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Abstract. We apply a simple linear transform, the along-

track second derivative, to four years of scalar and vectorial

data from the CHAMP satellite. This transform, reminis-

cent of techniques used in the interpretation of aeromagnetic

surveys, is applied either to the geocentric spherical compo-

nents of the field or to its intensity. After averaging in time

and space, we first produce a map of the crustal field, then

maps of the equatorial electrojet field at all local times and all

universal times. The seasonal variation of the electrojet, its

evolution with the solar cycle, and the effect of geomagnetic

activity are discussed. The variation of the electrojet with

longitude, an intriguing feature revealed by satellite data, is

described in some detail, and it is shown that this longitude

dependance is stable in time. The existence of a counter-

electrojet in the morning, everywhere except over the Pacific

Ocean, is established. The signatures of closure electric cur-

rents and of interhemispheric currents are also evidenced.

Keywords. Geomagnetism and paleomagnetism (Time vari-

ations, diurnal to secular) – Ionosphere (Electric fields and

currents; Equatorial ionosphere)

1 Introduction

The equatorial electrojet was discovered after the establish-

ment of a geomagnetic observatory at Huancayo, near the

dip equator. It appeared as an abnormally large amplitude

of daily variation in the equatorial component H . This en-

hancement was attributed by Egedal (1947) to a band of elec-

tric current about 300 km wide, flowing along the geomag-

netic dip equator in the ionospheric E region. It was named

the equatorial electrojet (EEJ hereafter) by Chapman in 1951

(see Rastogi, 1989, for a history of the discovery of the elec-

trojet).

The EEJ is due to a local enhancement of the ionospheric

conductivity in the direction parallel to the geomagnetic dip

Correspondence to: A. Chulliat

(chulliat@ipgp.jussieu.fr)

equator. This effect, known as the Cowling effect, is caused

by the establishment of a strong, vertical polarisation electric

field in the equatorial region, where the magnetic field lines

are nearly horizontal. The EEJ flows eastward, like the Sq

currents at low geomagnetic latitudes. A large number of

studies have been devoted to the ionosphere in the equatorial

region (see Forbes, 1981; Rastogi, 1989, for reviews).

Up until recently, most results about the magnetic field

produced by the EEJ came from ground data. These data

were acquired in equatorial observatories and by chains

of magnetometers installed along the north-south profiles

across the dip equator in South America (Forbush and

Casaverde, 1961; Rigoti et al., 1999), Africa (Fambitakoye

and Mayaud, 1976; Doumouya et al., 1998) and India (Ras-

togi, 1989). Unfortunately, no truly global picture of the EEJ

can be inferred from ground data only, since a large fraction

of the dip equator lies over the ocean. The Magsat satellite

only partially improved the situation as it provided a global

picture of the EEJ field only around 06:00 and 18:00 local

times, where the EEJ is very weak and cannot easily be sepa-

rated from the underlying crustal field (Cohen, 1989; Cohen

and Achache, 1990; Langel et al., 1993; Sabaka et al., 2002).

The situation has very much improved since the launch

of the Ørsted and CHAMP satellites in 1999 and 2000, re-

spectively. Both low-Earth orbiting satellites have been pro-

viding continuous global coverage of the magnetic field with

unprecedented precision, at all local times. Relying on this

new data set, several studies have been devoted to the global

structure of the EEJ and its variability with season and ge-

omagnetic activity, either using Ørsted data (Jadhav et al.,

2002a,b; Ivers et al., 2003) or CHAMP data (Lühr et al.,

2004). An outstanding issue in all these studies is the varia-

tion with longitude of the EEJ maximum intensity. So far no

agreement on the shape of longitude profile has been reached

and the origin of this variation is left unexplained.

The goal of the present paper is to rely on CHAMP data

to produce global maps of the magnetic field anomaly gen-

erated by the EEJ, at all local times and all universal times,

and to investigate how this anomaly changes with longitude,
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season and geomagnetic activity. CHAMP data are actually

more suited to EEJ studies because CHAMP flies at a lower

altitude (about 400 km instead of 750 km), i.e. closer to the

EEJ, and undergoes a quicker drift in local time. We will

keep here to a descriptive point of view, not resorting to any

kind of modeling, except for the main field, and using instead

a method somewhat inspired by geophysical prospecting.

2 Data and analysis

In the present paper, we use CHAMP one-second data ac-

quired during the time span 2001–2004. The CHAMP satel-

lite, launched in 2000, is ideally suited for studying the

equatorial electrojet. Orbiting at a slowly decreasing alti-

tude between 350 and 450 km, it has been providing near-

Earth, high-precision magnetic data at all local times for

about 4 years. The three components of the field are mea-

sured using a fluxgate tri-axial sensor and the intensity of the

field is measured using an Overhauser magnetometer. Data

are acquired every one second. We consider all data provided

by both instruments over 2001–2004, without omitting data

points based on geomagnetic selection criteria (except as in

Sect. 3.6).

