
The financial aspect of managing technical debt: A systematic literature
review

Areti Ampatzoglou a,b, Apostolos Ampatzoglou a,⇑, Alexander Chatzigeorgiou b, Paris Avgeriou a

aDepartment of Mathematics and Computer Science, University of Groningen, Netherlands
bDepartment of Applied Informatics, University of Macedonia, Thessaloniki, Greece

a r t i c l e i n f o

Article history:

Received 27 October 2014
Received in revised form 31 March 2015
Accepted 1 April 2015
Available online 11 April 2015

Keywords:

Technical debt
Financial debt
Financial terms
Systematic literature review

a b s t r a c t

Context: Technical debt is a software engineering metaphor, referring to the eventual financial conse-
quences of trade-offs between shrinking product time to market and poorly specifying, or implementing
a software product, throughout all development phases. Based on its inter-disciplinary nature, i.e.
software engineering and economics, research on managing technical debt should be balanced between
software engineering and economic theories.
Objective: The aim of this study is to analyze research efforts on technical debt, by focusing on their
financial aspect. Specifically, the analysis is carried out with respect to: (a) how financial aspects are
defined in the context of technical debt and (b) how they relate to the underlying software engineering
concepts.
Method: In order to achieve the abovementioned goals, we employed a standard method for SLRs and
applied it on studies retrieved from seven general-scope digital libraries. In total we selected 69 studies
relevant to the financial aspect of technical debt.
Results: The most common financial terms that are used in technical debt research are principal and
interest, whereas the financial approaches that have been more frequently applied for managing techni-
cal debt are real options, portfolio management, cost/benefit analysis and value-based analysis. However,
the application of such approaches lacks consistency, i.e., the same approach is differently applied in dif-
ferent studies, and in some cases lacks a clear mapping between financial and software engineering con-
cepts.
Conclusion: The results are expected to prove beneficial for the communication between technical
managers and project managers, in the sense that they will provide a common vocabulary, and will
help in setting up quality-related goals, during software development. To achieve this we introduce:
(a) a glossary of terms and (b) a classification scheme for financial approaches used for managing
technical debt. Based on these, we have been able to underline interesting implications for researchers
and practitioners.

� 2015 Elsevier B.V. All rights reserved.

Contents

1. Introduction . 53
2. Related work. 54
3. Background information . 54

3.1. Basic financial debt terms. 55
3.2. Broader financial terms (related to investments and interest theory) . 55
3.3. Managing debt strategies . 55

4. Review methodology . 56
4.1. Research objectives and research questions . 56

http://dx.doi.org/10.1016/j.infsof.2015.04.001
0950-5849/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.

E-mail addresses: areti.ampatzoglou@rug.nl (A. Ampatzoglou), a.ampatzoglou@rug.nl (A. Ampatzoglou), achat@uom.gr (A. Chatzigeorgiou), paris@cs.rug.nl (P. Avgeriou).

Information and Software Technology 64 (2015) 52–73

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.04.001&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2015.04.001
mailto:areti.ampatzoglou@rug.nl
mailto:a.ampatzoglou@rug.nl
mailto:achat@uom.gr
mailto:paris@cs.rug.nl
http://dx.doi.org/10.1016/j.infsof.2015.04.001
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

4.2. Search process . 56
4.3. Article filtering phases . 56
4.4. Quality assessment . 57
4.5. Data collection. 57
4.6. Data analysis . 57

5. Results. 58
5.1. Financial terms related to technical debt management (RQ1) . 59
5.2. Financial approaches for managing technical debt (RQ2) . 59

5.2.1. Financial approaches for measuring technical debt . 59
5.2.2. Financial approaches for identifying, prioritizing, repaying and monitoring technical debt . 60

5.3. Software engineering technologies used by financial approaches in TDM (RQ3) . 61
6. Discussion. 62

6.1. Technical debt financial glossary . 62
6.2. Classification scheme for financial approaches used for managing technical debt . 64
6.3. Implications for researchers and practitioners . 65

7. Threats to validity . 66
7.1. Threats to identification of primary studies . 66
7.2. Threats to data extraction. 66
7.3. Threats to generalization . 66
7.4. Threats to conclusions . 66

8. Conclusions. 67
Appendix A. Papers included in the review . 67
Appendix B. Collected data for RQ2.1 . 69
Appendix C. Collected Data for RQ2.2 . 70
Appendix D. Primary Studies Quality Assessment. 71
References . 71

1. Introduction

Maintenance is one of the most effort-intensive activities in the
software lifecycle. It is estimated that maintenance activities con-
sume 50–75% of the total effort spent during the complete lifecycle
of a typical software project [36]. From all maintenance activities,1

it is reasonable to assume that requests for changes concerning the
addition of functionality, the adaptation to new environments, the
enhancement of run-time qualities [3], and the correction of errors,
are hard to neglect or defer to a future iteration. On the contrary,
changes that are not directly related to the external behavior of
the system but relate to design-time qualities [3], are often post-
poned or neglected, in order to shrink product time to market and
reduce short-term costs. However, software systems are by def-
inition highly evolving products, whose design-time quality will
gradually decay [31], and therefore deferring such maintenance
activities (e.g., refactorings, resolution of bad smells, reverse engi-
neering) might have a significant impact on several design-time
qualities (e.g., maintainability, comprehensibility, reusability, etc.).
This strategy leads to the creation of a financial overhead due to
degraded quality, originally termed by Cunningham as technical debt
[8].

Technical debt (TD) is a metaphor that is used to draw an anal-
ogy between financial debt as defined in economics and the situa-
tion in which an organization decides to produce immature
software artifacts (e.g. designs or source code), in order to deliver
the product to market within a shorter time period [8]. TD is accu-
mulated during all development phases, i.e. requirements analysis,
architectural/detailed design, and implementation, and therefore
should be monitored and handled during the complete software
lifecycle [23]. In practice, technical debt is sometimes desirable
(e.g., in cases when companies opt for investing on a different pro-
duct rather than producing a new one with optimum design-time

quality), whereas the complete repayment of TD is considered
unrealistic [12]. However, since the accumulation of technical debt
may severely hinder the maintainability of the software [38], it
should be continuously monitored and managed.

One of the most prevalent characteristics of technical debt is its
interdisciplinary nature, since it combines elements from both
financial and software engineering theory. Although this nature
may lead to additional challenges (resulting from the gap between
software and financial perspectives) it can potentially help the
communication between both practitioners and researchers.

Concerning practitioners we refer to the communication gap
between technical stakeholders (software engineers, architects,
testers, etc.) and project managers. On the one hand, project man-
agers are interested in concepts like value, cost, benefit, debt, prin-
cipal (i.e. capital), and interest. Moreover, they are not particularly
focused on the design-time quality of intermediate artifacts during
the software development lifecycle, since it is only indirectly asso-
ciated with their basic goals as stakeholders in the software devel-
opment lifecycle, i.e. increase benefit, decrease production cost,
shrink time to market, etc. On the other hand, technical stakehold-
ers are usually more focused on design-time quality. Enhanced
design-time quality in terms of e.g. maintainability, reusability
and understandability, eases the post-production activities of
development teams and decreases the effort needed for the devel-
opment of similar projects. However, in practice, high-level budget
and effort allocation decisions are taken by project managers. Thus,
in order for maintenance activities to be approved, technical stake-
holders should communicate their benefits to project managers. In
this type of communication, the terminology of technical debt can
prove beneficial. Practitioners’ experience suggests that using

economics-based terminology and approaches like real-options,
cost/benefit analysis, and portfolio management, bridges the gap
between software engineers and managers and facilitates the

negotiation of trade-offs of quality for quicker product delivery [11].
Despite the communication benefits that Technical Debt may

bring, due to its aforementioned interdisciplinary nature, the body

of knowledge on the subject can be rather difficult to comprehend
in-depth, since it requires expertise or at least experience from

1 We deliberately avoid the use of software maintenance types, such as those
defined by ISO/IEC 14764-2006 [18] (i.e., corrective, adaptive, perfective, preventive),
because these types are interpreted differently by different researchers, causing a
naming ambiguity [7,15,34].

A. Ampatzoglou et al. / Information and Software Technology 64 (2015) 52–73 53

two rather diverse scientific domains (i.e., software engineering
and economics). Therefore, researchers with financial background
are often not sufficiently familiar with terms like refactorings
and source code analysis, whereas software engineering research-
ers are usually not experts in applying methods like real-options
and portfolio management. Consequently, in many cases, research
on the subject: (a) uses ambiguous terminology and sometimes

misuses terms, (b) is not balanced between the economical and
the software engineering aspects, or in other words it is not truly
interdisciplinary. For example, when a purely software engineering
team with limited expertize on economics, apply the real-options
theory, there is an increased possibility that the method is not per-
fectly applied.

Furthermore, the current literature in TD lacks a study
summarizing the state of the art and practice with respect to finan-
cial approaches used in TD. This makes it difficult for practitioners
to search for such approaches, and evaluate them for fitness of pur-
pose and applicability for the particular problem at hand. Even
when they manage to select an appropriate approach, applying
such an approach can be challenging, since most of them lack an
established way of mapping their original (from the financial
domain) inputs and outputs to software engineering technologies.2

For example, in real options analysis the improvement probability
factor is required as an input to the method [32], but how is this
probability calculated in the context of technical debt and what soft-
ware engineering technologies should be used for assessing it, and
how? Moreover, the lack of a state of the art also hinders researchers
in understanding the overall picture of what has been studied by this
community, and what is still missing.

In this study we will analyze existing literature, by employing
the Systematic Literature Review (SLR) method [20] to tackle the
two aforementioned problems, i.e. the communication gap among
researchers and among practitioners, and the lack of a study
summarizing the state of the art and practice on financial
approaches for technical debt management. Therefore, this study
has two goals:

(goal-a) Introducing a glossary of financial terms and
definitions related to technical debt management.

(goal-b) Classifying financial approaches (originating from
traditional or software economics) used in
technical debt management.

By referring to Technical Debt Management (TDM) in this study, we
are interested in all TDM activities as proposed by Li et al. [24], i.e.,
(a) identification, (b) measurement, (c) prioritization, (d) repay-
ment, and (e) monitoring. However, since the focus of the study is
on the financial perspective of technical debt, special attention will
be given to the measurement (or quantification) activity. We note
that due to the nature of technical debt research, we have broad-
ened the primary study search space to generic computer science
literature, rather than focusing on software engineering literature
only.

The rest of the paper is organized as follows: in Section 2, we
present related work, i.e. other studies that aim at providing an
overview of the research state of the art on the domain of technical
debt. In Section 3, we provide some background information on
financial concepts that will be used during the presentation and
discussion of the results. Next, in Section 4, we present the protocol
of this systematic literature review. In Section 5 we present the

raw results of this study and answer the research questions,
whereas in Section 6 we discuss the basic contributions of this
study w.r.t. goal-a and goal-b. Finally, in Section 7 we present
threats to validity, and in Section 8 we conclude the paper.

2. Related work

Although the financial aspect of technical debt is a research
topic that has attracted the attention of both academia and indus-
try, to the best of our knowledge there are no literature reviews or
mapping studies (either systematic or not), summarizing the
research state of the art on the subject. The only two studies that
have been identified as related work to this paper, are a Multi-
vocal Literature Review (MLR) by Tom et al. published in 2013
[35] and a Mapping Study (MS) by Li et al. published in 2015
[25]. The main points of deviation of our work, compared to these
studies, are:

� the use of a different research method (SLR vs. MS vs. MLR), and
� the different focus of the research goals (financial aspects of
technical debt vs. software engineering aspects of technical
debt).

The main difference between a Multi-vocal Literature Review
(MLR) and a Systematic Literature Review (SLR) or a Mapping
Study (MS) is the fact that, while SLRs and MSs use as input only
academic peer reviewed articles, in MLRs, grey literature, such as
blogs, white papers and webpages, is also considered as input.
We note that despite the differences in the used research methods,
the results of both types of studies are valid; however, through a
different perspective. Consequently, concerning technical debt,
the multi-vocal results [35] are expected to provide indications
on how the concept is exploited by both researchers and practi-
tioners; although it goes without saying that using such not
peer-reviewed experience reports or position articles raises signifi-
cant reliability and validity issues [30]. On the other hand, the
results of an SLR or an MS could provide an established body of
knowledge, focusing only on research contributions. However,
comparing the research goals and designs of MS and SLR, the
following differences can be identified:

� SLRs aim at providing a complete, detailed and fair synthesis of
evidence related to a topic of interest, whereas MSs aim at pro-
viding an overview of a research area to assess the quantity of
evidence [21];

� the research objectives for MSs are usually high level and
include issues, such as identification of research sub-topics
and used research, and classification of research themes. On
the other hand, SLRs usually synthesize data in a more detailed
way [21].

Additionally, the goal of the three studies is completely diffe-
rent as well. More specifically, the studies of Tom et al. [35] and
Li et al. [25] aimed at understanding the nature of technical debt
and its implications for software development, whereas our study
is focused on the financial perspective of technical debt. However,
although the research questions of the three studies do not overlap,
it is expected that discussing the results will provide possibilities
for synthesizing the outcomes of the three secondary studies.

3. Background information

In this section we provide background information on financial
debt i.e. definitions, related terms and approaches. More specifi-
cally, we provide: (a) basic definitions on financial debt that are

2 By the term ‘software engineering technologies’ we refer to: (a) any element of
the software engineering process (e.g., tools, artifacts, activities [22]), (b) quality
attributes, and (c) well-established approaches that aim at the improvement of
design-time qualities (e.g., patterns, refactorings, etc.).

54 A. Ampatzoglou et al. / Information and Software Technology 64 (2015) 52–73

expected to be investigated in the related literature on technical
debt, (b) broader financial terms, related to interest theory, and
(c) some fundamental strategies for handling financial debt. This
section aims at supporting readers with a software engineering
background to become familiar with some basic financial concepts
that will be needed for understanding the results of this SLR. All
terms discussed in this section will be used either during the pre-
sentation of results or in the discussion of directions for future
research.

3.1. Basic financial debt terms

Debt is a term used to describe the amount of money owed by
one party (debtor or borrower) to another party (creditor or lender).
The certain amount of money derives from a loan, which denotes
that the money has been lent by the creditor to the debtor for a
specific period of time. The obligation of the debtor is to repay a
larger sum of money to the creditor at the end of that period
[28]. The original amount of money borrowed is called the princi-

pal, while the additional amount paid back constitutes the interest.
To accomplish this agreement, the borrower issues a debt instru-

ment, which specifies the type of the loan and obliges the debtor
to repay it at the maturity date (date of repayment). Economists
consider the interest to be a fee that is charged for the use of
money, i.e. the creditor is being remunerated for the undertaken
risk of losing the principal and for the lost benefit that another
investment of the money would have yielded (opportunity cost).
On the other hand, the debtor (individual, company or govern-
ment) is in need of money, in order to proceed with an investment
or to cover temporary lack of liquidity, therefore decides to pay the
interest in the future.

