedback which

reminds the patient of the correct attempt to fulfill the

desired motion. To ensure that the active torque induced

by FES follows the desired torque calculated from the vol-

untary effort, a combination of an inverse model-based

feedforward and a PD feedback controller is implemented

to compose the FES controller.

The rest of the paper is organized as follows. In the

‘Methods’ section, the rehabilitation robot is described in

detail; the dynamic model of the leg-robot hybrid sys-

tem is introduced and analyzed, while the model of the

FES-stimulated muscle is also given. Then the control

strategy of both impedance control and FES control are

proposed, and the methods used for estimating muscle

torques by system identification process and the method

used for extracting voluntary effort by EMG signals are

also described. The simulation conducted using Matlab

and experimental results are depicted in the ‘Results’

section. Finally, conclusions are drawn in the last section.

Research design andmethods

Methods

Model description

iLeg lower limb rehabilitation robot

iLeg is a horizontal exoskeleton lower limb rehabilita-

tion robot designed by our institute. Considering that

the movement of the human lower limbs in the sagittal

plane is the basic movement form, and many other lower

limbs rehabilitation robots such as Locomat and Motion-

Maker follow this principle, iLeg is also designed with

three degrees of freedom (DOF) that can realize themove-

ment of the hip joint, the knee joint, and the ankle joint in

the sagittal plane for each side. The prototype of the iLeg

is showed in Figure 1.

As it can be seen in Figure 2, the electrical control sys-

tem of iLeg consists of the following main modules: a host

PC, a motion control subsystem, an analog signal acquisi-

tion subsystem, a safe-security subsystem, an EMG acqui-

sition subsystem, and a functional electrical stimulator.

The motion control subsystem contains motion control

card, motor drivers, and DC motors for each joint of both
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Figure 1 The prototype of iLeg lower limb rehabilitation robot.

sides. The hip joint is driven by chain after a reduction

ratio of 1:120. The knee joint is driven through harmonic

reducer (1:188) and a timing belt transmission. The ankle

joint is driven directly through timing belt transmission.

Besides, both of the thigh length and the shank length

are adjustable through DCmotors to ensure perfect align-

ment of each joint. The acquisition of the torques and

the interaction force between the human leg and iLeg are

carried out through analog signal acquisition subsystem.

This subsystem contains torque sensors equipped at each

joint and force sensor installed at the pedal. The safe-

security subsystem is responsible for monitoring whether

each joint are working within their safety ranges. If a

joint is exceeding the safety range, the corresponding

limit switch will be triggered, and the brake of this joint

will be turned on to prevent secondary damage to the

patient. To extract the voluntary intention of the patient,

an eight-channel self-made EMG acquisition subsystem is

integrated. Since EMG signal contains most of its power

in the frequency range of 5 to 500 Hz, the sampling

Figure 2 The electrical control system of iLeg.
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rate of each channel is set to be 2 kHz. To enhance the

muscle contraction during rehabilitation training, a func-

tional electrical stimulator is also employed in iLeg. The

self-made functional electrical stimulator has eight chan-

nels and is able to apply dual-phase current pulse to the

patient’s muscle. Each channel of the stimulator can be

controlled independently with pulse frequency of 0 to

100 Hz, pulse width of 0 to 1,000 µs and pulse ampli-

tude of 0 to 100 mA. All these subsystems are connected

to the host PC whose main tasks are system management

and algorithm processing via PCI bus and universal serial

bus (USB).

Kinematic and dynamic of human leg and iLeg

The simplified model of human leg and iLeg is shown

in Figure 3. Since the ankle joint is fix at 90° during the

training process and the joints of human leg and iLeg

are well aligned, the leg-robot system can be considered

as two parallel two-link plants. The patient’s foot is fas-

tened to the pedal, and the physical interaction occurs at

the endpoint. Gluteus maximus and quadriceps femoris

are the two muscle groups stimulated by FES to gener-

ate active torques on the hip joint and the knee joint. In

Figure 3, qi is the angle of joint i; mr
i , m

h
i , and li repre-

sent the mass of the robot, the mass of the leg, and the

length of link i, respectively. Fr2h and Fh2r denote the inter-

action forces between the robot and the human leg. The

forward kinematics of the system can be calculated by the

following:

X =
{

x

y

}

=
{

l1 cos q1 + l2 cos(q1 + q2)

l1 sin q1 + l2 sin(q1 + q2)

}

(1)
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Figure 3 Simplified model of iLeg and the lower limb.