Our goal is to separate the EEJ field from the other com-

ponents of the Earth’s magnetic field: the main field, the

crustal field and the part of the external field produced by

other sources than the EEJ. We proceed in the following man-

ner.

2.1 Computing the along-track derivative

The data used in this study are sampled every one second; the

distance 1l covered by the satellite in one second is about

7 km. We place a data point P on the orbit through its time

measurement t (in seconds; t is an integer). We estimate the

first and second along track derivatives of the X component

at point P using the formulae:

Ẋk(t) =
X(t + k) − X(t)

k
(1)

and

Ẍk(t) =
X(t + k) − 2X(t) + X(t − k)

k2
, (2)

where k is also expressed in seconds. Formulae (1) and (2)

are applied at each data point P(t), so no information is lost.

In fact, in this paper we will use only the second derivative

(2). It is well known and obvious that the value of the opera-

tor (2) greatly varies with the wavelength of the signal X(t),

or X(t1l).

2.1.1 Removing the main field

It is not essential in the following analysis to remove the main

field, by which we mean the core field represented by the

spherical harmonics expansion model, but we have done so

for reasons mentioned later. This field is large compared to

the EEJ field at the satellite and ground altitudes, but it is

broader in scale. The typical length scale of an EEJ profile

perpendicular to the dip equator is 500 km (Rastogi, 1989),

while the length scale of the n-th degree harmonics of the

spherical harmonic expansion is 40 000/n km. Looking at

the well known “spectrum” of the main field, extending from

n=1 to n=13 (it is generally believed that the core field dom-

inates the internal field up to degrees 13 or 14, whereas the

crustal field dominates for higher degrees), it appears that the

second derivative operator leaves behind a small contribution

of the main field. Furthermore, we will consider day-night

differences which will further reduce this contribution.

However, in what follows the data points P will be dis-

tributed into bins whose altitude will be assumed uniform.

The real distribution of altitudes is complex, and even when

considering a large number of points P distributed over a full

year, the mean altitude may vary from bin to bin. In addi-

tion, as the main field is large, a significant noise may result.

For this reason, a degree 13 main field model at epoch 2000

computed by Langlais et al. (2003) was substracted from the

data. The result is denoted 1B=B−Bmodel for the vector

field, 1X, 1Y , 1Z for each component and 1F for the field

intensity.

2.1.2 The choice of the step k

Let us consider an along-track profile X(t) (or X(t1l), t=1,

2 ... in s). To simplify the writing, we will still write X, Y

and Z for the components of 1B in the present paragraph.

In the absence of noise, we could take k=1 in Eq. (2), in

order to obtain the most accurate local estimate of Ẍ. But

X is affected by a strong noise ξ (which we will not analyse

here):

Xm(t) = X(t) + ξ(t) , (3)

where m is for “measured”; let us suppose ξ is un-

correlated, or poorly correlated. The second difference

ξ(t+k)+ξ(t−k)−2ξ(t) does not change with k, whereas the

second difference X(t+k)+X(t−k)−2X(t) increases with

k; so the noise contribution to Eq. (2) decreases rapidly with

k. But we cannot increase k beyond some limit: it must re-

main small enough for Eq. (2) to be a good estimate of Ẍ for

the wavelengths we want to study – here the characteristic

length of the EEJ field.

Let X(t) be represented on the CHAMP orbit great circle

of radius R by

X(t) =
∑

m

Am exp(imvt/R) , (4)

where v≈7 km/s. Then the first and second derivatives of

X(t), using a step k, will have coefficients A
k,j
m related to the

Am as

|Ak,j
m | = G

k,j
m |Am| , (5)
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where

G
k,j
m =

1

kj

[

2 − 2 cos(mvk/R)
]j/2

(6)

and j is the order of the derivative. G
k,j
m is the gain factor

for the A
k,j
m coefficient (see Olsen, 2004). It is plotted as

a function of the wavelength λ=2πR/m for j=2 and three

different values of k on Fig. 1. The maximum gain for j=2

and k=20 s is 0.01 at wavelength λmax=2kv≈280 km.

In the present paper we chose k=20 s, after checking that

the results are stable for 15<k<25. For values of k between

15 s and 25 s, Eq. (2) provides us with a true spatial derivative

which fits our needs. The daily variation SR and the ring

current field have far longer spatial length scales than the EEJ

field and are eliminated (or at least much reduced) by the

selected second derivative filter. (Moreover, part of the ring

current field is included in the main field model.)

