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Abstract. Many problems of current interest in atomic interferometry lend themselves to

a
path integral treatment. We present a

practical guide to solving such problems, taking
as

examples the gravitational experiments of Kasevich and Chu, and the atomic equivalents of the

Sagnac and Aharonov-Bohm effects.

Introduction.

Atomic interferometry is a new
and rapidly-developing field of research, concerned with physical

phenomena in which the wave-nature of neutral atoms plays
an important role ill. The wide

variety of internal degrees of freedom of
an atom opens up new possibilities for investigation

which do not exist in the
more

traditional types of interferometry using photons, electrons and

neutrons.

The development of atomic interferometry has been aided by recent technical advances,

particularly in the manipulation of atoms. New mechanisms for slowing, deflecting, cooling

and trapping atoms allow control of both their position and momentum. Also important

has been the birth of "atomic optics", a range of mechanisms providing the equivalent of

mirrors, beamsplitters and lenses for atoms. Recently it has been pointed out that certain

high-resolution spectroscopy techniques which avoid the Doppler effect amount to realizing
an

atomic interferometer [2]. These methods have since been adapted to measure inertial fields

(due to rotation and gravitation) by atomic interferometry.

The situation encountered in atomic interferometry experiments is often close to the classical

limit. When this is the case a
path integral approach to the analysis is very appropriate since it

reduces to a
calculation of integrals along classical paths. Further simplifications

can
be made

if the Lagrangian is quadratic, as is true for
a

particle in a
gravitational field

or a rotating

(*) The Laboratoire Kastler Brossel is associated with the CNRS and the Universit4 Pierre et Marie

Curie.
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reference frame. A simple perturbative treatment is also possible. The path integra1method

allows new
physical insight, and links the traditional formulation of quantum mechanics with

the Huygens-Fresnel principle of wave mechanics.

The main body of the article consists of two parts, the first being
a presentation of the

path integral method, and the second consisting of applications to various examples in atomic

interferometry. The first part begins with a
brief review of Lagrangian dynamics. The quantum

propagator is introduced, and
a

simple expression for it derived for the
case

of quadratic

Lagrangians. The quantum propagator is then applied to the propagation of wavefunctions,

and
a

practical perturbative approach is obtained. This is used to calculate the phase difference

between the two arms
of

an
interferometer. In the second part the theory is applied to the

following systems: a
free particle, a

two-level atom crossing a
laser wave, a

particle in a

gravitational field (including
an

analysis of the experiment by Kasevich and Chu),
a

particle

in a rotating frame, and the atomic equivalents of the Aharonov-Bohm effects.

1. Path integral method.

1.I REVIEW OF cLAssicAL LAGRANGIAN DYNAMICS. In this section we review some el-

ements of classica1Lagrangian dynamics [3], beginning with the principle of least action and

the Lagrange equations. We define the momentum and the Hamiltonian, and state their rela-

tionship to the partial derivatives of the classical action. Using this formalism
we

obtain an

expansion of the classical action about
an

initial position, which will be used in the following

sections.

I.I.I Paths in space-time. We consider
a

classical particle travelling from the point zata

to the point zbtb as
shown in figure I. There exists an

infinity of possible spacetime paths

jr, r'.. linking these two points, each path being described by
a

function z(t) such that

z(ta)
= za and z(tb)

" zb. Of all the possible paths, there is one which is actually taken by the

particle and which can be determined from the Lagrangian of the system. The Lagrangian L

is a certain function of position
z

and velocity I, which for
a

particle of
mass M in a

potential

Viz) is

Liz, I)
= )Ml~ Viz). ii)

I.1.2 Principle of least action. The actual path taken by a
classical particle is the one

for

which the action is extremal. The action is defined
as the integral of the Lagrangian Liz, I)

over the given path z(t)
tb

Sr
"

/
dt L [z(t), lit)] (2)

t~

We will denote by rci the actual classical path, for which the action is extremal, and by Sci the

corresponding value of the action. This "classical" action is a
function only of the endpoints

of the path, SCI +
Scj(zbtb, zata).

I.1.3 Lagrange equations. The Lagrange equations are a
differential form of the principle

of least action (see Appendix A-I ), and describe the dynamics of the system. They can be

written as ~ t ~
~~ ~~~

and
are

equivalent to the well-known Newton equation

F
=

Ma (4)

relating the force F to the acceleration
a.
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Fig. 1. Possible paths in spacetime connecting the initial point zata to the final point zbtb, rci is

the actual classical path, solution of the equations of motion.

1. IA Partial derivatives of the classical action. The partial derivatives of the classical action

are
calculated in Appendix A.2. Defining momentum as

P +

),
IS)

