
TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 293, Number 1. January 1986 

THE FIFTH AND SEVENTH ORDER 
MOCK THETA FUNCTIONS 

BY 
GEORGE E. ANDREWSl 

ABSTRACT. The theory of Bailey chains is extended to yield identities for Hecke type 
modular forms and related generalizations. The extended results allow us to produce 
Hecke type series for the fifth and seventh order mock theta functions. New results 
on the generating function for sums of three squares also follow, and a new proof 
that every integer is the sum of three triangular numbers is given. 

1. Introduction. The mock theta functions were named and first studied by S. 
Ramanujan. Four months before he died, he sketched his results in a letter to G. H. 
Hardy [14, pp. 354-355]. The results in this letter formed the basis on which the 
intermittent study of these functions has proceeded [1-3, 11, 19, 20]. Ramanujan 
included in his letter [14, pp. 354-355] four separate classes of mock theta functions: 
one class of third order, two of fifth order, and one of seventh order. 

There have been a number of deep results obtained about the third order 
functions [3, 11, 19]. This is because Watson was able to find representations of 
them which allowed him to study their behaviour under the fundamental transfor-
mations of the modular group [19]. For example, 

(1.1) 
00 n 2 

f( q) = 1 + L 2 q2 2 2 
n~l (1 + q) (1 + q ) ... (1 + qn) 

is one of the third order functions. Watson showed that 
00 00 ( l)n n(3n+l)/2 

f( q) fl (1 - qn) = 1 + 4 L - 1 q n ' 
n~l n~l + q 

(1.2) 

and he then adroitly used the Poisson summation formula on the right-hand side of 
(l.2) to obtain the modular transformations of f( q). 

In 1976, Ramanujan's "Lost" Notebook came to light [5]. In it we find many 
results for the mock theta functions beyond those contained in Ramanujan's last 
letter. In particular, while (l.2) was not included in the last letter, it and generaliza-
tions of it are found in the "Lost" Notebook [5, p. 97, (3.3)]. 

However the fifth and seventh order functions have been more of a problem. No 
formula like (l.2) has ever been found for any of them, and none exists in 
Ramanujan's "Lost" Notebook. Indeed in his paper on the fifth order functions, 
Watson states [20, p. 274]: "I have failed to construct a complete and exact 
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114 G. E. ANDREWS 

transformation theory of the functions, on the lines of the transformation theory of 
the functions of the third order, and, in view of the complexity of all the series which 
are involved, I am becoming somewhat skeptical concerning the existence of an 
exact transformation theory for functions of the fifth order." 

The object of this paper is to provide the counterparts of (1.2) for the fifth and 
seventh order mock theta functions. This is, I believe, the necessary first step in 
finding the transformation theory whose existence is doubted by Watson. As an 
example, let us consider 

00 n 2 

fo(q) = 1 + n~l (1 + q)(1 + ;2) ... (1 + qn)' (1.3) 

one of the fifth order mock theta functions [20, p. 277]. We shall show in §5 that 
00 00 

(1.4) fo(q) n (1- qn) = L L (_I)Jq n(5n+l)/2-J2(I - q4n+2). 
n=l J=-oo n~ljl 

Note the resemblance of the expression on the right-hand side of (1.4) to certain 
identities for modular forms due to Hecke [12] and Rogers [15] (see §4). Presumably 
this· resemblance can be exploited to obtain the transformation theory alluded to by 
Watson. 

The next three sections describe the necessary background for our work. §5 is a 
slight digression since we are able to prove certain Hecke type identities directly 
from our work as well as a formula related to sums of three squares. Also we obtain 
the new identity 

(1.5) ( 
00 )3 00 2n q2n2+2n-(l~1)(1 + q2n+l) 

n"=oq(n j l) "" ~ = ~ ~ (1 2n+l) 
n=Oj=O -q 

00 2n qn+J(4n+l-J)/2(I + q2n+l) 
= L L ( 2n+l) , n=Oj=O I-q 

from which follows immediately Gauss's classic result that every natural number is 
the sum of three triangular numbers. §§6 and 7 contain our main results on the 
mock theta functions. 

2. Bailey chains. In [8], we presented a comprehensive treatment of Rogers-
Ramanujan type identities based on a little known result of W. N. Bailey [9, §4]. For 
the statement of Bailey's Lemma we need the following standard notation: 

00 

(2.1) 
n=O 

(2.2) (a; q)n = (a)n = (a; q)oo/(aqn; q)oo 
( = (1 - a )(1 - aq) ... (1 - aqn-l) for n a nonnegative integer). 