Note: It is rather easy to determine that the minimum value

of k for the noise contribution to Eq. (2) is smaller compared

to Ẍ; to this aim, one takes the absolute value of the second

difference in Eq. (2) and looks at the evolution of the results

with k.

2.2 Computing the longitudinal component

Let us denote by b the anomaly vector after applying the

along-track second derivative (b=1̈B). Its components in

geocentric coordinates are 1̈X, 1̈Y , and 1̈Z. Its projection

on the direction of the main field B, i.e.

bl = b ·
B

|B|
, (7)

will be called the longitudinal component of the anomaly

field. We have that

bl = α1̈X + β1̈Y + γ 1̈Z , (8)

where α, β and γ are the direction cosines of B, i.e. the

cosines of the angles between B and the x, y and z axes. The

longitudinal component bl is more suited to the study of the

EEJ than b, because it is much less affected by instrumen-

tal noise due to uncertainties in attitude determination, and

by field-aligned currents (which generate transverse fields).

However, Cartesian components of b also bring valuable in-

formation, as will be seen in the following section.

It is possible to perform a very similar analysis using scalar

data only. F can be
√

X2+Y+Z2 or given by the scalar mag-

netometer. The along-track second derivative of the field in-

tensity may be expressed as

1̈F = α1̈X + β1̈Y + γ 1̈Z + α̇1̇X + β̇1̇Y + γ̇ 1̇Z . (9)

Due to the long wavelengths of α, β, γ and the short wave-

lengths of the EEJ field, the last three terms of the RHS of

(9) are much smaller than the first three terms and therefore

we have that

1̈F ≈ bl . (10)
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Fig. 1. Gain factor of the along-track second derivative as a func-

tion of the wavelength of the signal, using a step k=15 s (red curve),

k=20 s (blue curve) and k=25 s (green curve). The wavelength

λmax≈280 km associated with the maximum gain for k=20 s is in-

dicated on the graph.

Using X, Y , Z and F data, we have checked that there are

only very minor differences between maps computed from

1̈F and maps computed from bl . In what follows we will

show results for the longitudinal component (7) only, but

all maps have also been computed using the scalar second

derivative (9).

2.3 Averaging in space and time

We average both in time and space, trying to lose as little

information as possible. Time averaging, over time spans

much longer than one day, is used to smooth the big day-to-

day variability of the electrojet. It is also necessary to con-

sider long time spans in order to have enough individual mea-

surements to average both in time and space. Instrumental

noise and instantaneous fields of various origins are always

present. Although we usually consider all the data acquired

from 2001 to 2004, we sometimes use them after creating dif-

ferent subsets (for example, 2001, 2002, 2003 and 2004), in

order to investigate the stability of different patterns of their

temporal variations.

For a given subset, we distribute the data within bins of

size 2.5◦×2.5◦ in latitude and longitude, without sorting the

altitudes. The total number of bins is 10 368. For each bin

i, we compute the average of Ẍ(P ) over all points P within

the bin; the same is done for Y and Z. This average value,

represented by a colored pixel on the maps, is attributed to

the bin i.
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-0.02 -0.01 0.00 0.01 0.02

Fig. 2. Along-track second derivative of the crustal field (in nT/s2)

from data in 2001–2004, longitudinal component.

2.4 Removing the crustal field

The crustal field has energy in the same spatial frequency

domain as the EEJ, so the two fields cannot be separated

through their spectral content. However, the crustal field

does not change in time, contrary to the EEJ field, which can

be assumed to vanish around local time midnight. Therefore,

the maps obtained by our analysis at local times around mid-

night have no contribution from the EEJ, and the same crustal

field contribution than at any other local time. We take ad-

vantage of this fact and of the adequate accuracy of our maps

of averaged quantities, to extract an averaged map computed

from 21:00 LT to 03:00 LT, from the other maps, in order to

eliminate the crustal field.

3 Results

3.1 Crustal field

As said earlier, processing the data relative to the night local

time – in fact from 21:00 LT to 03:00 LT – provides simply

the map of the lithospheric field (Fig. 2). It is, of course, a

transformed anomaly map, a map of the along-track second

derivative of the intensity anomaly (not the intensity of the

anomaly), often considered when dealing with aeromagnetic

surveys in which only the intensity is measured. Note that

the auroral zones are hidden using an ad hoc mask. The same

mask will be used in all the maps presented in the paper.