Accordingly, the speed of the end-point Ẋ in the Cartesian

coordinate is determined by the differential kinematics

equation:

Ẋ = Jq̇ (2)

where q̇ is the angular velocity in the joint space, and J is

the Jacobian matrix represented as follows:

J =
[

−l1 sin q1 − l2 sin(q1 + q2) −l2 sin(q1 + q2)

l1 cos q1 + l2 cos(q1 + q2) l2 cos(q1 + q2)

]

(3)

Inverse kinematics of the simplified model can be derived

from the forward kinematics equation and expressed as

follows:

q =
{

q1
q2

}

=

⎧

⎪

⎨

⎪

⎩

tan−1 y
x + cos−1

(

y2+x2+l21−l22

2l1
√

y2+x2

)

− cos−1
(

y2+x2−l21−l22
2l1l2

)

⎫

⎪

⎬

⎪

⎭

(4)

In generalized form, the dynamic model of the robot

system is expressed by the following:

Mr(q)q̈+Cr(q, q̇)q̇+Gr(q)+τrv(q̇)+τrf(q̇) = τr−τh2r

(5)

where τrv(q̇) = kvisq̇ and τrf(q̇) = kfrisgn(q̇) represent

the viscosity and friction of the robot; τh2r represents the

external torque exert by human; M(q), C(q, q̇), and G(q)

are the inertia, Coriolis/centripetal, and gravity matrixes

given as

Mr
1,1 =

(

1

3
mr

1 + mr
2

)

l21 + 1

3
mr

2l
2
2 + mr

2l1l2 cos q2,
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2,1 = 1

3
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2
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r
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2
2 ,

Cr
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2
mr

2l1l2q̇2 sin q2, C
r
2,1 = 1

2
mr

2l1l2q̇1 sin q2,

Cr
1,2 = −1

2
mr

2l1l2(q̇1 + q̇2) sin q2, C
r
2,2 = 0,

Gr
1,1 =

(

1

2
mr

1 + mr
2

)

gl1 cos q1 + 1

2
mr

2gl2 cos(q1 + q2),

Gr
2,1 = 1

2
mr

2gl2 cos(q1 + q2)

(6)

where mr
i , li represent the mass and the length of link

i. Similar to the robot dynamic, the dynamic model of

human leg can be described as

Mh(q)q̈+Ch(q, q̇)q̇+Gh(q)+τhv(q̇)+τhe(q) = τr2h+τm

(7)

where Mh(q), Ch(q, q̇), and Gh(q) are the inertia matrix,

the Coriolis/centripetal matrix, and the gravity vector of

human leg, respectively. Their expressions are similar to
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those in the robot dynamic, but the only difference is

that the masses of each robot link in (6) is replaced by

the masses of human’ thigh and shank. τhv(q̇) and τhe(q)

describe the passive viscous and passive elastic characters

of the lower limb, which are described in detail in [21].

Unlike robot dynamics, the human leg can be considered

as driven by redundant actuators (muscle contraction and

robot assistance). The muscle contraction contributes to

τm in Equation 7, while τr2h represents the assistance from

the robot, which can be measured by the force sensor

attached on the end effector using the following equation:

τr2h = JTFr2h (8)

where Fr2h is the force imposed to the leg due to inter-

action between human and robot, and J is the Jacobian

matrix. By adding Equations 7 and 5, we can obtain the

dynamic model of the leg-robot hybrid system which is

represented as

M(q)q̈ + C(q, q̇)q̇ + G(q) + τpas(q, q̇) = τr + τm (9)

where τpas = τhv(q̇) + τhe(q) + τrv(q̇) + τrf(q̇), andMh(q),

Ch(q, q̇) and Gh(q) are the inertia matrix, the Corio-

lis/centripetal matrix, and the gravity vector of the hybrid

system, respectively. According to Equation 9, there are

two types of inputs which contribute to the input torque

of the system: the one from DC motor and the one from

the muscle contraction.

FES-stimulated skeletal muscle

During the training stage, two human muscles (gluteus

maximus and quadriceps femoris) will be stimulated to

produce partial torques around the hip joint and the knee

joint. Therefore, a biological model is needed to depict the

muscle response to FES, i.e., how the FES delivered to the

relative muscle is converted into an active moment at the

joint. Figure 4 shows a biological model of FES-stimulated

muscle developed by Doctor Riener which is used in this

study [22,23]. The active torque produced by the FES-

induced muscle contraction is described as two parts,

namely, activation dynamics and contraction dynamics,

while the passive torque of the muscle is described as pas-

sive elastic and passive viscous properties [22]. Note that

the original model has two inputs for activation dynamics

which are stimulation pulse width and frequency; how-

ever, for the sake of simplicity, we fix the stimulation

frequency for each muscle constantly at 50 Hz while reg-

ulating the intensity of FES by controlling the pulse width

of the stimulation using FES controller.

The active torque of FES-induced muscle contraction

is the product of contraction dynamics and activation

dynamics given as

τfes = aact ffv fflFmaxma (10)

In the contraction dynamics, four parts are involved, i.e.,

moment arm, ma, maximum isometric force Fmax, force-

length relation ffl, and force-velocity relation ffv. The

product of these four parts denotes the maximum torque

of the stimulated muscle at certain joint angle and angular

velocity. The force-length relation is calculated using

ffl = exp

{

−
[

(l̄ − 1)/ε
]2

}

(11)

where l̄ is the muscle length normalized with respect to

the optimal muscle length opt, and ε is a shape factor. The

force-velocity relation is determined by

ffv = 0.54 arctan(5.69v̄ + 0.51) + 0.745 (12)

Figure 4 Activation dynamic and contraction dynamic of the muscle.
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where v̄ is the muscle velocity normalized with respect

to the maximum contraction velocity vm of the muscle.