BAILEY'S LEMMA. If for n ~ 0 the sequences { an } and {f3n} are related by 
n a 

(2.3) f3n = L () c') , 
r=O q n-r aq n+r 
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THE FIFTH AND SEVENTH ORDER MOCK THETA FUNCTIONS 115 

then/or n ~ 0 

(2.4) 

where 

and 

(2.6) 

The above formulation is not at all the way Bailey stated this result [9, §4]. 
However, formulated as above it turns out to be incredibly powerful in obtaining 
and understanding Rogers-Ramanujan type identities. Pairs an' f3n can be sub-
stituted into identities like (3.1) to yield directly Rogers-Ramanujan type identities. 
The point is that once you find a pair of sequences an' f3n that satisfies (2.3) you can 
produce a new pair a~, f3~ that satisfies the same identity. Thus an infinite family 

(an,f3n) ~ (a~,f3~) ~ (a~,f3~') ~ ... 

of such "Bailey pairs" can be obtained merely by iterating Bailey's Lemma. 
Furthermore, if only the an sequence is given, then the f3n sequence is completely 
determined by (2.3). If only the f3n sequence is given, then (2.3) may be inverted to 
yield [5, Lemma 3] 

(2.7) = (1 _ 2n) ~ (aq)n+J-l(-lr-Jq(?)f3. 
an aq £... (). j" J-O q n-j 

Thus if only the f3n sequence is given, then the an sequence is completely determined 
by (2.7). 

Furthermore, the sequence may be extended to the left as well: 

... ~ (a(-2) 13(-2») ~ (a(-I) 13(-1») ~ (a 13) ~ (a 13') ~ ... n , n n , n n' n n' n . 

Obviously from (2.6) 

(2.8) a(-I) = (aq/PIL(aq/P2) r(PIP2/aq r ar 
r (PI) r(P2) r 

To back up in the chain of f3's is a little trickier. The relation is 

(2.9) f3~-I) = 1 t (aq/Pl)/aq/P2)ipIP2/aqL_/PIP2/aj)2n-Jf3J. 
(Pl)n(P2)n J-O (q)n-J 

To see this, let us define 

(2.10) 
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116 G. E. ANDREWS 

(2.11) 

00 

(2.12) b(t) = L Bllt n 
n~O 

and 
00 

(2.13) b_1(t) = L B~-I)tn. 
n~O 

Then by the q-binomial series [4, p. 17, (2.2.1)], we see that (2.5) is equivalent to 

(aqt/ PIP2) oob( -1) (t) 
(2.14) b(t) = (t)oo 

ObViously (2.14) is equivalent to 

(2.15) b_1(t) = ( (000) b(t), 
aqt/PIP2 00 

and (2.15) yields (2.8) by invocation again of the q-binomial series. 
We now have the four identities «2.3), (2.7)-(2.9» necessary so that we may start 

with either sequence of a Bailey pair, obtain the other sequence and then move either 
direction in the Bailey chain. 

3. The role of SCRATCHPAD. How can one gain a foothold in studying the mock 
theta functions? Our approach was to implement the study of Bailey chains on 
SCRATCHPAD, IBM's symbolic algebra package. To keep things as simple as 
possible we considered the case where PI and P2 ~ 00 and a = 1. Thus from Bailey's 
Lemma, we see that 

00 00 

(3.1) L qnl1n = (q)oo L qn2an , 

where by (2.7) 

(3.2) 
() () n-) ("-J)13 

an = (1 _ q2n) f. q n+)-1 -1 q 2 ) 

)~O (q)n-j 

Suppose we want the left side of (3.1) to coincide with (1.1). Then we must take 
1 

(3.3) 13n= 2 2 2 
(l+q)(1+q2) ···(l+qn) 

We now define an and 13n explicitly in SCRATCH PAD and ask for the first four 
values of an. SCRATCHPAD responds with 

1 
-4q 

q + 1 

~ 
q2 + 1 
_4q 6 

q3 + 1 
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THE FIFTH AND SEVENTH ORDER MOCK THETA FUNCTIONS 117 

The pattern suggested is quite clear; namely it is reasonable to conjecture that an is 
(_I)n4 q n(n+l)/2/(1 + qn) for n ~ 1, ao = 1. The insertion of this conjecture in (3.1) 
coincides, not surprisingly, with the known fact (1.2). 

Suppose now we redefine f3n by 

(3.4) 

This then makes the left-side of (3.1) identical with the series in (1.3) for the fifth 
order mock theta function fo( q). The pattern for the related an arising from (3.2) is 
now somewhat complicated so we ask SCRATCH PAD for the first nine values: 

1 
q2 - 3q 
q 7 _ 2q 6 _ q5 + 2q4 + 2q 3 
q15 _ 2q14 _ q12 + 4qll _ 2q 8 _ 2q6 
q26 _ 2q 25 + q22 + 2q21 _ 2q18 _ 2q17 + 2q13 + 2qlO 

ql00 _ 2q 99 + 2q 96 _ q92 _ 2q 88 + 2q 84 + 2q 83 
_ 2q 76 _ 2q 75 + 2q 67 + 2q 64 _ 2q 56 _ 2q 51 + 2q 43 + 2q 36. 