The map of Fig. 2 is very stable, i.e. is the same when

computed from different subsets of the four years of data. It

presents the well-known drawbacks and advantages of this

kind of map. On the one hand, since the orbits are grossly

meridian, the fields of geological structures trending east-

west are amplified and, due to the angle between the main

field and the vertical, the anomalies are displaced in the

meridian direction with respect to their sources. On the other

hand, anomalies can be decoalesced and made easier to in-

terpret. Lithospheric anomaly maps have been derived from

CHAMP and Ørsted data by Maus et al. (2002), following the

earlier maps based on MAGSAT data (Cohen and Achache,

1990; Ravat et al., 1995). We will not discuss the lithospheric

field in this paper, which is devoted to the equatorial electro-

jet field.

3.2 Variations with local time

In order to study the variations with local time (LT) of

the EEJ field, we split the data of the interval 2001–2004

into 24 subsets, corresponding to the following LT intervals:

00:30–01:30, 01:30–02:30, etc., 23:30–00:30. The maps for

the longitudinal component at 06:00, 08:00, 10:00, 12:00,

14:00, 16:00 and 18:00 LT are shown in Fig. 3. (Other maps

are not shown due to the limited space available.)

The map at 00:00 LT (Fig. 3a) contains no EEJ signal.

The remaining features, after removing the crustal field, are

indeed very tiny and give an idea of the error in maps at other

local times.

A negative signal along the dip equator is visible at

06:00 LT (Fig. 3b). (In fact, it is already slightly visible one

hour earlier). This signal is maximal over Africa, where it

reaches −0.005 nT/s2 (i.e. about −10−4 nT/km2), but is ab-

sent over the Pacific Ocean. It has been previously observed

at ground stations in Africa, India and South America and

is sometimes referred to as the morning counter electrojet

(Gouin and Mayaud, 1967; Mayaud, 1977). The counter

electrojet disappears at 08:00 LT everywhere except over

South America (Fig. 3c).

Between 10:00 LT and 14:00 LT (Figs. 3d–f), the full EEJ

signal is visible. It is made of three parallel bands aligned

and symmetrical with respect to the dip equator. Each band

has an approximate width of 1000 km. The central band is

positive and is caused by the eastward equatorial electrojet.

The two flanking bands are negative and of slightly lower

intensity; we will show in Sect. 3.5 that they are due to west-

ward return currents. The intensity of the signal is maximal

at 12:00 LT. Somewhat unexpectedly, it is slightly higher

at 10:00 LT than at 14:00 LT. All three bands have abso-

lute extrema between 0.005 and 0.02 nT/s2 (i.e. 10−4 and

4×10−4 nT/km2) at 12:00 LT.

At 16:00 LT (Fig. 3g), the EEJ signal looks like that at

08:00 LT, perhaps with a slightly stronger positive central

band. It is maximal over the Eastern Pacific Ocean, a region

where it is weak at 08:00 LT.

The dusk features of the EEJ are markedly different from

the dawn features. At 18:00 LT (Fig. 3h), the EEJ signal is

almost no longer visible. It is the green band along the geo-

magnetic equator. There is no afternoon counter electrojet.

3.3 Variations with universal time

The variations with universal time (UT) are studied in

the same manner as the variations with local time, us-

ing 24 subsets corresponding to UT intervals 00:30–01:30,

Ann. Geophys., 24, 515–527, 2006 www.ann-geophys.net/24/515/2006/
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

-0.02 -0.01 0.00 0.01 0.02

Fig. 3. Variation with local time of the along-track second derivative of the equatorial electrojet field (in nT/s2), longitudinal component, at

00:00 (a), 06:00 (b), 08:00 (c), 10:00 (d), 12:00 (e), 14:00 (f), 16:00 (g) and 18:00 (h).

01:30–02:30, etc., and applying the same analysis to the lon-

gitudinal component. The result is an hour-by-hour movie of

the EEJ displacement around the world. Expectedly, the EEJ

is made of the same three bands as in the LT maps and fol-

lows the dip equator. Less expectedly, its length and intensity

varies significantly along its path. Due to the limited space

available, only the maps at 06:00, 11:00 and 17:00 UT are

presented in Fig. 4.

The EEJ at 06:00 UT (Fig. 4a) is made up of three parts:

a head at the western side, a body and a tail at the eastern

www.ann-geophys.net/24/515/2006/ Ann. Geophys., 24, 515–527, 2006



520 J.-L. Le Mouël et al.: The field of the equatorial electrojet from CHAMP data

(a)

(b)

(c)

-0.02 -0.01 0.00 0.01 0.02

Fig. 4. Variation with universal time of the along-track second

derivative of the equatorial electrojet field (in nT/s2), longitudinal

component, at 06:00 (a), 11:00 (b) and 17:00 (c).

side. The head and tail consist of several patches within the

central band along the dip equator, while the body consists of

the three bands visible on LT maps. In good agreement with

LT maps, the signal within the head (i.e. at dawn) is negative

while the signal within the tail (i.e. at dusk) is positive. The

head is significantly longer than the tail. The patches over

Africa are located about 2000 km in front of the EEJ body,

while the tail patches are about 1000 km behind it.