The muscle length and velocity can be calculated using

joint angle, angular velocity, and moment arm of the mus-

cle described in detail in [22]. The activation dynamics

determines how the motion unit is recruited by FES in

the final form of aact. Basically, the activation dynamics

is composed of four segments. They are the recruitment

characteristic, the Calcium dynamic, the fatigue process,

and a delay of about 25ms. The recruitment characteristic

shows the relationship between the FES pulse width and

the percentage of the motor unit activated by FES, and it

is given as

ar = af {c1 {(d − dthr) arctan [kthr (d − dthr)]

− (d − dsat) arctan [ksat (d − dsat)]} + c2}
(13)

where d is the pulse width of FES, dthr and dsat denote

pulse width values corresponding to threshold and sat-

uration. The shape of the recruitment curve is describe

using c1, c2, kthr, and ksat. af is introduced to represent the

frequency characteristic which is a function of the stimu-

lation frequency in [22]. Since the stimulation frequency

is fixed at 50 Hz, here af is a constant. Calcium dynam-

ics presents the mechanism that calcium ion released

from sarcoplasmic reticulum and is expressed using the

following two-order linear relation:

T2
Caä + 2TCaȧ + a = ar (14)

where TCa is the time constant, and a denotes non-fatigue

muscle activation. Fitness function is introduced to depict

the effect of muscle fatigue and recovery phenomenon

using the following first-order relation:

dfit

dt
= 0.55a (fitmin − fit)

Tfat
+ (1 − fit)(1 − 0.55a)

Trec
(15)

where fit is the fitness of the muscle, while fitmin is the

minimum fitness. Time constants for fatigue and recov-

ery are given as Tfat and Trec. Final activation aact is the

product of fitness fit and non-fatigue activation a with a

constant time delayTdel. After themaximum torque of the

stimulatedmuscle at certain joint angle and angular veloc-

ity are being scaled by the activation aact, the active torque

of the stimulated muscle can be obtained.

Control strategy

The control strategy contains two main parts, namely, the

impedance control and FES control. The goal of the first

one is to achieve certain desired active compliance on the

robot, while the goal of the second one is to generate

desired FES-induced torques around the joint by regu-

lating the FES intensity. The architecture of the control

strategy is shown in Figure 5.

Impedance control

The aim of an impedance controller is to establish a mass-

damper-spring relationship between the position and the

force so that an active compliance between the robot and

the leg can be achieved [24-26]. The desired impedance

relationship can be expressed as follows:

Md (ẍ − ẍd) + Bd (ẋ − ẋd) + Kd (x − xd) = Fext (16)

where Md, Bd, Kd are positive definite matrices repre-

senting the desired inertia, damping, and stiffness of the

system, respectively, and ẍd, ẋd, xd are the references for

the acceleration, the velocity, and the position of the end-

effector in the Cartesian space, while ẍ, ẋ and x stand for

the actual acceleration, velocity and position, respectively.

Fext is the external force imposed on the end effector.

In the case of our rehabilitation robot, Fext means Fm
in Figure 5, which is the force produced by muscle con-

traction, either by voluntary-controlled contraction or by

FES-induced contraction. Usually, the desired impedance

is chosen to be a second-order linear equation, as in mass-

spring-damper system; however, in majority of the kinds

of rehabilitation exercises, the speed of the robot is rel-

atively low, so the acceleration effect can be neglected

[27,28], resulting Equation 16 to be degenerated to the

following equation:

Bd (ẋ − ẋd) + Kd(x − xd) = Fm (17)

If the manipulator follows a speed reference given by

ẋref = ẋd + B−1
d [Fm − Kd (x − xd)] (18)

the rehabilitation robot will behave as described by

Equation 17. The speed tracking task is achieved by a PI

speed controller in the joint space given as

τPI = KP (q̇ref − q̇) + KI

∫

(q̇ref − q̇) dt (19)

where, KP and KI are the proportional and integral gains

of the speed controller. q̇ref is the reference of the angular

velocity given by q̇ref = J−1ẋref, where J represents the

Jacobian matrix.

The impedance control strategy is conducted in a leg

press exercise, in which a predefined trajectory of the end-

point (the ankle joint of the patient) is predefined. The

patient is encouraged to complete a leg press motion and

is also expected to maintain his ankle on the predefined

trajectory during his effort. q̇d is set to be zero in this

control, so basically the rehabilitation robot behaves as a

gravity canceler. If there is no muscular force measured,

the robot does not assist the patient to move towards the

target point. xd in Equation 18 is the desired position for

the endpoint on the predefined trajectory at a specific

time point, and xd is moving towards the target point at
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Figure 5 Control architecture of FES-assisted training strategy.

a constant speed, meaning a ‘virtual moving wall’ which

is pushing the patient towards the target [12]. A waiting

window for delayed assistance is also employed, embodied

by adding a modification factor to the stiffness compo-

nent of the impedance control described in Equation 17.

The factor mod is given by a sigmoid function expressed

as follows:

mod = 1

1 + e−a·dis+b
(20)

where dis represents the distance between the actual and

desired position at a specific time point; a, b define the

shape of the sigmoid function. The task is error-tolerated,

but if the endpoint deviates too far from the desired posi-

tion, the patient will feel harder to maintain the incorrect

effort, so he has to make a proper adjustment in order to

accomplish the task. From the perspective of the patient,

this impedance control provides a virtual channel with the

predefined trajectory in its center, in which the motion is

partially constrained in the desired direction.