A careful look at a8 (and, in the actual discovery, a 7 and (9) suggests that a 
reasonable conjecture for an is 

n n-l 
(3.5) qn(3n+l)/2 L (_I)iq -i2 - qn(3n-l)/2 L (_I)iq -i2 • 

i~-n i~-n+l 

If we insert this conjectured formula for an into (3.1) we obtain (1.4) almost directly. 
Thus SCRA TCHPAD provides a powerful tool for the empirical analysis of Bailey 
chains. It should be emphasized that identity (1.4) appears nowhere in any of 
Ramanujan's known writings. 

4. Extensions of Shanks' formulas. Once the truncated theta series are ob8erved 
arising in (3.5), one immediately recalls the two elegant papers by D. Shanks on 
truncated theta series [16, 17]. Presumably, if Shanks' results can be embedded in the 
hierarchy of q-hypergeometric function identities, then adequate generalizations of 
his results should allow us to derive (3.5) and related formulae for the other fifth 
order mock theta functions. It turns out that if we move to the left one place in the 
Bailey chain for the fifth order mock theta functions, our work is greatly simplified. 
The following two lemmas provide us adequate q-hypergeometric series machinery 
for the appropriate new Bailey pairs given in Theorems 3 and 4. 

LEMMA 1. The sequences An' Bnform a Bailey pair where 

(4.1) 
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118 G. E. ANDREWS 

(4.2) 
An = (-l)"(aq)n_l(l - aq2n)qn(n-l)/2 t (bLqj(l-n)a- J 

(bq)n j=O (qL 

PROOF. All that is necessary is to evaluate (2.7) with f3n replaced by Bn: 

( 
2 ) ~ (aq)n+j_l(-l)"-jq("2"j)Bj 

An = 1 - aq n .t... 
j=O (q)n-j 

= (-l)n(aq)n_l(l - aq2n)qm t (aqn)j(q)n(bLa-jqj(l-n) 
(q)n j=O (qL(q)n-j(bq)j 

= (-l)"(aq)n_l(l - aq2n)qm t (q-nL(b)iaqn)jqj-d)a- j 

(q)n j=O (q)AbqL 

= (-l)"(aq)n_l(l - aq2n)q<2l lim t (q-nL(bL(aqnL(q/at)j 
(q)n /-->0 j=O (q)ibq)j(rlL 

= (-l)"(aq)n_l(l - aq2n)q<2l . (q)n t (q-nL(b)ja_~jqj(l-n) 

(q)n (bq)n j=O (q)iq)j 

(by [22, p. 175, (10.2)] with a = q-n, C = aqn, e = bq,j = (-1, P = q) 

= (-l)"(aq)n-l(l - aq2n)q<2) t (b)ja-jqj(l-n) , 
(bq)n j=O (qL 

as desired. 0 

LEMMA 2. 

(aq)n t (b)J(aqn+l/b)J 
(aq/b)nj=O (q)J 

PROOF. This result is merely a limiting case of Watson's q-analog of Whipple's 
theorem [18, p. 100, (3.4.1.5»). In fact, (4.3) follows immediately from the substitu-
tions g = q-n, e = b, c = aqn+l,/ -+ 00, d -+ 00. 0 

We remark that if in (4.3) we take a = 1 and let b -+ 00, we obtain Shank's finite 
version of Euler's pentagonal number theorem [16, p. 747, (2»). Shank's finite version 
of Gauss's theorem [17, p. 609, (3'») follows by replacing q by q2 in (4.3) and then 
setting a = 1, b = q. 

THEOREM 3. The sequences An' Bn/orm a Bailey pair where 

(4.4) 
B = (_1)"(b)nq-n(n-l)/2a-n 

n (q)n(bq)n ' 
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THE FIFTH AND SEVENTH ORDER MOCK THETA FUNCTIONS 119 

(4.5) 
A = (-lr(aq)n_l(b)n a-nq-<2l(l - aq2n) 

n (bq)n(q)n 

(-lr q<2lbn- 1(aq/b) n-l(l - aq2n) 
+ (bq)n 

'(1 + n£l (aq)J-I(1- aq2J)(bLa-Jq-J2b-J). 
j=l (qL(aq/bL 

PROOF. Since the Bn sequence given by (4.4) is the same as the one in Lemma 1, 
equation (4.1), we see that we only need to identify the expression in (4.2) with the 
right-hand side of (4.5). In Lemma 2 replace a by a-I, b by b-I, q by q-l and n by 
n - 1; hence 

(4.6) 
1 + n£l (aq)J-l(l - aq2J)(bLa-Jb-Jq-J2 

j=l (q)Aaq/bL 

bl-n( ) n-l (b) "a-Jq" J(l-n) 
= aq n - I L -'---''-''J_--''--__ 

(aq/b)n-l j=O (q)J 
Now let us examine the sum in (4.2). We split off the term) = n which yields the 
first summand on the right-hand side of (4.5); the remainder of the sum in (4.2) is 
identical with the sum of the right--hand side of (4.6). Hence multiplying both sides 
of (4.6) by bn-l(aq/b)n_l/(aq)n_l and substituting the resulting left-hand side into 
(4.2), we obtain the second term in (4.5). 0 