At 11:00 UT (Fig. 4b), the EEJ reaches the point over the

Atlantic Ocean where the dip equator bends southward. The

body of the EEJ seems to be slightly compressed at its front

by this sudden turn. At the same time, both the head and tail

expand over several thousands of km and are longer than at

other UT.

At 17:00 UT (Fig. 4c), the opposite situation occurs. The

EEJ reaches its maximum length, about 3000 km from the

middle of the Pacific Ocean to the Western coast of Africa.

(a)

(b)

(c)

-0.02 -0.01 0.00 0.01 0.02

Fig. 5. Along-track second derivative of the equatorial electrojet

field (in nT/s2) at 12:00 UT, from the X (a), Y (b) and Z (c) com-

ponents.

It is made of entirely of all three band types and has no dis-

cernible head or tail.

These variations with UT of the EEJ structure will be fur-

ther discussed in Sect. 3.6, where the longitude profile aver-

aged over the width of the EEJ will be quantified and plotted

for several UT.

3.4 Cartesian components

Figure 5 shows maps obtained from the along-track second

derivatives of the X, Y and Z components of the field, at

12:00 UT. The EEJ is conspicuous on both the X and Z maps,

much less on the Y map.

The X map looks very much the same as the corresponding

map for the longitudinal component, which is not surprising,

as the horizontal field direction is nearly aligned with the hor-

izontal north direction, except in the region over South Amer-

ica, where the dip equator is curved. The main difference

Ann. Geophys., 24, 515–527, 2006 www.ann-geophys.net/24/515/2006/
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Fig. 6. Profile normal to the dip equator of the equatorial electrojet

field, longitudinal component, using a step of 5 km: along-track sec-

ond derivative, in nT/km2 (a); twicely integrated along-track second

derivative, in nT (b); original signal, before treatment, in nT (c).

between Fig. 5a and Fig. 4 is the amount of small-scale fea-

tures at mid-latitudes. These features are widely spread and

mainly concentrated around 06:00 LT and 18:00 LT. They are

roughly symmetrical with respect to the dip equator.

The Y component map shows the same kind of features

at mid-latitudes, although not concentrated at the same lo-

cal times. They are almost uniformly distributed between

06:00 LT and 18:00 LT. The EEJ signal is weak and is made

of two bands roughly parallel to the dip equator, of opposite

signs. It is negative north of the equator and positive south

of the equator. These features could be due to meridional

currents flowing northward and southward from the EEJ.

Small-scale features are also present in the Z component

map. They are distributed at lower latitudes than for the two

other components and are concentrated around 06:00 LT and

18:00 LT. The EEJ signal is as strong as for the X component
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Fig. 7. Profile normal to the dip equator of the magnetic anomaly

at the satellite altitude generated by a single current line along the

equator when the main magnetic field is assumed axial dipolar: X

component (red curve), Z component (blue curve) and F compo-

nent (green curve).

but has a different shape. There are two extrema, antisym-

metrical about the dip equator, which is in good agreement

with theoretical predictions for a linear current flowing east-

ward like the EEJ.

The distribution of the mid-latitude small-scale features

suggest that they are due to mid-latitude field-aligned cur-

rents (Olsen, 1997) (indeed these features do not appear on

the longitudinal component maps). Such currents electrically

connect the two hemispheres during the day. Due to bound-

ary effects, the magnetic field they generate is mainly north-

ward or southward at dawn and dusk. Also, the vertical com-

ponent is larger near the equator where the magnetic field

lines become horizontal (see Sect. 4).

3.5 Profile normal to the dip equator

The profile normal to the dip equator of the EEJ field, lon-

gitudinal component, is represented in Fig. 6a, using a step

of 5 km. It is averaged along the whole equator. The main

positive peak is centered exactly on the equator and reaches

2×10−4 nT/km2, i.e. about 0.01 nT/s2. The secondary neg-

ative peaks are about 500 km apart and reach 10−4 nT/km2,

i.e. about 0.005 nT/s2. This is in good agreement with previ-

ous maps (Figs. 3 and 4).

