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The final log canonical model of M6

Fabian Müller

We describe the birational model of M6 given by quadric hyperplane sections
of the degree-5 del Pezzo surface. In the spirit of the genus-4 case treated by
Fedorchuk, we show that it is the last nontrivial space in the log minimal model
program for M6. We also obtain a new upper bound for the moving slope of the
moduli space.

1. Introduction

A general smooth curve C of genus 6 has five planar sextic models with four
nodes in general linear position. Blowing up these four points and embedding the
resulting surface in P5 via its complete anticanonical linear series, one finds that
the canonical model of C is a quadric hyperplane section of a degree-5 del Pezzo
surface S. As any four general points in P2 are projectively equivalent, this surface
is unique up to isomorphism. Its automorphism group is finite and isomorphic
to the symmetric group S5 (see, e.g., [Shepherd-Barron 1989]). The surface S
contains ten (−1)-curves, which are the four exceptional divisors of the blowup,
together with the proper transforms of the six lines through pairs of the points.
There are five ways of choosing four nonintersecting (−1)-curves on S, inducing
five blowdown maps S→ P2, and restricting to the five g2

6’s on C . Residual to
the latter are five g1

4’s, which can be seen in each planar model as the projection
maps from the four nodes, together with the map that is induced on C by the linear
system of conics passing through the nodes.

This description gives rise to a birational map

ϕ :M6 99K X6 := |−2KS|/Aut(S),

which is well defined and injective on the sublocus (M6 ∪1
irr
0 ) \GP6. Here 1irr

0
denotes the locus of irreducible singular stable curves, and GP6 is the closure of
the Gieseker–Petri divisor of curves having fewer than five g1

4’s (or residually, g2
6’s).

These have planar sextic models in which the nodes fail to be in general linear
position, which forces the anticanonical image of the blown-up P2 to become
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singular. In the generic case, exactly three of the nodes become collinear, and the
line through them is a (−2)-curve that gets contracted to an A1 singularity. The
class of the Gieseker–Petri divisor is computed in [Eisenbud and Harris 1987b] as[

GP6
]
= 94λ− 12δ0− 50δ1− 78δ2− 88δ3.

It is an extremal effective divisor of minimal slope on M6 [Chang and Ran 1991].
The aim of this article is to study the birational model X6, determine its place

within the log minimal model program of M6, and use it to derive an upper bound
on the moving slope of this space. In order to do so, we will start in Section 2
by determining explicitly the way in which ϕ extends to the generic points of the
divisors 1i for i = 1, 2, 3 and of GP6. The divisors 11 and 12 are shown to
be contracted by 1 and 4 dimensions as the low-genus components are replaced
by a cusp and an A5 singularity, respectively. The image of 13 is at most one-
dimensional, and GP6 turns out to be contracted to a point. The curves parametrized
by the latter two are shown to be mapped to the classes of certain nonreduced degree-
10 curves on S.

In Section 3, we will then construct test families along which ϕ is defined and
determine their intersection numbers with the standard generators of Pic(M6) as
well as with ϕ∗OX6(1). Having enough of those enables us in Section 4 to finally
compute the class of the latter. This computation is then used to establish the upper
bound s ′(M6) ≤

102
13 for the moving slope of M6 as well as to show that the log

canonical model M6(α) is isomorphic to X6 for 16
47 < α ≤

35
102 and becomes trivial

below this point.

2. Defining ϕ in codimension 1

In this section, we will see how ϕ is defined on the generic points of the codimension-
one subloci of M6 parametrizing curves whose canonical image does not lie on
S. As mentioned in the introduction, these are the divisors 1i , i = 1, 2, 3, as well
as GP6, and they will turn out to constitute exactly the exceptional locus of ϕ.

Proposition 2.1. A curve C = C1 ∪p C2 ∈ 11 with p not a Weierstraß point
on C2 ∈M5 is mapped to the class of a cuspidal curve whose pointed normalization
is (C2, p). In particular, the map ϕ contracts 11 by one dimension.