FES control

Since the patient has insufficient voluntary contraction of

his muscle, FES is implemented to enhance the contrac-

tion, aiming to assist the patient to accomplish the leg

press task. To be more specific, the desired FES-induced

force is proportional to the decomposed voluntary force

whose direction is alongside with the direction of the pre-

defined trajectory. Because this part of the voluntary force

is considered as the ‘correct’ effort for the task, the decom-

posed voluntary force which is vertical to the predefined

path is considered as the ‘incorrect’ effort and will not

be enhanced. The voluntary force Fvol can be transferred

from the voluntary contraction torque τvol, which is esti-

mated by the EMG signals of the related muscle groups.

The calculation of the desired FES-induced torque τdfesis

given as

τdfes = JT
[

cos θ sin θ

− sin θ cos θ

]

J−Tτvol (21)

where J is the Jacobian matrix, and θ represents the angle

of Fvol to the predefined trajectory.

As shown in Figure 5, the FES torque control is achieved

with the combination of a feedforward controller and a

feedback controller. An inverse model of the stimulated

muscle and a PD controller are employed and serve as

the feedforward controller and the feedback controller,

respectively. The advantage of using the combination of

these two controllers compared with only using one of

them is significant. The delay and highly nonlinear charac-

ters of muscle response to FES are easy to cause oscillation

when the FES is regulated merely by the feedback con-

troller. On the other hand, the feedforward controller

is incapable of dealing with disturbance and eliminating

error [23,29].

A three-layer neural network is introduced to capture

the nonlinear relation of the inverse model. For each stim-

ulated muscle (gluteus maximus and quadriceps femoris),

a three-layer back propagation (BP) neural network is

constructed whose structure is shown in Figure 6. Since

the inverse model of muscle requires joint angle, joint

angular velocity, and desired torque to be the input, the
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Figure 6 Neural network structure of the inverse model for the stimulatedmuscle.

first layer of neural network consists of three input neu-

rons. The neuron in the output layer calculates the pulse

width of the FES with the linear function. The weight

matrixes between the input layer, the hidden layer, and

the output layer are adjusted using back propagation

algorithm.

The PD controller which serves as the feedback con-

troller is defined as follows:

d = KPe + KDė, e = τdfes − τfes (22)

where d is the pulse width of the FES, and KP, KD are pro-

portional and derivative gains of the feedback controller,

respectively. e represents the error between desired torque

calculated in (12) and the actual torque induced by FES.

FES-induced torque estimation

In the case of applying FES to a moving limb, it is hard

to measure the actual active torque τfes induced by FES

directly. So an estimation of τfes should be made. The total

input torque of the leg-robot hybrid system which is the

right side of Equation 9 can be rewritten as

τtotal = τr + τm = τr + τfes + τvol (23)

That is to say, the torque caused by muscle contraction

τm is considered as a combination of two parts: the one

from voluntary-controlled contraction τvol and the one

from FES-induced contraction τfes. Therefore, to acquire

the value of τfes, the other three items have to be obtained.

τr can be measured via torque sensors, and τvol can be

predicted by the EMG signal. As for τtotal, an system iden-

tification process is adopted so that the estimation of τfes
can be calculated from

ˆτfes = ˆτtotal − τr − τvol (24)

Hybrid-activated torque

The first step to obtain the FES-induced torque is to

calculate the muscle torque τm which is produced by

muscle contraction either it is FES-induced or voluntary-

controlled, so τm is considered as hybrid-activated torque.

A system identification process is introduced to make

an estimation of this hybrid-activated torque. We rewrite

Equation 9 as

D (q, q̇, q̈) χ = τr + τm (25)

where D(q, q̇, q̈) is the 2 × 8 regression matrix associated

with the 8×1 dynamic parameters χ . For the identification

process, no force is applied on the robot [30], thus, τm = 0

and

D (q, q̇, q̈) χ = τr (26)

D(q, q̇, q̈) is given as

D11 = q̈1,D12 = g cos(q1) ,D13 = q̈2,

D14 = l1(2q̈1 + q̈2) cos (q2) − l1
(

q̇22 + 2q̇1q̇2
)

sin (q2)

+ g cos(q1 + q2) ,

D15 = sgn(q̇1) ,D16 = 0,D17 = q̇1,D18 = 0,

D21 = 0,D22 = 0,D23 = q̈1 + q̈2,

D24 = l1q̈1 cos(q2) + l1q̇
2
1 sin(q2) + g cos(q1 + q2) ,

D25 = 0,D26 = sgn(q̇2) ,D27 = 0,D28 = q̇2

(27)

and χ is defined as

χ1 = I1 + I2 + l21m2,χ2 = l1(m2 + m1/2),χ3 = I2,

χ4 = m2l2/2,χ5 = ksf1,χ6 = ksf2,χ7 = kdf1,χ8 = kdf2

(28)

where Ii is the inertia moment of the ith link; ksfi and kdfi
are the Coulomb and viscous friction of the ith joint.
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Figure 7 Optimized exciting trajectory for the identification of the dynamic parameters. (a) Trajectory of the endpoint in the Cartesian space.