THEOREM 4. The sequences A~, B~form a Bailey pair where 

(4.7) , 1 
Bn = (bq) n ' 

, (-lr(aq)n_l(b)nq("i 1 )(1 - aq2n) A = -'----'---'----"-'--"-~-:-'--"~-'------.!...--'-

n (bq)n(q)n 
(4.8) 

(-lr anqn(3n-I)/2bn- l( aq/b) n-l(1 - aq2n) 
+ (bq)n 

'(1 + n£l (aq)J-I(l- aq2J)(b)Ja-Jq-J2b-J). 
j=l (qL(aq/b)J 

PROOF. We apply Bailey's Lemma (with PI' P2 ~ 00) to the Bailey pair in 
Theorem 3 and the resultingA~ = anqn'An which is precisely (4.8). Now by (2.5) 

(4.9) 

as desired. 0 

B~ = f. aJqJ2 (_1)J(b)Jq-JU- I)/2a- J 
j=O (q)n-J (q)J(bq)J 

= _1_ f. (q-nL(b) j q(n+I)J 
(q)n j=O (q)J(bqL 

1 
= -(") by [18, p. 97, (3.3.2.6)], 

bq n 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



120 G. E. ANDREWS 

5. Heeke modular form identities. E. Hecke [12] made an extensive study of double 
theta type series involving an indefinite quadratic form. For example, he showed 
that 

00 

(5.1) (q)~ = L L (_lr+ mq(n;ll-m(3m-ll/2. 
m=-oo n:2:2lml 

Actually as D. Bressoud points out [10], identity (5.1) was discovered originally by L. 
J. Rogers [15]. Subsequent studies of these types of identities have been made by 
Kac and Peterson [13], Bressoud [10], and the author [7]. 

The Bailey pair in Theorem 3 leads naturally to Theorem 5, an infinite product 
expansion which implies several Hecke modular form type results. 

THEOREM 5. Let An be defined by (4.5); then 

(5.2) 
(q)oo(bq/Y)oo(aq)oo = ~ (y)n(-a/yrq(n;llA n 

(bq)oo(q/Y)oo(aq/y)oo n=O (aq/Y)n 

PROOF. We take the Bailey pair from Theorem 3 and substitute into (2.4) with 
PI = y, P2 --+ 00, n --+ 00. This yields 

(5.3) 

Now 

(5.4) (q)oo(bq/y)oo 
(bq)oo(q/y)oo 

by [18, p. 97, (3.3.2.5)]. Substituting the right-hand side of (5.4) into (5.3) we obtain 
(5.2). 0 

To apply (5.2) with ease to Hecke modular form identities, we prove three 
lemmas. 

LEMMA 6. Let An(a, b, q) denote the An in (4.5). Then 

(5.5) 

PROOF. By (4.2) 

(-lr( aq 2)n_I(1 - aq2n+l)qm n (bLq-)na-J 
An ( aq, b, q) = ( ) . L () 

bq n )=0 q J 

(-lr(aq)n(l - aq2n+l)q<21 bn(aq/b)n 
(1 - aq) ( bq ) n ( aq ) n 

(equation continues) 
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THE FIFTH AND SEVENTH ORDER MOCK THETA FUNCTIONS 121 

.(1 + f. (aqL-1(1- aq2i)(b)ia-iq-i2b-i) 
i=1 (q)AaqjbL 

(by (4.6) with n replaced by n + 1) 

(-1)"(1 - aq2n+1)q m bn(aqjb)n 
(1 - aq)(bq)n 

.(1 + f. (aqL-1(1- aq2i)(b)ia-iq-i2b-i) , 
)=1 (qL(aqjbL 

as desired. 0 

LEMMA 7. Let An(a, b, q) denote the An in (4.5). Then 
n n-1 

(5.6) An(l,-l,q)=q(n~') L (_1)iq -i2 _ q m L (_1)iq -i2, 
i=-n 

(5.7) 

(5.8) ( 
2n 2n-2) A (1 -1 2) = (_l)n n2+2n" -ei') _ n2-2n" -(ii') n ,q ,q q l...q q l... q , 

)=0 )=0 

(5.9) 
( l)n(l 2n+1) n2 2n A (2 2) _ - + q q" -(ii') n q ,q, q - 1 + q l... q , 

J=O 

n n-1 
(5.10) A n(l,O, q) = qn2+n L (_1)iq - J(3J+1)/2 - qn2-n L (_1)iq - J(3)+1l/2, 

J=-n )=-n+1 

(5.11) 
~(1 _ 2n+1) n . 

An(q,O, q) = q (1 _ qq) J~n (_1)J q -i(3i +1)/2. 