Interest is calculated as a percentage of the principal, usually on
an annual basis, namely interest rate. Interest rate is dependent upon
systemic financial factors (e.g. quantity of money and price level [14])
and the debtor’s risk rating [28]. If thedebtor is assessed as a low-risk
partner, a lower interest rate shall be applied. On the other hand, if
the borrower is considered to be of high-risk, a higher interest rate
will be charged (see Section 3.3, on risk management). Interest can
be discriminated into two common types (simple and compound),
according to the way it is calculated. When interest is calculated in
every period on the amount of the principal, it is called simple

interest. In this case, the total amount of interest increases linearly.
On the other hand, compound interest occurs when it is calculated
on the principal plus the accumulated interest. Thus, the total
amount of interest increases exponentially [19].

3.2. Broader financial terms (related to investments and interest

theory)

In order to elaborate on concepts of debt and loan we present
some additional terms that are considered important for financial
transactions. More specifically, liabilities and assets are terms used
in both financial and accounting literature and practice and refer to
elements that constitute obligations or create economic value for
their owners respectively. Moreover, in order to compare the value
of a sum of money or a debt instrument through different periods
of time, the concepts of present value (PV) and future value (FV) are
used. So as to assess the effectiveness of an investment, the Return

on Investment (ROI) ratio is used. A high level of ROI indicates an
efficient investment. Financial leverage is perceived as the use of
loanable funds, i.e. money derived from loans by a company, in
order to invest in actions that will result in profit. Specifically:

� An asset could be a company’s plant, mechanical equipment or
money. On the other hand, a company’s liabilities can consist of
its loans, accounts payable or any other company’s obligations.

Referring to finance, every debt instrument is a liability for the
debtor and at the same time it is an asset for the creditor [28].

� Present Value or Present Discounted Value (PV) refers to the
current worth of an amount of money paid or received in the
future. Present value is calculated as in (1), where r represents
the given rate of interest and n stands for the number of periods
[28]

PV ¼
FV

ð1þ rÞn
ð1Þ

� Future Value (FV) or time value of money refers to the value of a
present sum of money in a specific time the future [19].
According to Kellison [19], future value is calculated as:

FV ¼ Principal � ð1þ rÞn ð2Þ

� Financial leverage increases the undertaken risk; nevertheless it
is generally acceptable and sometimes preferable over other
forms of financing by shareholders, as it increases the market
value of the shares [9]. The degree of a firm’s leverage expresses
its dependence on long term debt. This dependency can be
shown by the debt to equity ratio that is the percentage of debt
on the company’s equity.

� Return on Investment (ROI) is defined as a ratio that measures
the return of an investment divided by the invested capital.
More specifically, ROI is defined in (3), where Net Profit is the
total gains of the investment minus the cost of the investment
[13]. Besides the evaluation of a single investment, ROI ratio
can be used to compare different investments.

ROIð%Þ ¼
NetProfit

Cost of Investment
� 100 ð3Þ

3.3. Managing debt strategies

Decision making on undertaking an investment or on taking a
loan so as to perform an investment should consider the risks
and the cost of the specific financial transaction. Thus, in order to
make the most profitable decision, economists usually apply the
Cost/Benefit Analysis (CBA), i.e. a technique that compares the cost
of the realization of a decision to the expected benefit of this
action. The implementation of CBA method should take into
account all the possible expected costs until the completion of
the project, such as cost of acquisition, man hours needed for
implementation, operational costs etc.

As mentioned above, risk is another factor that should be con-
sidered during the decision making on the realization of a financial
transaction. The risk concerning a financial transaction may occur
due to interest rate fluctuations or to other factors involving the two
parties of the transaction [28], e.g. the probability of the debtor to
bankrupt. In order to accomplish their goals, companies should
apply risk management strategies. More precisely, they should:
(a) examine the possible sources of their risk, (b) evaluate the
probability of its occurrence, and (c) implement methodologies
for measuring the credibility of their counterparties [9].

A specific technique that is used for reducing or eliminating
financial risk and reducing market uncertainty is hedging [28].
Hedging involves the engagement in a financial transaction in
order to counterbalance the risk undertaken by another transac-
tion. For example, hedging may offset a long position (that is buying
an asset) by taking an additional short position (that is selling an
asset). In literature, a field that offers great opportunities for hedg-
ing is financial derivatives market [28]. Financial derivatives can be
defined as financial products whose values are linked to the values
of previously issued instruments or other variables [16,28].

A common form of financial derivatives contract is an Option

contract, which gives the owner the right to buy (call option) or sell
(put option) a specific financial product at a specified price (strike

A. Ampatzoglou et al. / Information and Software Technology 64 (2015) 52–73 55

price or exercise price) in the future. The purchaser of an option is
not obligated to exercise the right of buying or selling, on or until
the expiration date. On the other hand, the seller of the option is
obligated to sell or buy the financial instrument, if the owner deci-
des to do so. In order to acquire the option to buy or sell a product
at a specified price, the purchaser pays an amount called a premium

[28].
Option Pricing Theory has been widely used during the last dec-

ades in order to evaluate opportunities in non-financial or ‘‘real’’
investments, such as land, buildings, plant expansion or multi-
stage R&D [6,16]. Real Option Analysis (ROA) is extensively applied
to assess IT investment risk. By equating managerial flexibility
with real options, it permits the inclusion of uncertainty in the
valuation model [4].

Finally, the total amount of assets and liabilities of a company
or individual is called a portfolio. Portfolio management is the tech-
nique of managing the assets and liabilities in order to achieve a
satisfactory benefit. The aim of a successful portfolio management
is to achieve the highest possible profit and at the same time to
minimize the risk of the undertaken financial transaction [32].

4. Review methodology

This section presents the protocol of this systematic literature
review. A protocol constitutes a pre-determined plan that
describes research questions and how the systematic literature
review will be conducted. The review protocol includes six activi-
ties, namely [20]: (a) define research objectives and questions, (b)
define search procedure (search terms and resources), (c) define
study selection procedure and inclusion/exclusion criteria, (d)
define study quality assessment, (e) define data extraction strat-
egy, and (f) define synthesis of the extracted data.

4.1. Research objectives and research questions

We reformulate the goals of this study, using the Goal-
Question-Metric format [2], as follows: analyze existing literature
on the financial aspects of technical debt for the purpose of
characterization and evaluation, with respect to terminology (see
goal-a in Section 1) and the employed financial approaches (see
goal-b in Section 1), from the point of view of researchers and prac-
titioners. In order to more systematically investigate the aforemen-
tioned goal, our study sets three research questions, which are
listed here and explained right below:

RQ1: Which are the most common financial terms used in the

context of technical debt management?

RQ2: Which financial approaches have been applied in technical

debt management?

RQ2.1: Which financial approaches have been applied for

measuring technical debt, in terms of financial

units (e.g., man-months or US$)?

RQ2.2: Which financial approaches have been applied for

identifying, prioritizing, repaying and monitoring

technical debt?

RQ3: Which software engineering technologies have been used

by financial approaches in the context of technical debt

management?

The two goals stated in Section 1, i.e. glossary of terms (goal-a) and
classification of financial approaches in TDM (goal-b), are achieved
in two steps. First, we collect data (according to the process in
Section 4.5) in order to answer each research question and present
them in Section 5. Second, we further analyze the collected data in

order to achieve the stated goals, as presented in Section 6.
Specifically, for the first goal we will utilize the results of RQ1 (they
will provide a list of terms that are used in technical debt research)
and the background information presented in Section 3. Specifically,
we use the descriptions of terms in financial theory, as presented in
Section 3, in order to fine-tune the definition of the glossary terms.
Additionally, for the second goal, we will synthesize the results of
RQ2 (that will provide a list of financial approaches) and RQ3 (that
will provide us information about the employed software engineer-
ing technologies), which in turn are used as inputs when applying
the financial approaches in technical debt management.
Consequently, the classification synthesizes the set of financial
approaches with the software technologies they use as input. We
note that due to our special interest on TD measuring approaches
we have set a separate research question concerning measurement
(RQ2.1), whereas other managing activities are investigated through
RQ2.2.

4.2. Search process

The search procedure aimed at the identification of candidate
primary studies, which would be either included or excluded from
the final set of the primary studies. The search plan involved auto-
mated search into seven well-known digital libraries (ACM Digital
Library, IEEExplore, ScienceDirect, SpringerLink, Scopus, Web of
Science, and Google Scholar), and a manual search for string cali-
bration and validation of the process accuracy. To cross check the
results we obtained from the automatic search and to create a valid
search string, we searched a small number of venues manually,
similarly to determining a ‘‘quasi-gold’’ standard, as proposed by
Zhang and Babar [39]. Venues for the manual search were deter-
mined based on their probability to publish research in the context
of software engineering and technical debt. Therefore, the manual
search was limited to the following3:

� International Workshop on Managing Technical Debt (MTD
Workshop).

� IEEE Software (SW).
� Journal of Software Quality (SQJ).

When manually searching the venues, we considered title, key-
words, and (if necessary) abstract, and compared the results with
those of the automated search, so as to estimate if we were missing
any studies. The results from the automated search included all
studies found from applying the ‘‘quasi-gold’’ standard. In the
automated search and by taking into account the limited number
of articles on the subject, as well as the natural connection of the
term ‘debt’ to economics, we believe that the search string should
consist of one string, i.e. ‘‘technical debt’’. The searching completed
on September 2013.

4.3. Article filtering phases

The papers that were selected as candidate primary studies in
the review should be relevant to technical debt, and more specifi-
cally to its economic perspective. In line with Dyba and Dingsoyr
[10], there are three stages of filtering the article set to produce
the primary study data set:

1. The search process, described in Section 4.2, returned a set of
candidate primary studies.

3 MTD has been selected since it is the most specialized venue for technical debt
research, whereas SW and SQJ have been selected, since they are highly reputed
software engineering journals and the authors are aware of both journals having
recently published a number of articles on TD.

56 A. Ampatzoglou et al. / Information and Software Technology 64 (2015) 52–73

2. The article set went through a manual inspection of each arti-
cle’s title, and abstract/conclusions. The inclusion/exclusion cri-
teria that have been used in every stage are listed below:
Inclusion Criteria:

– Study should be related to financial aspects of technical
debt. In order for a study to be related to financial aspects
of technical debt it should: (a) apply a financial method in
technical debt management, or (b) measure financial debt
in terms of some currency, e.g., US$ (i.e., studies that provide
indicators of technical debt – measures that are correlated to
technical debt, but do not quantify in money or effort – are
excluded), or (c) define/discuss a financial term in the con-
text of technical debt.

Exclusion Criteria:

– Study only mentions technical debt in an introductory state-
ment and does not focus on its calculation, definition, eco-
nomical aspects, etc.

– Study is an editorial, keynote, opinion, tutorial, workshop
summary report, poster, or panel. Such papers have been
excluded either due to their small size or due to the fact that
such articles are usually not peer-reviewed.

– Study’s full text is not available
3. The qualified articles went through the same inclusion/exclu-

sion criteria, by taking into account the full text of the articles.

Every article selection phase has been handled by the first
author and possible doubts have been resolved by a discussion
between all authors.

4.4. Quality assessment

All selected papers, which are included in the review, have gone
through a quality assessment process, in order to investigate if
they were of adequate standard, so as to be included in this review.
Thus, each study has been evaluated against a set of questions with
respect to the used method, and the quality of the reporting. As the
basis for our primary study quality assessment, we used the fol-
lowing instrument:

1. Are the aims and objectives clearly reported [10]? (0: no, 0.5
partially, 1.0 yes)

2. Is the study’s focus or main focus on TD [10]? (0: no, 0.5 par-
tially, 1.0 yes)

3. How much evidence supports the results of the study [1] (0.0–
1.0 points)?
� Level 0: No evidence (0.0).
� Level 1: Evidence obtained from demonstration or working

toy examples (0.2).
� Level 2: Evidence obtained from expert opinions or observa-

tions (0.4).
� Level 3: Evidence obtained from academic studies, e.g. lab

experiments (0.6).
� Level 4: Evidence obtained from industrial studies, e.g., case

studies (0.8).
� Level 5: Evidence obtained from industrial practice (1.0).

4. Is there a clear statement on the TDM activity that study
focuses? (0: no, 1.0 yes)

5. Is the study sufficiently using both the financial and the soft-
ware engineering aspect of TD? (0: none, 0.5 only one, 1.0 both)

The first two questions concerning the aims and focus of the
examined primary studies are based on the work by Dyba and
Dingsoyr [10]. The third question evaluates the empirical rigor
and industrial relevance of the studies based on the classification
by Alves et al. [1]. The final two questions aim at assessing the fit-
ness of the candidate primary study for answering our research

questions. The complete evaluation of the studies is presented in
Appendix D. The inclusion threshold has been set to a total score
of 2.0, because questions 3, 4, and 5, might be assigned a value
of zero in a paper that approaches technical debt management
from a theoretical perspective. For such papers, we require at least
that the goals and focus on TDM are explicit.

4.5. Data collection

During the data collection phase, we collected data on a set of
variables that describe each primary study. Data collection has also
been handled by the first author and has been validated by the
second author. If both reviewers assigned the same value to one
variable, this value would be assigned to the variable without fur-
ther discussion. In any other case, a discussion among the authors
would result in consensus about the value to be assigned. We have
not applied an agreement measure as the number of researchers
involved in the review is not significantly large. However, all con-
flicts have been recorded. For every study, we have extracted the
following data:

[A1] Author
[A2] Year
[A3] Title
[A4] Source
[A5] Venue
[A6] Type of Paper (conference / journal)
[A7] Keywords
[A8] Quality Score
[A9] Focus of the research (financial, software engineering, both,

neither4)
[A10] Financial Terms
[A11] Ways of Measuring Technical Debt
[A12] Ways of Managing Technical Debt
[A13] Software Engineering Technologies
[A14] Limitations
[A15] TDM Activity [24]

4.6. Data analysis

The mapping between variables and research questions is pro-
vided in Table 1, accompanied by the analysis methods used on
the data. Variables [A1]–[A9] are not listed in this table, since they
are not used for answering any specific questions, but for demo-
graphic characterization of the study.