the partial derivatives with respect to the initial and final positions can be written
as

~~~~ ~~~~~~ ~~~~~ ~~ ~~~

)~d
(Zblb, Zala)

" Pbi (~)
zb

where pa (pb) is the momentum of the particle along the classical path rci at the point zata

(zbtb).

Similarly, the Hamiltonian is defined by

H+Pi~L, 18)

and the partial derivatives of classical action with respect to the initial and final times are

given by

where Ha (Hb) is the Hamiltonian of the particle along the classical path rci at the point zata

(zbtb).
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Using the values of the partial derivatives,
we can

obtain the differential of the classical

action. Keeping the initial spacetime point fixed, the variation in the classical action due to a

change in the final spacetime point (z, t) is

dsci
=

(~' dz + ~j~' dt
=

pdz H dt. ill)

This gives an alternative expression for the classical action

Sci
=

/
(p dz H dt) (12)

r~,

We also obtain an expansion for the classical action about the initial position za (holding

the initial time la and the final coordinates zbtb constant).

1.2 THE QUANTUM PROPAGATOR. In this section we
define the quantum propagator. The

composition property which it obeys is used to explain intuitively the equivalence between this

usual definition and Feynman's formulation. A simple expression for the propagator is then

obtained for the
case

of quadratic Lagrangians.

1.2.I Definition of the quantum propagator. The state of
a quantum system at a

final time

tb is determined by its state at an earlier time ta through the evolution operator U

i~k (~b))
"

L~ (~b, la)
i~k

(la)) (~~)

The final wavefunction, given by the projection of the final state onto the position basis, is

therefore

~k
(~b,tb)

"
i~bi~k (16))

"

i~biL~(tb,ta) i~k(ta))

"

/
~~a iZbiU (tb,ta) iZa) i~ai~k (la))

"

f
dZa K (Zblbi Zala)

16
(Zaila)

,

(IS)

where the function K has been defined
as

K (z~i~, z~i~) e
jz~ju ji~, i~) jz~) j16)

K is known as the quantum propagator, and denotes the amplitude for the particle to arrive

at point zbtb given that it starts from point zata.

Equation IS reveals
an

analogy between quantum wavefunction propagation and the Fresnel-

Huygens principle: the value of the wavefunction at the point zbtb is the superposition of all

wavelets radiated by the "point sources" zata, z[ta, z('ta... (see Fig. 2).
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Fig. 2. The wavefunction at zbtb is
a

superposition of contributions from all the point
sources zata,

z[tar z$ta...

1.2.2 The composition property of the quantum propagator. The composition property of

the quantum propagator can
be derived using the following relation for the evolution operator

U (tbt ta)
"

U (16, lc) U (lc,la)
t

(Ii)

where tc is any intermediate time between la and 16- This equation simply states that the

evolution of
an

arbitrary state from
an

initial time to a
final time may be calculated in two

stages: the evolution of that state from the init1al time to any intermediate time, followed by

the evolution of the resulting intermediate state from the intermediate to the final time.

Substituting the above equation into the definition (16) of the quantum propagator gives

K (zbtb, zata)
=

(zb(U (tb, tc) U (tc, la) (za)

"
dZc (Zb(U(16,lc) (Zc) (Zc(U(lc,la) (Za)

=
dzc K (zbtb, zeta) K (zeta, zata) (18)

The last line is an expression of the composition property of the quantum propagator, and

may be interpreted as a summation over
intermediate states. All possible paths connecting the

initial spacetime point zata to the final spacetime point zbtb must pass through
some position

zc at the intermediate time tc (see Fig. 3). The amplitude for passing through this partic-

ular intermediate state is just the product K(zbtb,zeta) K (zeta,zata). The total amplitude

K (zbtb, zata) for arriving at the final point zbtb from the initial point zata equals the sum
of

the amplitudes for passing through all possible intermediate positions zc at time tc. The fact

that this composition rule applies to amplitudes rather than probabilities is a
distinguishing

feature of quantum mechanics.

1.2.3 Feynman's expression for the quantum propagator. The composition property is the

starting point of Feynman's formulation, which defines the quantum propagator as a sum
of
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Fig. 3. Possible paths connecting points zata and zbtb which pass through the intermediate point

zeta.

contributions from all possible paths connecting the initial and final points [4, 5]. The modulus

of each contribution is independent of the path r. However the phase factor equals Sr /lt, where

Sr is the action along the path r. Feynman's expression for the quantum propagator may be

written as

K (zbtb, zata)
=

fit ~j e~~r/~, (19)

r

where fit is a
normalization constant, and £~ denotes

a
functional integral

over
the space of

all possible paths r connecting zata and zbtb. An alternative notation is

K(zbtb,zata)
+

K(b,a)
=

/
l7z(t)e~~r/~, (20)

~

where l7z(t) denotes the element of integration. It can be shown [4, 5] that Feynman's expres-

sion is completely equivalent to the usual definition (16).

In the classical limit where Sr » lt, the phase Sr/lt generally varies very rapidly between

neighbouring paths r, and destructive interference
occurs.

Along the classical path however

the action is extremal, and constructive interference occurs among the neighbouring paths.

Therefore only the paths close to the classical path will contribute to the integral (20). This

explains how quantum mechanics reduces to classical mechanics in the limit lt
-

0.

1.2.4 The quantum propagator for quadratic Lagrangians. A simple form
can

be found for

the propagator if the Lagrangian is a quadratic function of
z

and I, that is if it has the form

L
=

a(t)l~ + b(t)lz + c(t)z~ + d(t)I + e(t)z + f(t). (21)

Three examples of quadratic Lagrangians are
those of

a
free particle,

L
= )Ml~, (22)
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a particle in a
gravitational field,

L
=

jml~ Mgz, (23)

and
a

particle in a
reference frame rotating at angular velocity fl with respect to a

Galilean

frame [3]

L
= )Mr~ + Mn ir

x
r) + )M (n

x
r)~ (24)

Since only paths very close to the classical path
are

expected to contribute to the integral (20),
it is convenient to express each path z(t) in terms of its deviation from the classical path 2(t)

z(t)
=

2(t) + f(t)1 (25)

where the boundary conditions
are

z(t~)
=

t(t~)
= z~

,

z(i~)
=

t(t~)
= z~

,

i(i~)
=

i(i~)
=

o. (26)

In terms of this deviation fit) from the classical path, expression (20) for the quantum propa-

gator can be written as

K lzbtb, zata)
=

/~ Dflt) exP )S12(t) + f(t)1) (27)

Substituting (25) into (21) gives an expression for the Lagrangian which is quadratic in 2, I, (

and (. We will consider the contribution to the action S [2(t) + ((t)] from each of the terms in

turn. The terms which
are

independent off and j contribute the value S [2(t)], which is just

the classical action Sci (zbtb, z~ta). The contribution from the terms that
are

linear in ( and

( is the first-order difference in the action between the path z(t) and the classical path 2(t).

This is zero, since the action is extremal along the classical path. The contribution from the

quadratic terms is however nonzero. Writing this term out explicitly,
we have

S [2(t) + ((t)]
=

Scj (zbtb, zata) +

~~
dt (a(t)(~ + b(t)(( + c(t)(~j (28)

Substituting the above expression into equation (27) for the propagator gives

K (zbtb, zata
= exp

~
Sci (zbtb, zata)

x
h

/~17((t) exp
~

~~
dt (a(t)j~ + b(t)(( + c(t)(~j (29)

~
lt

t

The functional integral in the above equation is independent of za and zb, and may be denoted

by F(tb, la ). Hence the following simplified expression for the propagator is obtained

K (zbtb, zata)
=

F(tb,ta) exp
~

Scj (zbtb, zata) (30)
lt

1.3 PROPAGATION OF THE WAVEFUNCTION. We now use the result (30) to calculate the

propagation of the wavefunction in the case where the Lagrangian is quadratic. A simple

expression for the final wavefunction is then obtained by assuming that the initial state is a

plane
wave.

The phase shift due to a
perturbation on

the Lagrangian is evaluated, and the

result applied to interferometry calculations.
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1.3.I Wavefunction calculation for a quadratic Lagrangian. For
a

quadratic Lagrangian the

propagator is given by expression (30), in which the za dependence is entirely contained in the

action Scj(zbtb,zata). Substituting this expression into equation (IS) gives the evolution of

the wavefunction

16 (Zb,tb)
"

l~(tb,la)
/

dZa eXP )~d (Zblb, Zala)
16

(Za,la) (~l)

In the integral over za, the neighbourhood of the position where the phases of exp (isci (zbtb,

zata) /lt) and1b (za, la) cancel out will be predominant. This position is known as the point of

"stationary phase"

1.3.2 Plane
wave

incident. In the
case

where the initial wavefunction is a
plane

wave

the method of stationary phase gives an
intuitively appealing result for the final wavefunction.

Using equation (13) the action is expanded about the position zo where the initial momentum

on
the classical path zeta

-
zbtb is the same as

the momentum po of the incident wave.
This

position zo will turn out to be the point of stationary phase. Since the Lagrangian is quadratic

in the position and velocity, it can
be shown that the classical action is a quadratic function

of the initial and final positions. This can be verified for all the systems that
we

consider: the

free particle (55),
a

particle in a
gravitational field (73), and

a
particle in a rotating reference

frame (97). The expansion for the classical action about zo therefore terminates after the

second order term,

lid (Zb>tbi 20 + (>taj
"

lid (Zbtb, z0ta) P0( + C(tb,ta)(~, (33)

where

PO "

)~d
(Zblb, Z01a) (~~)