The same profile, twice integrated in the direction perpen-

dicular to the dip equator (using the same step of 5 km), is

shown in Fig. 6b. It can be checked in Fig. 6c that the aver-

aged profile is similar to the original profile before treatment.

Expectedly, the along-track second derivative has filtered out

the large-scale variation associated with the Sq current sys-

tem, without attenuating the EEJ signal. (High-frequency

www.ann-geophys.net/24/515/2006/ Ann. Geophys., 24, 515–527, 2006
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terval 2001–2004 (in black); results obtained without removing the

crustal field, using data from 6 h of day only (in red) and 6 h of night

only (in blue). The anomaly is projected onto the normal to the dip

equator and then averaged over a 500-km wide and 1300-km long

window sliding along the equator.
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Fig. 9. Comparison of the longitude profiles of the equatorial elec-

trojet field, longitudinal component (in nT/km2), obtained from

2001–2002 data only (in black) and 2003–2004 data only (in red).

noise is present in Fig. 6c and not in Fig. 6a because the data

are averaged over all longitudes without being averaged in

2.5◦×2.5◦ bins, as this is the case when producing Figs. 6a

and 6b.)

Figures 6b and c show that the main peak in the second

derivative curve corresponds exactly to the central peak of

the raw field anomaly. The secondary peaks in the second

derivative curve are, as expected, slightly shifted from their
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Fig. 10. Variation with geomagnetic activity of the longitude pro-

file of the equatorial electrojet field, longitudinal component, in

nT/km2: am<9 (in black), am>33 (in red).

positions in the raw field curve, by about 250 km towards the

dip equator. However, the ratio of intensities between these

peaks and the main peak, about 2, is almost not affected by

the second derivative.

While the central band of the EEJ signal on the maps in

Figs. 3 and 4 is clearly caused by an eastward electric current

along the dip equator, the origin of the two flanking bands,

visible from 08:00 LT to 16:00 LT, is less obvious. They

could be caused by the eastward band of the current itself or

by westward return currents on each side of the central east-

ward current. To shed light on this issue, let us assume that

the main field is axial dipolar (hence the dip equator and geo-

graphic equator are the same) and consider a single eastward

current line along the equator at the altitude 100 km. Line

current models are widely used in the literature (e.g. Fam-

bitakoye and Mayaud, 1976), although they are often more

complicated than this one. The field anomaly generated by

this current line at the altitude 400 km is calculated in Ap-

pendix A and is represented as a function of the latitude in

Fig. 7. There is no flanking high on the X and F components,

because the profile is calculated well above the electric cur-

rent line and the spherical geometry of the Earth is taken into

account. (The same calculation applied to a zero altitude in-

deed leads to flanking highs.) The comparison of Figs. 6b

and 7 suggests that the two flanking bands require westward

return currents on each side of the central EEJ.

3.6 Profile along the dip equator

The longitude profile of the EEJ field, longitudinal compo-

nent, is calculated using a 500-km wide and 1300-km long

window sliding along the dip equator; 500 km is roughly the

width of the uppermost part of the EEJ peak (see Fig. 6a), and
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Fig. 11. Variation with universal time of the longitude profile of the equatorial electrojet field, longitudinal component, in nT/km2. The

profiles are computed over 2001–2002 (black curves) and 2003–2004 (red curves) at 06:00 (a), 08:00 (b) and 22:00 (c).

1300 km has been chosen in order to average out the fluctua-

tions associated with the satellite altitude variations.

The resulting curve for 2001–2004 is displayed in Fig. 8,

as well as the two curves obtained without removing the

crustal field, by selecting data from 6 h of night only and 6 h

of day only. The night curve displays short scale features

due to the crustal field, in particular a large negative peak in

Africa associated with the Bangui anomaly. No fluctuation

due to the satellite altitude variations is visible. As expected,

the difference between the night and day curves is close to

the EEJ longitude profile, which displays four main peaks al-

most equally distributed around the dip equator, at around 0◦,

90◦, 180◦, and 270◦ longitude. The field second derivative in

these peaks is roughly twice that outside the peaks.

As shown in Fig. 9, the shape of the longitude profile is al-

most the same in 2001–2002 and 2003–2004. As 2001–2002

and 2003–2004 are two distinct data sets, we can conclude

that the four-peak structure is very robust. The major dif-

ference between the two curves is that the 2003–2004 one is

slightly but systematically lower than the 2001–2002 one. In

other words, the EEJ intensity varies with solar activity, as

solar activity regularly decreases from 2001 to 2004. This

is not surprising as the ionospheric conductivity is strongly

dependent upon the UV radiation flux, which is governed by

solar activity. This effect is very significant, as it overcomes

the increase in the signal caused by the regular altitude de-

crease of CHAMP (from 450 km in 2001 down to 370 km at

the end of 2004).
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Fig. 12. Seasonal variation of the longitude profile of the equatorial electrojet field, longitudinal component, in nT/km2: spring (a), summer

(b), autumn (c) and winter (d). The profiles are computed over 2001–2002 (red curves) and 2003–2004 (black curves).

