
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

August 1970

The File Searching, Record Validating and Record Formatting The File Searching, Record Validating and Record Formatting

Functions of the Supervisor for an Extended Data Management Functions of the Supervisor for an Extended Data Management

Facility Facility

Agu R. Ets
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation

Agu R. Ets, "The File Searching, Record Validating and Record Formatting Functions of the Supervisor for

an Extended Data Management Facility", . August 1970.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-71-04.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/805
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F805&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/805
mailto:repository@pobox.upenn.edu

The File Searching, Record Validating and Record Formatting Functions of the The File Searching, Record Validating and Record Formatting Functions of the
Supervisor for an Extended Data Management Facility Supervisor for an Extended Data Management Facility

Abstract Abstract
The purpose of the Supervisor in an Extended Data Management Facility (EDMF) is to direct the Facility's
handling of a user's request for service. The Supervisor employs the five main functions of Access
Controlling, Retrieval Optimizing, File Searching, Record Validating and Record Formatting in order to
accomplish its task. This report is concerned mainly with the design and implementation of the File
Searching and Record Validating Functions, although it also covers the Record Formatting Function. The
File Searching and Record Validating Functions form that part of the Supervisor which actually controls
the retrieval of records from the files of the EDMF. The major part of the report is concerned with
discussing the File Searching Function because of the novel feature which has been implemented. This
feature is the parallel processing of record lists in a generalized file structure, which eliminates redundant
retrievals while at the same time reducing the access time of the device on which the records are stored.
The Record Validating Function checks the record for compliance with the user's request and verifies the
user's authority to access the record. A validated record is then subject to the Record Formatting Function
which outputs it to the user.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-71-04.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/805

https://repository.upenn.edu/cis_reports/805

University of Pennsylvania

'ME MOORE SCHOOL OF ELECTRICAL ENGINEERING
Philadelphia, Pennsylvania 19104

TECHNICAL REPORT

W E FILE SEARCHING, RECORD VALIDATlNG AND
RECORD FORMATTING FUNCTIONS OF ME SJPERVISOR

FOR AN EXTENDED DATA MANAGEMENT FACILITY

Agu Raymond E t s

August 1970

Submitted t o the
Office of Naval Research

Information Systems Branch
Arlington, Virginia

under
Contract ~00014-67-A-0216-0014
Research Project NR 049-153

Reproduction i n whole or i n par t is
permitted f o r any purpose of the

United States Government

Moore School Report No. 71-04

THE FILE SEARCHING, RECORD VALIDATING AND
RECORD FORMATTING FlTNCTIONS OF THE SUPERVISOR
FOR AN EXTENDED DATA M A N A G m N T FACILITY

Abstract

The purpose of the Supervisor in an Extended Data Management

Facility (EDMF) is to direct the Facility's handling of a user's request
for service. The Supervisor employs the five main functions of Access

Controlling, Retrieval Optimizing, File Searching, Record Validating
and Record Formatting in order to accomplish its task. This report
is concerned mainly with the design and implementation of the File
Searching and Record Validating Functions, although it also covers the

Record Formatting Function. The File Searching and Record Validating
Functions form that part of the Supervisor which actually controls

the retrieval of records from the files of the ED?@. The major part
of the report is concerned with discussing the File Searching Function
because of the novel feature which has been implemented. This feature

is the parallel processing of record lists in a generalized file structure,

which eliminates redundant retrievals while at the same time reducing
the access time of the device on which the records are stored. The

Record Validating Function checks the record for compliance with the

user's request and verifies the user's authority to access the record.

A validated record is then subject to the Record Formatting Function
which outputs it to the user.

TABLE OF CONTENTS

Page

CHAPTER 1 INTRODUCTION

1.1 The Extended Data Management F a c i l i t y

1 . 2 The Supervisor of t he EDMF

1 . 3 The Scope of t h e Thesis

CHAP?IER 2 THE FILE SEARCH FUNCTION

, 2 .1 Defini t ions

2.1.1 Attribute-Value Pa i r

2.1.2 Record

2.1.3 Keyword

2.1.4 Keyword L i s t s

2.1.5 F i l e and Directory

2.1.6 Generalized F i l e Structure

2.1.7 Request Description

2.1.8 K . - l i s t Process
1

2.2 Retr ieval Algorithm Used i n t h e F i l e Search Function

2 2 . 1 The Selection of the Shortes t L i s t s f o r Retr ieval

2.2.2 The P a r a l l e l Processing of the Shortest L i s t s

2 .3 The Implementat ion

2.3.1 Steps of the F i l e Searching Function

2.3.2 Routines of the F i l e Searching Function

2.3.2.1 Address Select ion Mechanism

2 . 2 . Record Retr ieval Mechanism

2.3.2.3 Pointer Extraction Mechanism

iii

TABLE OF CONTENTS (continued)

Page

CHAPTER 3 THE RECORD VALIDATING FUNCTION

3.0 Introduction

3.1 The Implementation

3.1.1 Steps of the Record Validating Function

3.1.2 The Authority Item

3.1.3 Record Checking .

3.1.4 Security Checking

CHAPTER 4 THE FECORD FORMATTING FUNCTION

4.0 Introduction

4.1 Record Output Format

4.1.1 Record Number

4.1.2 Line Numbers

4.1.3 Outputting Formatting Mechanism

4.2 Record Core Format

CHASTER 5 SUMMARY AND CONCLUSION

BIBLIOGRAPHY

APPENDIX A RWTINES

APPENDIX B RECORD FORMA?S

APPENDIX C AUTHORITY ITEM

C H A P m 1

INTRODUCTION

Today, there is a rapid and ever increasing growth in the total

volume of information. This huge volume threatens to make the informa-

tion useless unless ways can be found to manage it. The purpose of the

Extended Data Management Facility (EDMF) is to provide a flexible,

general purpose, time-shared file management system for the orderly

accumulation and dissemination'of information [g] .

1.1 The Extended Data Management Facility

In order to achieve its purpose, the EDMF must be relatively simple

to use, so as to encourage its use by individuals for data management.

To facilitate this data management, information is organized as records.

A user wishing to access records in the EDMF has merely to express, as

a logical expression, those contents which characterize the required

records. This eliminates considerable work on the part of the user to

determine these required records, and to get their cctual addresses.

In addition to the retrieval of data, the EDMF also makes efficient use

of storage space for the user. The heart of the Facility is the imple-

mentation of the generalized file structure and its general retrieval

algorithm as suggested by Hsiao and Harary in [8]. For an overall

description of the EDMF, the reader is referred to [9].

1.2 The Supervisor of the EDMF

The purpose of the Supervisor in the EDMF is -to direct the Facili-

ty's handling of a user's request for service. In -this capacity, the

Supervisor assumes the roles of 'doorman', 'foremarl', 'administrator',

and 'dispatcher'. It is at first as a 'doorman' who accepts the service

requests and initiates their request handling routines. Then as a

'foreman', the Supervisor regulates the use of the primitive storage

and retrieval routines [6] and system subroutines, and also optimizes

the storage and retrieval strategy for a time-sharing environment. In

its role as an 'administrator', the Supervisor controls the user's

access to files and validates the systems output of records to the user.

It is also a 'dispatcher' who returns the results of' the service to the

user.

The Supervisor employs the five main functions of Access Controlling,

Retrieval Optimizing, File Searching, Record Validating, and Record

Formatting in order to accomplish its task. These functions in combina-

tion with each other satisfy the above roles which the Supervisor must

assume.

1.3 The Scope of the Thesis

This report is concerned mainly with the design and implementation

of the File Searching and Record Validating Functions of the Supervisor.

These functions partially fulfill those aspects of the 'foreman' and

'administrator' which are concerned with the retrie~.al and validation

of individual records. The thesis also covers briefly the Record For-

matting Functior. which fulfills that aspect of the 'dispatcher' which

is concerned wit,h outputting the individual records to the user.

The File Searching and Record Validating Functions form that part

of the Supervisor which actually controls the retrieval of records from

the files of the Facility. The major part of the report is concerned

with discussing the File searching Function becaus~ of the novel

feature which has been implemented as part of this function. This

feature is the parallel processing of record lists in a generalized

file structure. The parallel processing retrieval algorithm ensures

that the records are retrieved in a manner which reduces the access

time of the peripheral device on which the records are stored on the

one hand, and eliminates redundant record retrievals (i.e., meaning

high precision) on the other hand. Once it is retrieved by primitive

storage and retrieval routines, the record is subject to the Record

Validating Function. This function checks the record for compliance

with the user's request and verifies the user's authority to access the

record. When a record has been validated it is then subject to Record

Formatting Function which prepares the record for output to the user.

Since the Supervisor is a set of system programs operating in a time

sharing environment, the implementation employs re-entrant coding and

shared code conventions which allow the use of the same Supervisor for

the processing of multiple requests.

CHAPTER 2

'ME FILE SEARCH FUNCTION

2.1 Definitions

Before a discussion of the File Searching Function can be under-

taken, the terms and concepts which are basic to the EDMF must be given

precise definitions. The definitions used in this report are consistent

with those in [8]. However, they will be found to be less formal and

more descriptive.

2.1.1 Attribute-Value Pair

The most basic concept which must be defined is that of the

attribute-value pair. Let there be two sets, A and V. The elements

of A are those terms which are considered as "attributes", and the

element of V are those terms which are considered as "values". Let

a third set D be the subset of the Cartesian product A x V, whose

elements are the ordered pairs of the elements of A and V. A single

element of D is called an attribute-value pair, and intuitively it

constitutes the basic element of information. Some examples of attri-

butes, values, and attribute-value pairs are shown in Example 1.

2.1.2 Record

A record R is a set of attribute-value pairs which collectively

convey some meaningful information. An example of R, a subset of the

set of all attribute-value pairs, is shown in Example 2. The attribute-

value pairs in this record convey to the reader information about a

paper which appeared in the Communications of the ACM.

la: A set A of attributes.

A = {author, year, topic, abstract, text]

lb: A set V of values.

V = {~siao, 1970, information retrieval, [the complete

abstract of a paper], [the complete text of a paper]]

lc: A set D of ordered pairs which are attribute-value pairs.

A x V3D = {(author, ~siao), (year, 1970), (topic,

information retrieval), (abstract, [the complete

abstract of a paper]), (text, [the complete text

of a paper 1) 1

Example 1: Examples of attributes and values
and attribute-value pairs

R = { (record number, ~001) ,

(author, D. K. ~siao),

(author, F . ~arary) ,

(title, A Formal System for Information Retrieval from
~iles) ,

(topic, information retrieval),

(publisher, Association for Computing ~achinery),

(year, 19701,

(month, ~ebruary) ,

(abstract, [the complete abstract of the paper]),

(text, [the complete text of the paper])]

Example 2: Record of a paper published in the
Communications of the ACM

2.1.3 Keywords

A record can be characterized by any combination of the attribute-

value pairs which are in the record. Due to pragmatic considerations,

it would be desirable to have those attribute-value pairs which are

short and can be simply expressed, to characterize the record. m e s e

short attribute-value pairs are called keywords, and will henceforth

be denoted symbolically by Ki, i = 1,2, ... n. Thus we can refer to a

record R by referring only to the keywords in R. 'IPne record in Example

2 can be characterized by the set of keywords shown in Example 3. In

general, the set of keywords of a record R is called an index of the

record R and it is usually a proper subset of R.

The index of R = { (record number, H001),

(author, D. K. Hsiao) ,

(author, F . ~arary) ,
(topic, information retrieval),

(year, 1970))

(month, ~ebruary) 3

Example 3: The keywords characterizing the
record in Example 2

At this point we would like to introduce a notational change

for the attribute-value pair. Hereafter an attribute-value pair will

be written in the following manner:

Attribute = Value

?Inis is the actual notation used in the EDMF for specifying

attribute-value pairs.

2.1.4 Keyword Lists

Each record is also characterized by another parameter which is

not part of the actual information contained in the record. This unique

riumber is the address of a record, which indicates the whereabouts

of the record in the computer storage.

Each keyword Ki in R may have associated with it the address of

another record R' which also contains the keyword Ki. Effectively

this address in R "points" to R' and for this reason it is called the

pointer of R with respect to Ki or the Ki-pointer of R. If the record

R' is non-existent then the Ki pointer of R is known as the null pointer.

It will be assumed hereafter that every keyword has a pointer associated

with it. Thus we see that records containing a common keyword K can
i

be linked by these pointers into a chain which is called a K -list.
i

Putting it more precisely, a Ki-list is a chain of records, each record

containing the keyword Ki, satisfying the following five conditions:

1) Each of the pointers in the Ki-list is distinct.

2) Each non-null pointer is the address of a record in the

Ki-list only.