PROOF. By (4.5), 

An(l, -1, q) = (-1)"2q-m - q<il(l - qn)(l + 2 ni::1 (_1)J q -J2) 
J=1 

n n-1 
= q(n~') L (_l)i q- / - qm L (_l)i q-i 2, 

J=-n )=-n+1 

as asserted in (5.6). 
By (5.5), 

(1 - q2n+1)qm ( n i _ .2) 
A n(q,-l,q) = (l-q) 1+2J~1(-1)qJ, 

as asserted in (5.7). 
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By (4.5), 

-1 2 (-1)"(1 + q2n)qn-n2(1 - q-l) (_l)"q(n-l)\l _ q4n) 
An(l,q ,q)= (1_ q2n-l) + (l-q) 

. 1 + L -'-----.:...--"-''-----"----''-'--~'----( 
n-1 (1 + q2i)(1 _ q-l)(l _ q)qi- 2i 2) 
i-I (1 - q2i-1)(1 - q2i+1) 

(_l)n(l + q2n)qn- n11 _ q-l) 
(1 - q2n-l) 

(_1)"q(n-l)2(1 _ q4n) n-1 (1 _ q-l)(l _ q)qi- 2i2 

+ (1 - q) i-~+1 (1 - q2i-1)(1 _ q2i+1) 

(-1)"(1 + q2n)qn-n2(1 _ q-l) (_1)"q(n-l)2(1 _ q4n)(1 _ q-l) 
=. + -'---'----''-----'-~--'-''-~-'-(1 - q2n-l) q-l(l _ q2) 

_22 q q n -1 (-1 ) ._ L qJ J 1 _ q2i -l - 1 _ q2i+1 
;--n+1 

(_l)n(l + q2n)qn-n\1 _ q-l) 
(1 _ q2n-l) 

(_I)"q(n-l)2(1 _ q4n) n-1 qi-2i2(1 + q) 
+ (1 + q) i-~+1 (1 - q2i+1) 

(where we have replaced) by -) in the first sum) 

(-1)"(1 + q2n)qn-n2(1 _ q-l) (_I)"q(n-l)2- n- 2n2(1 _ q4n) 
(1 - q2n-l) (1 _ q-2n+l) 

+ (_I)"q(n-l)\1 _ q4n) nt1 ( qi- 2i2 + q-i- I- 2(J+l)2) 
i-O 1 - q2;+1 1 - q-2J-l 

= (_I)nq-n2-n(1 + q2n) 

_ (-1)" q(n-l)2(1 _ q4n) nt1 q-2i2 -3i -2(1 - q4i +2) 
i-O (1 - q2J+l) 

n-1 
- (-1)" qn2-2n(1 _ q4n) L (q_( 2Ji 2) + q-e1i 1 )) 

i-O 
2n-1 

= (_I)"q-n2-n(1 + q2n) - (-1)" qn2-2n(1 - q4n) L q-er 1 ) 

i-O 
2n 2n-2 

= (-1)" qn2+2n L q-er 1 ) - (_I)"qn2-2n L q-er\ 
i-O i-O 

as asserted in (5.8). 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Next by (5.5) 

as asserted in (5.9). 
By (4.5), 

n-l 
= (-lrq-m(1 + qn) - qn2-n(1 - q2n) I: (_lVq-}(3}+1)/2 

J=-n+l 
n n-l 

= qn2+n I: (_lVq-}(3}+1)/2 - qn2-n I: (_1)Jq -}(3}+1)/2, 
J=-n 

as asserted in (5.10). 
Finally by (5.5) 

~(1 _ 2n+l) n . 
= q 1 _ qI: (_1)J q -}(3}+1)/2, 

( q) J=-n 

which is (5.11). 0 

LEMMA 8. Let An = An(a, b, q) be defined by (4.5). Then 

(5.12) 

(5.13) 

(5.14) 

PROOF. These identities are immediate from Theorem 5 under the substitutions 
y ---+ 00; a = 1,y = -1; finallyreplaceqbyq2, then set a = 1,y = q. 0 

It is now possible to combine Lemmas 7 and 8 to obtain 18 different identities of 
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the Hecke modular form type. We note only: 
00 00 

(5.15) (q):,(q; q2)oo = 1 + L (_I)jqn(3n+l)/2-j2 - L (_lfqn(3n-l)/2-J' 

00 

n~l 

lils: n 
n~l 

lil<n 

L (-If qn(3n+l)/2- j2(1 _ q2n+l). 
n~O 

lils: n 

This result follows from (5.12) with a = 1, b = -1 and (5.6). We can also find a new 
representation for the generating function of r3 (n), the number of representations of 
n as a sum of three squares: 

The first two equalities are classical [4, p. 23, (2.2.12)]; the last follows from (5.13) 
with b = -1 and (5.6). 

Finally we consider (5.2) in the case q ~ q2. Then a = q2, b = Y = q. This yields 

(5.17) 

Clearly the left-hand side of (5.17) is the generating function for the number of 
representations of an integer as a sum of three triangular numbers. Inspecting the 
last entry in (5.7) we see that in this series the nth term contributes at least 1 to the 
coefficient of qn; hence all coefficients are positive. Thus we have just proved 
Gauss's famous result that every integer is the sum of three triangular numbers. 