Proof. This follows readily from the existence of a moduli space for pseudostable
curves [Schubert 1991]. More concretely, let π : C→ B be a flat family of genus-6
curves whose general fiber is smooth and Gieseker–Petri general and with special
fiber C . Then the twisted linear system |ωπ (C1)| maps C to a flat family of curves
in |−2KS|. It restricts to OC1 on C1 and to ωC2(2p) on C2, so it contracts C1 and
maps C2 to a cuspidal curve of arithmetic genus 6, which lies on a smooth del Pezzo
surface. �
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Proposition 2.2. Let C = C1 ∪p C2 ∈12 be a curve such that

• the component C2 ∈M4 is Gieseker–Petri general and

• p is not a Weierstraß point on either component.

Then C is mapped to the class of a curve consisting of C2 together with a line that
is 3-tangent to it at p. In particular, the map ϕ restricted to 12 has 4-dimensional
fibers.

Proof. Let C→ B be a flat family of genus-6 curves whose general fiber is smooth
and Gieseker–Petri general and with special fiber C . Blow up the hyperelliptic
conjugate p̃ ∈ C1 of p, and let π : C′→ B be the resulting family with central
fiber C ′ and exceptional divisor R. Then the twisted line bundle L := ωπ (2C1)

restricts to ωC2(3p), OC1 , and OR(1) on the respective components of C ′. By a
detailed analysis, one can see that the family of linear systems (L, π∗ωπ ) restricts
to |ωC2(3p)| on C2 and maps R to the 3-tangent line at p while contracting C1. A
similar but harder analysis of this kind is carried out in Lemma 2.5 for the case
of 13, to which we refer.

In order to see that the central fiber lies on S as a section of −2KS , it suffices to
observe that a generic pointed curve (C2, p) ∈M4,1 has three quintic planar models
with a flex at p. Each such model has two nodes, projecting from which gives the
two g1

3’s. The 3-tangent line R at p meets C2 at two other points, so C2 ∪ R is a
plane curve of degree 6 with four nodes (and an A5 singularity). Blowing up the four
nodes, which for generic (C2, p) will be in general linear position, gives the claim.

For showing that the flat limit is unique, it suffices by [Fedorchuk 2012, Lemma
3.10] to show that, if C ′ is any curve in a small punctured neighborhood of R∪p C2

inside |−2KS|, then C is not the stable reduction of C ′ in any family in which it
occurs as the central fiber. If C ′ is smooth, this is obviously satisfied, so assume
it is still singular. If C ′ retains an A5 singularity, then its genus-4 component must
be different from (C2, p) since C2 has only a finite number of g2

5’s with a flex at p.
Thus, its stable reduction cannot be isomorphic to C . If on the other hand the type
of singularity changes, it can only become an Ak singularity with 1 ≤ k ≤ 4. In
case k ≤ 3, any irreducible component arising in the stable reduction has genus
at most 1 while for k = 4 the stable tail is always a genus-2 curve attached at a
Weierstraß point [Hassett 2000, Section 6]. Thus, the stable reduction cannot be
isomorphic to C in these cases either. �

Proposition 2.3. Let C =C1∪p C2 ∈13 be a curve such that, on both components,

• p is not a Weierstraß point and

• p is not in the support of any odd theta characteristic (in particular, neither
component is hyperelliptic).



1116 Fabian Müller

p12 p22

p1 p2

R21

R22R12

R11

R

p11 p21

C1 C2

Figure 1. The central curve C ′.

Then C is mapped to the class of two times a twisted cubic on S together with two
(possibly reducible) conics meeting it tangentially. In particular, the image of 13

under ϕ is at most 1-dimensional.

Proof. Let C→ B be a flat family of genus-6 curves whose general fiber is smooth
and Gieseker–Petri general and with special fiber C . By assumption, the two base
points of |ωCi (−2p)| are distinct from each other and from p for i = 1, 2. Blow
up the total space C at p and at these four base points. Let π : C′→ B denote the
resulting family with central fiber C ′ = C1+C2+ R +

∑
Ri j , where Ci are the

proper transforms of the genus-3 components and R and Ri j are the exceptional
divisors over p and the base points, respectively. For i, j = 1, 2, denote by pi j the
point of intersection of Ci with Ri j and by pi the point of intersection of Ci with R
(see Figure 1).