3) There is one record not pointed to by any other record in -

the Ki-list. This is the beginning of the K.-list.
1

4) There is one record which has the null pointer; this is the -
end of the Ki-list. -

5) For every record in the Ki-list at the address an (n > l),

there is a sequence of Ki-pointers

such t h a t :

i) a i s the address of t he beginning of the K i - l i s t .
1

ii) t h e record at t h e address a contains a K.-pointer
J 1

a f o r J =l , 2, ..., n-1.
j +l

%is means t h a t f o r a given Ki, a record cannot be i n more than

one K i - l i s t . The address of t he f i r s t record i n a K . - l i s t i s known
1

a s a Head-of-List Address o r HOLA f o r short , and t h i s term w i l l be used

herea f te r when r e f e r r i n g t o the beginning address of any K . - l i s t . I n
1

Figure 1, a t y p i ca l K i - l i s t i s i l l u s t r a t e d , showing t h e beginning and

the end of t h e l i s t and t he pointers which chain t he records together.

2.1.5 F i l e and Directory

A f i l e i s a s e t of records which completely contains a l l t h e

K . - l i s t s made up of those records. I n other words, a f i l e i s a s e t ,
1

whose elements a r e records, which i s the union of a l l t h e K . - l i s t s
1

which contain t h e records. The HOLA's of a l l t h e K i - l i s t s i n a given

f i l e must be ca re fu l ly noted and kept separate from t h e H O L A ' s of the

K i - l i s t s i n another f i l e because the same keyword, but with d i f f e r en t

meanings, can occur i n both these f i l e s .

This l eads u s t o t h e concept of a di rec to ry fo r a f i l e . The

di rec to ry associa ted with a f i l e contains t h e H O L A ' s of a l l t h e K i - l i s t s

i n t h a t f i l e . For each keyword Ki used i n the f i l e , the re is one entry

i n t h e di rectory , the form of t h e en t ry being shown i n Example 4. More

precise ly , a di rec to ry f o r a f i l e i s a sequence of m such e n t r i e s where

m i s t h e number of d i f fe ren t keywords used i n t he f i l e .

Beginning of Ki-list: 001

is the Head-of-List Address

End of Ki-list: indicated by

a null pointer associated with K
i

Figure 1: An Illustration of a Ki-list

Ki - the ith keyword in the file F.

n - the number of records in F containing the
i

keyword Ki.

hi - the number of K.-lists in F.
1

a
i j

- the HOLA of the jth Ki-list in F.

Example 4: Format a? a directory entry

2.1.6 Generalized File Structure

We can now define a generalized file structure as a file with

its directory. This file structure is called generalized because it can

be shown that many commonly used file structures such as inverted, index-

sequential, and multilist are actually special cases of the generalized

file structure [83. An example of a generalized file structure is

shown in Figure 2.

As was evident in the directory format, there may be more than

one list corresponding to a particular keyword K but these lists are
i

mutually exclusive because of the definition for lists presented

previously. In other words, a record containing the keyword Ki, cannot

be in two different Ki-lists.

However, since a record may have more than one keyword, it may be

in more than one keyword list. A record containing the keywords K and
i

K . (with i # j) , is a member of - one K.-list and one K -list simultaneously.
J 1

- j
For example, if a record contains both the keywords AUMOR = KRAMER and

YEAR = 1964, then that record would be in both an AUMOR = KRAMER list

and in a YEAR = 1964 list. This is illustrated in Figure 3, where the

AUTHOR = KRAMER list consists of records located at the addresses 050,

101, 121, and 165, and the YEAR = 1964 list consists of records located

at the addresses 060, 101, 112.

2.1.7 Request Description

When a person accesses a file, rarely does he want to see all -

of the records in the file. Rather, he usually wants to see only that

part of the file which interests him, not caring about the rest of the

file. Such a partition can be accomplished by listing the addresses

of the records which he wants. This, however, is cumbersome and requires

much research on the user's part to find the addresses of the records

he is interested in. Another way to partition the file would be to

describe the records of interest by listing their characterizing keywords

in the form of a Boolean expression. This expression is called a user's

request description. Using the propositional calculus, any Boolean

expression can be uniquely written as a disjunct of conjuncts, known

as the Disjunctive Normal Form (DNF). All request descriptions used

hereafter will be assumed to be in Disjunctive Normal Form.

A record satisfies a user's request description when all the

keywords in a single conjunct are in the record. A record containing

only the keywords K1 and K satisfies the conjunct: (KIA K3) , but
3

does not satisfy the conjunct : (K ~ A K2 A Kg) . The problem of finding,

in a file, the addresses of records which satisfy a user's request

description now lies with the EDMF and not the user.

AUMOR=KRAMER 121

YEAR = 1964 112

060

AUMOR = KRAMER 000

4

050 AUTHOR = KFUMER 101

*

YEAR = 1964

Figure 3: Ekample of Record Being in a Ki-list and
a K -list simultaneously. In this case
we j have for K - YEAR = 1964 and for

i
K - AUrnOR = KRAMER.

J

2.1.8 K.-list Process
1

To find records containing a certain keyword K two steps mst
i'

be executed. First the HOLA's corresponding to Ki must be found so

they can be used for retrieval. Given Ki, the directory is searched

for the entry corresponding to this keyword. The production of the

HOLA's of the Ki-lists is called decoding - the keyword. Second, all

the records in the K.-lists must be retrieved. The K.-list process
1 1 -

involves repeatedly, a given address or pointer of a record in a K.-list,
1

the retrieval of the record and the extraction of the K.-pointer from
1

that record. The occurrence of a null pointer signifies that the process

has been completed. At the end of the process, all the records in that

K.-list are retrieved.
1

2.2 Retrieval Algorithm Used in the File Search Function

'IPne retrieval algorithm is based on the application of the Ki-list

process to the lists of the generalized file structure. There are two

novel features of this algorithm which deserve elaboration. The first

one involves the selection of the shortest lists for retrieval and the

second involves the parallel processing of the shortest lists selected.

2 . 2 The Selection of the Shortest Lists for Retrieval

The key to the first feature lies in the fact that although a

record may be a member of many different lists, in looking for a

record containing some particular conjunct of keywords, it would search

the lists corresponding to that keyword which appears in the least

number of records. Recalling the format of the directory entry in

Example 4, this means that the lists for the keyword with the smallest

n are searched. The keyword is called the prime keyword and its
i

K i - l i s t s r e s u l t i n the smallest p a r t i t i o n of records from t h e f i l e

which could possibly s a t i s f y t he u s e r ' s request descr ip t ion. Thus

the prime keyword l i s t s a r e t he " shor tes t " . This minimizes the f i l e

searching e f f o r t because, f o r any conjunct, a l l the records being

sought must be included i n t he prime keyword l i s t s .

For an example of t he prime keyword idea, assume t h a t we would

l i k e t o see a l l t h e records which s a t i s f y t he following descr ip t ion:

(AUTHOR = KRAMER A YEAR = 1964 A TOPIC = LOGIC)

Let us ass ign t h e following numbers of records t o each keyword:

5 records contain the keyword AUMOR = KRAMER

15 records contain t he keyword YEAR = 1964

8 records contain t h e keyword TOPIC = LOGIC

We see t h a t t h e keyword AUmOR = KRAMER i s contained i n t he l e a s t

number of records, so we s e l ec t t h i s as our prime keyword. This meacs

t h a t a t most 5 records can s a t i s f y our descr ip t ion so we want t o --

r e t r i ev e only those records f o r analys is , ins tead of using e i t h e r one

of the other two keyword l is ts f o r r e t r i e v a l . O f course before any

l i s t processing can begin, t h e prime keywords must be decoded i n order

t o ge t t h e i r H O L A ' s .

2.2.2 The P a r a l l e l Processing of t h e Shor tes t L i s t s

I n a DNF request descript ion, each conjunct will have a prime

keyword which i s t o be searched on. Since each prime keyword has at

l e a s t one associa ted l i s t and each DNF descr ip t ion has a t l e a s t one

conjunct, we ow have t o process mul t ip le l i s t s i n order t o f i n d a l l

t h e records sa&isfying t h e request descr ip t ion.

Here a question arises as to exactly how we will process these

multiple lists. One way is to take the lists in order and process

each one to the end before going on to the next list. This is a serial

list processing method because, the lists are processed in a serial

(sequential) fashion. This method is very inefficient for a moving

head random access device because it requires the head mechanism to

reset itself after all the records in a single list are retrieved.

Furthermore, a record which has been retrieved as a member of one Ki-list

may be retrieved again as a member of a different Ki-list.

An example of this kind of retrieval redundancy can be seen in

the serial processing of the AUTHOR = KRAM!3R and YBU = 1964 lists

illustrated in Figure 3. First, the processing of the AUTBOR = KRAMER

list results in retrieval of the records at the addresses 050, 101, 121,

and 165. Then the processing of the YEAR = 1964 list results in retrieval

of the records at the addresses 060, 101, and 112. The record at the

address 101 was retrieved twice, the first time to extract the

AUTBOR = KRA.MER pointer and second time to extract the YEAR = 1964

pointer.

To eliminate the redundant retrieval of records and to minimize

the file searching effort, the notion of parallel processing of lists

is introduced. The more efficient parallel processing of lists first

arranges the addresses of the records monotonically. This results in

a more ordered motion for the moving head of a random access device and

hence a shorter seek time. To do this we may have to retrieve a record

from one list and the next record from another list. Thus all the

lists are being processed 'simultaneously' and resulting in parallel

list processing. Since a record can be in many different lists, we

must guard against having to retrieve a given record more than occe,

something which can happen in serial list processing.

In serial list processing, the redundant retrieval of a record

occurs when more than one prime keyword pointer must be extracted from

the record, as shown in the preceding example. This means that when

the record is retrieved, it must be processed in such a way that all of

the prime keywords are searched.for and, the corresponding pointers, if

any, are extracted. Once all the prime keyword pointers have been

extracted, there is no reason to retrieve that particular record again.

This is effectively checking a record for membership in many

different lists, although it was retrieved as a member of one particular

list. As we shall see later, under our implementation it does not

matter which list's processiiig resulted in the retrieval of the record,

just as long as all of the pointers for all the lists of which the

record is a member are extracted. Tkis extraction of all the pointers

ensures the continuity of the prime keyword lists and assures that all

the records which could possibly satisfy the user's request description

are retrieved and checked.

In summary, the File Searching Function is that part of the

Supervisor which actually controls the retrieval of the records from

the files of the EDMF. It is the implementation of the parallel pro-

cessing of the Ki-lists, which is a part of the general retrieval

algorithm used for retrieving records in the EDMF. The selection of

the prime keywords for the user's request description and the decoding

of these prime keywords i s managed by the Retrieval Optimization

Function of the Supervisor a s described i n [4].

2.3 The Implementat ion

2.3.1 Steps of the F i l e Searching Function

!?he work of the F i l e Searching Function can be broken down into

three steps. In the f i r s t step it selects an address which i s t o be

used t o retr ieve the next record. In the second step it di rec ts the

primitive storage and re t r ieva l .routines [6] t o retr ieve the record

a t the address selected i n the previous step. I n the th i rd step it

searches the record just retrieved f o r pointers associated with the

prime keywords. The selection of the addresses i n the f i r s t step i s

done monotonically t o allow para l le l processing. Steps 2 and 3 together

a re responsible f o r the para l le l processing of the K -lists a s it was
i .

described i n Sect. 2.2.2. llne following sections w i l l fur ther elaborate

these three steps.

Selection of a Record Address

When a l l the prime keywords have been decoded, there a re many

HOLA's available with which t o begin the l i s t processing. To maximize

the efficiency of moving the read-write head of a random access device,

we would want t o select these addresses i n a monotonic order.

To decide i n which order - ascending or descending - the addresses

should be selected, we must take a look a t the generalized f i l e structure

which i s implemented i n the EDMJ?. We note tha t the l i s t s are arranged

i n such a way tha t the pointers a re i n descending order. That i s , the

record a t the head of the l i s t has a numerically larger address than

any other record i n the l i s t . In general it i s t rue fo r the f i l e s of

the EDMF tha t :

Ki-pointer of R < Address of R

This ordering results from a new record containing K being added to
i

the head of a Ki-list. The address of the new record is higher than

the addresses of the other records in the list because the new record

is located further from the beginning of the file space than the

previous records. Therefore, the addresses are selected in a monotonically

descending order. This means that at any given time, the highest address

not yet used to retrieve a record, is selected for the retrieval of the

next record.