6. The fifth order mock theta functions. In the following theorem, eight of the ten 
fifth order mock theta functions of Ramanujan [14, pp. 354-355] will be related to 
double sums of the Hecke modular form type. We are not able to give such formulas 
for eitherXo(q) or Xl(q)[20, pp. 277-278]. However, sinceXo(q) = 2Fo(q) - </>o(-q) 
and Xl(q) = 2F1(q) + q-l</>l(-q) [20, pp. 277, 279], we see that each of Xo(q) and 
Xl(q) is a linear combination of functions that do appear in our main result. Each 
equation in Theorem 9 will provide both the definition and the appropriate Hecke 
representation of the fifth order mock theta function under consideration. 
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THEOREM 9. 

( 6.1) 

(6.2) 
00 2n 2 

Fo{q)== L (~ 2) 
n=O q, q n 

1 00 2n 
2. 2 L L (_lr q5n2+2n-e;1)(1 + q6n+3), 

(q ,q )00 n=O)=O 
00 

(6.3) 1 + 2t/;o{q) == L (-I; q)nq(nil) 

00 

(6.4) cpo{q)==L(-q;q2)nqn2 

(6.5) 
00 n2+n 1 00 

fl{q) == L -q- = -- L (_lf qn(5n+3)/2-J2(1 - q2n+l), 
n=O (-q)n {q)oo n=O 

1)1'; n 

(6.6) 
00 2n2+2n 

Fl ( q) = L (q 2 ) 
n=O q; q n+l 

1 00 2n 
2. 2 L L (_lr q5n2+4n-(1jl)(1 + q2n+l), 

(q ,q )00 n=O)=O 
00 

(6.7) t/;l{q) = L (_q)nq(ni 1) 

= (-q )00 f (_l)J qn(5n+3)/2-J(3J+l)/2(1 _ q2n+l), 
(q)oo n=O 

1)1'; n 

00 

(6.8) CPl(q) = L (-q; q 2tq(n+l)2 
n=O 

125 

PROOF. We shall rely on many of the results in §§4 and 5. Our jumping off point 
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is Theorem 4 and the observation that A~(a, b, q) = anqnAn(a, b, q). Thus all our 
formulae for the An( a, b, q) can be applied in evaluating A~( a, b, q). 

We begin with (6.1), and let B~ = B~(b, q). 
00 

fo(q) = L qn'B~(-I, q) (by (4.7)) 
n=O 

= -( 1) £ qnA~(I, -1, q) (by (3.1)) 
q "" n=O 

= -( 1) £ q2nAn(l, -1, q) (by (2.6)) 
q "" n=O 

= _1_ ( £ qn(5n+l)/2-j '( -If - f qn(5n-l)/2-j '( -If) (by (5.6)) 
(q)"" n=O n=O 

Ijls;n IJI<n 

= _1_ £ qn(5n+l)/2-j '( -If (1 _ q4n+2), 
(q)"" n=O 

lils; n 

which is (6.1). 
Next 

00 

Fo( q) = L q2n'B~ (q-l, q2) (by (4.7)) 
n=O 

1 ~ 211A' (1 -1 2) (by (3.1)) ( 2. 2) i..J q n' q ,q 
q ,q 00 n=O 

00 2n-2 ) 
- n~o J~O (-1)" q5n'-2n-ei1 ) (by (5.8)) 

1 00 2n 
2. 2 L L (_I)"q5n'+2n-ei1 )(1 + q6n+3), 

(q,q)n=OJ=o 
as asserted in (6.2). 

00 

1 + 2~0(q) = L (-1; q)nq(n{l)B~(O, q) 
n=O 

( ) 00 ( • ) ("{ 1) '( 0 ) = -q 00 L -1, q nq 'An 1, ,q 
(q)"" n=O (-q; q)n 

(by (2.4), n ~ 00, Pi ~ 00, P2 = -1, a = 1) 

(equation continues) 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE FIFTH AND SEVENTH ORDER MOCK THETA FUNCTIONS 127 

_qn2-n(I _ q2n) L (_IVq-J(3J+I)/2)) 
IJI<n 

(by (5.10)) 

- 2 "~, (-I)j q"""- 'l!H<,jHV'(1 - q"»), 
IJI<n 

as desired. 
Next 

00 

<Po(q) = L qn2(_q; q2tB~(0, q2) 
n=O 

(by (2.4), q ~ q2, n ~ 00, PI ~ 00, P2 = -q, a = 1) 

= (-;; q:)oo r. q3n~n(I,0, q2) (by (2.6)) 
(q;q)oo n=O 

= (-q; q2)00 r. q3n2(q2n2+2n L (_I)Jq-3J2 _j 

(q2; q2L"'J n=O IJI<;n 

as asserted in (6.4). 

- q2n 2 -2n L (-IV q-3j2 - J) 
IJI<n 

The proofs of the remaining four identities in Theorem 9 are exactly parallel to the 
four just given. The fundamental change concerns the replacement of a by q (or by 
q2 when q has been replaced by q2). We therefore omit the details. 0 

7. The seventh order mock theta functions. These three functions are perhaps the 
most mysterious in all of Ramanujan's work. They are defined in the last three lines 
of Ramanujan's Collected Papers [14, p. 355]. His only assertion about them is that 
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they are not related to each other. G. N. Watson makes cryptic reference to them in 
[19, p. 80]; his short paper on the dilogarithm [21] was clearly motivated by a less 
than successful study of the asymptotics of the seventh order functions as q ~ 1-. To 
my knowledge nothing else about them appears in the literature. 