Specifically, for RQ1, will be investigated through a frequency
table of the identified financial terms. To identify if there are any
dominant approaches for quantifying specific financial terms
(RQ2.1), we will cross-tabulate financial terms found in the selected
primary studies against TD measuring approaches. Additionally,

Table 1

Data synthesis methods.

Research question Variables used Synthesis method

RQ1 [A10] Frequency tables for [A10]

RQ2 [A10] Cross-tabulation for [A10], [A11]
[A11]
[A12] Pie chart for [A12]
[A14] Discussion of [A14] and [A15]
[A15]

RQ3 [A13] Frequency tables for [A13]

4 Without in-depth analysis of either the financial or the software engineering
aspect.

A. Ampatzoglou et al. / Information and Software Technology 64 (2015) 52–73 57

we will produce a pie chart on the ways of managing technical
debt, to visualize the frequency of their application (RQ2.2).
Finally, to answer RQ3, we will create a frequency table for
identifying the software engineering terms that are more relevant
to TDM research.

5. Results

After conducting the article searching and filtering phases, as
described in Sections 4.2 and 4.3, we have concluded in the inclu-
sion of 69 primary studies. In Table 2, for each investigated data
source, we present the number of papers that have been returned
as candidate primary studies (step 1), the number of papers quali-
fied after primary study selection on the basis of title and abstract
(step 2), and the final number of primary studies (step 3). On the
completion of these phases we examined the quality of each
article, based on the guidelines of Section 4.4, and all articles have
qualified.

Table 3 illustrates the frequency of specific venues from which
relevant articles have been retrieved. The most popular venue in
our final set of primary studies in the Managing Technical Debt
Workshop (MTD), followed by Cutter IT Journal and IEEE
Software. The interdisciplinary nature of technical debt is reflected
in the diversity of venues in which primary studies with reference
to the financial aspect of technical debt have been identified.
Specifically, we retrieved 27 studies from TD-specific venues, 25
studies from software engineering (SE) venues, 8 studies from
Information Technology (IT) venues, and 9 studies from generic
(GEN) venues such as Communications of the ACM and IBM
Journal of Research & Development.

As described in Section 1, technical debt is an interdisciplinary
domain, which should ideally deal with aspects of both economics
and software engineering. To this end, it is interesting to examine
how far the selected studies cover either the economics or the soft-
ware perspective aspect or both, through the following
classification:

� emphasis on the software engineering aspect of TD – the study
exploits software engineering technologies for managing TD,
and uses only basic terminology for referring to the financial
aspect of technical debt (see Section 3); An example is the work
of Chin et al. [P9] that quantifies the interest of TD on the basis
of the number of design smells, without using any financial
approaches.

� emphasis on the financial aspect of TD – the study adopts a finan-
cial approach for handling technical debt (see Section 3), but
without an explicit relationship to software engineering tech-
nologies; An example is the work of Alzaghoul and Bahsoon
[P2] that assesses the future and present value of the amount
of technical debt using real options, without providing a clear
mapping between the required inputs of real options and char-
acteristics of the examined software.

� emphasis on both software engineering and financial aspects of TD

– the study adopts a financial approach for managing technical
debt (see Section 3), and provides a detailed analysis on how
software engineering technologies can be used; An example is
the work of Seaman et al. [P53] that suggests the management
of TD using Cost-Benefit analysis, Portfolio Management and
Real Options considering as inputs design smells which are pre-
sent in software.

� emphasis on neither software engineering nor financial aspects of

TD – the study is using only the basic terms for referring to
the financial aspect of technical debt (see Section 3), and does
not exploit software engineering technologies. An example is
the article by Rooney [P47] that discusses the need for a new
metaphor of technical debt claiming that the metaphor is inap-
propriate for systems built with modern development
approaches such as Agile practices.

The results indicated that 56% of the studies that examined
technical debt emphasize on the SE aspect of technical debt, with-
out specific focus on any financial aspect (i.e. other than the basic
terms discussed in Section 3). Next, in about 22% of the studies the
two aspects were balanced, i.e. employed financial approaches for
managing technical debt, by using some software engineering

Table 2

Primary studies per Digital Libraries.

Digital Library Step 1 Step 2 Step 3

ACM Digital Library 72 19 14
IEEE Xplore 136 29 23
SpringerLink 46 4 1
ScienceDirect 33 5 2
Scopus 107 12 10
Web of Science 16 6 0
Google Scholar 763 34 19

Total 1173 103 69

Table 3

Primary studies per venue.

Venue Type Frequency Nature

Managing Technical Debt Workshop 27 (40.2%) TD
Cutter IT Journal Journal 7 (10.1%) IT
IEEE Software Journal 7 (10.1%) SE
Agile Conference Conference 2 (2.9%) SE
Software Quality Journal Journal 2 (2.9%) SE
Advances in Computers Journal 1 (1.4%) GEN
Agile Processes in Software Engineering

and Extreme Programming
Conference 1 (1.4%) SE

API Design for C++ Book 1 (1.4%) GEN
Communications of the ACM Journal 1 (1.4%) GEN
Workshops of the Computer Software

and Applications Conference
Workshop 1 (1.4%) GEN

Hawaii Int. Conf. on System Sciences Conference 1 (1.4%) GEN
IBM Journal of Research and

Development
Journal 1 (1.4%) GEN

Int. Journal of Advancements in
Computing Technology

Journal 1 (1.4%) GEN

Int. Conf. on Building and Exploring
Web Based Environments

Conference 1 (1.4%) GEN

Int. Conf. on Evaluation and Assessment
in Software Engineering

Conference 1 (1.4%) SE

Int. Conf. on Software Engineering Conference 1 (1.4%) SE
Int. Conf. on Software Engineering

Advances
Conference 1 (1.4%) SE

Int. Conf. on Software Engineering and
Mobile Application Modelling and
Development

Conference 1 (1.4%) SE

Int. Conf. on Software Maintenance Conference 1 (1.4%) SE
Int. Conf. on Software Testing,

Verification and Validation
Conference 1 (1.4%) SE

IT Professional Journal 1 (1.4%) IT
Object Oriented Programming Systems

Languages and Applications
Conference 1 (1.4%) SE

Procedia Computer Science Journal 1 (1.4%) GEN
Proceedings of the Third C⁄ Conf. on

Computer Science and Software
Engineering

Conference 1 (1.4%) SE

Quality of Software Architectures Conference 1 (1.4%) SE
SIGSOFT Software Engineering Notes Journal 1 (1.4%) SE
Symposium on Empirical Software

Engineering and Measurement
Symposium 1 (1.4%) SE

Working Conference on Software
Architecture

Conference 1 (1.4%) SE

Workshop on Future of Software
Engineering Research

Workshop 1 (1.4%) SE

58 A. Ampatzoglou et al. / Information and Software Technology 64 (2015) 52–73

technologies. However, we note that the level of detail in one of the
two parts might lag compared to the other (see discussion on
Section 5.2). Finally, research efforts that mainly emphasize on
the use of financial approaches are rather limited, i.e. about 10%
of the primary studies, while the rest 12% of the studies can be
classified as having limited emphasis on both the software engi-
neering and the financial aspect of TD. The rest of this section pre-
sents the results of data collection and analysis, organized by
research questions.

5.1. Financial terms related to technical debt management (RQ1)

By focusing on the terms used to describe the financial aspect of
TD, the results are summarized in Table 4. For each term, we list
the frequency (i.e., the number of distinct studies in which the
term is being used), and the corresponding percentage over the
total number of primary studies. We note that one paper, might
employ more than one terms; in this case all relevant terms have
been recorded. However, for a paper to be counted, the
corresponding term should form an integral part of its discussion
or methodology.

We observe that interest and principal are the most frequently
used ones. Additionally, we can observe that in many cases, con-
ceptually similar terms may not be used in the primary studies
under a uniform term. For example: the terms value and business

value are both used in different studies with similar meaning. We
also note that some of the basic financial terms presented in
Section 3 (i.e., debtor and creditor, debt instrument, maturity date,
and liquidity) are not investigated in technical debt literature. This
raises the question whether these terms have been deliberately left
out or whether they can be applied in the technical debt domain.
For example, can technical debt have a maturity date or does liquidity
constitute a factor on the management of technical debt?

Although we acknowledge the fact that some of these terms
might have already been used in related research areas such as
software economics (e.g., net present value of software develop-
ment strategies [12], valuation of software refactorings [27], etc.),
their results have not yet been highly exploited by the technical
debt community. To this end, we suggest that the research com-
munity of technical debt might benefit from reusing research
results from other related domains (some examples for measuring
technical debt by using software economics [5] are presented in
Section 5.2).

5.2. Financial approaches for managing technical debt (RQ2)

According to Li et al. [24], technical debt management, can be
decomposed to five activities: identifying, measuring, prioritizing,
repaying, and monitoring TD. Since measurement forms the basis
for any financial handing of TD, we separately discuss financial
approaches w.r.t. measurement (see RQ2.1), and group the discus-
sion on all other TDM activities (see RQ2.2).

5.2.1. Financial approaches for measuring technical debt

In the table of Appendix B,5 for each financial approach related to
technical debt measuring we provide: (a) a pointer to the
corresponding primary studies, (b) a brief description of the used
method, (c) the software engineering technologies that they use as
input, (d) the measured financial terms, (e) the used financial
approaches, and (f) the TDM activity that they refer to. As financial
approaches we consider all the approaches that have been presented
in Section 3, under Managing Debt Strategies. In case a study only
used software engineering tools or methods to quantify technical
debt (i.e. the approach is not financial), it has been classified as based
on Software Economics. For example, a study would be characterized
as using software economics for measuring technical debt if:

� it considers the number of bad smells as an estimate of accumu-
lated technical debt, and then valuate this number in terms of
money that have to be spent for resolving them; or

� it uses software effort/cost estimation methods (size, cyclo-
matic complexity, etc.) for assessing the effort/cost required to
enhance particular system design-time qualities (e.g., maintain-
ability) of a software component.

To provide an overview, we synthesize the data from Appendix
B through cross-tabulating the measured financial terms and the
corresponding approaches, as presented in Table 5. Similarly to
Table 4, frequency refers to the number of papers, in which the
corresponding terms are measured. From Table 5, we can observe
that most financial terms have been quantified through software
economics methods (73.1% or 19 out of 26), whereas the most fre-
quently quantified terms are amount of debt (i.e. principal + interest

amount) and interest.

Table 4

Financial terms used in technical debt research.

Term Frequency Percent (%) Term Frequency Percent (%)

Interest 29 42.03 Compound interest 2 2.90
Principal 17 24.64 Benefit 2 2.90
Cost 8 11.59 Bankruptcy 2 2.90
Repayment 7 10.14 Future value 2 2.90
Return on investment (ROI) 7 10.14 By-product 1 1.45
Asset 5 7.25 Total cost of ownership (TCO) 1 1.45
Investment 4 5.80 Depreciation 1 1.45
Value 4 5.80 Effort 1 1.45
Risk 4 5.80 Financial leverage 1 1.45
Present value 3 4.35 Cash flow 1 1.45
Productivity 3 4.35 Hedging 1 1.45
Opportunity cost 3 4.35 Loan shark 1 1.45
Business value 3 4.35 Opportunity benefit 1 1.45
Option 3 4.35 Voice of market 1 1.45
Liability 3 4.35 Savings 1 1.45
Interest rate 2 2.90 Value-added 1 1.45
Revenue 2 2.90 Voice of business 1 1.45
Capital 2 2.90 Voice of customer 1 1.45
Net present value 2 2.90

5 Table has been moved to Appendix B to improve the readability of the paper.

A. Ampatzoglou et al. / Information and Software Technology 64 (2015) 52–73 59

Based on the inherent financial nature of TD, an approach that
measures technical debt is expected to calculate the amount of
technical debt (or related terms) as values in money or other simi-
lar units. By further focusing on the level of granularity of the items
that these approaches receive as inputs, we can identify two basic
trends:

� Approaches that receive coarse-grained inputs, i.e., inputs that
have to be estimated based on a number of factors. For example,
in this category we classify approaches that use effort as input,
in the sense that effort spent on several activities (e.g., identifi-
cation of code smells and application of refactorings) is related
to the size of the artifacts, the number of bad smells, the inten-
sity of the bad smells, the urgency to solve them (based on arti-
facts history), etc.

� Approaches that receive fine-grained inputs, i.e., inputs that
can be estimated directly without taking other factors into
account. For example, in this category we classify approaches
that use as input the number of code smells, in the sense that
the number of code smells can be measured directly from the
code.

Approaches receiving coarse-grained inputs for measuring tech-
nical debt usually originate from economics (traditional or soft-
ware economics). In the domain of cloud-computing, Alzaghoul
and Bahsoon define the amount of debt as the additional effort

needed to provide scalability to a SOA [P2]. On the other hand, con-
cerning traditional software development, de Groot et al. [P22],
Nord et al. [P41], Nugroho et al. [P42], and Stochel et al. [P60]
define the amount of debt as the rework cost that is needed to
improve the levels of quality. Building on that, Schmid [P50] speci-
fies that in order to quantify TD, you need to assess the effort
needed to refactor a software product so as to have zero debt. In
a similar context, interest is defined as the difference in the
amount of technical debt. Chin et al. [P9] define simple interest
as the ongoing product maintenance cost and compound interest
as the increase in the amount of technical debt over time.

Concerning approaches that receive fine-grained inputs, Guo
and Seaman [P23] and Guo et al. [P24] use historical data on effort,
so as to estimate the effort needed for bug-fixing or increasing test
coverage, as indications of technical debt. Curtis et al. [P12] count
code violations and classify them based on their severity (high,
moderate and low), and then calculate the total time needed for
fixing these violations. Finally, Santos et al. [P49] use cohesion
and coupling metrics, code duplications, lack of comments, coding
rules violation, potential bugs, the absence of unit tests, etc. for
assessing code technical debt.

It becomes clear that all methods used for measuring TD that
are solely based on software economics, are not related to any
approach related to financial debt. On the other hand, all studies
that apply financial approaches to technical debt measurement
appear to be more balanced. Specifically, Alzaghoul and Bahsoon
[P2] apply Real Options Analysis and use a two-step binomial tree
approach in order to quantify technical debt, in the case of web ser-
vices substitution. Technical debt is considered to be the difference
between the option’s value and the cost of switching to a new web
service. The value of the system, the option price, the option value,
and the probability coefficient are derived through functions, using
values based on historical data. However, the use of interest rate (r)
in the model is not clearly defined.