Consider the twisted sheaf L := ωπ
(
3(C1+C2)+

∑
Ri j
)

on C′. On the various
components of C ′, it restricts to OCi , OR(6), and ORi j (1), respectively. The push-
forward π∗L is not locally free (the central fiber has dimension 7 instead of 6),
but it contains π∗ωπ as a locally free rank-6 subsheaf. The central fiber V of the
image of this sheaf in π∗L is described in Lemma 2.5. The induced linear system
(L|C ′, V ) maps C ′ to the curve C ′′ = R+ 2R1+ 2R2 ⊆ P5, which consists of the
middle rational component R embedded as a degree-6 curve together with twice the
tangent lines R1 and R2 at p1 and p2. The genus-3 components Ci are contracted
to the points pi . If one introduces coordinates [x0 : · · · : x5] in P5 corresponding to
the basis of V given in Lemma 2.5, the image curve lies on the variety

S̃2,3 =
⋃

[λ:µ]∈P1

ϕ1([λ : µ])ϕ2([λ : µ]),
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where
ϕ1([λ : µ]) := [λ

3
: 0 : λ2µ : λµ2

: 0 : µ3
],

ϕ2([λ : µ]) := [0 : λ2
: 0 : 0 : µ2

: 0],

which is a projection of the rational normal scroll S2,3 ⊆ P6 from a point in the
plane of the directrix. This surface is among the possible degenerations of the
degree-5 del Pezzo surface investigated in [Coskun 2006, Proposition 3.2] and has
the same Betti diagram. In equations, it is given by

S̃2,3 =

{
rk
(

x0 x1 x2

x3 x4 x5

)
≤ 1

}
∩

{
rk
(

x0 x2 x3

x2 x3 x5

)
≤ 1

}
,

and C ′′ is a quadric section cut out for example by x1x4− x0x5. When restricted to
the directrix, the image of the projection is the line L̃ = {x0 = x2 = x3 = x5 = 0},
which is the singular locus of S̃2,3. The two branch points qi of this restriction are
the intersection points of the double lines Ri with L̃ .

The image of C′ under the family of linear systems (L, π∗ωπ ) lies on a flat
family of surfaces S ⊆ P5

× B with general fiber S and special fiber S̃2,3. We
will construct a birational modification of S whose central fiber is isomorphic
to S. Let π ′ : S′→ B be the family obtained by blowing up L̃ and S′ ⊆ S′ the
exceptional divisor. The proper transform of S̃2,3 in S′ is S2,3, and the intersection
curve L = S2,3 ∩ S′ is its directrix.

We want to show that S′ ∼= S. The ten (−1)-curves of the generic fiber cannot
all specialize to points in the central limit since then the whole surface S would
be contracted, contradicting flatness. Any exceptional curve that is not contracted
must go to L̃ in the limit since it is the only curve on S̃2,3 having a normal sheaf of
negative degree. By a chase around the intersection graph of the (−1)-curves on S,
one can see that, if one of them is mapped dominantly to L̃ , then at least four of
them are. Since the graph is connected, the rest of them get mapped to points that
lie on L̃ . Using a base change ramified over 0 if necessary, we may assume that
limits of noncontracted curves get separated in S′ while the contracted ones are
blown up to lines. Thus, there are ten distinct (−1)-curves on S′, which by the list
of possible limits in [Coskun 2006] forces it to be isomorphic to S (note that there
are at most seven (−1)-curves on a singular degree-5 del Pezzo surface [Coray and
Tsfasman 1988, Proposition 8.5]).

It remains to see what happens to the curve C ′′ in the process. Denote by
ψ :S′→P5

×B the map induced by the family of linear systems (ω∨π ′(S2,3), π
′
∗
ω∨π ′).