Record Retrieval

The beginning of the list processing is done by the second step

of the File Searching Function. The address selected by the previous

step is now given to a storage and retrieval subroutine which will locate

the record at the given address and move the record from its secondary

storage location into core memory. This is considered a retrieval by

the Supervisor only and not by the user, because the record has not

been made available to the user. When the record becomes available to

the user, then the record is considered retrieved by the user.

Extraction of Pointers

The extraction of pointers from a retrieved record is an important

step in the File Searching Function. This step ensures that the lists

are being processed continuously until their terminators (the null

-pointers) are reached. %is processing of all the lists constitutes

the file search.

Since a record is retrieved only if it is a member of at least

one of the prime keyword lists, the record contains at least one prime

keyword but it may contain more than one, making it a metuber of more

than one list. This record can be the beginning of one prime keyword

list while at the same time being imbedded in another prime keyword list.

?bus the pointers corresponding to all the prime keywords which are in

the record must be extracted.

To extract these pointers,. the record is checked for the presence

of a prime keyword Ki. If Ki is found in the record, the K.-pointer is
1

extracted and added to those addresses which have not yet been used for

retrieval. Regardless of whether or not K was found in the record, the
i

record is subsequently checked for the presence of the next prime keyword

of the user's request description. This process is repeated for all the

prime keywords, resulting in the extraction of all relevant pointers.

IBtracting all of the prime keyword pointers after the first

retrieval of a record eliminates the necessity to retrieve that record

again. Although a record is retrieved as a member of one prime keyword

list, the same record need not be retrieved again as a member of another

prime keyword list because the pointer corresponding to the other prime

keyword is also extracted. As records in general contain multiple key-

words and user's request descriptions consist of many conjuncts, the

saving of retrieval time and effort due to the elimination of redundant

retrievals is considerable.

L.3.2 Routines of the File Searching Function

The implementation of the File Searching Function involves two

routines and the primitive storage and retrieval subroutines as described

in [61. Step 1 is completely im~lemented in the routine RE!BKG. Step 2

is also implemented in R E W G , but it requires the services of the

primitive storage and retrieval subroutines. Step 3 is implement~d in

the routine RCDCHK, which also serves an important role in the Record

Validating Function.

2.3.2.1 Address Selection Mechanism

This mechanism, which implements the first step of the File Search-

ing Function, is responsible for selecting the address of the next record

to be retrieved. It also notes .the addresses which have been used for

retrieval, so that the same record is not retrieved again.

ISAM Keys

The EDMF utilizes the Indexed Sequential Access Method (ISAM) for

device level input/output operation on the RCA Spectra 70/46, the

computer system on which the EDMF has been implemented. In ISAM, the

number assigned to a record as an address is five bytes long and is in

packed decimal format. Tnis address is called a - key or more precisely

an ISAM key and these terms will be used hereafter when referring to a - -'
record's address. Note that the term "key" or "ISAM key" is used to

denote a record address in this implementation and it should not be

confused with the term "keyword" which is an attribute-value pair in a

record.

KEYQUX Format

In order to avoid repeated retrievals of a given record, the

processing of the lists is done in a unified manner. That is, all

the keys which are obtained as HO:.'s and all the keys which are ex-

tracted as pointers, are stored in one single area. Duplicate keys are

eliminated and unique keys are then marked as they are used for retrieval.

Since t h i s a rea i s a queue of ISAM keys, it i s given t h e name KEYQUE.

A t t h e head of KEYQUE, the re i s a f i v e byte area named SEFEXY.

This is a temporary storage locat ion f o r the key which i s being con-

sidered f o r addi t ion t o KEYQUE o r the key which i s the highest unused

key during t he se lect ion process. SERKEY i s followed by a s e r i e s of

e n t r i e s f o r t he ISAM keys which a r e generated and extracted during the

l i s t processing. Each s i x byte entry consis ts of one byte f o r control

information and f i ve bytes f o r s tor ing an ISAM key. KEYQUE i s t e r -

minated by an End-of-File (EOF) mark i n the control byte following

t he l a s t entry. The format of KEYQUE i s i l l u s t r a t e d i n Figure 4 below.

ISAM Key

1 byte 5 bytes

1
End- of -F i l e Mark

CC - Control Codes

Figure 4: Format of KEYQUE Showing t he
Individual Entr ies

The control byte contains a code which indicates the current

status of the accompanying ISAM key. A key in KEYQUE can be in one of

the five states listed below:

1. The key is available for retrieval (i.e. it has not been

used yet).

2 . ?Pne key has been used for retrieval.

3. The key has been used for the retrieval of a record

which was validated (iie. given to the user).

4. The key lias been deleted from KEYQUE.

5. The retrieval on this key resulted in an error condition.

The actual hexadecimal codes for these states can be found in Appendix A.

Adding Keys to KEYQUE

KEYQUE is a dynamically growing area because keys are constantly

being added to it as the processing of the lists continues. KFYQUE must

contain all the keys which have been retrieved on and all the keys which

are available for retrieval. In the adding of keys, the HOLA's which

are obtained from the directory and the pointers which are extracted

from the records are treated the same way. In fact, the key addition

process is not aware of the source of the keys to be added.

Keys to be added are in a temporary queue. This queue is pointed

to by an eight byte area which also contains the length of this temporary

queue. If there is more than one temporary queue, these pointers are

listed sequentially with an EOF marker. In Figure 5, the format of the

temporary queues and their respective pointers is shown.

Pointer t o Length of
T- Queue T-Queue

P1

*
? * . t

Figure 5 : Temporary Queues (T-Queues) fo r Holding Keys t o
Be Added t o KEYQUE

key

The key addition process f i r s t handles the pointer t o the temporary

queue and checks whether there a r e any keys i n it by examining the length

-&------I

. - .

parameter. A non-zero length indicates there a re keys t o be added, and

it goes t o the temporary queue and begins the addition process.

key

The f i r s t key i s taken from the temporary queue and put into

S m . It i s then compared with each previous member of KEYQUE, includ-

ing those keys which have already been used f o r re t r ieva l . If the key

i n SERKEY i s found i n KEYQUE, the process returns t o the temporary queue

t o f ind the next key t o be inserted. I n t h i s way, the keys which are

already i n KEYQUE are not inserted again. Keys which are not duplicates

a re added t o the end of KFYQUE, followed by the relocation of the EOF

marker.

Null pointers, which a re put in to the records t o indicate the end

of a keyword l i s t , a re not put into KEYQUE because they do not point t o

anything. I f a nu l l pointer i s found i n the temporary queue, it i s

ignored, and the next key i s picked up.

A t the beginning of l ist processing, KEYQUE consists of only SEFxm

and the EOF marker. The H O L A f s are then taken by the addition process

from the temporary queues and put in to KEYQUE. Every HOLA put into

KEYQUE i s unique, the duplicate ones being eliminated by the addition

process.

Selecting Keys From KEYQUE

The la rges t unused key must be found i n KEYQUE i n order t o determine

which record i s t o be retrieved next. The selection process goes t o the

beginning of KEXQUE, and scans the control bytes sequentially u n t i l it

f inds a key which has not been used. This key i s then put in to SERKEY

and the location of t h i s key i n KEYQUE i s a lso recorded. The search

continues from t h i s point t o f ind the next available key. The next

available key i n mQUE i s then compared with the key i n SERKEY. I f

SERKEY i s larger than the key i n W Q U E , the search continues. I f the

keys a re equal, t h i s means tha t a duplicate has found i t s way in to

KEYQUE. The duplicate key i n K3TQUE i s deleted by changing i t s control

byte, making tha t area available f o r the addition of a key. The search

now continues also. If, however, SERKEY i s l e s s than the key i n KEYQWE,

the larger key replaces the key i n SERKEY. When the end of KEYQUE i s

reached, SERKEY contains the la rges t key which has not been used ye t .

The control byte of the key i n S m i s changed t o indicate tha t the

key has been used f o r re t r ieva l .

The F i l e Searching Function i s terminated f o r a given description

when a l l the keys i n KEYQUE have been used t o retr ieve records. This

occurs when SERKEY does not contain any key a f t e r a search of KEYQUE.

2.3.2.2 Record Retrieval Mechanism

The record corresponding t o the key selected from KEYQUE must

now be retrieved t o rea l ize the second step of the F i le Searching

Function. The actual r e t r i eva l i s done by the primitive storage and

r e t r i eva l routine RETRREC [6] which i s called by the routine RETWG.

Before RETRREC can be in i t ia ted , a parameter l i s t must be pre-

pared, indicating the key of the record t o be retrieved and the core

address a t which the retrieved record i s t o be put. m e parameter l i s t

a lso contains specific system information which i s a lso needed by RETRREC.

When the parameter l i s t has been prepared, it i s passed on t o RE'IRREC

t o i n i t i a t e i t s processing.

The routine RETRREC returns control t o RETALG a f t e r it has put

the record specified by RETALG i n core. RETRREC a lso returns a code

t o indicate i f the r e t r i eva l was successful, o r i f it resulted i n an

er ror condition. If the return code indicates tha t the'record i s too

large fo r the core area specified, RETALG w i l l a l locate enough space

t o accomodate the record and w i l l r e i n i t i a t e the re t r ieva l .

When the record i s i n core and control returns t o RETALG, the

record i s considered retrieved by the Supervisor, although a t t h i s

point, the user does not know that the record exis t s . The record i n

core i s now readily accessible by RETUG which w i l l now i n i t i a t e the

t h i r d step of the F i le Searching Function.

2.3.2.3 Pointer Extraction Mechanism

The pointers associated with the prime keywords in a record are

extracted by the routine RCDCHK, which is called RETAT;G to realize

the third step of the File Searching Function. As in the implementation

of step 2, RETALG must first prepare a parameter list before inaking a

call for RCDCHK. This parameter list contains the address of the record

to be checked and the address of the prime keywords for which the check-

ing is to be performed.

Format of the Record

The record brought into core by the retrieval mechanism is in an

internal format of the EDMF. This format allows for the removal of the

actual attributes from the record and for keeping the attributes in an

area called the Record Format Block (RFB). Each of the attributes in

the RFB is coded uniquely using a format number. That is, no two

attributes have the same format number. The values in the record are

associated with their proper attributes by means of these f o m t numbers.

By removing the attributes from all the records in a file, this method

of storing records can reduce the physical storage size of the records

and consequently reduce the physical size of the file as well [g] .

The internal format of the record consists of two parts. First

there is the Record Control Block (RCB) which contains the format num-

bers of all the attrib~rtes used in the record. These numbers may not

all be different if there is more than one occurrence of a particular

attribute in the record. men there is the text of the record which

contains the actual values and the keyword pointers associated with them.

In the RCB, associated with each format number, there i s an address

which points t o the value i n the text which corresponds t o the a t t r ibu te

represented by the format number. The relationships between these

various areas can be seen i n Figure 6, and the reader i s referred t o

Appendix B f o r the detailed specifications of the RFB and the internal

form of the record.

Prime Keyword Search

5 e prime keywords from a user 's request description a re put in to

a form which i s compatible with the internal format of the record.

In the record, a keyword actual ly ex is t s a s a format number and an

associated value so the actual a t t r ibutes of the prime keywords a re a l so

put in to format number form. This i s done by the Retrieval Optimizing

Function [4] of the Supervisor a f t e r the prime keywords have been found.

The prime keywords a re i n a stack whose beginning address i s

given t o RCDCHK i n the parameter l i s t . The search begins when a prime

keyword i s taken from the stack. 5 e format number of t h i s keyword i s

then compared sequentially with a l l the format numbers i n the RCB. If

the format number of the prime keyword i s not present i n the RCB, then

tha t prime keyword i s not i n the record and the next prime keyword i s

taken from the stack.

However, if the format number of the prime keyword i s present i n

the RCB, then the a t t r ibu te half of tha t keyword i s present i n the

record. Now the value of the prime keyword i s compared with the corres-

ponding value i n the record tex t . I f the values match, then the prime

keyword i s present i n the record, and the pointer must be extracted. I f

the values do not match, then the prime keyword i s not present, and

the format number search of the RCB resumes.

Record

Core

number

Figure 6: The major parts of the internal format

of a record in the EDMI?. Figure shows how
the keyword: Attributei = Value. is stored.

1

This process is repeated for every prime keyword in the stack,

so that all relevant pointers which are in the record can be extracted.

Extraction of the Pointers

As each prime keyword is found in the record, the corresponding

pointer is taken and put into a temporary queue. When all the prime

keywords have been checked for, then all relevant pointers have been

extracted. An area pointing to and containing the length of the

temporary queue is now set up so.that the pointers can be added to KEYQUE.

l?nis completes the third step of the File Searching Function and now

RCDCHK returns control to RETCILG and passes along the address of the

temporary queue.