In addition, Guo and Seaman [P23] measure technical debt prin-
cipal and expected interest amount in person-days as the effort
needed to resolve a technical debt item and the extra effort
required to complete the task later, respectively. In order to fit
their measurements in a Portfolio Management model, they con-
sider TD items as assets and they also determine the likely net
benefit of the item and the risk that the item will not produce
benefit. The likely net benefit is considered to be the expected asset
return and is defined as the principal minus the expected interest
amount. On the other hand, in Portfolio Management theory, the
risk is considered to be represented by the variance of return.
The authors suggest that, in the case of TD, this is equal to the
interest standard deviation. All estimations are based on historical
effort, usage, change, and defect data.

Finally, Stochel et al. [P60] propose a three-layered model and
define codebase/design debt, architectural debt and portfolio debt.
They propose the SonarQube approach and the Wisdom of Crowds
technique for the measurement of design debt. Regarding architec-
ture debt, they propose that its estimation should be based on the
cost of expected changes in the architecture. At portfolio layer,
technical debt is defined as the variation of the cost of change in
order to achieve the highest ROI.

5.2.2. Financial approaches for identifying, prioritizing, repaying and

monitoring technical debt

In contrast to approaches that have been introduced for mea-
suring technical debt, in which only limited studies use financial
approaches while quantifying technical debt, in the rest of the
management activities, we observe that the financial aspect is
more evident. In the table of Appendix C, we present the financial
approaches that have been proposed for managing technical debt.
Specifically, we provide: (a) a pointer to the corresponding primary
studies, (b) a brief description of the used method, (c) the software
engineering technologies that they use as input, (d) the used finan-
cial approaches, and (e) the TDM activity that they refer to. The
results in Appendix C are synthesized and visualized in the pie
chart of Fig. 1.

In addition, we also investigated the financial approaches that
have been used for managing technical debt in terms of: (a) the
software engineering technologies that have been used as input/
output of these approaches (if applicable), and (b) the potential
omissions or assumptions that researchers have done while adopt-
ing the financial approach in the technical debt domain. In the next
paragraphs, we present more details about the three most popular
approaches for managing technical debt: cost/benefit analysis, real
options analysis and portfolio management.

5.2.2.1. Cost/benefit analysis. Regarding cost/benefit analysis theo-
ries that have been transformed so as to fit the management of
technical debt, we were able to identify six relevant studies.
Buschmann [P8] presents some industrial case studies, indirectly
referring to cost/benefit analysis by presenting real-world exam-
ples on the advantages and disadvantages of repaying technical

Table 5

Measuring technical debt approaches.

Measured
term

Frequency Measuring approach

Portfolio
management

Real
options

Software
economics

Value
based

Amount of
debt

9 0 1 7 1

Compound
Interest

1 0 0 1 0

Interest 6 1 0 5 0
Repayment 1 0 0 1 0
Principal 4 1 0 3 0
ROI 1 0 0 0 1
Simple

Interest
1 0 0 1 0

Future
Value

1 0 1 0 0

Present
Value

1 0 1 0 0

Total 26 2 3 19 2

60 A. Ampatzoglou et al. / Information and Software Technology 64 (2015) 52–73

debt, without however using the original terminology implied by
the financial method, or presenting software engineering
approaches to assess the cost and benefits of technical debt repay-
ment. On the contrary, Guo et al. [P24] and Seaman et al. [P53]
have employed a cost/benefit analysis in a way in which costs have
been related to interest amount (calculated based on interest
probability and changeability analysis) and benefit has been
related to the principal. However, the amount of the principal is
assumed to be known, and is not calculated in the paper. To sup-
port these claims the authors present a small size case study.

In addition, Schmid [P50] presents a theoretical framework that
enables the application of cost/benefit analysis during software
evolution. Initially he suggests that cost is related to development
effort, to product time-to-market, and to customer benefits.
However, in the rest of the paper he only focuses on development
costs, by taking into account the cost of refactorings as part of
iteration costs. As benefit of repaying technical debt he character-
izes saved cost by technical debt item, by iteration. For calculating
cost and benefit, Schmid is based on existing software cost estima-
tion models, and clearly notes that the accuracy of his model can-
not be higher than the accuracy of the used cost estimation model
[P50]. Furthermore, Snipes et al. [P58] propose the use of cost/
benefit analysis for making decisions on bug fixing prioritization.
In this study, the authors propose a method for calculating the cost
of each defect fixing activity (based on type, condition and change
proneness), and the expected benefit from fixing the defect (based
on severity, existence of work around, etc.). The specific application
of the method is sound, since it uses the cost/benefit analysis ratio,
based on well-defined parameters [P58]. Finally, Zazworka et al.
[P66] implement a cost/benefit matrix in order to identify and
prioritize technical debt items (identified God classes [26]) refac-
toring. The cost of each refactoring opportunity is assessed by
using detection strategy metrics (e.g. Weighted Method Count –
WMC, Tight Class Cohesion – TCC and Access To Foreign Data –
ATFD), whereas the benefit is quantified by class change and defect
proneness.

5.2.2.2. Real options. Next, concerning studies that employ the real
options theory, Alzaghoul and Bahsoon [P2] describe asset value as
the quality of service (e.g. scalability and availability), and option
price for leaf nodes as the difference between system value and
maintenance cost. On the other hand, the probability coefficient
of improvement, the expected pay-off when the value goes up,
the expected pay-off when the value goes down, and the interest
are not directly associated with software technologies. However,

the authors state that such input parameters can be assessed by
stakeholders input, historical data, or be based on existing valua-
tion methods. In contrast to the previously well described applica-
tion of the real option theory, Power [P43] characterizes the time
that development teams spent on paying off technical debt as an
option and investigates its impact on team’s capacity and velocity,
without however defining any of the aforementioned input vari-
ables or applying the real options theory in practice. Finally,
Seaman et al. [P53] also described that paying-off technical debt
(e.g. through refactorings) can be managed as an investment with
short-term cost (e.g. resources, effort on applying refactorings, etc.)
that can be valuated through the decrease of technical debt in the
long term. However, in this short paper the major focus of the
authors was not to present in detail how a financial approach could
be applied, but to debate on the fitness of several financial methods
and their relationship to technical debt.

5.2.2.3. Portfolio management. With respect to studies that attempt
to manage technical debt through portfolio management theory,
we have been able to identify three related papers. Guo and
Seaman [P23] and Seaman et al. [P53], use technical debt items
as assets and populate the portfolio of the software development
organization with them. In an iterative way, each item is assessed
and is either preserved or excluded from the portfolio. In each
iteration, the method suggests excluding from the portfolio techni-
cal debt assets that should be repaid. The decision to repay an item
or not is based on risk assessment. The risk assessment is being
performed based on the principal, estimated interest rate, interest
standard deviation and dependencies between technical debt ele-
ments. Finally, Stochel et al. [P60] suggest that the debt portfolio
is layered into process debt, architecture debt, and design/source
code debt portfolio. Each one of these distinct portfolio technical
debt items, should be individually assessed (e.g. for architecture
technical debt by using ATAM, and for source code debt by using
methods/tools like the Wisdom of Crowds).

5.3. Software engineering technologies used by financial approaches in

TDM (RQ3)

Table 6 presents the frequency of software engineering tech-
nologies that have been used in financial approaches in technical
debt management. We note that as software engineering technolo-
gies we collectively refer to any element in the backbone of the
software development process according to RUP [22] (i.e., tools,
software artifacts, development activities/phases), as well as in
quality assessment/improvement process (e.g., quality attributes,
quality measurements, refactoring opportunities, etc.). Such ele-
ments can provide information to be fed as input to the applied
financial approaches. For example, Schmid [P50] applied the cost/
benefit analysis, to decide whether technical debt items should
be paid off, considering as input the refactoring cost, the relative
technical debt per refactoring and per evolution step, and also
the probability that a particular evolution step will be performed.
According to the aforementioned definition of software engineer-
ing technologies, in Table 6, we organize the data in the following
categories: tools, artifacts, phases/activities, quality attributes and
quality assurance-related terms (e.g., quality models). We note that
terms that fit two categories (e.g., design can refer to both be design
activity and the design artifacts), have been classified to both
classes.

6. Discussion

The results of the study provide useful insights towards the two
goals set in Section 1, the glossary of terms and the classification of

Fig. 1. Managing technical debt approaches.

A. Ampatzoglou et al. / Information and Software Technology 64 (2015) 52–73 61

approaches. In this section we synthesize the abovementioned
results into the two envisioned goals: a glossary of well-defined
descriptions of all financial terms that have until now been con-
nected to technical debt (see Section 6.1 – related to goal-a); a clas-
sification schema of the application of financial approaches in
technical debt research (see Section 6.2 – related to goal-b).

6.1. Technical debt financial glossary

In this section we provide a glossary of the financial terminol-
ogy that is used in technical debt research, presented in Table 4.
In order to compose the glossary, we have used the terms and their
meanings from the primary studies. We derived the definition for
each term, by synthesizing the way that these terms are used in
several studies. In cases of conflicting definitions (explicit or
implied) the terms are defined based on our own perception of
the way that these concepts could prove beneficial for technical
debt management (see Fig. 2). We also performed a merging of
terms that were similar in meaning. From the glossary of Fig. 2,
we have intentionally excluded the following terms, because their
meaning in TD is completely equivalent to their meaning on finan-
cial debt: benefit, cash flow, cost, depreciation, hedging, invest-
ment, loan shark, option, opportunity cost, productivity, savings,
voice of business, voice of customer, voice of market, and total cost
of ownership. Finally, we note that the original (i.e., financial) def-
initions of terms have been omitted, although they might hold in
the TD context. For example, the software product per se is an asset
for the company, since the company can sell it and make value
from it; however, this value is outside the context of TD.

Next, all terms of the glossary are discussed in detail, and
graphically illustrated in Figs. 3a–3c. The intention of these
Figures is not to quantify the terms, but to provide a graphical con-
text in order to facilitate their understanding. To further enhance
the readability of the discussion, we group the terms, based on if
they are applicable to:

� the pre-deployment phase when technical debt is accumulated
– Fig. 3a;

� the post-deployment phase, considering changes related to the
implementation of new requirements – Fig. 3b;

� the post-deployment phase, considering changes related to the
improvement of system design-time qualities – Fig. 3c.

We note that the values in all axes of Figs. 3a–3c are illustrative
and do not originate from any empirical data, or reference. In addi-
tion, the Figures illustrate individual artifacts as items that are
subject to technical debt (see for example [P23], [P53], [P60], and
[P66]); however, TDM can also be performed at system-level
(e.g., see for example [P2]). The depictions and explanations are
equally applicable to system and artifact level.

In Fig. 3a, we assume a software system that is composed of 7
artifacts (e.g. software components). Artifacts 2 and 3 have been
developed on the desired levels of design-time quality, whereas
in all other artifacts several compromises have been made (dquality).
The immature software artifacts are named technical debt items or
liabilities. While developing the aforementioned artifacts the devel-
opment team spent less effort than it was required in the optimal
case resulting in dquality. The effort that is required to address this
difference in the levels of quality is termed principal (or capital)
of the TD. Principal can be considered as an asset for the company,
since it can be invested in any other activity due to financial lever-

age. Such activities can be the development of by-products or
decreased time to market. The value of such by-products divided
by the principal represents the return of investment (ROI) of invest-
ing the principal into other activities.

In Fig. 3b, the y-axis refers to effort instead of quality. We sup-
pose that the same system, after its deployment, requires the addi-
tion of a feature. For simplicity, we assume that this feature is
global and the same effort needs to be spent in every component
(artifact). However, in the artifacts where technical debt is accu-
mulated (technical debt items), additional effort (deffort) is required
because of their deteriorated design-time quality (e.g. low main-
tainability, bugs that are found during extension, incomplete docu-
mentation that lead to low understandability). This additional
effort is the interest that the development team has to pay, due
to the accumulated amount of debt. If the interest becomes so high
that maintenance is not financially feasible or beneficial, the pro-
ject becomes bankrupted.

In Fig. 3c, we consider the evolution of a system with accumu-
lated technical debt (accumulated technical debt is calculated as:
principal + interest). The two series in the line chart represent the
evolution of the system without any repayment activity (red6 line

Table 6

Software engineering technologies used in technical debt research.

Group Term # Percent (%) Group Term # Percent (%)

Tools SonarQube 6 8.51 Phases /Activities Implementation 17 24.28
AIP 2 2.90 Static analysis 15 21.42
CodeVizard 2 2.90 Testing 11 15.71
FindBugs 2 2.90 Maintenance 11 15.71
CLIO 1 1.45 Designa 9 12.85
DebtFlag 1 1.45 Architecturea 6 8.51
Microsoft Tree Mapper (tool) 1 1.45 Agile development 6 8.51

Artifacts Source code 17 24.28 Phases /Activities (cont.) Refactoring 6 8.51
Designa 9 12.85 Requirementsa 4 5.71
Architecturea 6 8.51 Evolution analysis 2 2.90
Requirementsa 4 5.71 Dynamic analysis 2 2.90
Code smells 3 4.28 Project management 2 2.90
Design smells 3 4.28 Acceptance testing 1 1.45
Design patterns 3 4.28 ATAM 1 1.45
Incomplete documentation 1 1.45 Commonality-variability analysis 1 1.45

Quality attributes Maintainability 11 15.71 Quality assurance Quality dashboard 2 2.90
Defect-density 10 14.28 SIG/TUV 2 2.90
Functionality 2 2.90 SQALE 2 2.90
Reusability 1 1.45 ISO/IEC 25010 1 1.45
Performance 1 1.45 ISO/IEC 9126 1 1.45

COCOMO 1 1.45

a These terms are duplicate in the table.