~~~~'~~~
~(

~~~ ~~~~~' ~°~~~ ~~~~

and C is independent of position. Expanding the initial wavefunction about the
same point zo

gives

~fi
(zo + ( la)

-

A
exP

~ ~°~~°
+l~

~°~~~

~
~~~

~ ~~~~~

lt

~~~~~
~~~

~i~
~~~~

When expansions (33) and (36)
are

substituted into into equation (31), the linear terms in (

cancel out in the exponential and one gets

16 (Zb,16
"

l~(~b, la
/

d( ~XP )~d (Zb,16 20 + (, laj 16 (20 + (, la

~i(pozo -Eota) In j
~

~~~~' ~~~ fi ~~~
lt

~~~ ~~~~~' ~°~~~

/
~~ ~~~~ ~~

~~~~'~~~

/~
~~~ ~~~ ~~~ ~~~ ~~~~~' ~°~~~ ~~~~
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This result has a very simple interpretation. To calculate the final wavefunction at a
particular

position
we

consider the trajectory of
a

classical particle whose initial momentum is po and

which passes through that final point. The phase of the final wavefunction is determined by

the action along this classical path, and the phase of the wavefunction at the trajectory's initial

point. The amplitude of the final wavefunction is independent of position, and depends only

on
the initial and final times.

The formalism may be extended to non-quadratic potentials provided the terms of higher

than second order are sufficiently small.

1.3.3 Generalizations. In the above analysis
we

calculated the value of the wavefunction

at a
final point zbtb by considering the trajectory of

a
classical particle which arrives at that

point. We assumed that it was
possible to determine the position zo from which the particle

must classically have left, given that it had an initial momentum of po It may happen that this

stationary phase point zo is not unique. In fact if it is not unique, then all initial positions are

points of stationary phase. This may be
seen as follows. Since the classical action is quadratic

in the initial position za, the momentum is a
linear function of za

pa =

~'~
" PO 2C(tb,ta)(za zo). (38)

8za

If at any time C(tb, la) becomes zero, then the condition pa = po is satisfied for all initial

positions za. In this
case

focussing occurs, and the wavefunction collapses to a
delta function.

Mathematically, the vanishing of C(tb, la causes a
divergence in equation (37).

One system in which this happens is the harmonic oscillator. Consider the set of classical

trajectories starting at time la with momentum po "
0 from all possible initial positions. After

a quarter of
a period T/4 all the trajectories will focus onto the point zb "

0. Quantum

mechanically, the system starts in
a momentum eigenstate, and

a quarter of
a period later

finishes in a
position eigenstate. It

can
be shown for the harmonic oscillator that C[ta +

T(1/4 + m/2), ta]
=

0 for all ta and all integers
m.

If the Lagrangian is not quadratic the situation is more
complicated since in general both

F and C are position dependent. As long as
F varies sufficiently slowly with initial position,

the stationary phase method may still be used. However two points should be noted. Firstly,

there may exist multiple discrete points of stationary phase. In this case
the final wavefunction

consists of
a quantum superposition of solutions, and equation (37) must be replaced by

a sum

of contributions from each stationary phase point zo. Secondly, C may vanish. But since C is

position dependent this will occur
locally, rather than globally

as was
the

case
for quadratic

Lagrangians. In general C will vanish only at discrete values of the initial position. In this

case
the family of classical trajectories will not all converge to a

single focal point as
described

above, but will instead form
a caustic. In the neighbourhood of such points the stationary

phase method is no longer valid, and the expansion (33) for the action must be extended to

include higher order terms. The occurrence of caustics is a very general phenomenon in physics,

and is treated by catastrophe theory [6]. More elaborate semi-classical calculations may be

performed using the uniform approximation iii.

1.3A Perturbative limit. In this section we
discuss the effect of

a
perturbation on

the

Lagrangian. We show that the phase shift introduced by the perturbation may be calculated

by integrating the perturbation along the unperturbed path.

We consider the same situation as was
discussed in section 1.3.2, in which the initial wave-

function
was a

plane
wave

with momentum po. In that section we
calculated the final wavefunc-

tion (37) at the point zbtb by following the trajectory of
a

classical particle which had initial

momentum po and which passed through the final point. In preparation for the perturbative
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Fig. 4. Classical paths from two points in the
same

Fresnel
zone.

treatment that follows,
we

show first that this trajectory can
be replaced by

a
neighbouring

classical trajectory which passes through the
same

final point. This replacement is possible

provided the initial positions of the two trajectories are
sufficiently close.

Consider the two classical paths sketched in figure 4. Both trajectories pass through the

same final point zbtb, labeled N. The trajectory which departs from the point Mo has ini-

tial momentum po, and corresponds to the point zeta of stationary phase which
was

used in

section 1.3.2 to calculate the final wavefunction. The point M is
a

neighbouring point with

coordinates zta.

Using equation (37)
we

obtain for the final wavefunction (up to an
amplitude factor)

1b(N)
=

1b(Mo) exP lisci(N, Mo)/hl
,

(39)

where Sci (N, MO is the action along the classical trajectory connecting the points Mo and N.

We
now

consider the neighbouring point M. Along the trajectory connecting M to N
we

have

1b(M) exp (isci(N, M)/lt)

~i(poz-Eota) In j

/~ ~~~
lt ~~~~ ~~~~~'~°~~~ ~°~~ ~°~ ~ ~~~ ~°~~~

~i<pozo-Eota)/& I

fi ~~~
lt ~~~~ ~~~~~' ~°~~~ ~ ~~~ ~°

~~

"
lfi(M0) ~~p liscl(N> M0)/hl ~~p )C(~

0)~)
(40)

Hence
we can

make the approximation

~ljmo) exp jisciiN, Mo)/hj
m

~ljM) exp jisci(N, M)/lip (41)

if the point M is sufficiently close to Mo that the final exponential factor of equation (40)
can
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Fig. 5. Perturbed and unperturbed paths used to calculate the perturbative phase shift.

be replaced by unity. Quantitatively, this condition may be expressed
as

) (@~
< l, (42)

where @ is the distance between the positions MO and M. When this is satisfied the points

Mo and M
can

be said to lie in the
same

"Fresnel zone". All points in this
zone

radiate

approximately in phase with MO We will use this approximation in the perturbative calculation

of the wavefunction which follows.

We consider a
perturbation

on
the Lagrangian

L
=

Lo + eLi (43)

where
e < I. We wish to calculate the phase shift introduced by this perturbation on the

final wavefunction, given that the init1al wavefunction is a plane wave with momentum po.

In figure 5, r))~ denotes the classical path with initial momentum po corresponding to the

unperturbed Lagrangian (e
=

o). Its initial point is labeled Mo. rcj is the classical path

linking the
same

initial and final points Mo and N, but corresponding to perturbed Lagrangian

(e # 0). (The initial momentum on
this path will not in general be equal to po.) r[j is the

classical path with initial momentum po corresponding to the perturbed Lagrangian (e # o).

Its initial point is labeled M[. The situation can
be summarized

as
follows

r')~ Mo
-

N
e =

0 p(ta)
= po

r)j Mo
-

N
e

# 0 p(ta) # po
(~~)

rjj Ml
-

N
e

# o p(ta)
= Po

The perturbation introduces
a

phase shift between the unperturbed wavefunction 1b'°)(N)

and the perturbed wavefunction 1b(N). Up to amplitude factors these wavefunctions
are given
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by

~l(N)

~li

If MO and M[ are

1b(N) m
#(Mo) exp

~
(Lo + ELI dt (47)

~j

However rcj and r))~ have the same endpoints and differ to first order in
e.

Since rcj is the

path which maximizes the action for
e

# 0,

IL
dt

=

/
L dt + O(e~ ). (48)

r~, r~(~

Substituting this equation into (47)
we

find that to first order in e

1b(N) mlb(Mo) exp

~ /
(Lo + ELI dt (49)

lt r(o)

Expression (45) then gives

~l(N)
m

~l'°)(N) exp
Ii /

eLi dt
=

~l'"(N)e~~', (So)
~ ri~

where

~~ i
/(j) ~~ ~~' ~~~~

This result shows that to first order in e, the phase shift ii introduced into the final wavefunc-

tion by the perturbation is determined simply by the integral of the perturbation along the

unperturbed path.

1.3.5 Application to interferometry Here we calculate the phase shift introduced between

the two arms
of

an
interferometer due to a

perturbation
on

the Langrangian.

Figure 6 represents the two possible unperturbed classical paths A'CB (labeled I) and ADB

(labeled II) which
can

be followed by the particle through the two arms
of the interferometer,

and which arrive at the
same

final point B at t
=

tb. We have considered here the most general

situation, in which the two classical paths start at the initial time from two different points

A' and A. This is the
case

for example in
a

Michelson type interferometer where the lengths

of the two arms
(between the beamsplitter and the two reflecting mirrors)

are unequal. Very

often however the points A' and A coincide (see for example Fig. 9).

According to equation (51) the phase shifts induced by the perturbation along the paths

marked I and II in the interferometer
are

b#1
=

~ Li dt
li ~'CB