This restricts to −KS′ on S′ and to a subsystem of |3F | on S2,3. Thus, the map ψ
contracts the latter and has degree 3 on L . This implies that OS′(L) = ρ∗OP2(1)
for one of the five maps ρ : S′ → P2, and there are exactly four exceptional
curves E1, . . . , E4 ⊆ S′ that do not meet L . The blowdown fibration on S′ is given
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Figure 2. Two possibilities for the image of C under ϕ and the
proper transform of the latter after blowing up the nodes.

by
∣∣2L−

∑
Ei
∣∣, and it contains exactly 3 reducible conics. The flat pullback of C ′′

to S′ contains the two conics in the fibration that meet L at the ramification points
of the map L→ L̃ , and the map ψ restricted to C ′′ contracts the two double lines Ri

to the points qi and maps R doubly onto L . Thus, the flat limit of C ′′ consists of
twice the line L together with the two conics in the fibration which are tangent to L
at the points qi . Up to automorphisms, such a configuration has a 1-dimensional
family of moduli, so the image of 13 under ϕ is at most 1-dimensional. �

Remark 2.4. The image curve ϕ(C) has two possible kinds of nonreduced planar
singularities shown in Figure 2. The one on the left with local equation y2(y−x2)=0
appears in the proof of Proposition 2.3 in the curve C ′′. For the second one with
equation y2(y2

− x2)= 0, one can see directly using an appropriate family that it
has the generic smooth genus 3 curve in its variety of stable tails. We will use this
construction in the proof of Lemma 3.5.

Lemma 2.5. Let C′ and L be constructed as in the proof of Proposition 2.3, and
let V be the central fiber of the image of π∗ωπ ↪→ π∗L. Choose coordinates [s : t]
on each rational component such that on R1 j the coordinate t is centered at p1 j ,
on R2 j the coordinate s is centered at p2 j ( j = 1, 2), and on R the coordinate s is
centered at p1 and t at p2. Then V is spanned by the following sections (on Ci the
sections are constants and not listed in the table):

R11 R12 R R21 R22

0 0 s6 t t
0 0 s5t s s
0 0 s4t2 0 0
0 0 s2t4 0 0
t t st5 0 0
s s t6 0 0
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Proof. Let `R = (LR, VR) be the R-aspect of the unique limit canonical series on
the central fiber of C′. By [Eisenbud and Harris 1987a, Theorem 2.2], we have that

LR = ωπ
(
5(C1+C2)+ 4

∑
Ri j
)∣∣

R = OR(10)

and `R has vanishing sequence a`R(pi )= (2, 3, 4, 6, 7, 8) at both pi , so

VR = s2t2
〈s6, s5t, s4t2, s2t4, st5, t6

〉.

Since on R the inclusion L|R ↪→ LR restricts to OR(6) ↪→ OR(10), σ 7→ s2t2σ ,
we have that s2t2V |R ⊆ VR . Since the dimensions match, the claim for the central
column follows. By dimension considerations, it is clear that L must restrict to the
complete linear series |ORi j (1)| on Ri j .

It remains to show that, if a section σ ∈ V fulfills ordpi
(σ |R)≥ 2, then σ |Ri j = 0

for j = 1, 2. For this, let σCi ∈ H 0(C,OC′(Ci )|C) be the restriction of a gener-
ating section, and let ϕi : H 0(C,L(−Ci )|C) → H 0(C,L|C) be the map given
by σ 7→ σCi · σ . For a divisor D on C′ and k ∈ N, introduce the subspaces

Vi,k(D) :=
{
σ ∈ H 0(C,L⊗OC′(D)|C)

∣∣ ordpi
(σ |R)≥ k

}
,

Vi,k := Vi,k(0).

Since L|Ci = OCi , we have that im(ϕi ) = Vi,1. Moreover, we certainly have the
inclusion ϕi (Vi,1(−Ci ))⊆ Vi,2 and

codim(ϕi (Vi,1(−Ci )), Vi,1)≤ codim(Vi,1(−Ci ), H 0(C,L(−Ci )|C))

≤ 1.