6 For interpretation of color in Figs. 3c and 4, the reader is referred to the web
version of this article.

62 A. Ampatzoglou et al. / Information and Software Technology 64 (2015) 52–73

– inherent) and with one repayment activity performed in revision-4
(blue line – with repayment). We suppose that the system starts
with an amount of debt that increases over time (interest rate is
represented by the slope of each line, e.g., h1 and h2). As we observe,
in the case of Fig. 3c, the interest rate is not stable, but floating, since
the slope of the red line is increasing over time (i.e., h2 > h1 and
u2 > u1). This increase is expected, since the design-time quality
of decayed projects, deteriorates quicker than the quality of better-
designed products (the poor getting poorer). Therefore, the TD risk

for low design-time quality products is higher than the TD risk of
high design-time quality products. For this particular example, we
assume that the interest rate increases, not because of the introduc-
tion of new flaws or bugs, but due to the increased difficulty of
resolving existing problems, which in turn is caused by the gradual

increase in size and functionality. Due to the repayment actions in
revision-4, some artifacts’ design-time quality is increased, i.e. tech-
nical debt is decreased (dTD1). The effort that is spent during this
repayment activity is the value of repayment. Furthermore, because
of the floating rate of the interest (it increases in revision-3
(TD = 50) and in revision-6 (TD = 75)), we can see that in revision-
7 the value of repayment increases, as illustrated by the distance
between the two lines (dTD2 > dTD1). The value of the repayment per-
formed in revision-4, is named future value of repayment, in the
timestamp of revision-7. Assuming that present time is revision-2
and that a future repayment activity (e.g. the one performed in revi-
sion-4) should be valuated at present conditions, one can assess at
revision-2 the present value of the repayment to be performed in revi-
sion-4. Finally, according to de Groot et al. software value is, among

 Asset: 1. The effort that the development team saves by producing

immature artifacts while accumulating technical debt.

2. Tools or approaches that lead to the decrease of technical debt.

 Bankruptcy: A software engineering project could be considered bankrupt, in

case that it fails to survive/evolve (either being cancelled or forced

to be re-written from scratch) due to large maintenance costs,

caused by the accumulation of technical debt.

 By-product: An additional software product that can be produced with the effort

that has been saved from producing immature artifacts while

accumulating technical debt.

Financial Leverage: The ability of software companies to produce by-products, decrease

time to market, etc. by accumulating technical debt.

 Future Value: The value that an action (e.g. undertaking technical debt) performed

now will have after a given time period.

 Interest: The additional effort that is needed to be spent on maintaining the

software, because of its decayed design-time quality.

 Liability: TD items, i.e. artifacts that have not been developed with the

optimal design-time quality and thus subject to improvement.

 Present Value: The value that an action (e.g. a repayment activity) to be performed

in the future has now.

 Principal: The effort that is required to address the difference between the

current and the optimal level of design-time quality, in an immature

software artifact or the complete software system (syn: capital).

 Repayment: The amount of effort spent on improving design-time quality. This

effort will decrease the effort needed for future maintenance tasks.

 Risk: The probability or threat that the technical debt items are

accumulated in a design hotspot. Immature artifacts in such places

of the system can hinder a product’s viability.

 ROI: The ratio of (1) the additional amount of money that is earned by

bringing the product earlier into the market or (2) the additional

amount of money that has been earned from the company by

investing the effort of the principal in an activity different than the

improvement of design-time quality, over the principal.

 Value-Added: The additional value that repayment of technical debt would bring

to the software product.

Fig. 2. Technical debt financial glossary.

A. Ampatzoglou et al. / Information and Software Technology 64 (2015) 52–73 63

others (e.g., volume/functionality), related to product quality (i.e.,
inherent characteristics of the software) [P22]. Therefore, the
enhancement of design-time quality that is achieved through the
repayment on revision-4 represents the value-added of TD
repayment.

6.2. Classification scheme for financial approaches used for managing

technical debt

In this section we present a classification scheme for techniques
on managing technical debt (see Fig. 4). The classification has been
built based on the raw data of this SLR (presented on Appendices B
and C). For readability reasons, while developing the classification
schema we preferred not to list the primary studies that should be
mapped to each edge. In any case, the interested reader can find all

relevant information in Appendices B and C. According to
Nickerson et al., the most common paradigm for building classifi-
cation schemas for information systems is the three-level indica-
tors model, which is based on both empirical and deductive
approaches [29]. By applying this model, we: (a) examined the
objects (i.e. studies), (b) we identified general distinguishing char-
acteristics of the objects, and (c) we grouped their characteristics
so as to create our classification schema [29]. Specifically, in step
(b) we identified three characteristics that will constitute the three
levels of the proposed schema:

� the 1st level of the schema represents the existing activities
within technical debt management [24] – extracted variable:
[A15] – last column of Appendices B and C;

� the 2nd level represents the proposed financial techniques –
extracted variables: [A11] and [A12] – 5th column of
Appendix B and 4th column of Appendix C;

� the 3rd level corresponds to the used software engineering
technologies – extracted variable: [A13] – included in the 3rd
column of Appendices B and C.

In addition, in the proposed schema the popularity of each tech-
nique in level 2, and of each software engineering technology in
level 3, can be deduced by the number of edges reaching the
corresponding node, respectively. More specifically, the lines
connecting the categories of level 1 to the approaches of level 2
and the latter to the technologies of level 3 indicate which
elements are connected to each other in the primary studies. In
case more than one edges connect two nodes, a multiplicity sym-
bol is used. For example, the cost/benefit analysis has been encoun-
tered in 3 studies discussing the repayment of technical debt. To
improve the readability of Fig. 4, edges leaving from the same
financial approach (at level 2) are grouped through a common line
style.

Moreover, we evaluate each technique of level 2, w.r.t. the
cross-examination of software engineering technologies and finan-
cial approaches. Specifically, the number of arrows under the
names of each financial approach denotes how many times it is
applied, regardless of the technical debt management activity
(e.g., value-based approaches have been applied 3 times in TD
research). Approaches marked with upwards-pointing green
arrows are adequately applied by focusing on both financial and
software engineering aspects; approaches marked with down-
wards-pointing red arrows miss one aspect (either financial or
software engineering); those marked with a horizontal yellow
arrow present a mapping between software engineering and finan-
cial aspects, but their explanations are not detailed. For example,
the cost/benefit analysis has been adequately applied in 4 studies,
by relating financial and software engineering aspects, in 1 study
both aspects are discussed but valuation of software activities
are not thoroughly discussed, while in 1 study the authors have
focused only on the financial aspect of technical debt. As evalua-
tion for the proposed classification schema, we attempted to vali-
date the four desirable attributes for successful classification
schemas, as proposed by Nickerson et al. [29]. According to
Nickerson et al., a successful classification should ensure:

� conciseness: contain a limited number of dimensions or a lim-
ited number of characteristics in each dimension [29];

� inclusiveness: contain dimensions and characteristics to be of
interest [29];

� comprehensiveness: provide for classification of all current
objects within the domain under consideration [29]; and

� extendibility: allow for additional dimensions and new charac-
teristics within a dimension when new types of objects appear
[29].

Fig. 3a. Pre-deployment phase.

Fig. 3b. Post-deployment changes to implement new requirements.

Fig. 3c. Post-deployment changes to improve design-time quality.

64 A. Ampatzoglou et al. / Information and Software Technology 64 (2015) 52–73

We note that conciseness can sometimes be compromised in
favor of inclusiveness. Therefore, we selected a reasonable depth
for our classification schema (i.e., 3) and a small amount of charac-
teristics in the first two dimensions (i.e., 5 and 6 respectively), so as
to provide a concise schema that will be understandable and
applicable in practice. On the other hand, we preferred to include
a large amount of classes in the third level, so as to be as inclusive

as possible with respect to software engineering technologies.
Additionally, the comprehensiveness of the proposed schema is
guaranteed by the fact that we were able to classify each study
in exactly one category. Finally, extendibility is related to the effort
required to extend the schema: adding classes is an easy extension,
while adding levels can be far more complicated since it can result
in changing the existing mapping between classes and levels. In
this sense, we believe that the proposed three levels of the schema
(TDM activities, financial approaches, and software engineering
technologies) are sufficiently generic to reflect a large body of
research in TD without requiring additional levels. On the other
hand, we expect additional classes to be added, representing novel
financial approaches and software engineering technologies that
will be proposed in future research.

From the first level of the schema (i.e., TDM activities) we can
identify classes, i.e. research topics that need further investigation.
First, we can observe that technical debt identification is not con-
nected to any financial approach, whereas research on prioritizing
is also neglected, compared to monitoring, repaying and measuring
technical debt. Repaying technical debt is in most cases explored
through cost/benefit analysis, which however sometimes is not
adequately applied (see Section 5.3 for details). Additionally, real
options, although quite popular as a technique for managing tech-
nical debt, they: (a) seem to be used without a clear mapping of
financial and software engineering technologies and (b) are in

many cases applied in an artificial rather than in a real-world set-
ting. Finally, concerning the application of financial approaches on
TDM, we observe that researchers do not uniformly map software
engineering technologies to the inputs required by the financial
methods. For example, in the cost/benefit analysis, researchers
use a variety of software engineering technologies, which indicates
that there are many alternatives that can be used as inputs (e.g.,
refactoring opportunities at the architectural level, smells at the
source code level, quality metrics, etc.).

6.3. Implications for researchers and practitioners

Based on the expected contributions (see Section 1), we believe
that the reported results can prove beneficial to both researchers
and practitioners. Firstly, we encourage software practitioners:

� to use the ‘‘correct’’ financial terms while communicating their
technical debt concerns, to managers. Under this perspective,
software engineers are expected to find the technical debt glos-
sary a useful tool that will enhance communication issues;

� to use the classification for guidance on how each technique can
be applied and for which management activity. For example,
measuring is usually done with software engineering methods,
prioritizing and monitoring with portfolio management, and
repaying with cost/benefit analysis;

� to use the classification for mapping the inputs and outputs of
the financial approaches to software engineering technologies.
For example the classification suggests that prioritization of
technical debt items can be performed through cost/benefit
analysis, applied at both source code and architecture level.
The benefit can be quantified by measuring the improvement
resulting by structural changes (e.g. refactoring) or defect

AIP

(Tool)

Design Smells

(Quality A�ribute)

Tes�ng

(Ac�vity)

Documenta�on

(Ac�vity/Ar�fact)

SIG/TUV Model

(Quality Assurance)

SonarQube

(Tool)
Refactorings

(Quality Improvement

Approach) ATAM

(Quality Assurance)

Wisdom of the

Crowds

(Quality Assurance)

Defect Density

(Quality A�ribute)

Architecture

(Ac�vity/Ar�fact)

Source Code

(Ar�fact)

Performance

(Quality A�ribute)

Sta�c Analysis

(Ac�vity)

Effort Es�ma�on/

COCOMO

(Ac�vity)

Func�onality

(Quality A�ribute)

2

2

2

2

2

2
2

2

4

2

3

4

5

Real Op�onsSo�ware Economics Cost-Benefit Accoun�ng Marke�ngPor�olio Management Value Based

Iden�fica�on Measurement Priori�za�on Repayment Monitoring

Technical Debt Management

10 2 3
3

2

Fig. 4. Financial approaches classification schema.

A. Ampatzoglou et al. / Information and Software Technology 64 (2015) 52–73 65

elimination (debugging). In this example, design-time quality of
the product and number of defects are mapped to the inputs of
the financial approach.

Secondly, regarding researchers, the results of the study indi-
cate that there are specific issues in technical debt research that
need further attention:

� at this point the use of financial terms is rather ambiguous.
Therefore, we prompt researchers to ‘‘correctly’’ use financial
terms (as close to their original definition as possible), and
clearly describe any possible deviations from them;

� technical debt research is interdisciplinary. Therefore, research-
ers should present both aspects (financial and software engi-
neering) and make the connection between the two visible. In
addition, although, we acknowledge that in most cases it is
inevitable to focus on one aspect, the omission of the other
should be discouraged;

� the application of a financial method on software is not an easy
task. Most software engineers lack in-depth knowledge of
financial approaches, and should spent more time on under-
standing the method and apply it as appropriately as possible,
by clearly explaining the mapping of terms of one discipline
on the terms of the other;

� there are specific financial aspects (i.e., terms) of technical debt
that have not been quantified or taken into account in technical
debt research (compare results of Table 4 to those of Fig. 2).
However, these terms are transferable to technical debt
research, and by using them, a new range of approaches
becomes applicable to technical research;

� the research domain of technical debt management is in need of
a common reference point from a terminology perspective. For
example, in this study we used and extended the classification
of technical debt activities proposed by Li et al. [24]. However,
in other studies, such references appear to lack. To this end,
we present a glossary that can be used as a starting point for
the construction of widely accepted list of terms, and method
classification.

7. Threats to validity

In this section, we discuss possible threats to the validity of our
study. To the best of our knowledge there is no established cat-
egorization of threats to validity for secondary studies, in contrast
to other types of empirical research, e.g. case studies [33], or
experiments [37]. Therefore, we organize this section in four major
categories: (a) threats to identification of primary studies, (b)
threats to data extraction, (c) threats to generalization of results,
and (d) threats to conclusions.

7.1. Threats to identification of primary studies

Threats to the identification of primary studies deal with possi-
ble limitations of the article search process that can lead to missing
related literature. In our search process, any study that does not
mention the word ‘‘technical debt’’ in the title, abstract or key-
words of the article has been excluded from the primary studies
set. So, a number of articles that deal with technical debt might
have been omitted. However, we believe that papers that focus
on technical debt would most probably explicitly state it in their
titles, abstracts or keywords. Other papers that use the term in
the full text are probably just making a brief mention to it, without
leading to loss of valuable data for our research.

7.2. Threats to data extraction

Threats to data extraction deal with possible problems that
might arise in the data collection phase. The most common threat
during this phase is the subjectivity of the researcher who per-
forms the data collection. In order to mitigate this threat we devel-
oped a data collection validation mechanism that involved at least
two researchers, as it is presented in Section 4.5. In addition to
that, especially for extracting the data for variables [A11] and
[A12] (i.e. ways of measuring and managing technical debt), the
data extractors were advised to try to use the classification scheme
proposed by Li et al. [24], so as to avoid the use of synonyms and
ease the data analysis phase.

7.3. Threats to generalization

Threats to generalization refer to threats that occur while gen-
eralizing the results from our sample to the population. In this SLR,
we identified three such threats. First, the results on the evaluation
of the applicability of financial approaches on technical debt only
represent the way that they are used in the primary studies that
we have explored, and do not capture the applicability of the
approaches in general. Second, both the classification schema and
the glossary are only representing the current status of technical
debt research, and therefore are prone to change when additional
primary studies will be published. Third, although the discussions
presented in this study (i.e., the glossary of terms, the classification
schema) are heavily dependent on the raw results of this SLR (i.e., a
plethora of published primary studies), we acknowledge that sub-
jective decisions (e.g., resolution of conflicting term definitions,
merging of terms) have to be validated in practice. It should be
noted that since about one fourth of the primary studies originate
from a particular workshop (i.e., MTD), the results might over-
represent the research of this particular community. This a rather
expected outcome, in the sense that MTD is devoted to studies
on technical debt, and TD is a relatively new area of research.