~~~~ ~DB ~~ ~~ ~~~~
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Fig. 6. Two spacetime paths through
an

interferometer.

Section III of the diagram (segment AA') is not a
classical path. However the phase shift

between the points A and A' is known. It is independent of the perturbation, and equals

po Ax /lt, where po is the initial momentum and Ax is the displacement between the two points.

The total phase shift between the two arms
introduced by the perturbation is therefore

ii
=

b#I bill
=

~
~

Li dt, (53)
~

AA'CBDA

where we
have replaced f~,~~~~ by j~~,~~~~ since f~,

~
Li dt

=
o.

This final result shows that the phase shift introduced by a
perturbation

on the Lagrangian

is determined simply by the integral of the perturbation around the closed unperturbed path

comprising the two arms
of the interferometer.

2. Examples in interferometry.

In this part we apply the formalism developed above to several systems of current interest.

We first consider the propagation of
a

free particle (Sect. 2,I) and the modification of the

wavefunction of
a 2-level atom crossing a

laser
wave

(Sect. 2.2), since several atomic interfer-

ometers consist of free propagation zones separated by laser-atom interactions. The results

of sections 2.I and 2.2 will be used in the analysis of the experiment of Kasevich and Chu in

section 2.3.

2.I THE FREE PARTICLE. The Lagrangian for
a

free particle contains just the kinetic energy

term,

L
=

Mi~. (54)
2

Since the velocity remains constant, the classical paths are simply straight lines in space-time.