E A P r n 3

M E RECORD VALIDATING FUNCTION

3.0 Introduction

In any data management facility, the security and integrity of

the records are as important as the ease with which the records may be

retrieved. A good system is one in which the security precautions are

enough to ensure reasonable record integrity while at the same time

not unduly encumbering the retrieval mechanism. The assurance of the

integrity of the files encourages users to add records to the data

management facility, thus enhancing the dynamic growth of the data base.

Easy retrieval will encourage frequent use of this data base, leading

to an orderly, yet efficient way for information dissemination. In

general, these security arrangements will require that each record

be "validated" or cleared by some authority before it is given to the

user. This is the job of the Record Validating Function.

Tne "validity" of a record or its clearance to be outputted is a

function of an agreement made by two parties. One of these parties is

the user who wishes to see records satisfying a certain description.

The other party is the owner of the file who would like to control the

access of other users to his records. Therefore, a record is valid if

it is one which the user would like to see and if that same record

is one which the file owner will allow the user to access. Only when

the wishes of the owner and user coincide (intersection, in the language

of set algebra), does a record get outputted from the system. In this

way, the integrity and security of the file are upheld.

3.1 The Implementation

3.1.1 Steps of the Record Validating Function

The Record Validating Function consists of two steps which deter-

mine if a record is valid and can be given to the user who requests it.

One of these steps is checking the record to see if it satisfies the

user's request description. This step is called record checking.

The other step is called security checking and is used to determine if

the user is allowed to read or write the record.

The record checking is done first. It will examine a retrieved

record and compare it with the request description given by the user.

A record which is satisfactory from the user's point of view will then

be subject to the security check by the Supervisor. Tnis means that

only those records which satisfy the user's request descriptioli will

have to be security checked. In other words, every record which is

eventually given to the user must be security checked.

. m e security checking done by the EDMF is at the software level

only. Security problems related to hardware and electronics, and the

personnel in the computer center are subject to more broad measures

which are not included in this study [lo].

3.1.2 The Authority Item

In order to validate a user's authorization to access a file,

the EDMF must somehow obtain the authority information concerning

the user's access to that particular file. This information can be

stored in a record associated with the file listing all the users who

are allowed to access the file and their extents of access. This

way of organizing and using the authority information is called a

file oriented security information system. Another way would be to -
assign to each user a special record, which would be kept in a system

file. This record contains the names of all the files to which the

user is allowed access (and possibly some to which he is denied access)

and the extent of access allowed in each file. The record is known as

the Authority - Item (AI), because it contains the user's authorization

to access the files in the EDMF. 'Pnis way of organizing and using the

authority information is termed .as user oriented file security. -
The security in the EDMF is user oriented and the latter type of

storing authority information is used. When there is to be a change

in the user's authorization, the updating is simple because all of the

user's authority information is kept in one place. The Authority Items

are set up in the same internal format as records in the rest of the

EDMF so that the Supervisor can use the regular retrieval routines to

retrieve a particular Authority Item from the system file. By keeping

the authority information in a system file on a user oriented basis,

the security of the authorization is better protected because the

system file can be accessed only by the Supervisor. This makes it

more difficult to tamper (i .e. change illegally) with the Authority

Items. Since all the Authority Items are in the exact same format,

the job of the security checking routine becomes easier because it is

working with a single format. Furthermore, the EDME' does the actual

setting up and modifying of the AI's, because the file owner cannot

access the system file. The file owner merely specifies to the system

what authorization he wants to give to any user. After checking the

validity of the file owner, the EllMF then alters the specified AI's.

This a l so insures t h a t the format of the AI's remains standard.

A detailed specification of the Authority Item i s included i n Appendix

C.

3.1.3 Record Checking

Tne record checking step is done t o ensure tha t the retrieved

records a re those which sa t i s fy the use r ' s request description. Since

the request description i s i n DNF, the checking consists of examining

the record f o r the presence of a l l the keywords specified i n a conjunct -

of the request description. A record containing a l l of the keywords i s

sa id t o sa t i s fy the description a s defined i n Sect. 2.1.7.

Use of Prime Keywords

The routine RCDCHK, which was used f o r finding the prime keywords

and extracting the pointers, i s also used fo r checking the record,

because both checking processes overlap and are therefore incorporated

in to one routine. The finding of prime keywords i n the records helps

expedite the record checking by vir tue of the f a c t t ha t each conjunct

has only one prime keyword. Only when the prime keyword of a conjunct

i s found (and the pointer i s extracted) i s the record checked f o r the

r e s t of the keywords i n tha t conjunct. Tkis way, a l o t of useless

checking i s eliminated because conjuncts are not checked f o r unless

there i s a posit ive indication (such as finding the conjunct ' s prime

keyword i n the record) tha t the record may sa t i s fy the conjunct. To

fur ther reduce unwarranted checking of the record, there i s a provision

i n R C D m such that once the record has sa t i s f ied 2: conjunct i n the

use r ' s request description it i s considered a sat isfactory record and

no further conjunct checking i s done. The record, however, continues

to be checked for the rest of the prime keywords so that the corresponding

pointers may be extracted, as necessitated by the File Searching Function.

Checking for the Conjuncts

The records being checked reside in core and have the internal

format which was described in Sect. 2.3.2.3. This means that the

user's request description has to have format numbers for attributes

just as the prime keywords did. In actuality, the whole request descrip-

tion is translated into an internal form by the Query Language Assembler

[3], and is then put in a single location. Keywords which become prime

keywords are appropriately marked. Format numbers are added to every

keyword in the description, prime or not, by the Retrieval Optimizing

Function of the Supervisor [4]. m e actual checking for the presence

of a given keyword is identical to the checking for a prime keyword,

this process having been described in Sect. 2.3.2.3.

When a prime keyword is found, this means that one of the keywords

in a conjunct is in the record. Now the other keywords must be checked

for.

The routine goes to the beginning of the conjunct and takes the

first keyword (unless it is the prime keyword, in which case the next

keyword is taken). The record is then checked for the presence of this

keyword. If it is present, the record has partially satisfied the

conjunct up to this point in the checking process and is called a

partially satisfactory record. Then the next keyword in the conjunct

is taken (if it is the prime keyword, it is skipped) and the record

is checked for the presence of that keyword. If it is present, the

record continues to be partially satisfactory. The next keyword in the

conjunct is taken and the checking is repeated. If there are no more

keywords in the conjunct, then the record has become satisfactory.

All the keywords specified in the conjunct are in the record, and the

record does not have to be checked for any more conjuncts. If, however,

during the checking of the record for the keywords in a conjunct, a

keyword does not appear in the record, the record is unsatisfactory and

has failed the test. In this case the routine goes back to check for

the prime keywords.

When all the prime keywords have been checked for, the record is

deemed either satisfactory or unsatisfactory. A satisfactory record

goes on to the second step of the Record Validating Function, while the

unsatisfactory one is erased from core, having served its purpose in

the File Searching Function. This keyword checking routine assures

that the retrieved records satisfy the user's request description by

preventing superfluous records from being sent to the output routine. It

also keeps the lists intact by extracting all the relevant pointers from

the records retrieved. This allows an efficient search and retrieval

mechanism to be implemented but not at the expense of the convenience
I

to the user. $he first step of the Record Validating Function, that

of assuring the user that he will receive only those records which he

asks for, is thus completed.

3.1.4 Security Checking

In the EDMF, all the security checking is controlled by the rou-

tine AUTHCHK. The protection mechanism implemented in AUlIHCHK can

operate at three levels corresponding to the logical levels of the file

structure in the EDMF. These are the file level, the record level and

the field level (a field being an attribute-value pair in the record) .

I n general, a f i l e l e v e l check i s concerned with the securi ty of the

f i l e a s a whole, and therefore w i l l control any access whatsoever t o

the f i l e . I f a user has no authorization t o access a cer ta in f i l e ,

the processing of h i s request is immediately terminated. The f i l e l eve l

check w i l l a lso involve se t t ing up the parameters which w i l l be needed

i n record and f i e l d l eve l checks i f the user i s allowed in to the f i l e .

The record l e v e l check i s concerned with the securi ty of individual

records i n the f i l e . The check done a t t h i s l e v e l w i l l ascer ta in i f

the user i s allowed access t o the record which has been re t r ieved and

deemed sa t i s fac tory by RCDCHK. I f the user i s allowed t o access the

record, it i s output t o him v ia the device he has selected. If on the

other hand, the user i s not allowed t o access the record, then the

record i s discarded, and the F i l e Searching Function resumes i t s pro-

cessing. The f i e l d l eve l check i s concerned with cer ta in pa r t s of the

record and whether or not the user i s allowed t o see them. If the user

i s not allowed t o see cer ta in pa r t s of the record, these pa r t s a r e deleted

before the record i s given t o the user. A detai led description of

AUMW can be found i n Appendix A.

Of course, any f i l e owner can incorporate securi ty measures above

and beyond those offered by the EDMF, but t ha t i s not required f o r basic

f i l e security. I n t h i s case the f i l e owner would probably have,in some

par t of the f i l e , a l i s t of users whom he w i l l allow t o access h i s f i l e

along with a program t o check these l i s t s for the name of a user wishing

t o access the f i l e .

The F i l e Level Check

The f i l e l e v e l secur i ty check (o r a use r ' s author izat ion check)

i s necessary t o control any access t o a f i l e and t o s e t up the parameters

which w i l l be needed f o r the subsequent record and f i e l d l e v e l checks.

This makes the f i l e l e v e l secur i ty check the most involved and complex

procedure of the th ree checking l e v e l procedures. The u s e r ' s Authority

Item i s t h e standard from which a l l f i l e l e v e l controls (record, and

f i e l d l e v e l a lso , f o r t h a t matte^) a r e derived f o r a given user .

A t t h e f i l e l eve l , a u s e r ' s A 1 i s examined t o determine if he

has any access t o the f i l e he requests records from. If he does have

access, a f u r t h e r examination of t he A 1 w i l l determine the exact extent

of t h i s access. Specif ica l ly , two major e n t r i e s a r e examined a t t he

f i l e l e v e l . One of these t e l l s whether a user i s t h e owner o r a sharer

of t h e f i l e and the type of access control which appl ies t o him. I n

t he EDMF, a f i l e owner w i l l have complete and unres t r i c ted access t o

the f i l e , making f u r t h e r checking unnecessary. A sha r e r ' s access w i l l

be checked at each l e v e l t o determine the extent of the access which he

i s allowed.

Another item i n t h e f i l e l e v e l check i s determining whether t h e

user has used i n h i s request descr ip t ion any keywords which he i s not

allowed t o r e t r i ev e on. This i s t o protect the f i l e ' s i n t e g r i t y a t

t he f i e l d l ev e l , f o r if the user i s forbidden t o see ce r t a i n f i e l d s

i n a record he must a l s o be prevented from re t r i ev ing on these keywords.

The importance of t h i s check can be i l l u s t r a t e d i n the following

example. Suppose a person i s doing a medical survey and i s allowed t o

access t h e medical records of t he pa t i en t s i n a hospi ta l , but with t he

p a t i e n t ' s personal data deleted. The records would be output without

any identifying data such a s name, address, social security number, e tc .

Without the r e s t r i c t ion on request descriptions, he could ask for a

r e t r i eva l using a pa t i en t ' s name as the keyword. Receiving the record,

he f inds the pa t i en t ' s name deleted. However, by vir tue of the f ac t

t ha t the record was retrieved i n response t o a name keyword, the user

now knows the contents of the deleted name f i e l d . Thus, a f i e l d which

was t o be l e f t unknown t o t h i s user, has had i t s security compromised.

I f the user were not allowed t o request records using a keyword not t o

be seen by him, h i s request would be rejected should it ever enter the

EDMF'. This preserves the security of f i e l d s not t o be seen by a user.

Such an access control i s called directory protection because it w i l l

not even allow the directory t o process the request.

An important, but optional, par t of the f i l e leve l check i s t o

see whether the owner has a l so implemented some kind of access control

t o h i s f i l e . I f there i s such a control program, it must be sa t i s f ied

by the user (using passwords, etc.) before any fur ther processing is

done by the EDMF. I f the f i l e owner's control program re j ec t s the user ' s

request f o r access, then the EDMF w i l l a l so r e j ec t the user and block

any of h i s attempts t o access the f i l e . The f i l e owner can also specify

tha t only h i s access control i s t o be used t o protect h i s f i l e . In

t h i s case, there i s no fur ther checking by the security checking routine,

and the EDMF r e l i e s solely on the owner's control program for security

checking.