In order to check whether geomagnetic activity also has an

influence on the EEJ intensity, we have analysed the variation

with geomagnetic activity of the EEJ longitude profile using

the am index to select data. We chose am instead of Kp

because am relies on a large network of observatories and

is directly expressed in nT (Mayaud, 1980). The obtained

curves are displayed in Fig. 10. Somewhat surprisingly, there

is no clear effect of geomagnetic activity on the EEJ intensity.

The anomaly on quiet days is alternately larger and smaller

along the dip equator than the anomaly on disturbed days.

Figure 11 shows the variation with universal time of the

longitude profile of the EEJ field for the time intervals 2001–

2002 and 2003–2004. At 06:00 UT (Fig. 10a), the long-

wavelength features are the same for both time intervals,

although short-wavelength features are somewhat different.

As noted previously, the 2001–2002 anomaly is slightly more

intense than the 2003–2004 one. On both curves, the counter

electrojet is clearly visible at the left side of the peak, in good

agreement with the anomaly map displayed in Fig. 4a. At

08:00 UT, the peak is much smaller; this corresponds to a

low in the averaged longitude profile (see Fig. 8). Again, the

large-scale features of the profile are very stable from one

time interval to the other. At 22:00 UT, the EEJ is slightly in

advance in 2003–2004 with respect to 2001–2002, but the tail

is less intense. All these snapshots show that the main fea-

tures of the EEJ longitude profile are very robust over four

years.
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The seasonal variation of the EEJ longitude profile is

shown in Fig. 12, using data from the time intervals 2001–

2002 and 2003–2004. The profiles for 2001–2002 look very

similar to those for 2003–2004, which suggests that the ob-

served seasonal variability is a robust feature, stable over at

least four consecutive years. There is a strong variability of

the EEJ intensity from one season to the other. The EEJ

anomaly is maximal in spring and autumn and minimal in

summer. The difference between summer and winter mainly

comes from lower lows in summer, rather than from higher

peaks in winter. The four peaks are clearly visible in sum-

mer and autumn, less visible in spring and winter. (Note that

splitting the data decreases the number of data per bin.)

4 Discussion

The method of analysis used in the present paper resorts to

no modeling, except that of the main field (which could, in

principle, be skipped), no a priori assumption regarding the

structure of the EEJ, nor any other current system, and no

complicated filtering. It has been checked that each step of

the analysis removes the signal generated by one or several

well-identified sources.

– The efficiency of the along-track second derivative for

removing large-scale fields of external and internal ori-

gin has been optimized by fine-tuning down to 20 s the

step used when computing the derivative in Eq. (2).

– It has been shown that the projection onto the main field

direction removes almost all of the field-aligned current

effect. This is illustrated in Fig. 5, where the along-

track second derivatives of the anomaly Cartesian com-

ponents (and not that of the longitudinal projection) are

shown.

– The main features of the anomaly map obtained from

nightside data are in good visual agreement with crustal

field maps obtained by other methods. For example,

we also find that bigger anomalies are systematically

located on continents.

– The averaging over enough long periods of time signifi-

cantly smooths the day-to-day variability, which is high

for magnetic fields produced by ionospheric sources;

the results obtained from various subsets of data are in-

deed consistent.

These precautions make the obtained maps and profiles very

robust and very little room is left for the unwanted signal in

them.

The maps in local time and universal time presented in

Figs. 3 and 4 are actually parts of two 24-picture movies.

More pictures in each movie could be produced by the same

method, if needed. These movies are, to our knowledge, the

first global visualizations of the EEJ anomaly at all local and

universal times. For example, Ivers et al. (2003) studied only

a few local times, as made available by the slowly drifting

Ørsted satellite, while Lühr et al. (2004) only focussed on

the EEJ at noon local time.

The structure of the EEJ field, as revealed by the movies,

confirms the global existence of phenomena observed previ-

ously in a few places. In particular, we find that the counter-

electrojet is present in the morning only, as observed by Fam-

bitakoye and Mayaud (1976) from ground stations in Central

Africa, and later by Cohen and Achache (1990) from Magsat

dusk and dawn data. The cause of this phenomenon is still

unknown; further theoretical investigations are now needed

to make progress on this issue.