From the description of the sections on R, it is apparent that Vi,2 ( Vi,1, so we have
in fact ϕi (Vi,1(−Ci ))= Vi,2. Thus, we get

Vi,2 = ϕi (Vi,1(−Ci ))

= ϕi
({
σ ∈ H 0(C,L(−Ci )|C)

∣∣ σ |Ri j = 0 for j = 1, 2
})

⊆
{
σ ∈ H 0(C,L|C)

∣∣ σ |Ri j = 0 for j = 1, 2
}
. �

Proposition 2.6. Let C be a smooth Gieseker–Petri special curve whose canonical
image lies on a singular del Pezzo surface with a unique A1 singularity but not
passing through that singularity. Then ϕ maps C to a nonreduced degree-10 curve
on S consisting of four times a line together with two times each of the three lines
meeting it. In particular, ϕ contracts GP6 to a point.

Proof. This can be done by a geometric construction similar to [Fedorchuk 2012,
Theorem 3.13]. Here we follow a simpler approach from [Jensen 2013]. A curve C
as above has a planar sextic model with three collinear nodes, so the map G1

4→M6

is simply ramified over C . Thus, a neighborhood of the ramification point will map
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a (double cover of a) neighborhood of C to a family of (4, 4)-curves on P1
×P1.

The image of the general fiber will be an irreducible curve with three nodes while
the special fiber goes to four times the diagonal. Blowing up the nodes gives a flat
family on S with central fiber as described. �

Remark 2.7. A pencil of antibicanonical curves on a singular del Pezzo surface as
above has slope 47

6 like in the smooth case (for which see Lemma 3.1). This would
seem to contradict the fact that ϕ contracts the Gieseker–Petri divisor, which has
the same slope, to a point. However, any such pencil will contain a curve C having
a node at the singular point. The normalization of such a curve is a trigonal curve of
genus 5 since blowing up the node and blowing down four disjoint (−1)-curves gives
a planar quintic model of C together with a line. Using this model, one can show
that ϕ maps C to a configuration consisting of three times a line on S together with
three lines and two conics meeting it. This arrangement obviously has moduli, so we
deduce that ϕ is not defined on 1trig

0 := {C ∈10 | C has a trigonal normalization},
which is a component of 10 ∩GP6.

3. Test families

In order to compute the class of ϕ∗OX6(1), we now construct some test families
and record their intersection numbers with the standard generators of Pic(M6) and
with ϕ∗OX6(1). Those numbers not mentioned in the statements of the lemmas are
implied to be 0.

Lemma 3.1. A generic pencil T1 of quadric hyperplane sections of S has intersection
numbers

T1 · λ= 6, T1 · δ0 = 47, T1 ·ϕ
∗OX6(1)= 1.

Proof. Since all members of T1 are irreducible, it suffices to show that ϕ∗λ= OV (6)
and ϕ∗δ = OV (47) on V := |−2KS| ∼= P15. This is completely parallel to the
computation in [Fedorchuk 2012, Proposition 3.2]. If Y := S × V and C ⊆ Y
denotes the universal curve, we have OY (C) = OY (−2KS, 1), so by adjunction,
ωC/V = OC(−KS, 1). Applying π2∗ to the exact sequence

0→ OY (KS, 0)→ OY (−KS, 1)→ ωC/V → 0,

we find that

π2∗ωC/V ∼= π2∗OY (−KS, 1)∼= H 0(S,−KS)⊗OV (1)

since π2∗OY (KS, 0)= R1π2∗OY (KS, 0)= 0 by Kodaira vanishing. Therefore, we
obtain that ϕ∗λ= detπ2∗ωC/V = OV (6).

We also find that

ϕ∗κ = π2∗(ω
2
C/V )= π2∗((−2KS, 1) · (−KS, 1)2)= OV (25),
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and from κ = 12λ− δ, we deduce that ϕ∗δ = OV (47). �

Lemma 3.2. Let T2 be the family obtained by attaching a fixed genus-5 curve to a
base point of a general pencil of plane cubics. Then T2 has intersection numbers

T2 · λ= 1, T2 · δ0 = 12, T2 · δ1 =−1, T2 ·ϕ
∗OX6(1)= 0.

Proof. The first three intersection numbers are standard. By Proposition 2.1, ϕ is
defined on T2 and contracts it to a point. �

Lemma 3.3. There is a family T3 of stable genus-6 curves having intersection
numbers

T3 · λ= 3, T3 · δ0 = 30, T3 · δ2 =−1, T3 ·ϕ
∗OX6(1)= 0.