7.4. Threats to conclusions

Threats to conclusions validity are factors that can lead to incor-
rect conclusions, either by identifying incorrect relationships, or by
missing existing relationships. In this category, we have been able
to identify two possible threats to validity. First, we measure
research intensity with the number of studies and not with the
volume of research or information they provide. However, such
an attempt would introduce subjective criteria into the analysis
of the results. For this reason, we preferred to use an objective
(directly measurable) criterion for characterizing the intensity of
research. Second, we evaluate the completeness of the approach
based on if the study uses sufficiently both aspects of software
engineering research (i.e. financial and software engineering) and
not a method for level of evidence [1] or rigor [17]. The reason
for preferring this type of assessment in favor of evaluating level
of evidence or rigor was the relevance of such an evaluation to
the goals of this study, i.e. to investigate if the financial aspect of
technical debt is neglected against the software engineering one.

8. Conclusions

This paper aims at summarizing the research state of the art on
technical debt management, emphasizing on the financial aspect of
the metaphor. The main research questions that the systematic
literature review answers are: (a) which financial terms are used
in the field of technical debt, (b) which financial approaches have
been used for technical debt measurement, (c) which financial

66 A. Ampatzoglou et al. / Information and Software Technology 64 (2015) 52–73

approaches have been used in technical debt management, and (d)
which software technologies have been applied in financial
approaches of technical debt management.

As an answer to the aforementioned questions, we introduce
a glossary of financial terminology and a classification schema of
the financial approaches used in technical debt management. On
the one hand, the glossary incorporates the most important
financial terms used in technical debt research and provides def-
initions that can be used by the technical debt community. On
the other hand, the classification schema consists of three levels;
the upper one constitutes of the existing categories of technical
debt management [24], the middle one represents the financial
techniques used, and the lower level depicts the used software
engineering technologies, methods or tools. Additionally, the
schema provides details on the popularity of each technique,
term, method or tool, plus an evaluation of the techniques of
level 2, based on their limitations when they are used in techni-
cal debt research.

By incorporating the abovementioned glossary of terms, soft-
ware practitioners are expected to improve their communication
with non-technical managers. Moreover, they can employ the pro-
posed classification schema as a tool that will help them apply the
suggested techniques for every TD management task. Finally, the
results of our research suggest that researchers should attempt
to pay further attention to issues such as the interdisciplinary nat-
ure of technical debt, the appropriate application of financial
approaches to technical debt research and the possibility of apply-
ing new approaches to technical debt research, based on aspects
that have not yet been quantified.

Appendix A. Papers included in the review

[P1] E. Allman, ‘‘Managing technical debt’’, Communication, ACM,
55 (5), pp. 50–55, May 2012.

[P2] E. Alzaghoul and R. Bahsoon, ‘‘CloudMTD: Using real options
to manage technical debt in cloud-based service selection’’,
4th International Workshop on Managing Technical Debt

(MTD ‘13), IEEE Computer Society, pp. 55–62, 18–26 May
2013, San Francisco, USA.

[P3] B. Bartonand and C. Sterling, ‘‘Manage Project Portfolios
More Effectively by Including Software Debt in the
Decision Process’’, Cutter IT Journal, October 2010.

[P4] E. Bavani, ‘‘Distributed Agile Testing and Technical Debt’’,
Software, IEEE Computer Society, 29 (6), pp. 28–33,
November/December 2012.

[P5] J. Bohnet and J. Dollner, ‘‘Monitoring code quality and devel-
opment activity by software maps’’, 2nd Workshop on

Managing Technical Debt (MTD ‘11), ACM, pp. 9–16, Hawaii,
USA, 21–28 May 2011.

[P6] J. Brondum and L. Zhu, ‘‘Visualizing architectural dependen-
cies’’, 3rd International Workshop on Managing Technical Debt

(MTD ‘12), IEEE Computer Society, pp. 7–14, Zurich,
Switzerland, 2–9 December 2012.

[P7] N. Brown, Y.Cai, Y.Guo, R.Kazman, M. Kim, P. Kruchten, E.
Lim, A. McCormack, R. Nord, I.Ozkaya, R.Sangwan, C.
Seaman, K. Sullivan, and N.Zazworka, ‘‘Managing technical
debt in software-reliant systems’’, Proceedings of the FSE/

SDP workshop on Future of software engineering research,
ACM, pp. 47–52, New Mexico, USA, 7–8 November 2010.

[P8] F. Buschmann, ‘‘To Pay or Not to Pay Technical Debt’’,
Software, IEEE Computer Society, 28 (6), pp. 29–31,
November/December 2011.

[P9] S. Chin, E. Huddleston, W. Bodwell, and I. Gat, ‘‘The
Economics of Technical Debt’’, Cutter IT Journal, October
2010.

[P10] Z. Codabux and B. Williams, ‘‘Managing technical debt: An
industrial case study’’, 4th International Workshop on

Managing Technical Debt (MTD ‘13), IEEE Computer Society,
pp. 8–15, 18–26 May 2013, San Francisco, USA.

[P11] P. Conroy, ‘‘Technical Debt: Where Are the Shareholders’
Interests?’’, Software, IEEE Computer Society, 29 (6), p. 88,
November/December 2012.

[P12] B. Curtis, J. Sappidi, and A. Szynkarski, ‘‘Estimating the
Principal of an Application’s Technical Debt’’, Software, IEEE
Computer Society 29 (6), pp. 34–42, November/December
2012.

[P13] B. Curtis, J. Sappidi, and A. Szynkarski, ‘‘Estimating the size
cost and types of Technical Debt’’, 3rd International

Workshop on Managing Technical Debt (MTD ‘12), IEEE
Computer Society, pp. 49–53, Zurich, Switzerland, 2–9
December 2012.

[P14] J. Davis andT. Andersen, ‘‘Surviving the EconomicDownturn’’,
Agile Conference 2009 (AGILE ’09), IEEE Computer Society, pp.
245–250, Chicago, USA, 24–28 August 2009.

[P15] R. J. Eisenberg, ‘‘A threshold based approach to technical
debt’’, ACM SIGSOFT Software Engineering Notes, ACM, 37
(2), pp. 1–6, March 2012.

[P16] N. Ernst, ‘‘On the role of requirements in understanding and
managing technical debt’’, 3rd International Workshop on

Managing Technical Debt (MTD ‘12), IEEE Computer Society,
pp. 61–64, Zurich, Switzerland, 2–9 December 2012.

[P17] D. Falessi, M. Shaw, F. Shull, K. Mullen, and M. Keymind,
‘‘Practical considerations challenges and requirements of
tool-support for managing technical debt’’, 4th International

Workshop on Managing Technical Debt (MTD ‘13), IEEE
Computer Society, pp. 16–19, San Francisco, USA, 18–26
May 2013.

[P18] Gat and J. D.Heintz, ‘‘From assessment to reduction: how
cutter consortium helps rein in millions of dollars in techni-
cal debt’’, 2nd International Workshop on Managing Technical

Debt (MTD ‘11), ACM, pp. 24–26, Hawaii, USA, 21–28 May
2011.

[P19] J.M. Golden, ‘‘Transformation Patterns for Curing the Human
Causes of Technical Debt’’, Cutter IT Journal, October 2010.

[P20] R. Gomes, C. Siebra, G. Tonin, A. Cavalcanti, F.Q. da Silva, A.L.
Santos, and R. Marques, ‘‘An extraction method to collect
data on defects and effort evolution in a constantly modified
system’’, 2nd International Workshop on Managing Technical

Debt, ACM, pp. 27–30, Hawaii, USA, 21–28 May 2011, ACM,
New York, NY, USA, 2011.

[P21] D. R. Greening, ‘‘Release Duration and Enterprise Agility’’,
46th Hawaii International Conference on System Sciences

(HICSS-46), IEEE Computer Society, pp. 4835–4841, Hawaii,
USA, 7–10 January 2013.

[P22] J. de Groot, A. Nugroho, T. Back, and J. Visser, ‘‘What is the
value of your software?’’, 3rd International Workshop on

Managing Technical Debt (MTD ‘12), IEEE Computer Society,
pp. 37–44, Zurich, Switzerland, 2–9 December 2012.

[P23] Y. Guo and C. Seaman, ‘‘A portfolio approach to technical
debt management’’, 2nd International Workshop on

Managing Technical Debt, ACM, pp. 31–34, Hawaii, USA, 21–
28 May 2011.

[P24] Y. Guo, C. Seaman, R. Gomes, A. Cavalcanti, G. Tonin, F. da
Silva, A.L. Santos, and C. Siebra, ‘‘Tracking technical debt -
An exploratory case study’’, 27th International Conference

on Software Maintenance (ICSM ‘11), IEEE Computer Society,
pp. 528–531, Williamsburg, Virginia, USA, 25 September -
1 October 2011.

[P25] J. D. Heintz, ‘‘Modernizing the DeLorean System: Comparing
Actual and Predicted Results of a Technical Debt Reduction
Project’’, Cutter IT Journal, October 2010.

A. Ampatzoglou et al. / Information and Software Technology 64 (2015) 52–73 67

[P26] J. Holvitie and V. Leppanen, ‘‘DebtFlag: Technical debt man-
agement with a development environment integrated tool’’,
4th International Workshop on Managing Technical Debt (MTD

‘13), IEEE Computer Society, pp. 20–27, 18–26May 2013, San
Francisco, USA.

[P27] C. Izurieta and J. M.Bieman, ‘‘A multiple case study of design
pattern decay grime and rot in evolving software systems’’,
Software Quality Journal, SpringerLink, 21 (2), pp. 289–323,
June 2013.

[P28] M. Kaiser and G. Royse, ‘‘Selling the Investment to Pay Down
Technical Debt: The Code Christmas Tree’’, Agile Conference

2011 (AGILE ’11), IEEE Computer Society, pp. 175–180,
Utah, USA, 8–12 August 2011.

[P29] T. Klinger, P.Tarr, P. Wagstromand, and C. Williams, ‘‘An
enterprise perspective on technical debt’’, 2nd International

Workshop on Managing Technical Debt, ACM, pp. 35–38,
Hawaii, USA, 21–28 May 2011.

[P30] S. Koolmanojwongand, and J.A. Lane, ‘‘Enablers and
Inhibitors of Expediting Systems Engineering’’, 11th Annual

Conference on Systems Engineering Research (CSER ‘13),
Procedia Computer Science, Elsevier, 16, pp. 483–491,
Atlanta, USA, 19–22 March 2013.

[P31] V. Krishna and A. Basu, ‘‘Minimizing Technical Debt:
Developer’s viewpoint’’, International Conference on

Software Engineering and Mobile Application Modelling and

Development (ICSEMA ‘12), IEEE Computer Society, pp. 1–5,
Chennai, India, 19–21 December 2012.

[P32] P. Kruchten, R. Nord, and I. Ozkaya, ‘‘Technical Debt: From
Metaphor to Theory and Practice’’, Software, IEEE Computer
Society 29 (6), pp. 18–21, November/December 2012.

[P33] O. Ktata and G. Lévesque, ‘‘Designing and implementing
a measurement program for Scrum teams: what do
agile developers really need and want?’’, 3rd C⁄

Conference on Computer Science and Software Engineering

(C3S2E ‘10), ACM, pp. 101–107, Montreal, Canada, 19–20
May 2010.

[P34] J. Letouzey and M. Ilkiewicz, ‘‘Managing Technical Debt with
the SQALE Method’’, Software, IEEE Computer Society 29 (6),
pp. 44–51, November/December 2012.

[P35] J. L. Letouzey, ‘‘The sqale method for evaluating technical
debt’’, 3rd International Workshop on Managing Technical

Debt (MTD ‘12), IEEE Computer Society, pp. 31–36, Zurich,
Switzerland, 2–9 December 2012.

[P36] E. Lim, N. Taksande, and C. Seaman, ‘‘A Balancing Act: What
Software Practitioners Have to Say about Technical Debt’’,
Software, IEEE Computer Society 29 (6), pp. 22–27,
November/December 2012.

[P37] R. Marinescu, ‘‘Assessing technical debt by identifying
design flaws in software systems’’, Journal of Research and

Development, IBM, 56 (5), pp. 1–13, September/October
2012.

[P38] J. D. McGregor, J. Monteith, and J. Zhang, ‘‘Technical debt
aggregation in ecosystems’’, 3rd International Workshop on

Managing Technical Debt (MTD ‘12), IEEE Computer Society,
pp. 27–30, Zurich, Switzerland, 2–9 December 2012.

[P39] J. Monteith and J. McGregor, ‘‘Exploring software supply
chains from a technical debt perspective’’, 4th International

Workshop on Managing Technical Debt (MTD ‘13), IEEE
Computer Society, pp. 32–38, 18–26 May 2013, San
Francisco, USA.

[P40] J. Morgenthaler, M.Gridnev, R. Sauciuc, and S. Bhansali,
‘‘Searching for build debt: Experiences managing techni-
cal debt at Google’’, 3rd International Workshop on

Managing Technical Debt (MTD ‘12), IEEE Computer
Society, pp. 1–6, Zurich, Switzerland, 2–9 December
2012.

[P41] R. Nord, I. Ozkaya, P. Kruchten, and M. Gonzalez-Rojas, ‘‘In
Search of a Metric for Managing Architectural Technical
Debt’’, 2012 Joint Working IEEE/IFIP Conference on Software

Architecture (WICSA) and European Conference on Software

Architecture (ECSA), IEEE Computer Society, pp. 91–100,
Helsinki, Finland, 20–24 August 2012.

[P42] Nugroho, J. Visser, and T. Kuipers, ‘‘An empirical model of
technical debt and interest’’, 2nd International Workshop on

Managing Technical Debt (MTD’ 11), ACM, pp. 1–8, Hawaii,
USA, 21–28 May 2011.

[P43] K. Power, ‘‘Understanding the impact of technical debt on
the capacity and velocity of teams and organizations:
Viewing team and organization capacity as a portfolio of real
options’’, 4th International Workshop on Managing Technical

Debt (MTD ‘13), IEEE Computer Society, pp. 28–31, San
Francisco, USA, 18–26 May 2013.

[P44] K. Pugh, ‘‘The Risks of Acceptance Test Debt,’’ Cutter IT

Journal, October 2010.
[P45] N. Ramasubbu and C. Kemerer, ‘‘Towards a model for

optimizing technical debt in software products’’, 4th

International Workshop on Managing Technical Debt (MTD

‘13), IEEE Computer Society, pp. 51–54, San Francisco, USA,
18–26 May 2013.

[P46] M. Reddy, ‘‘Chapter 4 - Design’’, Morgan Kaufmann, Boston,
2011, pp. 105–150.