We are able to produce a counterpart of Theorem 9 for them; however the scope 
of our results is much more limited than the generality of results related to the fifth 
order functions. Clearly much remains unknown about the seventh order functions; 
I hope that these results will facilitate further study. 

Our work relies on the Bailey chain theory of §2. We begin with the lemmas 
necessary to establish the appropriate Bailey pairs. The polynomials to be considered 
are best expressed in terms of the Gaussian polynomials [4, p. 35]: 

(7.1) [ n] [n] (q)n 
m = m q = (q)m(q)n-m· 

These polynomials satisfy the recurrences [4, p. 35]: 

(7.2) [~]=[;~~]+qm[n;l] 

(7.3) = [n;l]+qn-m[;~~]. 

LEMMA 10. Let sequences of polynomials (in q) Un' v", w" be defined by 

(7.4) 

(7.5) 

(7.6) 

Then 

(7.7) 

(7.8) 

(7.9) 

= ~ [n + j - 1]( ). (_l)n-J (nil) Un ~ 2· _ 1 q j-I q, 
J~l ] 

V = (1 - 2n) ~ [n +!] (q)J .(-lr-J (?), n q ~ n -] 1 _ n+j q 
j~O q 

W = f [n + !](q) (_lr-Jq(ni l ). 
n . n-] j 

j~O 

Vn = -(1 - qn)q2n- 2Un_1 +(_lr2q(ni 1
), 

w" = -qnUn - q2n- 2un_1 · 

PROOF. Since 1 - q2n = 1 - qn+J + qn+J(l - qn-J), we may rewrite v" as 

which is (7.7). 

= W _ q2n-1 ntl [n - 1 + !](q) (_lr- 1 - Jq(n-i-i ) 
n . n-1-] j 

j~O 

= Wn - q2n- 1wn _ l , 
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n - q = (_l)n CD +" n + j. 1 + q . ( ) .(_l)n-J (",f) 
V -( 1)n2 ("i') n [ .] ( n) 

1 - qn q )":1 n - j (1 _ qn-J) q J q 

(by (7.5)) 

+ t [n + ~ - 1 ](q L-1( _l)n-J q("-r') 
)=1 n 1 

(where we have used 1 + qn = (1 - qn-J) + qn-J(l + qJ)) 

= t [n +! - l](q) (_lr-'Jq(",f) 
. n-j-1 J J=O 

which is equivalent to (7.8). 
Finally, 

Wn + qnUn = )~J~ ~~](qL(-lr-Jq(?) 

+qn t [n + j ~ 1](qL_1(_I)n-Jq(",f) 

)=1 n - j 

= (-lrqm + )~1 (qL_1(-lr-Jq(",J)([~ ~ ~](I -qJ) + qn[ n: ~ ~ 1]) 
= (-lrqGl+(l + qn) t (qL(-lr-Jq(?) (q)n+J-1 

)=1 (qhJ(q)n-J 

= (_l)nq<2l + L (q)J(-lr-Jq(?)[n +! - 1] 
. n-j-1 
J~l 

+ L (q)J_1(_lr-Jq(n-~+I)[n + j ~ 1] 
)~1 n - j 

(where we have used 1 + qn = (1 - qn-J) + qn-J(l + qJ)) 
(equation continues) 
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"() ( )n-j (n-1+1)( 2 ._I[n + j - 2] [n + j - 2]) + 1- q j-l -1 q 2 q J . 1 + . 
j;o,1 n - ] - n - ] 

(by (7.3)) 

= nt1 (q)j(_lr-jq(nii)[n +! -11] _ q2n- 2Un_1 
j~O n - ] -

+ t (q)j_l(_lr-jq("-~+l)[n + j -.2] 
j~1 n - ] 

= _q2n- 2un_1 , 

since the third term is the same as the first once j is replaced by j + 1. Thus (7.9) is 
estabished. 0 

LEMMA 11. For the Un defined by (7.4) we have 
n-1 

(7.10) U2n = _2 q3n 2 -2n L q_ j 2_ j , 

j~O 

(7.11) U = q3n2+n " q_ j 2 2n+l 1-. 
lilsn 

PROOF. Equations (7.10) and (7.11) follow directly by induction from the initial 
values Uo = 0, U1 = 1, U2 = -2q, and for n ~ 3 

(7.12) Un - q3n- 5Un_2 = -(-lr2q(2). 