Proof. In [Alper et al. 2011, Example 6.1], the authors construct for all k ≥ 2
a complete family Bk of stable hyperelliptic curves of genus k with two marked
points that are conjugate under the hyperelliptic involution. It is obtained by taking
a double cover of the Hirzebruch surface F1 (considered as a P1-bundle over P1),
branched along 2k + 2 general sections of self-intersection 1. The markings are
given as the preimage of the unique (−1)-curve, which does not meet the branch
locus. The covering map to F1 restricts to the hyperelliptic g1

2 on every fiber, and
since the two markings are always distinct, they are never Weierstraß points.

From the family B2, we construct our family T3 by forgetting one marking and
attaching at the other a fixed 1-pointed curve of genus 4. Then the first three
intersection numbers directly carry over from the computation in [Alper et al. 2011,
Example 6.1] (note that T3 ·δ2 =−B2 ·ψ1). The last one follows by Proposition 2.2
since ϕ is defined on T3 and contracts it to a point. �

The following computation is used in the proof of Lemma 3.5:

Lemma 3.4. Let X be a smooth threefold, C⊆ X a surface with an ordinary k-fold
point p, π : X̃ → X the blowup at p, and C̃ the proper transform of C. Then
χ(OC̃)= χ(OC)−

(k
3

)
.

Proof. Let E ⊆ X̃ be the exceptional divisor and C = E ∩ C̃. By adjunction,

KC̃ = (K X̃ + C̃)|C̃

= (π∗K X + 2E +π∗C− k E)|C̃
= π∗KC− (k− 2)C,

so Riemann–Roch for surfaces gives

χ(OC̃)= χ(OC̃(−kC))− kC2

= χ(OC̃(−kC))+ k2.
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From the exact sequence

0→ OX (−C)→ OX̃ (−k E)→ OC̃(−kC)→ 0,

we get that
χ(OC̃(−kC))= χ(OX̃ (−k E))−χ(OX )+χ(OC).

Finally, using induction on the exact sequence

0→ OX̃ (−(i + 1)E)→ OX̃ (−i E)→ OP2(i)→ 0

for i = 0, . . . , k− 1, we conclude that

χ(OX̃ (−k E))= χ(OX )−

k−1∑
i=0

i2
+ 3i + 2

2
= χ(OX )−

k3
+ 3k2

+ 2k
6

.

Putting these three equations together gives the result. �

Lemma 3.5. There is a family T4 of stable genus-6 curves having intersection
numbers

T4 · λ= 16, T4 · δ0 = 118, T4 · δ3 = 1, T4 ·ϕ
∗OX6(1)= 4.

Proof. Let X be the blowup of P2
× P1 at four constant sections of the second

projection, and let C,C′ ⊆ X denote the proper transforms of degree-4 families
of plane sextic curves with assigned nodes at the blown-up points. Suppose C is
chosen in such a way that it contains the curve pictured in Figure 2 on the right as
a member and that the fourfold points of this fiber are also ordinary fourfold points
of the total space while away from this special fiber the family is smooth and all
singular fibers are irreducible nodal. The stable reduction of the special fiber is then
a 13-curve, which we furthermore assume to lie in the locus where the map ϕ is
defined. The family C′ is chosen generically so that all its members are irreducible
stable curves.

Let π : X̃→ X be the blowup of X at the two fourfold points of C; denote by C̃

the proper transform of C and by E1, E2 ⊆ X̃ the exceptional divisors of π . Then
C̃= π∗C− 4E1− 4E2 and K X̃ = π

∗K X + 2E1+ 2E2, so

K 2
C̃
= (K X̃ + C̃)2C̃

= (π∗(K X +C)− 2(E1+ E2))
2(π∗C− 4(E1+ E2))

= (K X +C′)2C′− 16(E3
1 + E3

2)= K 2
C′ − 32.