[P47] D. Rooney, ‘‘Technical Debt: Challenging the Metaphor’’,
Cutter IT Journal, October 2010.

[P48] Y. Rubin, S. Kallner, N. Guy, and G. Shachor, ‘‘Restraining
Technical Debt when Developing Large-Scale Ajax
Applications’’, 1st International Conference on Building and

Exploring Web Based Environments (WEB’ 13), IARIA XPS
Press, pp. 13–18, Seville, Spain, 27 January–1 February 2013.

[P49] P. S. M. dos Santos, A.Varella, C. R.Dantas and D. B. Borges,
‘‘Visualizing and Managing Technical Debt in Agile
Development: An Experience Report’’, Lecture Notes in

Business Information Processing, Springer, 149, pp. 121–134,
2013

[P50] K. Schmid, ‘‘A formal approach to technical debt decision
making’’, 9th International Conference on Quality of Software

Architectures (QoSA’ 13), ACM, pp. 153–162, Vancouver,
Canada, 17–21 June 2013.

[P51] K. Schmid, ‘‘On the limits of the technical debt metaphor
some guidance on going beyond’’, 4th International

Workshop on Managing Technical Debt (MTD ‘13), IEEE
Computer Society, pp. 63–66, San Francisco, USA, 18–26
May 2013.

[P52] C. Seaman and Y. Guo, ‘‘Measuring and monitoring technical
debt’’, Advances in Computers, Elsevier, 82, pp. 25–46, 2011.

[P53] C. Seaman, Y.Guo, N. Zazworka, F. Shull, C. Izurieta, Y. Cai and
A. Vetró, ‘‘Using technical debt data in decision making:
Potential decision approaches’’, 3rd International Workshop

on Managing Technical Debt (MTD’ 12), IEEE Computer
Society, pp. 45–48, Zurich, Switzerland, 5 June 2012.

[P54] C. Shafer, ‘‘Infrastructure Debt: Revisiting the Foundation’’,
Cutter IT Journal, 2010.

[P55] S. Shah, M. Torchiano, A. Vetró, and M. Morisio, ‘‘Exploratory
testing as a source of testing technical debt’’, IT Professional,
IEEE Computer Society, 16 (3), pp. 44–51, March 2013.

[P56] T. Sharma, ‘‘Quantifying Quality of Software Design to
Measure the Impact of Refactoring’’, 36th Annual Computer

Software and Applications Conference Workshops

(COMPSACW’ 12), IEEE Computer Society, pp. 266–271,
Izmir, Turkey, 16–20 July 2012.

[P57] C. S. Siebra, G. S. Tonin, F. Q. Silva, R. G. Oliveira, A. L. Junior,
R. C. Miranda, and A. L. Santos, ‘‘Managing technical debt in
practice: an industrial report’’, 6th International Symposium

68 A. Ampatzoglou et al. / Information and Software Technology 64 (2015) 52–73

on Empirical Software Engineering and Measurement (ESEM’

12), ACM, pp. 247–250, Lund, Sweden, 19–20 September
2012.

[P58] W. Snipes, B. Robinson, Y. Guo and C. Seaman, ‘‘Defining the
decision factors for managing defects: A technical debt per-
spective’’, 3rd International Workshop on Managing Technical

Debt (MTD’ 12), IEEE Computer Society, pp. 56–60, Zurich,
Switzerland, 5 June 2012.

[P59] R. Spinola, N.Zazworka, A. Vetró, C. Seaman, and F. Shull,
‘‘Investigating technical debt folklore: Shedding some light
on technical debt opinion’’, 4th International Workshop on

Managing Technical Debt (MTD ‘13), IEEE Computer Society,
pp. 1–7, San Francisco, USA, 18–26 May 2013.

[P60] M. G. Stochel, M. R. Wawrowski, and M. Rabiej, ‘‘Value-Based
Technical Debt Model and Its Application’’, 7th International

Conference on Software Engineering Advances (ICSEA’ 12),
XPert Publishing Service, pp. 205–212, Lisbon, Portugal,
18–23 November 2012.

[P61] T. Theodoropoulos, M. Hofbergand D. Kern, ‘‘Technical debt
from the stakeholder perspective’’, 2nd International

Workshop on Managing Technical Debt (MTD’ 11), ACM, pp.
43–46, Hawaii, USA, 21–28 May 2011.

[P62] Vetró, ‘‘Using automatic static analysis to identify technical
debt’’, 34th International Conference on Software Engineering

(ICSE’ 14), IEEE Computer Society, pp. 1613–1615, Zurich,
Switzerland, 2–9 June 2012.

[P63] K. Wiklund, S. Eldh, D. Sundmark and K. Lundqvist,
‘‘Technical Debt in Test Automation’’, 5th International

Conference on Software Testing, Verification and Validation

(ICST’ 12), IEEE Computer Society, pp. 887–892, Montreal,
Canada, 17–21 April 2012.

[P64] R. J. Wirfs-Brock, ‘‘Skills for the agile designer: seeing shap-
ing and discussing design ideas’’, 25th International

Conference Companion on Object Oriented Programming

Systems Languages and Applications, ACM, pp. 323–326,
Nevada, USA, 17–21 October 2010.

[P65] J. Xuan, Y. Hu and H. Jiang, ‘‘Debt-Prone Bugs: Technical Debt
in Software Maintenance’’, International Journal of

Advancements in Computing Technology, 4 (19), pp. 453–
461, 2012.

[P66] N. Zazworka, C. Seaman, and F. Shull, ‘‘Prioritizing design
debt investment opportunities’’, 2nd International Workshop

on Managing Technical Debt (MTD’ 11), ACM, pp. 39–42,
Hawaii, USA, 21–28 May 2011.

[P67] N. Zazworka, M. Shaw, F. Shull, and C. Seaman,
‘‘Investigating the impact of design debt on software qual-
ity’’, 2nd International Workshop on Managing Technical Debt

(MTD’ 11), ACM, pp. 17–23, Hawaii, USA, 21–28
May 2011.

[P68] N. Zazworka, R. O. Spanola, A. Vetró, F. Shull and C. Seaman,
‘‘A case study on effectively identifying technical debt’’, 17th
International Conference on Evaluation and Assessment in

Software Engineering, ACM, pp. 42–47, Porto Galinhas,
Brazil, 14–16 April 2013.

[P69] N. Zazworka, A. Vetró, C. Izurieta, S. Wong, Y.Cai, C. Seaman
and F. Shull, ‘‘Comparing four approaches for technical debt
identification’’, Software Quality Journal, Springer, 22 (3), pp.
403 – 426, September 2014.

Appendix B. Collected data for RQ2.1

Study Brief approach description Software eng.
technologies

Financial
terms

Financial
approach

TDM activity

[P2] The study focuses on the TD created by web
services substitution, based on Real Options.
Using a two-step binomial tree approach, it
quantifies TD and identifies the time period
during which TD is cleared out

– Amount of debt Real Options Measurement
Present Value
Future Value

[P9] The article calculates TD as a function of simple
and compound interest, and the expected years
of software’s active development and
maintenance. Simple interest can be determined
by ongoing product maintenance costs, while
compound interest rate may be measured by the
increase in technical debt over time

Static Analysis Simple interest Software
Economics

Measurement
Source Code Compound

Interest
Testing Amount of debt
Design Smells

[P12] This article proposes the estimation of Technical
Debt principal as a function of the number of
should-fix violations in an application, the hours
needed to fix each violation and the labor cost

AIP Tool Principal Software
Economics

Measurement
Static Analysis
Architecture
Source Code

[P13] This paper calculates the principal of TD with a
formula that takes into consideration three
variables—the number of must-fix problems in
an application, the time required to fix each
problem, and the cost for fixing a problem

AIP Tool Principal Software
Economics

Measurement
Static Analysis
Architecture
Source Code

[P22] TD equals Repair Effort that is the effort needed
to improve the quality of a system to the ideal

SIG/TÜV Model Amount of debt Software
Economics

Measurement
Interest

(continued on next page)

A. Ampatzoglou et al. / Information and Software Technology 64 (2015) 52–73 69

Appendix B. (continued)

Study Brief approach description Software eng.
technologies

Financial
terms

Financial
approach

TDM activity

level. Additionally, it calculates Repair Effort as a
function of 3 variables: an estimated percentage
of LOC that needs to be changed in order to
reach an ideal level of quality, the effort
required to rebuild the system from scratch and
a ratio discount for code volume that does not
need to be rebuilt

[P23] The paper suggests the quantification of
Technical Debt principal by the effort required
to resolve Technical Debt Items (i.e. source code
that needs to be modified, test cases that need to
be exercised, documentation that needs to be
updated, etc.). TD interest is related to interest
standard deviation (based on Portfolio
Management Theory), that is the probability of
this interest to incur. All three parameters are
estimated using historical data

Source Code Principal Portfolio
Management

Measurement
Testing Interest
Documentation

[P24] The paper presents a case study where Technical
Debt principal, interest amount and interest
probability are estimated based on historical
effort data collected from the project
documentation

COCOMO Principal Software
Economics

Measurement
Static Analysis Interest

[P41] The paper assesses the amount of TD and
interest through a model that computes the
rework cost associated with each new
architectural element implemented in every
new release

Architecture Amount of debt Software
Economics

Measurement
Interest

[P42] This paper defines the amount of TD as the
Rework Effort and calculates it as a function of
Rework Function, Rebuild Effort and Refactoring
Adjustment. TD interest is defined as the
difference of Maintenance Effort between a
particular quality and the ideal quality level

SIG/TÜV Model Amount of debt Software
Economics

Measurement
Static Analysis Interest
Source Code Net Present

Value

[P49] The paper reports a case where technical debt is
quantified in terms of effort needed to fix it, by
the use of SonarQube tool

SonarQube Tool Amount of debt Software
Economics

Measurement

[P50] The study provides formalization for the
quantification of TD. TD is measured in terms of
evolution costs and is defined as the difference
between additional development cost
introduced in an evolution and the respective
cost required in an optimal implementation

Architecture Amount of debt Software
Economics

Measurement

[P57] In a case study, the paper estimates debt,
interest and debt payment as the difference in
effort between two or more alternative
decisions

– Amount of debt Software
Economics

Measurement
Interest
Payment

[P60] The study proposes a three-layered model
aligned with a typical software product
development lifecycle (based on
P-Diagram approach on risk assessment)

SonarQube Tool Amount of debt Value-based Measurement
Wisdom of
Crowds

ROI

ATAM
Architecture
Source Code

70 A. Ampatzoglou et al. / Information and Software Technology 64 (2015) 52–73

Appendix C. Collected Data for RQ2.2

Study Brief approach description Software eng.
technologies

Financial
approach

TDM activity

[P2] The study uses a Binomial Option – Based Approach to manage Technical
Debt. Binomial trees are built in order to indicate if and when an alternative
can clear out Technical Debt and add value

– Real Option Repayment

[P8] The article proposes the consideration of Technical Debt’s financial benefits
and business advantages as well as of the costs of servicing or repaying the
debt in order to manage it efficiently

– Cost/Benefit Repayment

[P11] The article suggests that TD should be handled as financial obligation and
should be recorded on the firm’s accounting books

– Accounting Monitoring

[P23] This study proposes TDM based on Portfolio Management and treats TD items
as assets. For each item, it is needed to determine if it is better to keep it or to
pay it off. A risk level is set and the model generates the optimal portfolio (A)
of the TD items. The items not chosen for the new portfolio (A’) are those that
need to be paid off

Source Code Portfolio
Management

Repayment
Testing
Documentation

[P24] This paper applies cost/benefit analysis on a case study in order to
demonstrate how adequate Technical Debt management can save a firm from
high cost decisions

COCOMO Cost/Benefit Monitoring
Static Analysis
Documentation

[P32] The article proposes Net Present Value theory as the most promising financial
method to apply on Technical Debt management and decision making

– Value-based Repayment

[P41] The paper suggests that Technical Debt management should take into
consideration both value and cost of the project and also include elements of
Total Cost of Ownership Management in order to enable efficient decision
making on repaying Technical Debt

Architecture Value-based Repayment

[P42] Using a case study, the paper defines the repair effort to improve the quality
of a system as an investment. Thus it proposes the assessment of the
worthiness of such an investment by looing at its ROI or Net Present Value

SIG/TÜV Model ROI Repayment
Static Analysis Net Present

ValueSource Code

[P43] This paper proposes the consideration of the development’s team capacity as
an investment portfolio that can be managed as a Real Options portfolio.
Technical Debt reduction should be a significant investment in the team’s
portfolio

Defect-Density Real Options Monitoring
Functionality
Performance

[P45] The paper provides a decision framework to assess the overall benefit (or
loss) of accumulating technical debt, based on platform-based product
development and customer adoption curve

Functionality Marketing Monitoring

[P50] The study proposes a decision making approach on paying off technical debt
items, according to the refactoring cost, the relative technical debt per
refactoring and per evolution step and, finally, the probability that the
evolution step will be performed

Architecture Cost/Benefit Repayment

[P53] The paper suggests the management of Technical Debt by the use of Cost –
Benefit analysis, Analytic Hierarchy Process, Portfolio approach and Options
theory

Refactoring Cost/Benefit Prioritization
Design Smells Portfolio

Management
Prioritization

Real Options Repayment

[P58] The paper identifies different kinds of costs associated with handling defects
and investigates the criteria according to which a defect is decided to be
fixed. Based on these findings, it proposes a cost – benefit analysis for
decision making on fixing the defects

Defect-Density Cost/Benefit Repayment
Testing

[P60] By using Architecture Tradeoff Analysis Method (ATAM) and portfolio
management, the paper proposes a model of Decision Making at the
architecture level. Profitability aspect needs to be taken into account when
managing; organization aims at optimal ROI

SonarQube
Tool

Portfolio
Management

Monitoring

Wisdom of
Crowds
ATAM
Architecture
Source Code

A. Ampatzoglou et al. / Information and Software Technology 64 (2015) 52–73 71

Appendix C. (continued)

Study Brief approach description Software eng.
technologies

Financial
approach

TDM activity

[P66] This paper implements a cost – benefit approach in order to identify technical
debt items that should be refactored first, by ranking the value and interest of
design debt caused by god classes