Westward return currents are clearly visible on the maps,

starting as soon as the main eastward electrojet in the morn-

ing and vanishing simultaneously with it at dusk. Their in-

ferred size at noon is in good agreement with that obtained

by Lühr et al. (2004). Meridional currents are also visible

in the Y component, as previously detected by Olsen (1997)

and Sabaka et al. (2004). The closure of the electric circuit

is still an open question. Unfortunately, our approach does

not make it straightforward to calculate an electric intensity

budget, so that we are unable, at the present time, to directly

compare with previously published budgets.

The determination of the longitude profile of the EEJ field

is only possible thanks to the global coverage provided by

satellite data. This is the reason why this issue has arisen only

recently in the literature and is still debated, although some

preliminary work has been done by Ravat and Hinze (1993)

using Magsat data. Our results are in good agreement with

those of Jadhav et al. (2002b) and Ivers et al. (2003) from

Ørsted data, who also observe four quasi-regularly spaced

peaks along the dip equator. There is less agreement with

the longitude profile presented by Lühr et al. (2004) (see

their Fig. 8), which only has two peaks. The difference

could come from the various models introduced by Lühr et al.

(2004) to extract the EEJ from the data: spherical harmonics

models of the core field, the crustal field and the Sq current

system, and a priori model of the EEJ current density.

5 Conclusions

In the present paper we have analysed the EEJ from CHAMP

satellite data, using a new method based on the computation

of the along-track second derivative. This method is a sim-

ple and efficient way to extract the EEJ signal from satellite

data by filtering out contributions from the other sources and

without resorting to any modeling, except that of the main

field. It has been applied to the full CHAMP data set over

four years, thus enabling one to study variations of the EEJ

with local time, universal time, solar activity, geomagnetic

activity and seasons. The main conclusions of this analysis

are:
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Fig. A1. Geometric notations used in the derivation of the field

anomaly generated by a single current line along the equator when

the main magnetic field is assumed axial dipolar.

1. The electrojet is made up of a central band of current

flowing eastward and two lateral, less intense, bands of

current flowing westward; the total size of the EEJ is

about 2000-km width.

2. There exists a morning counter electrojet over a large

fraction of the dip equator; there is no afternoon counter

electrojet.

3. The EEJ length varies along its path over the dip equa-

tor; it is compressed when the equator bends southward.

4. Meridional EEJ currents are visible on the Y compo-

nent.

5. Small-scale features, which could be attributed to in-

terhemispheric currents, are visible on the X, Y and Z

components at mid-latitudes.

6. The EEJ longitude profile displays four regularly spaced

peaks.

7. The EEJ intensity decreases with solar activity, which

suggests that it is strongly dependent upon the UV radi-

ation flux.

8. The EEJ does not vary with geomagnetic activity.

9. The EEJ is minimum in summer and maximum in

spring and fall.

In a further study, we will compare our results with those

predicted by the comprehensive model CM4 of Sabaka et al.

(2004).

Appendix A

Field generated by a current line at satellite altitude

Let us consider a single eastward current line along the ge-

ographic equator at an altitude hE=100 km and assume the

main geomagnetic field is axial dipolar. The purpose of this

Appendix is to obtain the expression of the field anomaly

generated by this current line along the orbit of a CHAMP-

like satellite, assumed to be polar and circular, at an alti-

tude hS=400 km. This is a 2-D problem, to be solved in

the meridian plane; see Fig. A1.

The north and downward vertical components of the

anomaly at a point P on the orbit may be expressed as

1X = −
µ0i

2πr
sin α , (A1)

1Z = −
µ0i

2πr
cos α , (A2)

where i is the current intensity, r the distance from the cur-

rent line and α the angle between the anomaly field and the

vertical direction at P . Then the scalar anomaly is

1F ≈ −
µ0i

2πr
(sin α cos I + cos α sin I ) , (A3)

where I is the local inclination of the main field.

In the case of an axial dipolar magnetic field, it is well-

known that I may be related to the latitude L using

I = arctan(2 tan L) . (A4)

Using classical trigonometric formulae, we find that

α =
π

2
− β + γ , (A5)

β =
π − L

2
, (A6)

γ = arctan

[

1h sin β

2(RT + hS) sin
(

L
2

)

− 1h cos β

]

, (A7)

where RT is the Earth’s radius, 1h=hE−hS and β and γ are

both defined as in Fig. A1. Therefore, the angle α is given by

α =
L

2
− arctan

[

1hcotan
(

L
2

)

2(RT + hS) − 1h

]

. (A8)

Substituting Eqs. (A4) and (A8) into Eq. (A3), we may cal-

culate the profile of the anomaly due to the current line along

the orbit of the satellite.
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