Part of the f i l e leve l security check a lso involves se t t ing up

parameters f o r subsequent checks a t lower levels . I f it i s determined

tha t the user i s a sharer of the f i l e , further checks a re made t o

ascertain what l imitat ions have t o be imposed at the record and f i e l d

level . I f there i s a description which w i l l l i m i t him t o records i n

one part of the f i l e , then t h i s description (which i s i n the same form

as a description issued by a user) must be changed in to an internal

form which can be used by the record checking routine RCDCHK. The

f i l e leve l security check f i r s t ca l l s fo r the Query Language Assembler

[3] t o t rans la te the l imiting description into internal form. It then

c a l l s a routine of the Retrieval Optimizing Function of the Supervisor [4]

which make the internal form usable f o r a record leve l check. The

address of the f i l e l imiting description i s then stored so it w i l l be

available for use during a record leve l check.

The f i l e leve l security check returns t o the Supervisor with a

code indicating whether or not the Supervisor should proceed i n handling

the use r ' s request. It also returns the address of the area where the

description l imiting the user ' s access a t record leve l i s stored. Thus

the f i l e leve l check has completed i t s job of checking a use r ' s access

t o the f i l e and set t ing up the parameters f o r subsequent checks on lower

levels .

The Record Level Check

The record leve l check i s used t o verify i f retrieved records

belong t o tha t par t of the f i l e t o which the user i s allowed access.

A t t h i s leve l it checks f i r s t whether or not the user i s the owner

of the f i l e . If he i s , then no pore checking i s necessary, and it is

assumed tha t the user i s allowed access t o any record i n the f i l e .

Checking at this level occurs for each record which is retrieved

on the user's request description after it has been determined that the

record is satisfactory. Then the record is examined to see if it

included in the limiting description which was set up in internal form

by the file level checking routine. The routine RCDCHK is used to

determine if a record satisfies the limiting description because the

checking procedure for this step is the same as it was for the record

checking step. After determining whether or not the record is in that

part of the file which is partitioned by the limiting description, the

checking routine will see whether the description was an inclusive or

exclusive expression. An inclusive expression describes that part of

the file which the user is allowed access to, while the exclusive

expression describes that part of the file which the user is - not

allowed to access. Therefore a record satisfying an exclusive expression

is not allowed to be seen by the user and is not validated. If that same

expression were an inclusive type, and a record satisfied it, then that

record would be validated and allowed to be output to the user.

The record level check is set up in such a way that RCDCHK is also

utilized for checking if the record satisfied the Al's limiting descrip-

tion. This allows for an efficient use of system resources, and for

standardization of the various checking procedures for both the user's

convenience and the owner's privacy.

The Field Level Check

After a record has been validated (released for output) it is

formatted and made ready for outputting. However, before it is actually

given to the user, the field level check must be applied to determine

if the record output format has to be altered to conform to the user's

authorization.

The f i e l d l eve l check i s based on the assumption tha t the record

has been retrieved using keywords other than those forbidden t o the user

f o r request descriptions. The f i e l d leve l check then examines the

u s e r ' s A1 t o see which f i e l d s have t o be deleted before the record i s

given t o the user. When the f i e l d s which must be deleted a re known,

the output format i s scanned f o r the presence of these f ie lds . I f

they are present, the value or the whole keyword may be deleted, depending

on the circumstances surrounding the res t r ic t ion . This i s done fo r a l l

the forbidden f i e l d s u n t i l only tha t par t of the record is l e f t which

the user i s authorized t o see.

-
The f i e l d level check completes the security measures taken t o

preserve the f i l e owner's privacy. The capabili ty of being able t o check

security on these three levels , allows the f i l e owner a wide range of

options so tha t he can selectively protect the in tegr i ty of h i s f i l e .

These options encourage a greater use of the EDMF because the owners

know they can protect the privacy of the i r f i l e s while allowing users

of different authorization levels t o access selected par t s of the f i l e

and records.

CHAPTER 4

THE RECORD FORMATTING ITUNCTION

4.0 Introduction

Although a record has been retrieved by the F i l e Searching Function

and has been validated by the Record Validating Function, it is not of

any use t o the user. The record i s s t i l l i n the in te rna l format described

i n Sect. 2.3.2.3, which makes it meaningless t o the user. The Record

Formatting Function transforms t h i s record in to a format which the user

can interpret and understand. There a re two types of formats available

f o r giving the record t o the user. F i r s t , there i s the output format

which i s used i f the record i s t o be printed out fo r the user on some

outputting device. Second, there i s the - core format which i s used

i f the user wants t o process the record i n core memory.

4.1 Record Output Format

This i s the f i r s t type of format available f o r giving records t o

the user. It i s used f o r actual ly outputting the records t o the user,

and f o r t h i s reason it is oriented toward human interpretat ion.

There are two major types of devices which would be used t o output

the records t o the user. These would be a high speed pr in ter or a low

speed terminal, e i the r a teletypewriter or a video console. Because

of the greater speed and capacity of the pr inter , the format sent t o

it w i l l be s l igh t ly different than the format sent t o the low speed

devices.

The basic output format is t o have a maximum of one a t t r ibute-

value pa i r on a physical l i n e of the output device. If the s ize of t h i s

attribute-value exceeds one l ine , a s many additional l i n e s a re used

as are needed. Each attribute-value pair is preceded by a line number -
which also denotes the ordering of that attribute-value pair in the

record.

Each attribute-value pair consists of the complete attribute name,

followed by an equal sign which is then followed by the complete value.

As an example we may have the following entry printed out:

AUrnOR = KRAMER, J. A .

Here the complete attribute name is "AUMOR1', and the complete value

contained in a certain record is "KRAMER, J. A . " !The rest of the values

in the record are printed out in a similar manner.

4.1.1 Record Number

At the beginning of each record which is printed out, there is a

record number. !&is number is used when referring to that record for - 8-
the purposes of updating or modifying it in an interactive mode. The

record number allows the updating routines to get the corresponding

internal form of the record so that the necessary changes can be made.

In the EDME', a coded form of the record's ISAM key is used as the
1

record number.

4.1.2 Line Numbers

Line numbers are put in front of each attribute-value pair to

indicate the sequential order of the attribute-value pair in the record

retrieved. The purpose of line numbers is to aid the user in picking

out and referring to certain parts of the record which he wishes to

update or otherwise modify in an interactive mode. The line numbers

are assigned in multiples of one hundred, thereby allowing the user

to insert additional attribute-value pairs between already existing ones

by assigning the corresponding line numbers to new attribute-value pairs.

As an example we show that a part of the output for a record was

retrieved:

OOOgOO AU!IHOR = ImAMFJ3, J. A.

001000 TOPIC = LOGIC

001100 YEAR = 1964

The user can change any of these attribute-value pairs by referring to

their line numbers and inputting the new value. An insertion of an

additional attribute-value pair can be accomplished by assigning this

pair a line number which is numerically between the line numbers of the

attribute-value pairs which are to surround the new attribute-value pair.

A change and insertion to the part of record output illustrated above

would take the following form:

OOOgOO AUTHOR = CRAMER, K. B. (change existing line)

O O ~ O ~ O MONTH = MAY (insert a new line)

With the above changes, the part of the record illustrated would have

the following output format on subsequent retrievals.

OOgOO AUMOR = CRAMER, K. B.

001000 mPIc = LOGIC

001100 MONTH = MAY

001200 YEAR = 1964

It mst be noted here that although the attribute-value pair MONTH = MAY

was inserted with a line number of 001050, its line number became

001100 upon retrieval. There is no discrepancy here. The number 1050

indicated that this attribute-value pair was to be inserted between

the attribute-value pairs with line numbers 1000 and 1100 in the old

record. Since the line numbers indicate the sequential order of an

attribute-value pair at the time of retrieval a subsequent retrieval

finds that the attribute-value pair MONM = MAY is now the llth item

in the record and is assigned the line number 001100, with the line

numbers of other attribute-value pairs adjusted accordingly.

4.1.3 Output Formatting Mechanism

The mechanism for transforming the recbrd into output format is

implemented in a routine called RCDFRMT. This routine is called by

RETALG to initiate the Record Formatting Function for the output type

of format. The routine RCDFRM!I' has two parts which transform a validated

into printed output for the user.

The first part of RCDFRMT takes the record in the internal form

and the Record Format Block (Rl?B), and collates the attributes in the

RFB with the proper values from the internal fornu of the record. This

is done by taking the first value in record and decoding the control

information to find out which attribute in the RFB is to be associated

with that value. When the proper attribute is found in the RFB, it is

moved to an assembly area. The attribute is followed by an equal sign

and the value from the record. The attribute and value have now been

collated in the assembly area and are in the f o m which is printed out.

This attribute-value pair is separated from the next ,one in the assembly

area by a delimiter which immed.iately follows the value. Then, the

next value in the record is accessed and the process is repeated until

all the values have been associated with their proper attributes in

the assembly area. This part of the formatting i~ the same, regardless

of the output device.

The second part of RCDFRMT consists of moving the attribute-value

pairs from the assembly area into the device output buffer along with

the appropriate line numbers. The physical line images for the output

devices are formed by this part of the mechanism. In this part, the

current line number is moved into the device buffer. This is immediately

followed by the next attribute-value pair from the assembly area. If

the attribute-value pair exceeds the line image, it is truncated and

the remainder is put into the next line image without a line number.

When the record bas been put into the buffer of an output device, it is

said to be in output format. When the device outputs the contents of

its buffer, the record is given to the user. In the case of a low speed

terminal, this occurs after each line image has been formatted, resulting

in a record being output line-by-line. In the case of the printer, the

outputting occurs when the entire retrieval is completed, so that all

the records are outputted all at once.

4.2 Record Core Format

lhis is the second type of format availaljle for giving records to I

the user. It is called - core format because the record is not outputted i

but actually remains in core memory so that it can be processed: by a

user or a system program. For this reason, the format is oriented

toward programmable manipulation.

This format is basically very simple, consisting of a header which

is followed by a series of attribute-value entries. The basic layout

is illustrated in Figure 7.

General Control
Information

Attribute

Value

*) Attribute - Value
a Entries

Attribute

Value

Figure 7: Layout of the Core Format for a Record

Each attribute-value entry contains the complete attribute name and the

complete value associated with the attribute. The lengths of both the

attribute and the value are also included in the entry as well as other

control information to make the core format machine oriented.

The core format is assembled by the routine COREFMT, and its

processing is somewhat similar .to RCDFRMT. The routine C O m T takes

each value in the internal form of the record and then finds the

associated attribute in the RFB. Then both the attribute and value

are moved into the core formatting area. The length parameters are

added along with the control information and the attribute-value entry

is completed. This process is repeated until an attribute-value entry

has been formed for each field in the record.

The record, now in core format, can be put into a location

specified by either the user or the Supervisor. If the record is in

a user specified area, the Supervisor notifies the user that the record

is released to him. If the record is in an area specified by the Super-

visor, the user is given the address of that area as notification that

the record is ready.

The completion of a user's request service occurs when the desired

records are given to the user in an intelligible form. This form can be

4

either the output format or the core format, both of which were discussed

above.

CHAPTER 5

SUMMARY AND CONCLUSION

The Extended Data Management Facility (EDMF) was implemented to

provide a general purpose data management system for the orderly dissemina-

tion of information. The EDMF utilizes a generalized file structure and

retrieval algorithm for efficient data management. The user can cause

the Facility to retrieve records by describing the contents of these

records as a Boolean expression of keywords. !Be files in the EDMF are

protected by elaborate security measures which allow the individual

file owner to impose a wide variety of access controls on the users of

his file.

The five functions of the Supervisor are employed to direct the

Facility's handling of a user's request and to enforce the access control

on this request for the file owner. The Access Controlling and Retrieval

Optimizing functions which partially fulfill the roles of 'doorman',

ladministratorl, and 'foreman1, are described in [&I. This thesis has

described the File Searching, Record Validating, and Record Formatting

functions of the Supervisor.

The File Searching Function fulfills that aspect of the 'foreman'

which deals with the retrfeval of individual records from the files of

the EDMF. Implemented in the File Searching Function is a novel feature

which allows the parallel processing of record lists in a generalized

file structure. This feature eliminates the redundant retrieval of

records thus reducing the file searching effort and also results in an

orderly motion for the moving head of a random access device. Thus the .
parallel list processing capability of the File Searching Function

assures an efficient utilization of system resources by the Supervisor.

5 e Record Validating Function fulfills that aspect of the 'admin-

istrator' which is concerned with the validation of individual records.

This validation consis.ts of two steps, the first of which checks if the

record satisfies the user's request. The second step checks if the

record is allowed to be accessed by the user. A record becomes valid

only if it can pass both of these checks.

The Record Formatting F'unbtion fulfills the role of the 'dispatcherf

and is concerned with giving the actual records to the user. This

function first puts the record into one of two formats which are intelli-

gible to the user and then outputs the record. When all the records

which were requested have been given to the user, the processing of a

user's request is completed.