Refactoring Cost/
Benefit

Prioritization
Design Smells
Defect-Density

Appendix D. Primary Studies Quality Assessment

Study Question score Total Study Question score Total

1 2 3 4 5 1 2 3 4 5

[P1] 1.00 1.00 0.00 0.00 0.00 2.0 [P36] 1.00 1.00 0.80 0.00 0.00 2.8
[P2] 1.00 1.00 0.20 1.00 0.50 3.7 [P37] 1.00 1.00 0.80 0.00 0.50 3.3
[P3] 1.00 0.50 0.00 0.00 0.50 2.0 [P38] 1.00 1.00 0.00 0.00 0.00 2.0
[P4] 1.00 1.00 0.40 0.00 0.50 2.9 [P39] 1.00 1.00 0.60 0.00 0.50 3.1
[P5] 1.00 1.00 0.80 0.00 0.50 3.3 [P40] 1.00 1.00 1.00 0.00 0.50 3.5
[P6] 1.00 1.00 0.60 0.00 0.50 3.1 [P41] 1.00 1.00 0.20 1.00 1.00 4.2
[P7] 1.00 1.00 0.40 0.00 0.50 2.9 [P42] 1.00 1.00 0.80 1.00 1.00 4.8
[P8] 1.00 1.00 0.00 1.00 0.50 3.5 [P43] 1.00 1.00 0.20 1.00 1.00 4.2
[P9] 1.00 1.00 0.00 1.00 1.00 4.0 [P44] 1.00 1.00 0.00 0.00 0.50 2.5
[P10] 1.00 1.00 0.80 0.00 0.50 3.3 [P45] 1.00 1.00 0.00 1.00 1.00 4.0
[P11] 1.00 1.00 0.00 1.00 0.50 3.5 [P46] 1.00 1.00 0.60 0.00 0.50 3.1
[P12] 1.00 1.00 0.80 1.00 1.00 4.8 [P47] 1.00 1.00 0.00 0.00 0.00 2.0
[P13] 1.00 1.00 0.80 1.00 1.00 4.8 [P48] 1.00 1.00 0.60 0.00 0.50 3.1
[P14] 1.00 0.50 1.00 0.00 0.50 3 [P49] 1.00 1.00 0.80 1.00 1.00 4.8
[P15] 1.00 1.00 0.20 0.00 0.50 2.7 [P50] 1.00 1.00 0.20 1.00 1.00 4.2
[P16] 1.00 1.00 0.00 0.00 0.50 2.5 [P51] 1.00 1.00 0.00 0.00 0.00 2.0
[P17] 1.00 1.00 0.40 0.00 0.00 2.4 [P52] 1.00 1.00 0.20 0.00 0.50 2.7
[P18] 1.00 1.00 0.80 0.00 0.50 3.3 [P53] 1.00 1.00 0.00 1.00 1.00 4.0
[P19] 1.00 1.00 1.00 0.00 0.50 3.5 [P54] 1.00 1.00 0.00 0.00 0.50 2.5
[P20] 1.00 1.00 0.80 0.00 0.50 3.3 [P55] 1.00 1.00 0.00 0.00 0.50 2.5
[P21] 1.00 1.00 0.00 0.00 0.50 2.5 [P56] 1.00 0.50 0.60 0.00 0.50 2.6
[P22] 1.00 1.00 0.80 1.00 1.00 4.8 [P57] 1.00 1.00 1.00 1.00 0.50 4.5
[P23] 1.00 1.00 0.00 1.00 0.50 3.5 [P58] 1.00 1.00 0.80 1.00 1.00 4.8
[P24] 1.00 1.00 0.80 1.00 1.00 4.8 [P59] 1.00 1.00 0.60 0.00 0.00 2.6
[P25] 1.00 1.00 0.80 0.00 0.50 3.3 [P60] 1.00 1.00 0.20 1.00 1.00 4.2
[P26] 1.00 1.00 0.00 0.00 0.50 2.5 [P61] 1.00 1.00 0.00 0.00 0.50 2.5
[P27] 1.00 0.50 0.80 0.00 0.50 2.8 [P62] 1.00 1.00 0.60 0.00 0.50 3.1
[P28] 1.00 1.00 0.80 0.00 0.50 3.3 [P63] 1.00 1.00 0.80 0.00 0.50 3.3
[P29] 1.00 1.00 0.40 0.00 0.50 2.9 [P64] 1.00 0.50 0.40 0.00 0.50 2.4
[P30] 1.00 0.50 0.00 0.00 0.50 2.0 [P65] 1.00 1.00 0.60 0.00 0.50 3.1
[P31] 1.00 1.00 1.00 0.00 0.50 3.5 [P66] 1.00 1.00 0.20 0.00 0.50 2.7
[P32] 1.00 1.00 0.40 1.00 0.50 3.9 [P67] 1.00 1.00 0.80 0.00 0.00 2.8
[P33] 1.00 1.00 0.00 0.00 0.50 2.5 [P68] 1.00 1.00 0.80 1.00 1.00 4.8
[P34] 1.00 1.00 0.20 0.00 0.50 2.7 [P69] 1.00 1.00 0.60 0.00 0.50 3.1
[P35] 1.00 1.00 0.00 0.00 0.50 2.5

References

[1] V. Alves, N. Niu, C. Alves, G. Valenca, Requirements engineering for software
product lines: a systematic literature review, Inf. Softw. Technol., Elsev. 52 (8)
(2010) 806–820.

[2] V. Basili, G. Caldiera, D. Rombach, The Goal Question Metric Approach,
Encyclopedia of Software Engineering, John Wiley & Sons, 1994.

[3] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, second ed.,
Addison-Wesley Professional, 2003.

[4] M. Benaroch, Managing information technology investment risk: a real options
perspective, J. Manage. Inf. Syst., ACM 19 (2) (October 2002) 43–84.

[5] B.W. Boehm, K.J. Sullivan, Software economics: a roadmap, in: 22nd
International Conference on the Software Engineering (ICSE ‘00), ACM, pp.
319–343, Limerick, Ireland, 4–11 June 2000.

[6] A. Borison, Real options analysis: where are the emperor’s clothes?, J Appl.
Corp. Finan., Wiley & Sons 17 (2) (2005) 17–31.

[7] N. Chapin, J.E. Hale, K. Khan, J.F. Ramil, W.-G. Tan, Types of software evolution
and software maintenance, J. Softw. Maint. Evol.: Res. Pract., Wiley & Sons 13
(1) (2001) 3–30.

[8] W. Cunningham, The WyCash portfolio management system, in: 7th
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA ’92), Vancouver, Canada, 5–10 October
1992, pp. 29–30.

[9] D. Duffie, K.J. Singleton, Credit Risk Pricing, Measurement, and Management,
Princeton University Press, 2003.

[10] T. Dyba, T. Dingsoyr, Empirical studies of agile software development: a
systematic review, Inf. Softw. Technol., Elsev. 50 (9) (2008) 833–859.

[11] R. Eisenberg, Management of technical debt: a lockheed martin experience
report, in: 5th International Workshop on Managing Technical Debt (MTD’ 13),
Baltimore, USA, 9 October 2013.

[12] H. Erdogmus, Comparative evaluation of software development strategies
based on Net Present Value, in: 1st Workshop on Economics Driven Software
Engineering Research (EDSER’ 99), Los Angeles, USA, 17 May 1999.

72 A. Ampatzoglou et al. / Information and Software Technology 64 (2015) 52–73

http://refhub.elsevier.com/S0950-5849(15)00076-2/h0005
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0005
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0005
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0010
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0010
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0010
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0015
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0015
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0015
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0020
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0020
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0030
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0030
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0035
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0035
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0035
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0045
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0045
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0045
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0050
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0050

[13] P.W. Farris, N.T. Bendle, P.E. Pfeifer, D.J. Reibstein, Marketing Metrics: The
Definitive Guide to Measuring Marketing Performance, second ed., Wharton
School Publishing, 2010.

[14] M. Friedman, Factors affecting the level of interest rate, in: Conference
on Savings and Residential Financing, USLL, Chicago, USA, 1968, pp. 11–
27.

[15] P. Grubb, A. Takang, Software Maintenance: Concepts and Practice, second ed.,
World Scientific Publishing Company, 2003.

[16] T. Hull, Options, Futures and Other Derivatives, seventh ed., Pearson Prentice
Hall, 2009.

[17] M. Ivarsson, T. Gorschek, A method for evaluating rigor and industrial
relevance of technology evaluations, Emp. Softw. Eng., Spring. 16 (3) (June
2011) 365–395.

[18] ISO/IEC/IEEE 14764-2006 Standard for Software Engineering – Software Life
Cycle Processes – Maintenance, IEEE Computer Society, 18 September 2006.

[19] S. Kellison, The Theory of Interest, third ed., McGraw-Hill, 2008.
[20] B. Kitchenham, O.P. Brereton, D. Budgen, M. Turner, J. Bailey, S. Linkman,

Systematic literature reviews in software engineering – a systematic literature
review, Inf. Softw. Technol., Elsev. 51 (1) (2009) 7–15.

[21] B.A. Kitchenham, D. Budgen, O.P. Brereton, Using mapping studies as the basis
for further research: a participant–observer case study, Inf. Softw. Technol.,
Elsev. 53 (6) (2011) 638–651.

[22] P. Kruchten, The Rational Unified Process: An Introduction, second ed.,
Addison-Wesley Longman Publishing, 2000.

[23] P. Kruchten, R.L. Nord, I. Ozkaya, Technical debt: from metaphor to theory and
practice, Software, IEEE Computer Society 29 (6) (2012) 18–21.

[24] Z. Li, P. Liang, P. Avgeriou, Architectural Debt Management in Value-oriented
Architecting, Economics-Driven Software Architecture, Elsevier, 2014, pp.
183–204.

[25] Z. Li, P. Avgeriou, P. Liang, A systematic mapping study on technical debt and
its management, J. Syst. Softw., Elsev. 101 (2015) 193–220.

[26] R.C Martin, Agile Software Development: Principles, Patterns, and Practices,
Prentice Hall PTR, 2003.

[27] A. Mavridis, A. Ampatzoglou, I. Stamelos, P. Sfetsos, I. Deligiannis, Selecting
refactorings: an option based approach, in: 8th International Conference on
Quality of Information and Communications Technology (QUATIC’ 12), IEEE
Computer Society, Lisbon, Portugal, 3–6 September 2012, pp. 272–277.

[28] F. Mishkin, S. Eakins, Financial Markets and Institutions, seventh ed., Pearson
Prentice Hall, 2012.

[29] R. Nickerson, J. Muntermann, U. Varshney, H. Isaac, Taxonomy development in
information systems: developing a taxonomy of mobile applications, in: 17th
European Conference in Information Systems (ECIS ‘09), Italy, 8–10 June 2009,
pp. 1138–1149.

[30] R.T. Ogawa, B. Malen, Towards rigor in reviews of multivocal literatures:
applying the exploratory case study method, Rev. Educ. Res., SAGE Publ. 61 (3)
(1991) 265–286 (Fall 1991).

[31] D.L Parnas, Software Aging, 6th International Conference on Software
Engineering (ICSE‘94), 16–21 May 1994, IEEE Computer Society, Sorrento,
Italy, 1994, pp. 279–287.

[32] F. Reilly, K. Brown, Investment Analysis and Portfolio Management, 10th ed.,
South-Western Cengage Learning, 2012.

[33] P. Runeson, M. Host, A. Rainer, B. Regnell, Case Study Research in Software
Engineering: Guidelines and Examples, John Wiley & Sons, 2012.

[34] I. Sommerville, Software Engineering, ninth ed., Addison-Wesley, 2010.
[35] E. Tom, A. Aurum, R. Vidgen, An exploration of technical debt, J. Syst. Softw.,

Elsevier 86 (6) (2013) 1498–1516.
[36] H. van Vliet, Software Engineering: Principles and Practice, John Wiley & Sons,

2008.
[37] C. Wohlin, P. Runeson, M. Host, M.C Ohlsson, B. Regnell, A. Wesslen,

Experimentation in Software Engineering: An Introduction, Kluwer, 2000.
[38] N. Zazworka, M. Shaw, F. Shull, C. Seaman, Investigating the impact of design

debt on software quality, in: 2ndWorkshop onManaging Technical Debt (MTD
‘11), ACM, Hawaii, USA, 21–28 May 2011, pp. 17–23.

[39] H. Zhang, M.A. Babar, On searching relevant studies in software engineering,
in: 14th International Conference on Evaluation and Assessment in Software
Engineering (EASE’ 10), 12–13 April 2010, Keele, UK, pp. 1–10.

A. Ampatzoglou et al. / Information and Software Technology 64 (2015) 52–73 73

http://refhub.elsevier.com/S0950-5849(15)00076-2/h0065
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0065
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0065
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0065
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0075
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0075
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0075
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0080
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0080
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0080
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0085
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0085
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0085
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0095
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0095
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0100
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0100
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0100
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0105
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0105
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0105
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0110
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0110
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0110
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0115
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0115
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0120
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0120
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0120
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0120
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0125
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0125
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0130
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0130
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0130
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0140
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0140
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0140
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0150
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0150
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0150
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0155
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0155
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0155
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0155
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0160
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0160
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0160
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0165
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0165
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0165
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0170
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0170
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0175
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0175
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0180
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0180
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0180
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0185
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0185
http://refhub.elsevier.com/S0950-5849(15)00076-2/h0185

	The financial aspect of managing technical debt: A systematic literature review
	1 Introduction
	2 Related work
	3 Background information
	3.1 Basic financial debt terms
	3.2 Broader financial terms (related to investments and interest theory)
	3.3 Managing debt strategies

	4 Review methodology
	4.1 Research objectives and research questions
	4.2 Search process
	4.3 Article filtering phases
	4.4 Quality assessment
	4.5 Data collection
	4.6 Data analysis

	5 Results
	5.1 Financial terms related to technical debt management (RQ1)
	5.2 Financial approaches for managing technical debt (RQ2)
	5.2.1 Financial approaches for measuring technical debt
	5.2.2 Financial approaches for identifying, prioritizing, repaying and monitoring technical debt
	5.2.2.1 Cost/benefit analysis
	5.2.2.2 Real options
	5.2.2.3 Portfolio management

	5.3 Software engineering technologies used by financial approaches in TDM (RQ3)

	6 Discussion
	6.1 Technical debt financial glossary
	6.2 Classification scheme for financial approaches used for managing technical debt
	6.3 Implications for researchers and practitioners

	7 Threats to validity
	7.1 Threats to identification of primary studies
	7.2 Threats to data extraction
	7.3 Threats to generalization
	7.4 Threats to conclusions

	8 Conclusions
	Appendix A Papers included in the review
	Appendix B Collected data for RQ2.1
	Appendix C Collected Data for RQ2.2
	Appendix D Primary Studies Quality Assessment
	References