By Lemma 3.4, we find that

χ(OC̃)= χ(OC)− 2
(4

3

)
= χ(OC′)− 8,
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so c2(C̃)= c2(C
′)−64 by Noether’s formula. If T4 and T ′4 denote the families in M6

induced by C̃ and C′, respectively, we find that T4 · λ= T ′4 · λ− 8= 4 · 6− 8= 16
(note that T ′4 is numerically equivalent to 4T1, where T1 is the pencil described in
Lemma 3.1). Moreover, the difference in topological Euler characteristics between
a general (smooth) fiber and the special (blown-up) fiber of C̃ is 6; thus, we find
T4 · δ0 = T ′4 · δ0− 64− 6= 4 · 47− 70= 118. Finally, T4 is constructed in such a
way that T4 · δ3 = 1 and T4 ·ϕ

∗OX6(1)= 4. �

Lemma 3.6. There is a family T5 of stable genus-6 curves having intersection
numbers

T5 · λ= 21, T5 · δ0 = 164, T5 ·ϕ
∗OX6(1)= 10.

Proof. In order to construct T5, we take a family of quadric hyperplane sections
of a family of generically smooth anticanonically embedded del Pezzo surfaces
with special fibers having A1 singularities. More concretely, let S̃ be the blowup
of P2

×P1 along the four sections

61 = ([1 : 0 : 0], [λ : µ]),

62 = ([0 : 1 : 0], [λ : µ]),

63 = ([0 : 0 : 1], [λ : µ]),

64 = ([λ+µ : λ : µ], [λ : µ]),

where [λ : µ] ∈ P1 is the base parameter. We map S̃ into P7
× P1 by taking a

system of eight (3, 1)-forms that span the space of anticanonical forms in every
fiber as given for example by

f ([x0 : x1 : x2])=
[
x0x1(λx0− (λ+µ)x1) : x2

0(µx1− λx2)

: x0x2(µx0− (λ+µ)x2) : x0x2(µx1− λx2)

: x0x1(µx1− λx2) : x2
1(µx0− (λ+µ)x2)

: x1x2(µx1− λx2) : x2
2(λx0− (λ+µ)x1)

]
.

This maps every fiber anticanonically into a 5-dimensional subspace of P7 that
depends on [λ : µ] ∈ P1. The image of the blown-up P2 is isomorphic to S except
for the parameter values [λ : µ] = [1 : 0], [0 : 1], and [1 : −1], where three base
points lie on a line that gets contracted to an A1 singularity under the anticanonical
embedding.

Denote the image of f by S; let H1 and H2 be the generators of Pic(P7
×P1)

and H̃1, H̃2, E1, . . . , E4 those of Pic(S̃). Note that f ∗H1 = 3H̃1−
∑

Ei + H̃2 and
f ∗H2 = H̃2. We claim that

S≡ 5H 5
1 + 9H 4

1 H2 ∈ A∗(P7
×P1).
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Indeed, the first coefficient is just the degree in a fiber while the second one is
computed as

S · H 3
1 =

(
3H̃1−

4∑
i=1

Ei + H̃2

)3

= 27H̃ 2
1 H̃2+ 3

4∑
i=1

H̃2 E2
i − E3

4 + 9H̃1 E2
4

= 27− 12+ 3− 9= 9.

Here we have used that H̃2 E2
i =−1 for i = 1, . . . , 4 as it is just the self-intersection

of the exceptional P1 in a fiber. Moreover, by the normal bundle exact sequence,

E3
i = KP2×P1 ·6i − deg K6i = (−3H̃1− 2H̃2)H̃ 2

1 + 2= 0

for i = 1, 2, 3, and similarly,

E3
4 = (−3H̃1− 2H̃2)(H̃ 2

1 + H̃1 H̃2)+ 2=−3.

Finally, H̃1 and H̃2 both restrict to the same thing on E4 (namely the class of a fiber
of the fibration E4→64), so H̃1 E2

4 = H̃2 E2
4 =−1.

Let C be the family cut out on S by a generic hypersurface of bidegree (2, 2)
so that C≡ 10H 6

1 + 28H 5
1 H2. Since KS̃ = OS̃(−3H̃1+

∑
Ei − 2H̃2), we find that

KS = OS(−H1− H2). Thus, ωS/P1 = OS(−H1+ H2), and by adjunction, ωC/P1 =

OC(H1+ 3H2). If T5 denotes the family induced in M6 by C, we then find that

T5 · κ = ω
2
C/P1 = (H1+ 3H2)

2
· (10H 6

1 + 28H 5
1 H2)= 88.