(b, c, d) The joint angle, the joint velocity, and the joint acceleration of each joint during the identification process.

For identification, the motion states (q, q̇, q̈ of each

joint) and the torques measured by sensors should be

obtained during the robot running on an exciting trajec-

tory. Samplings are carried out at the time of t1, t2 . . . tn
so that an overdetermined equation is constructed

as

Wχ = Ŵ (29)

whereW is the observation matrix defined as

W =

⎡

⎢

⎢

⎢

⎣

D (q (t1) , q̇ (t1) , q̈ (t1))

D (q (t2) , q̇ (t2) , q̈ (t2))
...

D (q (tn) , q̇ (tn) , q̈ (tn))

⎤

⎥

⎥

⎥

⎦

and

Ŵ =
[

τr (t1)
T τr (t2)

T . . . τr (tn)
T
]T

Thus, the dynamic parameters χ can be estimated using

least square estimation method given by

χ =
(

WTW
)−1

WTŴ (30)

To improve the accuracy of the estimation, the excit-

ing trajectory should be optimized for the sufficient

excitation of the hybrid system. In this study, finite Fourier

series (FFS) is introduced to parameterized the exciting

trajectory [31]. For each joint, the position at time t is a

sum of sine waves expressed as

qi(t) =
N

∑

l=1

(

ali

ωfl
sin (ωflt) − bli

ωfl
cos (ωflt)

)

+ qi0

(31)

where ωf defines the period of the exciting trajectory; N

is the number of FFS; qi0 is the initial position of the

Table 1 Identification results

Parameter Value Unit Parameter Value Unit

χ1 I1 + I2 + l
2
1m2 57.3328 kg m2 χ5 ksf1 −1.1060 Nm

χ2 l1 (m2 + m1/2) 2.6204 kg m χ6 ksf2 0.1335 Nm

χ3 I2 6.3912 kg m2 χ7 kdf1 −4.0587 Nm s/rad

χ4 m2l2/2 5.2661 kg m χ8 kdf2 2.5287 Nm s/rad
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Figure 8Measured torques and estimated torques of each joint during the validation process. Top, hip torque. Bottom, knee torque.

ith joint. The optimization of the exciting trajectory is

carried out by choosing the proper ali, bli for each joint

so that the condition number of the observation matrix

can be minimized. The condition number of the observa-

tion matrix represents the upper bound for input/output

error. It directly affects the convergence rate and noise

immunity of the identification experiment [32]. This opti-

mization problem can be solved using genetic algorithm

(GA). During the GA optimization, variables ali, bli are the

decision variables which meet the constrain that the tra-

jectory defined by them should not exceed the workspace

of the robot, and the condition number of the observation

matrix is chosen as the fitness function. The optimized

exciting trajectory is shown in Figure 7.

The samples used for the identification are obtained

by performing the exciting trajectory with the patient

involved in the pre-training stage. The subject of this

study is an SCI patient who has been injured in T11 for

16 months. The exciting trajectory is performed for five

times. According to the method described above, the esti-

mation of the dynamic parameters of the leg-robot hybrid

system is achieved, which are given in Table 1.

An unoptimized FFS trajectory is utilized to validate

the identification results. The comparison between the

Table 2 The RMS error of the estimation torque (Nm)

Hip Knee

Exiting trajectory 0.4057 0.3168

Validation trajectory 0.8716 0.5483

measured torques and the estimated torques is shown in

Figure 8. Root mean square (RMS) error of the estimation

torques for both exiting trajectory and validation trajec-

tory is given in Table 2. Both Figure 8 and Table 2 have

shown satisfactory results which prove that the proposed

method is capable of estimating the muscle torques of the

patient.

Voluntary torque

The second step to obtain the FES-induced torque is

to calculate the voluntary-controlled muscle torque τvol.

EMG signal is a weak electrical potential generated by

the muscle cells when these cells are activated [33], so it

has the potential to reflect the level of voluntary inten-

tion and can be used to estimate the joint angle or torque

[34-36]. In this study, EMG signal is also introduced

to achieve joint torque estimation. As depicted in the

‘FES-stimulated skeletal muscle’ subsection, the active

torque is the product of the contraction dynamics and the

activation of the muscle. If the activation is induced by

FES, the activation can be calculated using Equations 13,

14, and 15; if the activation is voluntary-controlled, the

EMG signal can be utilized as the index of the level of

activation. The nonlinear relationship of the contraction

dynamics of the muscle is approximated by BP neural net-

works. For the hip joint and the knee joint, there are six

muscle groups involved. They are gluteus maximus (GM),

iliopsoas (LP), biceps femoris short head (BFs), rectus

femoris (RF), rectus lateralis (RL), and vastus medialis

(VM).
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Figure 9 Neural network structures of the hip joint and the knee joint for voluntary torque estimation.

We construct two independent neural networks for the

torque estimation of the hip joint and the knee joint. The

structures of these two networks are shown in Figure 9.