The classical action is therefore

Sci (zbtb, zata)
=

~~
dt

~
Ml~

=

~ ~~~ ~~~~ (55)

t~
2 2 tb ta

The quantum propagator can
be calculated directly using an expansion in terms of

momen-

tum states, which
are eigenstates of the evolution operator,

lzblU(tb,ta)lza)
=

/
dP lzblP) exP

-i~~ (
[~~~~ lPlzal
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/
~

p~ (tb ta) p (za zb)

2irlt
~ ~~~ ~

2Mlt
~

lt

ta) ~~~

~~)~
)~~~

~~~~

Comparing with equation (30),
we note that the exponential factor above is indeed exp(isci/lt),

and that the factor F is independent of position

~'~~b'~a~
=

~.
~57)

Evaluating the momentum using expression (6) gives the expected result

Pa =

-)Sci (zbtb zata)
= Mll - Ii =

M~a. (58)

Similarly the Hamiltonian
can be calculated using expression (9), which yields

Definition (35) for C gives

~~~~'~~~ ~] ~~~ ~~~~~' ~~~~~ ~)
2
(t~

lal' ~~~~

The propagation of
a plane

wave
with initial momentum po can be calculated using equa-

tion (37). The value of the wavefunction at the initial point is

~~~~'~~~
~~~~

lt

~~~~
~

~~~ ~~~~ ~~~~~

2Mpozo Pita p( (16 la

2Mlt
~

2Mlt

"

~°~~

~

~°~~

,

(62)

since zb zo "
Po(tb la) /M. Using equations (57) and (60)

we
obtain the amplitude A(tb)

of the wavefunction at the final point

Hence the wavefunction at the final point is, as expected,
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Fig. 7. Four possible interaction processes involving
a

two-level atom and
a

travelling laser
wave:

la) atom absorbs
a

photon, gaining momentum &kL, and making
a

transition from state o to state

fl, 16) atom emits
a

photon, losing momentum &kL, and decaying from state fl to state o, (c) atom

remains in state fl, (d) atom remains in state n.

2.2 A 2-LEVEL ATOM cROssiNG A TRAVELLING LASER wAvE. We consider a
freely-

propagating two-level atom which interacts with a
travelling laser wave. Initially the atom

is assumed to have
a

well-defined momentum, and to be in one
of the two internal states a

or
fl. The interaction with the laser field may change the state of the atom, accompanied by

a change in transverse momentum, as
shown in figure 7 [2]. We assume that the longitudinal

velocity of the atom is sufficiently great that the transverse propagation of the atom (along the

laser beam) during the crossing can
be neglected. Hence we associate with the interaction a

single spacetime point ziti. Depending
on

the initial and final states of the atom, the effect of

the laser interaction is to change the atomic wavefunction by one
of four multiplying factors:

Upn exp
(I (kLzi wLti #)) (a

-
fl)

U«p exp j-I (kLzi wLti i)j (p
- CY) ~65~

uaa ("
~

")

Upp (fl
-

fl)

The quantities kL, wL
and # denote the wavenumber, frequency and phase respectively of

the laser wave. U~~
is defined

as
the transition amplitude from the jth to the ith internal

atomic state, calculated by taking the coordinate origin to be zi ii and the phase # to be zero.

Note that the factors exp(+ikLzi)
are

associated with a
change of +ltkL in the transverse

momentum of the atom in the cases when a
photon is absorbed or

emitted.

As an
example

we
calculate the state of the atom after the interaction, assuming it is in the

internal state a
and at position zo at the initial time to We suppose that the atom propagates

freely until time ii, at which moment it interacts with the laser wave at position zi and makes
a

transition to the state fl. It then propagates freely again until the final time t2, when it reaches

the position z2. At this final time the atomic wavefunction ~lp(z2, t2) is given by
a

product of

four contributions: the initial wavefunction,
a phase shift due to the free propagation before

the interaction, a factor due to the interaction itself, and another phase shift due to the free
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a

t~ Ii t~

Fig. 8. The processes of free propagation and photon absorption which determine the final
wave-

function ~bp
(z2,t2).

propagation after the interaction. These processes are
indicated in figure 8. The result is

~pjz2,t2)
= exp jiScijz2t2,ziti)/&j

x Upn exp (I (kLzi uJLti #))

x exp jis~ijziti, zeta)/&I ~fin (zo,to) (66)

where ~fin(zo, to) is the initial wavefunction of the atom, and where zi and z2 are
calculated

from zeta, ti and t2, knowing the initial momentum po and the momentum change &kL due to

the laser interaction.

2.3 A PARTICLE IN A GRAVITATIONAL FIELD. We will now
apply the results of the previous

two sections to a
particle in a

gravitational field, and discuss the experiment of Kasevich and

Chu [8].

2.3.1 Classical action. The Lagrangian for
a particle in a

gravitational field is

Liz, d)
=

Md~ Mgz. (67)

Since this is quadratic in
z

and I, the results of the previous sections may be directly applied.

The classical paths, which can be derived from the Lagrange equations, are

~(t)
" Ua

9(t ta) (68)

Z(~)
" Za + Ua(t ta) g(t ta)~. (69)

Evaluating the velocity and position at the final time tb gives

Ub " Ua
9(tb ta) i~°1

Zb " Za + Uajtb ta) )gl~b ta)~. 171)
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Using this last equation, we can express ua in terms of the coordinates of the endpoints

ua =

~~ ~~
+ (g(tb ta). (72)

tb ta

The action along the classical path is given by

~~~ ~~~~~~ ~~~~~ ~~~ ~~~~~~g
~~~~