These three functions constitute the basic components of the

Supervisor. With additional time and effort, improvements in the

coding of the routines and better use of the systems facilities can be

made. However, the design of the implementation has been made flexible

enough to allow for modifications and additions in the future. Some

suggestions of improvements are listed below:

(1) In supervising the retrieval of records, the File Search

Function must direct the primitive storage and retrieval

routines to retrieve one record after another. Error

conditions may exist between the retrieval of one record and

another. It is important that error recovery routines

supplied by the user or the systems programmer can be easily

incorporated so that continuation of tk.e retrieval process

is assured. Currently, a very simple error recovery routine

is used. It is hoped that more elaborated recovery routines

can be added to the File Search Function for diagnostic,

debugging and monitoring purposes.

The KEYQUE mechanism which selects prime keywords for

retrieval of records can be improved. The current mechanism

employed which is a sequential search of the keyqueue may

result in considerable search time if the queue is long.

Consideration of binary and hashing algorithmmay be helpful.

As part of the Record Validating Function, the routine

RCDCHK presently compares the keyword in the user's request

description with the keyword in the retrieved record to see

if they match. However, the EDMF design has allowed for

relations other than 'equal' to be used between the attribute

and the value, namely, the relation 'inclusion'. This makes

the comparing procedure more complex because RCDCHK now has I

I

to interpret the keyword in the request description and then

decide whether the keyword in the record is part of those

keywords covered by the relation. 'Phis requires a more

extensive interpretation mechanism to be included in the

RCDCHK . ,

There is the need of implementing a mechanism by which a user

can find out from his Authority Item the exact extent of his

access to the files of the EDMF. If he finds that he needs

more access to a certain file, he can contact the owner in

order to ask for access privileges. O!;herwise, he would

use the EDMF only to get an error message that he is denied

access. This.feature would be very important to those users

whose access ib i l i ty t o the EDMF i s very limited.

(5) A t present the Record Formatting Function has only two fixed

formats which the user can select from. It i s not c lear t o

the author whether these two formats can be eas i ly accepted

by other language processors a s input so tha t more elaborate

outp-ut format can be generated. One such processor i s the

Report Generator. Another one i s SNOBOL.

These suggestions may improve the working of the Supervisor and

enhance the use of the EDMF - leading t o a more orderly accumulation

and dissemination of information.

BIBLIOGRAPHY

1. Desiato, B., "Directory Constructing and Decoding in a Generalized

File Structure," M.Sc. Thesis, The Moore School of Electrical

Engineering, University of Pennsylvania, August 1970.

2. Dodd, G. G., "Elements of Data Management Systems," Computing

Surveys, Vol. 1, No. 2, June 1969.

3. Gana, J., "A Command and Query Language Assembler for an Extended

Data Management System," M.Sc. Thesis, The Moore School of

Electrical Engineering, University of Pennsylvania, August 1970.

4. Hirsch, J., "The Access Control and Retrieval Optimization F'unctions

of the Supervisor for an Extended Data Management Facility,"

M.Sc. Thesis, m e Moore School of Electrical Engineering, University

of Pennsylvania, August 1970.

5. Hoffman, L. J., "Computers and Privacy: A Survey," Computing

Surveys, Vol. 1, No. 2, June 1969.

6. Horton, M., "Reading, Writing, Creating and Updating Records and

Files in a Generalized File Structure," M.Sc. Thesis, The Moore

School of Electrical Engineering, University of Pennsylvania, August

7. Hsiao, D. K., "A File System for a Problem Solving Facility,"

Ph.D. Dissertation, The Moore School of Electrical Engineering,

University of Pennsylvania, m y 1968.

8. Hsiao, D. K. and Harary, F., "A Formal System for Information

Retrieval From Files," Communications of the ACM, Vol. 13, No. 2,

February 1970.

9. Manola, F., "An Extended Data Management Facility for a General

Purpose Time Sharing System," M.Sc. Thesis, The Moore School of

Electrical Engineering, University of Pennsylvania, August 1970.

10. Petersen, H. E. and Tbrn, R., "Systems Implications of Information

Privacy," Proc. of S C C 1967, pp. 291-300.

11. Wexelblat, R., "The Development and Mechanization of a Problem

Solving Facility," Ph.D. Dissertation, The Moore School of Electrical

Engineering, University of Pennsylvania, December 1965.

APPENDIX A

ROUTINES

A.l Routine RETALG

The routine RETALG serves as the part of the Supervisor which

directs the retrieval and validating of individual records. It is the

most important part in the implementation of the File Searching Function.

A.l.l Entry Point

RETALG is entered always at the location named ESTAB.

A.1.2 Exit Points

RETALG has two exit points. One is used where an Authority Item

has been retrieved from the system files. This exit procedure is begun

at the location SMOK. This exit point is used only for the special

Authority Item retrieval and is bypassed during normal functions.

The normal exit point begins at the location SPVEND and is used

when record retrieval has been completed. Preceding this, starting

at location NOKEY, is a procedure which prints informatory notices to

the user.

A.1.3 Input Parameter List

The input parameter list which is passed to the routine FZYTALG

has the format specified below. The parameter list is assumed to begin

on a fullword boundary.

Bytes

0 - 3

Content

Address of File Control Block (FCB)

4 - 7 Address of Key Information Buffer (KIB)

8 - 11 Address of prime keyword stack

12 - 15 Address of RFB

Bytes

16 - 19

20 - 21

22

23

24

Content

Address of FQueue pointers

Number of records requested

Code of service requested

Code f o r AU'IXCHK l eve l

Code fo r record output device

A. 1.4 Register Conventions

The reg is te rs i n RE!BLG ape assigned i n the following manner:

Register Uti l izat ion

0 Not used.

1 Address of parameter l i s t given t o

called subroutine.

Counter f o r valid records.

Base f o r FU3'IIALG

Address of T-Queue from RCDCHK.

Address of T-Queue entr ies . Temporary

storage fo r set t ing up parameter l i s t s .

Pointer t o KEYQUE entr ies .

Address of SERKEY .
Address of T-Queue pointer stack. Address

of ISAM key currently i n SERKEY.

Address of the end of a T-Queue. Address

of parameter l i s t fo r RETRREC.

Length of T-Queue.

Address and base of input parameter l i s t .

Address and base of RETALG work area.

Address of RETALG save area.

Register Utilization

14 Return address in REYNLG.

15 Subroutine call address.

A.1.5 Internal Work Area

The internal work area used by RETALG also contains the parameter

lists for some of the routines called by REYNLG. It is used to store

data from the input parameter list which must be passed on to other

routines. Tne work area has the following format:

Bytes Content

0 - 71 Save area for REIWLG.

72 - 75 Address of parameter for AU?HCHK.

76 - 79 Address of FCB.

80 - 83 Address in KEYQUE of most recently used key.

84 - 87 Address of T-Queue area of RCDCHK.

88 - 91 Size of area where retrieved record l a put.

92 Code of requested service - RETCODE.

9 3 Code for record printout - PN'TCODE.

94 Control byte to indicate no records

retrieved - DXCODE.

95 Area for analysis of return codes from

subroutines .
Area for WRCWT parameter list.

Area for the line image of a V-form record.

Packed form of record count.

Unpacked form of record count.

Unassigned.

Parameter list for privileged W.

Bytes

228 - 243

Content

Parameter list for RETRFEC.

244 - 263 Parameter list for RCDCKK.

264 - 279 Parameter list for RCDFRMT.

~.1.6 Internal Codes

There are many coded control bytes used in IU3'LW_IG to serve as

switches and store information. The bit positions of the eight bit bytes

are indicated by the use of hexadecimal digits.

Mode Byte

X'OA' Routine in Primary mode

~'061 Routine in Secondary mode

KEYQUE Control Byte

X'01'

X'02'

ISAM key has been used for retrieval.

ISAM key is available for retrieval.

ISAM key resulted in valid record being

retrieved.

~ ' 0 4 ' ISAM key has been deleted.

x '08 End of KEXQUE marker.

X'10' ISAM key resulted in. non-retrievable record.

REEODE (service request codes)

X121' Retrieve single record.

X'22' Retrieve records.

~ ' 2 6 1 Delete records.

X f 2 A ' Restore records.

X'2C' Store records.

~ ' 4 2 ' Open file for reading.

Open f i l e fo r writing.

Close f i l e .

Create a f i l e .

Delete a f i l e .

A l l auxil iary function where * - 0, ..., F.

Retrieval of Authority Item.

PNTCODE (pr in t codes indicating output device)

X '00 ' Output on Low Speed Terminal (LST) .
Xt02' Output on high speed pr in ter .

IXCODE (~ e c o r d s output indicator)

X '00 ' Records have been output.

Xt02' No records have been output.

A.l.7 Flowchart

The flowchart f o r IIEmG i s shown i n Figure A . l . This f igure

consists of f ive parts, each par t dealing with a separate aspect of

RETCULG's processing.

I Enter RETUG I

Establish

Establish

KEYQUE Area

Put RETALG I
1 in Primyry Mode 1

n

Pointers?

Yes

Get T- Queue

Figure A . 1 . a : RETALG Initialization

Put key I in to S m Y

T-\ Yes
(Null key?)-A ILlCL

T-0

r T--... ement

I ,ueue

(- - = I Put KEYQUE key into deleted?

Mark key I available

I Put key in to

Mark key +
available

Y 1
of KEYQUE

I
I

Key equal t o
Yes

KEYQUE entry?

Increment
KEYQUE

Figure A.1.b: Key Addition Mechanism f o r KEYQUE

mode?

of KEYQUE

C

Put entry
i n to SEIIKEY

Increment w
I Yes

Store address
of entry

Increment I IM;m I

\ KEXQUE entry? J

I Yes

Store address -1 of entry I
Figure A.1.c: Key Selection Mechanism f o r KEYQUE

Mark entry
as used

Load parameter
list f o r FBTRREC

I
Call RE-C F-l

1 Yes

1 ,
Was re t r ieva l

No

normal?

Load parameter

Error recovery
routine

+ 1

Call RCDCHK LrJ

I
,

a s Authority
Item retrieved?

Put routine
i n Primary Mode

I

Return A1
t o Supervisor

1 Yes

I NO I

+
Put RE'WLG

i n Secondary Mode

Figure A . 1 .d: Record Retrieval and Checking f o r
Satisfying User ' s Request Description

list for AUTHCHK

Call AUMCHK
on record level .

to users?

Yes

-

I Increment count 1
of good records +
Load parameter

list for RCDFRMT

Call RCDFRMT +
c-1~~ a
records output?

I Yes

Figure A.1.e: Record Authorization and Outpiltting

A.2 Routine RCDCHK

The routine RCDCHK i s used t o check i f a record s a t i s f i e s a given

description. This description can be e i ther from a user ' s request or

from the Authority Item limiting a user ' s access.

A.2.1 Entry Point

The routine RCDCHK i s entered a t the location RCDCHK. This is

the only entry point and i s used whenever RCDCHK i s called.

A.2.2 Exit Point

There i s only one ex i t point i n RCDCHK whic'h i s used f o r a l l pur-

poses. The e x i t sequence begins a t the location RETURN.

A.2.3 Input Parameter Lis t

RCDCHK is given a parameter l i s t i n the following format. Included

i n the l i s t i s space t o be used by RCDCHK f o r s tor ing i t s control bytes.

This eliminates the necessity of RCDCHK having t o request core memory.

The parameter l i s t i s assumed t o begin on a fullword boundary.

Bytes Content

0 - 3 Address of prime keyword stack.

Address of the record i n in te rna l format.

Byte t o indicate i f record i s deleted -

DELB .

Address of T-Queue t o be used by RCDCHK.

Address of Key Information Buffer.

Pass byte - PASSB.

Mode indicator byte - MODEB.

A . 2.4 Register Convention

Registers i n RCDCHK are assigned i n the following manner:

Register Ut i l i za t ion

0 Unassigned.

1 Address of input parameter l i s t .

2 Pointer t o prime keyword i n Description

Control Block.

3 Pointer t o en t r ies i n T-Queue.

4 Pointer t o prime keyword stack.

5 Pointer t o RCB entry.

6 Pointer t o value entry i n record t ex t .

7 Base f o r input parameter l i s t .

8 Base f o r RCDCHK.

9 Pointer t o actual value i n Key Informa-

t i on Buffer.

Pointer t o current entry i n the Description

Control Block.

Used i n character inser t ion macro.

Used i n character inser t ion macro. Con-

t a i n s branching code f o r comparison of

keywords.

Address of ca l l ing routines save area.