Each BP neural network has three layers, and the weight

matrixes between the input layer, the hidden layer, and

the output layer are adjusted using back propagation

algorithm. Note that these EMG signals which served as

the inputs of the neural networks are root mean square

(RMS) EMG signals defined as

RMS(t) =

√

√

√

√

1

N

t
∑

i=t−N+1

y2(i) (32)

where RMS(t) is the RMS EMG signal at time t; y(i) is the

ith sample of the raw EMG signal;N is the length of sliding

window which contains samples of 200 ms before time t.

The torques of the hip joint and the knee joint as

well as the EMG signals are acquired during the robot

performing the predefined trajectory, and at the same

time, the subject makes random efforts. Ten groups of

samples are collected, and leave-one-out cross validation

process is carried out: nine groups of the samples are

used for training and the rest for validation, then the

data set for training and validation are changed; this pro-

cedure is executed ten times, which means that every

group will be served as validation group for one time.

The overall estimation error is the average error of each

times.

Figure 10 shows the EMG signals and torques of the hip

joint and the knee joint acquired during the subject mak-

ing random efforts. The curves of the measured torques

and the estimated torques on the hip joint and the knee

joint are shown in Figure 11. The average RMS error
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Figure 10 EMG signals and joint torques acquired during the subject making random efforts. Left, hip torque. Right, knee torque.
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Figure 11 The curves of the measured and estimated torques on the hip knee joints. Top, hip torque. Bottom, knee torque.

is 0.8862 Nm for the hip joint and 1.3424 Nm for the

knee joint. These errors are in an acceptable range, so the

voluntary-controlled torque τvol can be estimated using

EMG signals and the proposed BP neural networks.

Results

Simulation results

The above control strategy is verified using Simulink tool-

box of Matlab. The link lengths and the masses are set

to be l1 = 0.5 m, l2 = 0.45 m, mh
1 = 10 kg, mh

2 =
4.5 kg, mr

1 = 13 kg, and mr
2 = 12 kg. The parameters

to construct the simulation models of gluteus maximus

and quadriceps femoris are chosen according to [22,37].

For the leg press exercise, the patient is requested to

accomplish the motion following a predefined trajectory

substantially, and the predefined trajectory is a linear path

with the start point set as (0.5, 0.1), and target point

set as (0.8, 0) in the Cartesian space coordinates. The

patient is encouraged to accomplish the task within about

10 s.

The PI parameters for the speed controller described

in Equation 19 are set as KP = diag(500, 500) and KI =
diag(100, 100). The stiffness and damping parameters in

Equation 18 are set as Kd = diag(60, 60) and Bd =
diag(30, 30). ẋd is set as zero, and xd is defined as

xd(t) = [0.5 + 0.03t cos θ 0.1 − 0.03t sin θ ]T (33)

where t represents time, and θ is the angle of the desired

path to the horizontal.

To simulate the voluntary effort of the patient, ran-

dom voluntary torques around the hip joint and the knee

joint are implemented in the simulation, which is shown

in Figure 12. In real situation, voluntary torque has to

be estimated by means of the EMG signals, however, for

simplicity reason, this step has been skipped. Note that

the voluntary effort of the patient starts at t = 1 s, and

withdrawals at t = 6 s.

Figure 13a shows the actual trajectory of the endpoint

during the leg press exercise. The color of each point on

the trajectory represents the speed of the endpoint at the

very position. Hotter color indicates a relatively higher

speed, and cooler color indicates a relatively lower speed.

Virtual channel is also visualized in Figure 13a, with the

predefined path at the center of the channel. Figure 13b

is the zoom-in view of the trajectory for the first 2 s. The

muscular force which is the resultant force of voluntary

force and FES-induced force is presented as a black arrow,

pointing to the direction of the force, with the length

denoting the strength. As the endpoint deviates from the

predefined path, the component of force perpendicular to

the path increases. This means the patient has to apply

more force to counterbalance the ‘virtual force’ which

drags the endpoint back to the predefined path accord-

ing to the impedance mechanism, therefore reminding

the patient of the correct direction of the excise. From

the patient’s perspective, it is much easier to press his

leg towards the target point than towards the incorrect

direction. As voluntary effort withdraws at t = 6 s, the

endpoint stops at (0.74, 0.02). Since the position error is

modified by the mod factor in Equation 20 whose param-

eters are set as a = −200, b = 6, the robot does not
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Figure 12 Voluntary torques generated by patient.

assist immediately. However, once the distance between

the desired position and the actual position increases to

a certain degree, the robot assists the patient to com-

plete the task. The angular speeds of the hip joint and the

knee joint are shown in Figure 14. When muscular force

is applied on the robot, the robot begins to move (after

t = 1 s); when it is withdrawn, the speed of the robot drops

to zero (after t = 6 s). Followed by a waiting of about 4

s, expecting the patient to make attempt again, however,

in this simulation, if the patient does not take acting, the

robot begins to assist and finally ‘drag’ the leg to reach

the target point. The above results prove the first goal

which is to create a compliance environment to inspire the

voluntary effort of the patient is achieved.