Next we note that OS(−C)= 2KS, so applying the Riemann–Roch theorem for
threefolds to the short exact sequence 0→ 2KS→ OS→ OC→ 0, we get

χ(OC)= χ(OS)−χ(2KS)

=−
1
2 K 3

S+ 4χ(OS)

=−
1
2(−H1− H2)

3(5H 5
1 + 9H 4

1 H2)+ 4

= 16,

where we used that χ(OS)= 1 because S is rational. Hence, if C denotes a generic
fiber of C, we get that T5 · λ = χ(OC)− (g(P1)− 1)(g(C)− 1) = 21. Finally, by
Mumford’s relation, we obtain T5 · δ0 = 12 · 21− 88= 164.

For computing T5 ·ϕ
∗OX6(1), we note that we can also construct S as follows:

blow up P2
×P1 at [1 :0 :0], [0 :1 :0], [0 :0 :1], and [1 :1 :1], embed it into P7

×P1 via

f ′([x0 : x1 : x2])=
[
x0x1(x0− x1) : x2

0(x1− x2) : x0x2(x0− x2) : x0x2(x1− x2)

: x0x1(x1− x2) : x2
1(x0− x2) : x1x2(x1− x2) : x2

2(x0− x1)
]
,
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and take the proper transform of this constant family under the birational map
ψ : P7

×P1 99K P7
×P1 given by

ψ([y0 : · · · : y7])=
[
λ2(λ+µ)2 y0 : λµ(λ+µ)

2 y1 : µ
2(λ+µ)2 y2 : λµ

2(λ+µ)y3

: λ2µ(λ+µ)y4 : λ
2µ(λ+µ)y5 : λ

2µ2 y6 : λµ2(λ+µ)y7
]
.

Denoting by S′ ∼= S×P1 the image of f ′, the intersection number T5 · ϕ
∗O(1) is

given by the number of curves in T5 passing through a general fixed point of S. Since
two general hyperplane sections cut out five general points on S, we compute that

T5 ·ϕ
∗OX6(1)=

1
5 OS′(H1)

2
·ψ∗OS(C)=

1
5 H 5

1 · H
2
1 · (2H1+ 10H2)= 10. �

4. The moving slope of M6

Proposition 4.1. The moving slope of M6 fulfills 47
6 ≤ s ′(M6)≤

102
13 .

Proof. The lower bound is the slope of the effective cone of M6 and was known
before [Farkas 2010]. Using the test families T1 through T5 described in Section 3,
we get that

ϕ∗OX6(1)= 102λ− 13δ0− 54δ1− 84δ2− 94δ3.

Since OX6(1) is ample on X6 and ϕ is a rational contraction, this is a moving divisor
on M6, which gives the upper bound on the moving slope. �

Remark 4.2. Note that 102
13 ≈ 7.846 is strictly smaller than 65

8 = 8.125, which was
the upper bound previously obtained in [Farkas 2010]. However, since our families
T4 and T5 are not covering families for divisors contracted by ϕ, we cannot argue
as in [Fedorchuk 2012, Corollary 3.7]. In particular, the actual moving slope may
be lower than the upper bound given here.

Proposition 4.3. The log canonical model M6(α) is isomorphic to X6 whenever
16
47 < α ≤

35
102 . It is a point for α = 16

47 , and empty for α < 16
47 .

Proof. This is completely analogous to [Fedorchuk 2012, Corollary 3.6]. Since

(KM6
+αδ)−ϕ∗ϕ∗(KM6

+αδ)

= (13λ− (2−α)δ)−ϕ∗ϕ∗(13λ− (2−α)δ)

=
( 35

2 − 51α
)[

GP6
]
+ (9− 11α)δ1+ (19− 29α)δ2+ (34− 96α)δ3

is an effective exceptional divisor for ϕ as long as α ≤ 35
102 , the upper bound follows.

Moreover, ϕ∗(13λ− (2−α)δ)= OX6(47α− 16), which gives the lower bound. �
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