Return address of cal l ing routine.

Temporary storage.

A . 2 . 5 Internal Codes

The in terna l codes i n RCDCHK are a l l one byte long and the i r b i t

set t ings w i l l be indicated by hexadecimal d ig i t s .

Delete Byte - DELB

X'OO' Record i s good.

~ ' 0 4 ' Record has been deleted; only pointers

a re extracted.

Record i s security checked f o r l imiting

description.

Pass Byte - PASSB

X ' O O ' Record does not sa t i s fy given description.

~ ' 0 4 ' Record s a t i s f i e s given description.

Mode Byte - MODEB

X ' O O ' Not i n conjunct mode; checking f o r prime

keywords only.

~ ' 0 4 ' In conjunct mode, checking f o r a complete

conjunct i n a record.

A. 2.6 Flowchart

The flowchart f o r the routine RCDCHK i s shown i n Figure A.2.

Enter RCDCHK 7

Set up T-Queue

t

Security check?
Yes

No

, Get prime
keyword

L -

r G O ~ O begin I
I of RCB 1

I

entry c
t

[~ t t r i b u t e ' s l?N\ Yes n

w
f Increment I

I

1 Reset mode 1 I

+
N o Yes Conjunct No

End of RCB?
mode s e t ?

Figure A.2.a: I n i t i a l i z a t i o n of RCDCHK and Finding a
Format Number (FN) i n the Record

Set compare fo r

I Yes

Put pointer Set conjunct

Pass byte Get begin
se t ? of conjunct

I

I Yes

prime keyword -+

Figure A.2.b: Finding the Value i n the Record and
Pointer Extraction Mechanism

I Getnext I

End of
conjunct?

Yes %

Security Get next
check? conjunct

Set Pass i_ll
Reset mode 1 byie]

End of
description?

Return

Figure A.2.c: End of Conjunct Check

A.3 Routine AUMCHK

The routine AUMCHK is used to implement the security checking in

the EDMF. All checking levels are monitored by AUT!HCHK although other

subroutines may be called. The input to AU!EICHK indicates what has to be

checked for.

A. 3.1 Entry Point

There is a single entry point to AUMCHK at the location AUMCHK.

The initial processing is the same for all security checks.

A. 3.2 Exit Point

A single exit is used by AUT!HCHK for all security checks. The exit

processing begins at location AEXIT.

A.3.3 Input Parameter List

The parameter list given to AUMCHK has the following format. It

is assumed to start on a fullword boundary.

Bytes Content

0 - 3 Address of user's Authority Item.

4 - 7 Address of record to be checked.

8 - 9 Length of file name.

10 - 63 Filename of file whose access is to be

checked .

64 - 67 Address of file open description (a X'FF1

in byte 64 indicates that the description

is present).

Length of file open description

Service request code

Checking level code

Bytes Content

74 - 75 Control information about l imi t ing

description.

76 - 79 Address of in te rna l form of l imit ing

description.

Address of Key Information Buffer f o r

l imit ing description.

A. 3.4 Register Conventions

The reg is te rs i n AUMCHK a re assigned as described i n the follow-

ing specification;

Ut i l i za t ion

Unassigned.

Address of parameter lists t o be given t o

called subroutines.

Base fo r AUMCHK.

Address and base f o r the parameter l i s t

given t o RCDCHK.

Temporary storage area.

Unassigned.

Pointer t o beginning of value entry i n the

t e x t of the Authority Item.

Pointer t o beginning of t ex t i n the

Authority Item.

Pointer t o f i l e control information i n the

Authority Item.

Pointer t o RCB entry i n the Authority Item.

Address and base f o r input parameter l i s t .

Register Ut i l iza t ion

Address of the temporary storage location

DSTORE.

Address and base of work area fo r AUmCHK.

Address of save area f o r AU'IHCHK.

Return address i n AUTHCHK from called

subroutine.

Address of called subroutine. Passing return

codes between routines.

A. 3.5 Internal Work Area

m e in terna l work area f o r AUTW3-K contains the save area f o r AUMCHK

a s well a s the parameter l is ts for the subroutines called by AUTHCHK.

The in terna l work area has the following format, and l i k e the parameter

list, it begins on a fullword boundary.

Bytes Content

0 - 71 Save area f o r AUMCHK.

72 - 75 Temporary storage area DSTOFU3.

76 - 87 B t r a storage f o r use by AU!lXCHK.

88 - 107 Parameter l i s t f o r RCDCHK.

A. 3.6 Internal Codes

The in terna l codes used by AUMCHK f o r contrtol and storage are

given here. Codes which are i n the Authority Item t o specify a user ' s

access r ights can be found i n Appendix C. The codes here a re i n hexa-

decimal notation.

Checking Level

X'01'

X'02'

~ ' 0 4 ~

Return Codes

Field level check i s t o be done.

Record leve l check i s t o be done.

F i l e leve l check i s t o be done.

User i s allowed access which he requested.

User i s denied the requested access.

User request denied because access data

on the requested f i l e was not i n h i s

Authority Item.

Error i n user ' s Authority Item format.

X120' Input data i s i n error .

A.3.7 Flowchart

The flowchart f o r the routine AUTHClM is shown i n Fi&re A . 3 .

Each par t of the flowchart deals with a separate area of the security

checking.

Get user ' s

Authority Item

filename

---- -- A No (Filename i n)
- 1 n - ^

\ user ' s ALY 1 I I I

I Yes I
i

Is user User allowed
f i 1 P n ~ . r n e - r ?

I\] 0

Does user
No

User denied
have access? access

Yes

check?

Record l eve l

Error i n
input data

Figure A.3.a : Beginning of AUTHCHK and
In i t i a l i za t ion of Security
Checking

I n i t i a t e f i l e

4 No
User want t o

read f i l e ? write i n f i l e ?

Yes Yes

F i l e protect Ekec. protect
program? program

+
User allowed User jZowed Yes

t o read f i l e ? write t o f i l e

Yes

User allowed
f i l e access?

Setup internal
form of prot.

prot. descrip.? description

No

t

4
Store addr.
of descrip.

Yes

i rectory prot
c

description?

Figure A.3.b: Fi l e Level Security Checking

Delete forbidden
keys from input

description

I No I

I n i t i a t e record

l eve l check

t
No , No

, t o read f i l e ? write i n f i l e ?

I Yes

Read r e s t r i c t i t e r j s t r i c t
present?

1 Yes I yes

Call RCDCHK

Does record No 6
meet descrip.

J ~ e s

. .
Inclusive / ~ c l u s i v e

description? description?
,

Yes

Figure A.3.c: Record Level Security Checking

I n i t i a t e f i e l d '1

+
User want No No

t o read f i l e ?

Yes
Yes

which user i s

1 No

Read f i e l d \
s-brict present?

denied access

Y

Yes

Figure A.3.d: Field Level Security Checking

Yes

A. 4 Routine RCDFRMT

The routine RCDFRMT i s used t o put records into a format which

i s given t o the user on an output device. Records can be output on a

Low Speed Terminal (LST) or on a high speed pr in ter .

A.4.1 Entry Point

There i s one entry point t o the routine REWLG which i s used f o r

a l l types of format processing. This i s at the location RCDFRMT.

~ . 4 . 2 Exit Point

There i s only one ex i t point t o RCDFRMT. m e actual e x i t occurs

a t the location ERREXT, although the e x i t sequence begins a t location

ERRCWT so tha t the allocated memory can be released.

a.4.3 Input Parameter L i s t

me parameter l is t given t o RCDFRMT i s of the format specified below.

It i s assumed tha t the format area begins on a fullword boundary.

Bytes Content

0 - 3 Address of the RFB.

4 - 7 Address of the internal format of the

record.

8 - 11 Address of the area where the formatted

record i s assembled.

Pr in t code indicating the output device

wanted by the user.

Unused. 1 3 - 15

~ . 4 . 4 Register Conventions

The reg is te rs i n RCDFRMT are assigned according t o the following

specification:

Register

0

Uti l iza t ion

Unassigned.

Address of parameter l i s t given t o RCDFRMT.

Base f o r RCDFRMT.

Address of the RFB. Temporary storage f o r

loading parameter lists.

Address of the in te rna l form of the record.

Pointer t o RCB entry. Beginning address of

l i n e image.

Pointer t o beginning of the format en t r ies

i n the RFJ3.

Pointer t o the beginning of t he t e x t i n the

in te rna l form of the record. Length

counter f o r the move instruction.

Pointer t o entry i n Table of Contents f o r

RFB. Pointer t o assembly area.

Pointer t o format assembly area. End of

assembly area a f t e r col la t ing is completed.

Pointer t o format entry of RFB.

Address and base of input parameter l i s t .

Address and base of the work area f o r

RCDFRMT .

Address of save area f o r cal l ing program.

Return address i n the cal l ing program.

Address of entry point i n RCDFRMT.

A. 4.5 Internal Work Area

The internal work area of RCDFRMT contains space f o r the formation

of the l i n e images which are passed t o the output device. The work area

i s i n the format specified below:

Bytes

0 - 71

Content

Save area f o r RCDFRMT.

72 - 79 Parameter l i s t fo r output macro.

80 - 219 Area f o r l i n e image of the V-form output

record.

220 - 223 Work area f o r RCDFRMT.

224 - 227 Beginning address of formatting area.

228 - 231 Highest l i n e number used up t o present time.

~ . 4 . 6 Internal Codes

Tkese codes a re used internal ly i n RCDFEMT f o r controlling the

flow of processing.

Pr in t Code

X'OO'

X'02'

Record i s t o be printed out on LST.

Record i s t o be printed out on high speed

pr inter .

Internal Delimiter

X'FC' Tnis code i s used as the delimiter t o

separate.

A . 4.7 Flowchart

The flowchart f o r RCDFRMT i s shown i n Figure ~ . 4 . Each aspect of

the processing i s shown i n a separate par t of the figure.

Get record. -1
t

f Initialize line 1
number +
Get first

Get first

RFB entry

End of RFB? Error
-

Get format no.
4

from RFB

Get next

RFB entry

Increment Put line no.
line no. in format area

Figure ~.4.a: Initializing RCDFRMT and Checking

Getting the Attribute

.
Move a t t r i b u t e
t o former.t; area -+
Move value t o

format area '-4
In se r t delimiter Q

Get next

End of RCB?

Yes

w

Output
on Pr in te r?

I

Error i n

Figure ~ . 4 . b : Moving At t r ibu te and Value
i n to Formatting Area

Goto begin of
format area

1

A-V pair exce
No

Put A-V pair
l i n e image?

'
into ' l ine image

Yes

F i l l l i n e image

4
t o device

I Yes

Figure A . ~ . c : Outputting Records on the LST

I

I Goto begin of I
I format area I

I

Put A-V pai r
l i n e image? in to l i n e image

F i l l l i n e image Q
t o device

+
1 Increment format I

-1 area pointer I

Send l i n e image

I Increment format I
area pointer -+
format area?

(Yes

Figure ~ . 4 . d : Outputting Records on the High
Speed Printer

A . 5 Routine COREFMT

The routine COREFMT i s used t o change the record from i t s in te rna l

format t o the core format.

A . 5 . 1 Entry Point

There i s only one entry point t o the routine COREFMT a t the loca-

t i on of the same name. This entry point i s used f o r each time t h a t COREFMT

i s cal led.

A.5.2 Exit Point

There i s one ex i t point f o r the routine COREFMT. The ex i t sequence

begins a t the location ERRENTER, and it releases the memory allocated by

COREFMT .

A.5.3 Input Parameter L i s t

?tne parameter l i s t f o r the routine COREFMT i s i n the format speci-

f i ed below. The parameter l i s t i s assumed t o begin on a Pullword

boundary.

Bytes

0 - 3

Content

Address of the in te rna l format of the

record.

4 - 7 Address of the RFB.

8 - 11 Address of the core format area.

12 - 15 Length of the core format area.

~ . 5 . 4 Register Conventions

The reg is te rs a r e assigned according t o the following specification:

Register

0

Uti l iza t ion

Unassigned.

1 Address of parameter l is t given t o COREFMT.

2 Base f o r COREFMT.

Register Ut i l i za t ion

Unassigned.

Address of the RFB.

5 Pointer t o format entry i n RFB. Pointer

t o the table of contents f o r the RFB.

Pointer t o record t e x t entry.

Unas signed.

8 Address of the recoyd. Pointer t o RCB

entry.

9 Address of core format area.

10 Pointer t o Attribute-Value entry i n the

core format.

Temporary storage.

Address and base f o r COREFMT work a rea .

13 Address of the ca l l ing rou t ine ' s save area.

1 4 Temporary storage. Address of re turn t o

ca l l ing program.