The FES control is conducted first by determining the

desired torque induced by FES. The idea is to amplify

the voluntary effort towards the target point. Using

Equation 21, the force component of the voluntary effort

parallel to the predefined trajectory is calculated, ampli-

fied, and then translated to the desired active torque for

FES control in joint space. The blue arrows in Figure 13b

represent the desired active force expected being induced

by FES. All of them point to the same direction, the

direction of the target point. This indicates that the

FES assistance is not only proportional to the voluntary

effort but also provided in the correct direction. The blue

dash line in Figure 13a shows the trajectory of the end-

point when the same voluntary effort is made, but this

time, no FES assistance is applied. The comparison of

these two trajectories verifies the contribution of FES-

induced torque which assists the patient during the leg

press task by enhance the ‘correct part’ of the voluntary

effort.

The FES control contains two parts: feedforward con-

trol and feedback control. For the training of the neural

network-based inverse muscle models, samples are col-

lected at pre-training stage, in which the muscles are

applied with FES of random intensity while the robot is

running in the predefined trajectory. The pulse width d

of the FES uniformly distributed on the interval [0 500]

µs. Off-line training process is conducted with 5,014 sam-

pling, and both neural networks for gluteus maximus and

quadriceps femoris converge after 250 iterations with the

mean square errors below 5.47 µs for gluteus maximus
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Figure 13 Trajectory of the endpoint in Cartesian space. (a) Entire trajectory of the endpoint with the color indicating the speed and

(b) zoom-in view of the trajectory for the first 2 s.
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Figure 14 Speed tracking performance of the robot. (a) Curve of the angular velocity of the hip joint. (b) Curve of the angular velocity of the

knee joint.

and 3.98 µs for the quadriceps femoris. The effective-

ness of the inverse model is shown in Figure 15. Random

desired active torque (0 to 3 Nm for quadriceps femoris

and −3 to 0 Nm for gluteus maximus) is input into the

inverse model when the robot is running on the prede-

fined trajectory for validation, and the outputs are used to

set the intensity of the FES which is applied on the mus-

cles. The approximation of the profiles for desired torque

and active torque in both Figure 15a,b shows that the

inverse model is capable of outputting the proper pulse

width for FES to generate the desired torque. As described

in the former FES control section, τ̂fes is implemented

as the estimation of actual active torque, and the error

between τdfes and τ̂fes serves as the input of feedback con-

troller described in Equation 22 with the PD parameter

set as KP = diag(3, 000; 3, 000),KD = diag(400, 400).
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Figure 15 Results of the inverse muscle model for generating desired active torque. Validation results of the inverse models for the gluteus

maximus (a) and quadriceps femoris (b).
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Figure 16 FES-induced torque tracking performance. Tracking performance of the gluteus maximus (a) and quadriceps femoris (b).

Figure 16 shows the desired torque τdfes and the esti-

mated active torque τ̂fes produced by the muscle contrac-

tion response to FES. The green line is the pulse width

calculated by the FES controller, and FES whose inten-

sity depends on this pulse width is applied on the muscle

to generate the desired active torque. The profiles of the

red line and the blue line indicate that the error between

the desired torque and the actual active torque is in an

acceptable range which proves that the FES controller is

capable of inducing desired active torque so that a precise

assistance through FES can be delivered to the patient.

Experiment results

The proposed control strategy is also verified by the exper-

iment conducted on iLeg lower limb rehabilitation robot.

Themethod described in ‘FES-induced torque estimation’

subsection is utilized to obtain voluntary torque τvol and

FES-induced torque τfes. An SCI subject (male, age 65)

and a healthy subject (male, age 28) are invited to partici-

pate in the experiment. The SCI patient has been injured

in T11 for 16 months, and he remains with partial mus-

cle force. The speed control of the robot is carried out

by the PID controller of the motor drivers. The stiffness
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Figure 17 Results of the inverse muscle model for generating desired active torque (SCI subject). Validation results of the inverse models for

the gluteus maximus (a) and quadriceps femoris (b).
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Figure 18 Curves of the voluntary torques and angular velocities of each joint (SCI subject). (a) Hip. (b) Knee.

and damping parameters in Equation 18 are set as Kd =
diag(2, 500; 2, 500) and Bd = diag(2, 000; 2, 000). ẋd is set

as zero. Considering that the SCI subject’s motion ranges

of his lower limb are limited, we decrease the length of

the predefined trajectory, and set the start point to be

(0.5, 0.1) and the target point to be (0.7, 0).

At the pre-training stage, the tolerance of the subject

applied with FES is tested. For each stimulated muscle,

the pulse width of FES is firstly fixed at 700 μs, and the

amplitude of FES is increased from 15 mA until obvious

muscle contraction being observed. Then the amplitude of

the FES is fixed during training, and the intensity of FES is

regulated by adjusting the pulse width through FES con-

troller. To construct the BP neural networks which serve

as the FES feedfoward controller, the muscles are applied

with FES of random intensity while the robot running in

the predefined trajectory. The pulse width d of the FES

uniformly distributed on the interval [150 500] µs.
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Figure 19 Trajectory of the endpoint in Cartesian space (SCI subject). (a) Entire trajectory of the endpoint with the color indicating the speed.

(b) Voluntary forces of the subject and the FES-assisted forces using black arrows and red arrows, respectively.
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Figure 20 FES-induced torque tracking performance (SCI subject). Tracking performance of the gluteus maximus (a) and quadriceps femoris (b).