(tb tat ~(~ l~~ ~~~~
2 tb ta ~

~~~~

We note that expression (6) yields the expected result for the momentum

Ha
=

~
S~i (zbtb, zata)

=

Mu( + Mgza. (75)

2.3.2 The experiment of Kasevich and Chu. Kasevich and Chu [8] have recently observed

atomic interference effects which are sensitive to the gravitational field. They
use

stimulated

Raman transitions between the two hyperfine levels gi and g2 of the ground state of sodium

to separate an atomic wavepacket into two coherent components and subsequently recombine

them. Three Raman pulses
are

applied using two vertically-oriented counterpropagating laser

beams, whose wavenumbers, frequencies and phases
are

denoted by ki,uJi, Ii and k2,uJ2,42

respectively (see insert of Fig. 9).

The first pulse (at t
=

0) is a 7r
/2 pulse, which separates the wavepacket into two components

differing by momentum &(ki k2 ). At t
=

T
a 7r

pulse is applied, which exchanges the momenta

and internal states of the two components. At t
=

2T, when the two components spatially

overlap, another 7r/2 pulse is used to recombine them coherently.

The spacetime paths followed by the atoms are
shown in figure 9. The classical paths in the

absence of gravity are straight lines, depicted by the trajectories AocoBo and AoDoBo. In the

presence of gravity the trajectories are
the parabolic

curves
represented by ACB and ADB.

Note that

fi
=

@
=

-jgT~

@
=

-2gT~. (76)

The gravitational field introduces a
phase shift between the interfering beams. We first

present an exact calculation of this phase shift using the perturbed trajectories.

From equation (73) the difference between the actions along the two path segments AC and

AD is
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Fig. 9. Spacetime paths followed by the atoms in the experiment of Kasevich and Chu. Raman

pulses
occur at times 0, T and 2T. The insert shows the atomic level scheme and the directions of the

laser beams.

Similarly the difference between the actions along the segments CB and DB is

S~i(CB) S~i(DB)
=

$(zc zD) (zc + zD 2zB gT~) (78)

Hence the total contribution to the phase difference between the two arms
due to the propa-

gation is

b#P"P
=

S~i (AC) + S~i(CB) [S~i (AD) + S~i(DB)]

=

)
(zc zD) (zc + zD zA zB gT~ (79)

However, taking into account relations (76), the second factor in the above expression is

zc + zD zA zB gT~
= zco + zDo zAo zBo =

0 (80)

since AoBocoDo is a
parallelogram. Hence

6#P"P
=

0. (81)

Neither is there any contribution 6#~~~ to the phase difference from the internal evolution, since

both components of the wavepacket spend the
same amount of time in the two internal states.

We
now

consider the contribution to the phase difference from the laser interactions. The

results of section 2.2 can be directly applied to the Raman pulses after the replacements

~#ki~k2, ~J"~Ji~~J2 ~"~i~~2. (~~)

Along the path ACB the contribution from the laser interactions is

Uj~( Uj~(~ exp (I
~ zco T~)

UJT
iIj

Uj)(~, (83)
~ ~ ~ 2
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where U(~), U(~) and U(~)
are the transition amplitude matrices at times t

=
0, t

=
T and

t
=

2T respectively, and WI, III and #III
are

the values of the phase #
=

11 42 at these times.

Similarly along the path ADB the contribution from the laser interactions is

Uj)(~ exp (I [~ (zBo 2gT~) 2uJT #IIIj x

Uj)(~ exp -I
~ zDo gT~ UJT #II x

2

Uj)(~ exp (I [~zAo uJ x 0 WI]
(84)

Hence the total phase difference between the two arms
of the interferometer is

6jt°t
=

6jiaSer
=

~gT2 + iI 21II + 4III (85)

which is sensitive to the gravitational acceleration g. (We have neglected the contribution to

6#'~~~~ from the phases of the transition amplitudes U, since they
are

independent of g and of

the phases of the lasers.)

We now compare this result with
a

perturbative calculation of the phase difference, treating

the gravitational potential
as

the perturbation. As described in section 1.3.5 the phase shift
can

be calculated by integrating the perturbation along the unperturbed paths. The contribution

to the phase difference from the laser interactions in this
case is obtained from equation (85)

by setting g =
0,

61[~~~~ = WI
2jII + IIII (86)

The contribution from the propagation is calculated using equation (53)

6#("P
=

~~
f

dt z(t)
=

~~ A, (87)
AocoBoDoAo

where A is the area
enclosed by the

arms
of the interferometer. Using the fact that the distance

from the point Do to Co is

Doco
=

~T, (88)

we
find that the

area
of the interferometer is

A=
x2Tx@=-~T~, (89)

and the phase shift due to the propagation is

6#["P
=

~gT~. (90)

Since there is no
contribution 6#(~~ from the internal evolution, the total phase difference

between the two arms
of the interferometer is

641°~
=

611~°~ + 611~~~~ =

~gT2 + i~ 21~~ + i~~~, (gi)

which agrees with the exact calculation (85).

Note that the phase difference is independent of the initial velocity, and hence remains

unchanged after averaging over
the velocity spread of the atomic beam. The experiment

provides a very precise measurement of the gravitational field,
a sensitivity of Ag /g

m 3 x
10~~

being estimated by the authors Kasevich and Chu.
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Fig. 10. Galilean and rotating reference frames.

2.4 A PARTICLE IN A ROTATING FRAME. In this section we present a
perturbative path

integral treatment of
a

particle in a rotating frame, and apply the results to interferometry.

The sensitivity to rotation of matter-wave interferometers is compared with that of optical

interferometers (the Sagnac effect).

2.4.1 Classical action. We define
a

Galilean frame R' described by the coordinates x'y'z'

and
a rotating frame R with coordinates xyz, as

shown in figure 10. The
z axes of the two

frames coincide, and frame R rotates with respect to the Galilean frame R' at angular velocity

fl where fl
=

Qez, ez being the unit vector along the z
direction.

The Lagrangian for
a

free particle, expressed in terms of the coordinates of the Galilean

frame R', is

Since the

ively
is

v' = v + fl x r, (93)

L (r, v)
=

L'(r', v')
=

jM (v + fl x r)~

= jmv~ + Ma (r
x

v) + )M (fl
x

r)~ (94)

Note that this Lagrangian is quadratic in r
and

v.

The momentum is given by

p =

~~

=
Mv + Mfl x r, (95)

and the Hamiltonian by

~2H=p.v-L=j-Q.(rxp). (96)
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j 8

r+dr

ra

Fig. 11. Unperturbed path AB in the plane perpendicular to the rotation axis fl.

A straightforward calculation gives for the classical action

S~i (xbybtb, xayata)
=

~

((xb xa)~ + (yb ya)~j + MQ (xayb xbya)
,

(97)
2 (tb ta)

which is a
quadratic function of xa, xb, Ya and yb.

2.4.2 Perturbative calculation of the phase shift. We now
consider the situation in which

the angular velocity Q and the time intervals At of interest are
sufficiently small that

flat < 1. (98)

In this
case

the rotation can
be considered as a

perturbation, and the second order terms in Q

neglected in the Lagrangian

L m
Mv~ + Mfl (r x

v). (99)
2

The phase shift due to the perturbation is calculated along the unperturbed path, which

is a
straight line segment as

shown in figure 11. Note that unlike the previous trajectory

diagrams, which
were

spacetime representations, this figure is in real space, and depicts the

plane perpendicular to the rotation axis fl. The particle leaves position ra at time ta and

arrives at position rb at time tb. The phase shift accumulated along this trajectory is given by

6j
=

~~
dt jr(t)

X V(t)j (100)

(101)
But since

dtv(t)
=

dr(t),

the phase shift
can be rewritten as

6#
=

~~ / ~

r(t)
x

dr(t)
=

2~~
Ao, (102)

~

where Ao is the area DAB subtended by the path r(t) at the origin.
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Fig. 12. Unperturbed paths (in real space) describing the two arms
of

an
atomic interferometer

sensitive to rotation.

We now use this result to calculate the phase shift in an
interferometer. Since the rotation

is just a
perturbation

on the motion, the results of section 1.3.5 can be applied, and
we

obtain

6#
=

2~~
A (103)

where A is the area
ACBDA enclosed by the arms of the interferometer, as shown in figure 12.

Note that like figure 11, this diagram is in real space rather than spacetime, and the plane

shown is perpendicular to the rotation axis.

2.4.3 Conlparison with the Sagnac effect. The Sagnac effect is the phase shift observed in an

optical interferometer due to rotation. Here
we compare the sensitivity to rotation of optical

and matter-wave interferometers.

Consider a rotating circular optical interferometer as shown in figure 13. Two rays emitted

from the point A at time t
=

o circulate in opposite directions around the interferometer and

interfere at the beamsplitter, which is assumed to be at point B at t
=

o. In the absence of

rotation the travel times of the two rays to the beamsplitter are equal. However when the

interferometer is rotated, the ray travelling in the
same sense as fl takes

a
longer time t+ to

reach the beamsplitter according to an observer in a
Galilean frame. Likewise

a ray travelling

in the opposite sense takes a shorter time t~ The travel times t+ and t~ can be determined

by the following equations

ct+
=

7rp+pot+

ct~
= 7rp pot~ (104)

Hence the time difference is

~
~rp ~rp

/~~
- "

c
pn

c + pn

~
?~[~

=

l~'~
(105)

where A
=

7rp~ is the
area

of the interferometer. The Sagnac phase shift is therefore

6§iphoton " ~J0 At
#

~(~~
,

(106)
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Fig. 13. Rotating circular optical interferometer. The beamsplitter starts from the point B at time

t
=

o, and rotates at angular frequency Q. The two rays leaving the point A at t
=

o circulate in

opposite senses
and reach the beamsplitter at different times t+ and t~

where uJo is the (angular) frequency of the light. The relative sensitivity between the optical

and matter-wave interferometer for the same
enclosed area is

§ ~ ~ MAR j~ 2

6§i~~n
2~ ~0

~ ~~~~

From this last result, one
might expect to increase the sensitivity by a factor of

as
much as

10~° by using matter waves
instead of photons. However it must be remembered that the area

enclosed by
an

optical interferometer may be considerably increased over that of a matter wave

interferometer by the use
of optical fibres. A better signal-to-noise ratio

can
also be achieved

in optical interferometers because of the higher flux of quanta through the apparatus.

2.5 AHARONOV-BOHM EFFECTS. In this section we
will review the scalar and vector

Aharonov-Bohm effects [9, 10] and describe analogous effects using neutral particles.

2.5.1 The scalar Aharonov-Bohm effect. Quantum mechanics predicts that
a

charged par-

ticle will be sensitive to an electric potential, even in the absence of any electrical force. The

phase shift induced between two wavepackets by subjecting them to different electric potentials

is known as
the scalar Aharonov-Bohm effect.

The Lagrangian for
a

charged particle in an electromagnetic field is

L
=

jmv~ + qv A(r) qU(r), (108)

where q is the charge
on

the particle, U(r) is the electric potential, and A(r) is the vector

potential. In the scalar Aharonov-Bohm effect A
=

0 and U # 0.

A hypothetical experiment to detect the Aharonov-Bohm effect is indicated in figure 14. The

particle's wavepacket is split into two components I and II by the slits si and s2 Wavepacket I

passes through the cylinder Cl, and wavepacket II through the cylinder C2 The two wavepack-

ets subsequently interfere at the point M.
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Fig. 14. Sketch of the experimental setup to test the scalar Aharonov-Bohm effect.

The cylinders
are

assumed to be longer than the coherence length of the wavepackets,
so

that, over a certain time interval, the wavepackets will be well localised close to the middle of

the cylinders. During this time, the potential U is applied between Cl and C2 for
a

duration

T. Each wavepacket then
sees a

spatially-uniform potential, and the particle experiences no

force. However the potential introduces
a phase shift between the two wavepackets of

6#
=

~

~

~~
=

-) f
dt U

=

-~,
(109)

which results in a
displacement of the interference fringes.

2.5.2 The vector Aharonov-Bohm effect. To test the vector Aharonov-Bohm effect
a

charged

particle is subjected to a magnetic vector potential A. As in the scalar Aharonov-Bohm effect,

the particle travels in a region of
zero electric and magnetic field, and hence experiences no

force.

A possible experimental design is shown in figure 15. The wavepacket of
a

charged particle is

split into two components, which travel around opposite sides of
a

solenoid before recombining.

To
ensure

that the particle experiences
no

force, the magnetic field must be entirely confined

to the interior of the solenoid. In order to achieve this, the solenoid should in principle be

infinitely long
or be toroidal in shape. In practice a very long solenoid could alternatively be

used.

The phase shift introduced between the two wavepackets by the potential is

6#
=

~~ ~~~
=

i f
dt

v
A(r)

=

~ f
dr A(r)

=

/ /
IV

x
A(r)] dn

=

14lB, (110)
A

where A is the surface enclosed by the
arms

of the interferometer and 4lB is the flux of the

magnetic field through the solenoid.

The important features of both the scalar and vector Aharonov-Bohm effects
are: the absence

of force on
the particle, the topological nature of the effect, and the fact that the phase shift is

global and non-dispersive. This last property means
that it is possible to observe fringes

even

if the length associated with 6# is larger than the coherence length of the wavepacket.
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Fig. 15. Sketch of the experimental setup to test the vector Aharonov-Bohm effect.

2.5.3 Extension to neutral particles. The scalar Aharonov-Bohm effect, such
as it was

described above, has not yet been observed. The experiment is very difficult due to the small

separation between the interfering beams, the high speeds of the particles, and the technical

problems in realizing microcylinders and applying voltages at sufficiently high frequencies (of

the order of GHz).

The vector Aharonov-Bohm effect has been observed (see [11] and references therein), al-

though the non-dispersive character of the phase-shift has not been tested due to the large

coherence lengths of the wavepackets.

In an
effort to overcome these problems,

new experiments have recently been proposed to

generalize both the scalar and vector Aharonov-Bohm effects to neutral particles. Particles

with a magnetic moment ~t are
coupled to static magnetic or

electric fields in which they

undergo a phase shift but experience no
force.

An equivalent of the scalar Aharonov-Bohm effect
was

proposed for neutrons by Zeilinger

[12]. A beam of neutrons is separated into two components, one
of which passes through a

solenoid. A current is applied to the solenoid while the wavepacket is well-localised near the

centre, giving rise to a
potential -p. B. The wavefunction undergoes

a
phase shift, although

the particle experiences no force. This proposal has been realized experimentally by Allman

et al. [13]. The phase shift observed
was

in good agreement with the theory, but
was not large

enough to test the non-dispersive character of the effect. In order to verify this last property,

experiments have been performed by Badurek et al. [14] using very slow neutrons. Their

experiments however differed from those of Allman et al., in that a single beam of neutrons

was
used rather than two spatially separated beams. The neutrons were

prepared with their

polarisation perpendicular to the magnetic field. When the magnetic field was applied the

component whose spin was
parallel to B underwent

a
different phase shift from the component

with antiparallel spin. The energy dispersion
was

high enough and the transit time long enough

that even
with small magnetic fields it was possible to achieve phase shifts much greater than

those corresponding to the coherence length. The non-dispersive character of the phase shift

was
tested by comparing experiments which used permanent and transitory magnetic fields.

Similar experiments using atoms have been performed by Chormaic et al. [15].

The Aharonov-Anandan-Casher effect [16, 17] is the equivalent of the vector Aharonov-

Bohm effect for neutral particles. The wavepacket of the particle is split into two components

which propagate around opposite sides of a long charged rod before recombining. The particle

experiences a
potential -p [E(r)

x vi /c~, although it sees no
force. The phase shift acquired
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between the two arms of the interferometer is A~tleo&c~ where A is the charge per unit length of

the rod. The Aharonov-Anandan-Casher effect has been tested experimentally by Cimmino et

al. [18] using neutrons, with the charged rod replaced by two pairs of condensing plates. It has

also been tested by San gster et al. [19], using molecules. In their experiment a single beam was

passed between two condensing plates. The molecules had been prepared in a superposition of

spin states, each of which experienced
a

different phase shift in the electric field.

In analogy with the Aharonov-Bohm effects, these experiments using neutral particles
are

characterized by the absence of force, the topological nature of the effect, and the global
non-

dispersive property of the phase shift. However they differ from the Aharonov-Bohm effects in

that the particle evolves in regions where the electric and magnetic fields
are non-zero.

Conclusion.

In this paper we
have described

a
path integral approach to solving problems in atomic interfer-

ometry. Simple solutions, which offer useful physical insight, have been obtained for situations

close to the classical limit when the incident wavefunction
can

be treated
as a

plane
wave.

In particular
some exact results are possible when the Lagrangian is

a
quadratic function of

position and velocity, as is the case
for

a
particle in a gravitational field

or a rotating refer-

ence frame. A simple perturbative treatment has also been presented. We have shown that

the phase shift introduced into
a

wavefunction by
a

perturbation in the Lagrangian can be

calculated by integrating the perturbation along the unperturbed path.

The methods
are

applicable to a
wide variety of current research

areas.
As examples we have

discussed the interferometric measurements of the gravitational acceleration g by Kasevich and

Chu, and the atomic equivalents of the Sagnac and Aharonov-Bohm effects.
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Appendix A.

A.I DERIVATION OF THE LAGRANGE EQUATIONS.- Consider
a variation 6z(t) from a clas-

sical path z(t) which satisfies the boundary conditions

6z(t~)
=

6z(t~)
=

o. (iii)

The path variation changes the values of the Lagrangian and action by the amounts

6L
=

)6z(t) + ~)6i(t) (112)

65
=

/~~()6z(t)+)6i(t)jdt. (113)

t~ z z

Making the substitution