15 Temporary storage.

A . 5 . 5 In te rna l Work Area

The work area f o r COREF'MT a l so contains a save area f o r i ts regis-

t e r s should it need t o c a l l subroutines. The work area i s assumed t o

begin on a fullword boundary and i s i n the format specified below:

Bytes Content

0 - 71 Save area f o r COREFMT.

72 - 75 Work area.

76 - 79 Address of f i r s t forr.mt entry i n the RFB.

80 - 83 Address of the f i r s t t e x t entry i n the record.

A. 5 .6 Flowchart

The flowchart for COREFMT is shown in Figure A . 5 . The two major

phases in the processing are illustrated.

Get record. 1 G e t r e 1
Get f i r s t

RCB entry

Get format
no. from RCB

i
Get next RFB

entry

' Move a t t r i b u t e t c
Core Format Area

i i

Yes
End of RFB r

Move value t o

Error

Figure A .5 . a : Beginning of COREFMT and Movirg the
At t r ibu te and Value t o the Format Area.

FN - Format Number

Get next RCB tijl

header +

Figure A.5.b: Finalizing the Attribute-Value (AV) Entry,
and the Ekit

APPEND= B

RECORD FORMATS

B . l I n t e rna l Format of the Record

1

3 bytes Size of Record
2 bytes Count
5 bytes Disk Address (ISAM ~ e y)
2 bytes Pointer t o Test (values)

r e l a t i v e t o 1 s t byte of record
2 bytes Control Information

2 bytes Format number

3 bytes Size of value
1 byte blank
1 byte Control information

3 bytes Relative address of f i r s t value

2 bytes Format number

3 bytes Size of value
1 byte blank
1 byte Control information

3 bytes Relative address of second
value

.
5 bytes Pointer (IW ~ e y)
n bytes Value of a t t r i b u t e

1

RECORD
CONTROL
BLOCK
mmy

RECORD
TEXT
ENTRY

Notes on t he In te rna l Format of t he Record:

1. The Count f i e l d is used when a record i s broken i n to several

pieces f o r I/O.

2. The Control information i n t he header i s used among other th ings

t o indicate t h a t a record i s t o be deleted. This i s a l s o t r u e

f o r the Control in fomat ion i n t h e Record Control Block.

3. The Size of Value i n the RCB appears even though the format may

be fixed-length.

4. Control information i n the RCB entry i s one byte long with the

following specification:

abOO 0000

a: 0 Entry i s not a keyword

1 Entry i s a keyword

b: 0 Keyword i s act ive

1 Keyword i s not active

B.2 Record Format Block (RFB)

4 bytes Control Iaformation
2 bytes Pointer t o f i r s t format

r e l a t i ve t o f i r s t byte of RFB
2 bytes Last format number assigned

2 bytes Format number
2 bytes Control information
2 bytes Relative address of f i r s t format

2 bytes Format number
2 bytes Control information
2 bytes Relative address of second format

.
2 bytes Format number
4 bytes Ty-pe of format
2 bytes Level number
2 bytes Repetition number

3 bytes Size of value
1 byte Control information
2 bytes blank
4 bytes Field protection data
2 bytes Length of a t t r i b u t e
n bytes Ful l a t t r i b u t e name

s

b

HEADER

TABLE OF
CONTENTS

FORMAT
ENTRY

Notes on the Record Format Block:

1. A l l r e l a t i ve addresses i n the Table of Contents a r e r e l a t i ve t o

the f i r s t byte i n the f i r s t format, hence a pointer t o the f i r s t

format i s placed i n the header. This arrangement obviates the

need f o r changing r e l a t i ve addresses i n the Table of Contents i f

new formats a r e added t o the block.

2. Format numbers appear i n the Tdble of Contents i n order of t h e i r

appearance i n f i l e records.

3. The Type of F o m t f i e l d may be used t o indicate a program which

processes the format.

4. Like the size of value entry, the repetition number will not appear

in the format if the format may repeat a variable number of times.

Variable repetition is indicated by a bit in the control information.

5. Control information in the format entry is one byte long with the

following specification:

abcd eeOO

a: 0 Repetition number is variable

3- Repetition number is fixed

b: 0 Value size is variable

1 Value size is fixed

. c : 0 Attribute is not in the directory

1 Attribute is in the directory

d: 0 Attribute optionally appears in a record

1 Attribute appears in every record

ee: 00 Value is packed decimal

10 Value is alphabetic

01 Unassigned

11 Unassigned

B . 3 Core Format of the Record

b- I

3 bytes Size of Record
5 bytes Reference number, unpacked
1 byte Control information

3 b ~ t e s Length of a t t r . -value entry
1 byte Control information
1 byte Number of Directory L i s t s
2 bytes Length of a t t r ibu te
variable Attribute
3 bytes Length of Value
variable Value

3 bytes Length'of a t t r . -value entry
1 byte Control Information
1 byte Number of Directory L i s t s
2 bytes Length of a t t r ibu te
variable Attribute
3 bytes Length of Value
variable Value

I

CORE FORMAT
H W E R

ATTRIBUTE

VALUE
ENTRY

Notes on the Core Format of the Record:

1. "Number of Directory L i s t s " f i e l d is used f o r those a t t r ibute-

value pa i rs which a re used a s keywords when f i l e character is t ics

allow a variable number of directory l ists . Field i s ignored for

other attribute-value pairs .

2 . The length specified i n the 3 byte "Size of Record" entry includes

the 9 byte Header s ize.

APPENDIX C

!IHE AUTHORITY IlCEM

The Authority Item (AI) is a record in the system file which con-

tains the access control information for a single user. The A1 is set

up in the same internal format as the other records in the EDMF. 'IPnis

allows the Supervisor to use the same routines to handle both the A1

and the user records, resulting in an efficient use of system resources.

C.l Attributes

The attributes which are used in connection with the A1 are the

following:

1. User ID

2. General Control Information

3. Filename

4. File Access Control Information

5. File Access Program Name

6. File Opening Description Entry

7. File Blocking Description Entry

8. Record Protection Description Entry

9. Record Protection Program Entry

10. Field Protection Description Entry

11. Field Protection Program Entry

12. Directory Protection Description Entry

13- Directory Protection Program Entry

C.2 Logical Format

The logical format of the A1 reflects the organization of the

access control data. The format given below in Figure C.l would be

t h e way an Authority Item would appear i f it was printed out.

Data
f o r one
f i l e

n-

User I D

General Control Information

Filename 1

F i l e Access Control Data 1

Protection Entry

.

Filename 2

F i l e Access Control Data 2

Protection Entry

Figure C . l : Logical Format of the
Authority Item

.

C . 3 Fi l e Access Control Data

'IPne actual f i l e access control data i s i n the A 1 a s a value would

be i n a user record. This value is associated with the a t t r i b u t e 'F i le

Access Control Informationt through the use of a format number i n the

RCB of the A I .

Tnis control data is allocated one fullword on the RCA Spectra

70/46. Since there a re four bytes i n a fullword, each byte w i l l corres-

pond t o a par t icular l eve l of authority and w i l l contain the information

pertinent t o tha t l eve l of checking. The bytes a re allocated a s follows:

Byte 1 - Data concerning user ' s ownership extent and type of

access control.

Byte 2 - Control data pertinent t o a f i l e l eve l check.

Byte 3 - Control data pertinent t o a record leve l check.

Byte 4 - Control data pertinent t o a f i e l d leve l check.

The format of the fullword containing the F i l e Access Control Data i s the

following:

aabb 0000 cdee fghi jkOO 000 lmnO 0000

aa: 00 User unauthorized

01 User shares f i l e

11 User owns f i l e

bb: 00 N o a c c e s s t o f i l e

01 Standard Access Control

10 Program access control

11 Standard the program access control

c: 0 F i l e protection program present

1 Fi l e protection program absent

ee: 00

Open description present

Open description absent

No read or write t o f i l e

Read only f i l e

Write only t o f i l e

Read and write t o f i l e

Directory protection description present

Directory protection description absent

Directory protection program present

Directory protection program absent

User may not block f i l e

User may block f i l e

Blocking description present

Blocking description absent

Record protection description present

Record protection description absent

Record protection program present

Record protection program absent

Standard f i e l d protection active

Standard f i e l d protection inactive

Field protection description present

Field protection description absent

Field protection program present

Field protection program absent

c.4 Entry Type

Each protection entry consists of one control byte followed by

the description or program which l imi t s the access. Again, t h i s entry

i s stored as a value i n the A1 corresponding t o one of the a t t r ibu tes

which describe the entry.

The code f o r the entry ty-pe sha l l consist of one byte (8 b i t s) and

i s divided into two parts . The f i r s t 4 b i t s of the byte denotes what kind

of service (~ e a d or write) the entry type i s applicable t o and the extent

of appl icabi l i ty . The second four b i t s contain a code which denotes the

type of entry tha t it. is.

The format of the entry ty-pe code i s the following:

aabb xxxx

aa: 00 Not applicable t o read

10 Deny read according t o entry

11 Allow read according t o entry

bb: 00 Not applicable t o write

10 Deny write according t o entry

11 Allow write according t o entry

xxxx: 0000 Entry deleted o r no longer active

0001 F i l e access program pointer

0010 F i l e opening description

0011 F i l e blocking description

0100 Record protection description

0101 Record protection program pointer

0110 Field protection description

0111 Field protection program pointer

1000 Directory protection description

1001 Directory protection program pointer

Security C i a s s i f i c a t i o n

P I DOCUMENTCONTROLDATA-R&D

3 R E P O R T T I 1 i E

THE: FILE SEARCHING, RECORD VALIDATING AND RECORD FORMATTING FUNCTIONS OF THE
SUPERVISOR FOR AN EXTENDED DATA MANAGEMENT FACILITY

(Security classilication of title, body o f abstract and indexing annotation nlusl be entered when the overall report is c lassif ied)

a
4. D E S C R I P T I V E N O T E S (Type o f report and.inclusive dates)

Technical Report

5. A U T H O R I S) (First name, middle initial, las t name)

I . O R I G I N A T I N G A C T I V I T Y (Corporate author)

The Moore School of Electrical Engineering
University of Pennsylvania
&iladclphia, Pa. 19104

I Agu Raymond Ets

2s. R E P O R T S E C U R I T Y C L A S S I F I C A T I O N

UNCLASSIFIED
2b. G R O U P

I ~00014-67-~-0216-OOl4 b. P R O J E C T N O .

6. R E P O R T D A T E

~ugust 1970
Ba. C O N T R A C T O R G R A N T N O

I Moore School Report #71-04

7.9. T O T A L N O . O F P A G E S

106

Reproduction in whole or in part is permitted for any purpose of the

United States Government.

I I . S U P P L E M E N T A R Y N O T E S 12. S P O N S O R I N G M I L I T A R Y A C T I V I T Y

76. N O . O F R E F S

11

NR 049-153
c.

d.

9a. ORIGINATOR.S REPORT NUMBERIS)

96. O T H E R R E P O R T N O (S 1 (Any other numbera that may be ssslgned
this report)

None

Tlie purpose of the Supervisor in an &tended Data Management

Facility (EDMF) is to direct the Facility's handling of a user's request
for service. The Supervisor employs the five main functions of Access

Controlling, Retrieval Optimizing, File Searching, Record Validating

and Record Formatting in order to accomplish its task. This report

is concerned mainly with the design and implementation of the File

Searching and Record Validating Functions, although it also covers the

Record Formatting Function. The File Searching and Record Validating

Functions form that part of the Supervisor which actually corltrols

the retrieval of records from the files of the EDMF. The major part
of the report is concerned with discussing the File Searching Function

because of the novel feature which has been implemented. This feature
is the parallel processing of record lists in a generalized file structure,
which eliminates redundant retrievals while at the same time reducing
the access time of the device on which the records are stored. The
Record Validating Function checks the record for compliance with the

user's request and verifies the user's authority to access the record.

A validated record is then subject to the Record Formatting Function
which outputs it to the user.

10. D I S T R I B U T I O N S T A T E M E N T

None

1
FORM 1473 (PAGE 1) DD 1 Naves

Office of Naval Research
Washington, D .C .

S / N 01 01 -807 -681 1 Security Classification
A - 3 1 4 0 8

13 . A O S T R A C T

S I N 0 1 0 1 - 8 0 7 - 6 8 2 1 Security C:lassification
A - 3 1 4 0 9

	The File Searching, Record Validating and Record Formatting Functions of the Supervisor for an Extended Data Management Facility
	Recommended Citation

	The File Searching, Record Validating and Record Formatting Functions of the Supervisor for an Extended Data Management Facility
	Abstract
	Comments

	tmp.1199725634.pdf.bVEXw