The effectiveness of the inverse model is shown in

Figure 17. Random desired active torques (0 to 1.5 Nm for

quadriceps femoris and −3.5 to 0 Nm for gluteus max-

imus) are input into the inverse model when the robot is

running on the predefined trajectory, and the outputs are

used to set the intensities of the FES applied on the mus-

cles. Compared to the simulation results, the muscle delay

is relatively serious and the results are not so satisfactory

which reflects that the FES-induced muscle contraction

is unstable. However, the error is acceptable and can be

eliminated by the PD feedback controller.

Figure 18 shows the curves of voluntary torques esti-

mated by EMG signals and the angular velocities of each

joint. As the voluntary torques vary, the angular veloci-

ties of each joint change accordingly, which follows the

principle of impedance control. The trajectory of the end-

point is shown in Figure 19. There are four obvious efforts

represented by four red sections in Figure 19a and four

peaks in the curve of angular velocity in Figure 18. As the

same as in Figure 13b, the FES-assisted forces and volun-

tary forces are drawn as several arrows in Figure 19b from

which the same conclusion can be drawn: the FES assis-

tance is not only proportional to the voluntary effort but

is also provided in the correct direction. The tracking per-

formances of the FES controller which is the combination

of a feedforward controller and a PD feedback controller
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Figure 21 Curves of the voluntary torques and angular velocities of each joint (healthy subject). (a) Hip. (b) Knee.
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Figure 22 Trajectory of the endpoint in Cartesian space (healthy subject). (a) Entire trajectory of the endpoint with the color indicating the

speed. (b) Voluntary forces of the subject using red arrows.

are represented in Figure 20. Even though the tracking

is not as precise as in the simulation, these results indi-

cate the FES controller is capable of generating desired

FES-induced torque to apply assistance to the patient.

One healthy subject is also involved in this experi-

ment. However, during the training process, no FES assist

is applied on the healthy subject, only the effect of the

impedance control is validated. Figures 21 and 22 are the

curves of the voluntary torques and the angular velocities

of each joint, the trajectory of the endpoint, respectively.

Besides the similar conclusion that we can obtain from

Figures 18 and 19, we can also notice that the voluntary

0.45 0.5 0.55 0.6 0.65 0.7 0.75
−0.1

−0.05

0

0.05

0.1

0.15

0.2

X (m)

Y
 (

m
)

(a)

0.45 0.5 0.55 0.6 0.65 0.7 0.75
−0.1

−0.05

0

0.05

0.1

0.15

0.2

X (m)

Y
 (

m
)

(b)

Figure 23 Comparison of the trajectories of the endpoint. The end-point trajectories of the healthy subject (a) and the SCI subject (b) in several

leg press trials.
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Figure 24 The time consumption for 20 leg press trials.

efforts are smoother compared with the effort made by the

SCI subject, resulting a smooth trajectory of the endpoint.

The end-point trajectories of several trials for both the

SCI subject and the healthy subject are drawn in Figure 23.

The end-point trajectories of the healthy subject are much

smoother than the end-point trajectories of the SCI sub-

ject, reflecting that the SCI subject’s controlling ability of

his lower limb is insufficient.

Figure 24 represents the time consumption for 20 leg

press trials. As we can see from Figure 24, due to lack

of muscle strength, the average time consumption of the

SCI subject is more than that of the healthy subject. We

also notice that as the trial number increases, the time

consumption decreases. This phenomenon indicates that

through repetitive training, both subjects gradually adjust

the patten of making effort so that the performance of the

leg press exercise is improved.

Conclusions
In this paper, an FES-assisted training strategy combined

with impedance control for the lower limb rehabilitation

robot is presented and the controller used to accomplish

this task is developed, aiming to achieve two goals. The

first one is to create a compliance environment to inspire

the voluntary effort of the patient, and the second one

is to provide assistance through FES rather than purely

through robot. Impedance control is ideal for establishing

active compliance of the robot, and through the mech-

anism of impedance control, the patient has to make

effort to accomplish the task rather than passively wait-

ing the assistance from the robot so that it increases the

participation of the patient’s voluntary effort. Two muscle

groups are stimulated with FES to provide extra assistance

to the patient during the training process. The inten-

sity of the FES is properly chosen so as to induce the

desired active torque which is proportional to the volun-

tary effort of the patient. The control of active torque of

FES-stimulated muscle is achieved using the combination

of a neural network-based feedforward controller and a

PD feedback controller which have been proven to be

competent for this task. The dynamic parameters of the

leg-robot hybrid system are estimated using system identi-

fication method; the voluntary torques are also estimated

according to the EMG signals acquired from the related

muscle groups. These two methods are utilized to obtain

the actual FES-induced torque so that the FES control

can be accomplished. Both simulation conducted in Mat-

lab and experiments conducted in iLeg reveal satisfactory

results, from which the feasibility and effectiveness of the

proposed control strategy are verified. In the future, more

SCI and stroke subjects will be recruited to carry out a 3

to 6-month training session. During this follow up study,

we will evaluate whether the proposed control strategy is

capable of improving the rehabilitation effects.
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