~~~~~
t~~~~~

~~~~~

and integrating by parts gives

65
=

)6z(t)
~~

+

~~ () ( )j
6z(t) dt. (115)

Z
t~ t~

Z Z
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z

~b~~~b

z
fi

a

ta tb t

Fig. 16. Two actual classical paths leave from the
same

spacetime point A, but arrive at different

positions at the final time tb.

Since the action along the actual classical path z(t) is extremal, bS must equal
zero.

The first

term in the above equation vanishes due to the boundary conditions (111). The requirement

that the second term be zero
for arbitrary 6z(t) gives the Lagrange equations, which describe

the dynamics of
a

classical particle

3L d3L_~
(116)$~&j~'

A.2 THE PARTIAL DERIVATIVES OF THE CLASSICAL ACTION.- The classical action is a

function of the initial and final times and positions. Here we
calculate its partial derivatives

with respect to each of these parameters.

A.2.1 Partial derivatives with respect to position.- Consider two actual classical paths (I.e.

solutions of the equations of motion) whose final positions differ by 6zb,
as

shown in figure 16.

The difference between the actions along these two paths can be calculated using equation

(115). Since the paths are classical the second term is identically zero.
The first term is

calculated using the boundary conditions

6z(ta)
=

0 (117)

6z(t~)
=

6z~, (i18)

and gives