The initial values follow immediately from (7.4). Now by (7.7)-(7.9) 

(-qnUn - q2n- 2un_1 ) - q2n-l( _qn- 1Un_1 - q2n-4Un_2) 

= W - q2n- 1w = V = - (1 _ qn)q2n- 2u + (_I)n2q(n;1). n n~l n n~l , 

simplifying the extremes of this equation we find 

-qnUn + q4n- 5Un_2 = (_lr2q(n;1), 

and multiplying through by _q-n we obtain (7.12). 0 
We are now prepared to derive the Bailey pairs for the seventh order mock theta 

functions. 
Define 

(7.13) 

(7.14) 

(7.15) 
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and 

(7.16) 
iii,,; n lil<n 

n n-1 
(7.17) d 2n +1(0) = _2 q3n2+4n+1 L q-J 2 -J + 2q 3n2+2n L q-J2-J, 

i-O i-O 
n-1 

(7.18) d 2n (1) = _2 q 3n2-2n(1 - q4n) L q-J2-J, 

(7.19) 

(7.20) 

(7.21) 

)-0 

d 2n +1(1) = q3n2+n(1 - q4n+2) L q-J2, 
Iii,,; n 

d 2n (2) = 1 ~ (q3n2+n L q-J2 + 2q 3n2+2n nt1 q-J2-J), 
q lil,,;n )-0 

d 2n +1(2) = 1 -=: (2q3n2+4n+1 f: q-J2-J + q3n2+Sn+2 L q-J2). 
q i-O lil,,;n 

131 

LEMMA 12. (dn(i), ~n(i» form a Bailey pair for i = 0, 1, a = 1 and for i = 2, 
a = q. 

PROOF. By (2.7) with a = 1, the other half of the Bailey pair for ~n(O) (with 
a = l)is 

(1- q2n) f: (q)n+J-1(_1)n-Jq(nil)~iO) 
i-O (q)n-J 

= (1 - 2n) f: [n +!] (q)J. (_1)n-J (nil) 
q i-O n - J (1 - qn+l) q 

= v" (by (7.5)) 

= (_1)"2q(nil) - (1 - qn)q2n- 2Un_1 (by (7.8)) 

= dn(O). 

The formulas for dn(O) given by (7.16) and (7.17) follow immediately from Lemma 
11. Hence the i = 0 case is established. 

By (2.7) with a = 1, the other half of the Bailey pair for ~n(1) (with a = 1) is 

(1 - q2n) f: (q)n+J-1 (_lr-Jq(nil)~/I) 
)-0 (q)n-J 

= (1 - q2n) f: [n + j ~ 1](q)J_1(_I)n-Jq(ni1) 
i-l n - J 

= (1 - q2n)Un (by (7.4)) 
= d n (I), 

where the formulas for d n(1) given by (7.18) and (7.19) follow directly from Lemma 
11. Hence the case i = 1 is established. 
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Finally by (2.7) with a = q, the other half of the Bailey pair for goA2) (with 
a = q) is 

where the formulas for d n (2) given by (7.20) and (7.21) follow directly from Lemma 
11. Hence the case i = 2 is established. 0 

Weare now set for our main result on the seventh order mock theta functions, 
which does indeed link these functions with Hecke type series involving the number 
7. 

THEOREM 13. 

Q() n2 

(7.22) ~o(q) == r: ( ~+l) 
n=O q n 

= -- -2 r: r: q7n2-2n-i2 - i (1 _ q4n) 
1 ( Q() n-l 

(q)oo n=O i=O 

+ ,~o q"'+''''-i'(l - q,,.,») , 
Iii,;; n 
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= _1_ ( f q7n2+n-i2(1 _ q8n+3) 
(q)oo n=O 

Iii.; n 

PROOF. For i = 0, 1, we have 
00 1 00 

y;;( q) = L qn~n(i) = -( ) L qn'dn(i), 
n=O q n=O 

133 

and equations (7.22) and (7.23) now follow by substituting the formulae for dn{i) 
from (7.16)-(7.19) into this identity. 

For i = 2, a = q, we have 
00 1 00 

%2(q) = L qn2+n~n(2) = -2 - L qn2+ndn(2), 
n=O (q )00 n=O 

and (7.24) follows from (7.21) and (7.22). 0 

8. Conclusion. Clearly we are just beginning to understand Ramanujan's last 
brilliant creation: the Mock Theta Functions. It is my hope that these discoveries 
will assist in proving many of the results on fifth order functions that are given in his 
"Lost" Notebook [5]. Also is there significant arithmetic information about sums of 
three squares in (5.16)? 

Finally we suggest a further study of the Bailey pair (cxn(b), fin(b», where 
f3n(b) = (bq)n/(q)2n' The first few cxn(b) are 

cxo(b) = 1, 
cx l ( b) = -bq - b, 
cx 2(b) = b2q 3 + bq4 + bq 3 _ q2, 
cx 3(b) = _b3q 6 - b2q8 - b2q7 _ b2q 6 _ bq8 + bq 5 + q7 + q5. 

Furthermore Ln>oqn'/3n(b) is an important theta series for b = 0, q-l/2, -1, and is 
the first seventh order mock series for b = 1. Can a representation of cxn(b) be found 
that directly yields these facts as special cases? 
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