~~~~ ~~~~' ~~~~~

Using the definition (5)
we

obtain

)~~ "Pb> (120)
b

where pb is the momentum at the final position on
the classical path.
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2
a

ta tb tb+6tb I

Fig. 17. Two actual classical paths leave from the
same

spactime point A, but arrive at the final

pOSltlOl1 Zb at different times.

A similar calculation shows that the partial derivative of the classical action with respect to

the initial position za is

~~~'
= -pa

(121)
3za

where pa is the momentum at the initial position on
the classical path.

A.2.2 Partial derivatives with respect to time. Consider two actual classical paths whose

final times differ by 6tb
as

in figure 17, and let C be the point on
the path AB' with the same

abcissa as
B. Then the distance between B and C is

$
m

-iB< 6tb
" -iB 6tb

"
-16 6tb. (122)

Using equation (120)
we

find that the difference between the classical actions along the paths

AC and AB is

SAC SAB *
PbM

m
-pblb 6tb (123)

We also know that the difference between the actions along the paths AB' and AC is

SAB' SAC
"

SCB'
"

Lb 6tb, (l~~)

where Lb is the value of the Lagrangian at the point B
on the path AB.

Adding the above two equations gives the variation in the action due to the change in the

final time

65
=

SAB> SAB
=

(Pbib Lb 6tb (125)

Substituting the definition (8) of the Hamiltonian into the above equation gives

3S~i
~ (126)$ ~'
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A similar calculation shows that the partial derivative of the classical action with respect to

the initial time is

~)~ ~~' ~~~~~
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