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The Finite Element Method with Penalty

By Ivo Babuska*

Abstract. An application of the penalty method to the finite element method is analyzed.

For a model Poisson equation with homogeneous Dirichlet boundary conditions, a varia-

tional principle with penalty is discussed. This principle leads to the solution of the Poisson

equation by using functions that do not satisfy the boundary condition. The rate of con-

vergence is discussed.

1. Introduction. The finite element method in all of its versions has become the

subject of current practical and theoretical study. A particular problem associated

with the finite element method has recently attracted considerable interest. Specifically,

this problem is the application of variational principles to spaces of functions in which

the boundary conditions need not be satisfied. See for example references [1] to [7].

In references [5] and [6], this author has studied the penalty method approach to

this problem. This approach consists in the use of a "penalty" parameter which

depends on the smoothness of the original problem. The selection of the penalty

parameter is, in some sense, arbitrary. Moreover, the solution of the original problem

may be quite sensitive to this parameter.

This paper studies the model Poisson problem —Au = f with homogeneous

boundary conditions of Dirichlet type. A variational principle for this model problem

on spaces of functions not satisfying the boundary conditions is studied and, based

on this principle, a variant of the finite element method is given. This new scheme

has a rate of convergence that is arbitrarily close to the optimal rate found by using

the usual finite element method with elements satisfying the boundary conditions.

The analysis also shows that the finite element method with penalty is not overly

sensitive to the choice of the penalty parameter.

2. Some Principal Notions. Let Rn be an «-dimensional Euclidian space. For

x = (jc,, • • • , x„) E Rn, we define ||jc||2 = J^"., x2 and dx = dxx ■ ■ ■ dxn.

Let O be a bounded domain in Rn with boundary Y E C".

Let H™iRn), Hmiü) and i/m(r), m^0,m not necessarily an integer, be the fractional

Sobolev spaces of order m on Rn, Ü and r, respectively. We will designate the respec-

tive norms of these Sobolev spaces by ||-||//.»(B„), INI//»!!)) an(i IHU»<n- Recall

that HmiQ) and //""(T) are sometimes also denoted by Wm2(Q) and Wm2iT), respectively,

and that H°iü) = L2(0) and 7/°(r) = L2(r). Let the spaces H"iü) be the closure in

the /f(i2) norm of the functions in Hm(Çl) which have compact support in Q.
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Throughout the entire paper, C will denote a generic constant with different

values in different places. Similarly, e will denote an arbitrary positive real number

with different values in different places.

Now let us introduce the notion of a (t, /c)-regular system of functions. Let 0 <

h ^ 1 and 0 í í: á /. A linear system of functions g E H\RZ) will be called (r, k)-

regular and will be denoted by y'hk(Rm) if and only if

(i) for every h and every w E H'(Rm), there exists a function g E y'h'k(Rn) such

that, for any s ^ 1,0 ^ s ^ k,

(2.1) Ik- g|U.(R„, g ch" llHUn».,,

where C is independent of s, h and w and where p = min (I — s, t — s); and

(ii) if w E H'iRn) has a compact support S, then g in the inequality (2.1) has a

compact support S£ such that

5Î C {xE Rn I ¿(x, S) g XA},

where d(x, S) is the distance from x to S and X is a positive real number independent

of S, s, h and w.

By 7Á,Í:(Í2), we denote the set of all g E yl'k(Rn) being restricted to Í2.

In [9], a special (?, /c)-regular system was studied. This system is defined as the

totality of all functions of the form

(2.2) ¿ £ cip, j)coZx/h - p),

where/? = (/?,, • • • ,pn),Pi is an integer and the w,- G Hk(Rn) are fixed functions with

compact support which satisfy certain conditions as explained in [9].

As a model problem, in this paper we will be interested in solving Poisson's

equation

(2.3) -A« = /   on    fi,

with the homogeneous Dirichlet boundary condition

(2.4) « = 0   on    I\

We will seek a weak solution to the problem, i.e. a function u E Hl($) such that,

for every v E Hl(Ü),

(2.5) Biu,v)= if,v),

where

and

(2.7) if,v)=   f fvdx.

It is well known that for / E L2iQ) there exists exactly one weak solution of the

problem. Furthermore, it is known (see [8, p. 203]) that / E Hmiû) implies u E Hm+2(ff)

and ||w||jym+»(n) ̂  C ||/||h»(n,, where C does not depend on/.
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Let us remark that the solution u of (2.5) coincides with the function which

minimizes the quadratic functional

(2.8) Fiv) = Biv,v) - 2if,v)

over Hl(ü).

3. The Finite Element Method With Penalty. Error estimates in H\ü). In

expression (2.8), it is crucial that we minimize F(p) not over H\ü), but only over

H0i$), i.e. over the space of functions in //'(Q) which vanish on r. The penalty

method avoids this restriction. This is important from the computational point of

view since the construction of functions vanishing on r is often technically com-

plicated.

Let u0 be the weak solution of our Poisson problem (2.3) and (2.4). Let us construct

an approximate solution vh E 7Í'*(fi), k ^ I, with y'hkitt) the closure of y'h,h in

H\ü) such that the function vh minimizes the quadratic functional

(3.1) F.(v) = Biv,v) + h-<p,v) - 2if,v),        cr > 0,

over v E y['k(^),** where we denote

(v, v) = (b   v2 ds

and B(v, v) and (/, v) are defined by expressions (2.6) and (2.7). The function vh is

uniquely determined and, clearly, depends on the choice of the parameter a (and,

of course, on y'h,kiQ)). To emphasize this fact, we will write v,,h instead of vh. In [5]

and [6], the author proved the following theorem.***

Theorem 3.1. Let f E Hl(Q), I ^ 0. Let u0 be the solution of the problem (2.3),

(2.4) and let v„ xh E yi'ki^), ¿è I, be the approximate solution introduced above. Then

(3.2) ||«o  - D,.»IU.<0>   ̂    C(€)/re   ||/|Ui(!!),

where e > 0 is arbitrary, C(e) is independent off and h, and

(3.3) p = min[/ + 1, / + f - §<r, fo-, t - 1, t - § - §<r].

Let us discuss the theorem. It can be shown that the first of the four terms in (3.3)

cannot be improved.f Taking t ^ / + 2 and choosing an optimal <r, namely a = I + §,

we obtain a rate of convergence p = §/ + f. This rate is substantially less than the

maximally possible one, namely / + 1. The second important disadvantage is that

overestimating the parameter <s with respect to / may endanger the convergence.

This behavior implies that the penalty method will very likely be sensitive to the

choice of the parameter a.

Some numerical experiments have suggested that the method actually behaves

better than this theorem indicates. Let us now show that the theorem may be sub-

stantially improved.

We first prove a lemma.

** Let us remark that the expression B(«, u) + h~' («, «) is equivalent to ||«||2.

*** Theorem 3.1 is stated in more general form in [6]. A very similar theorem is proved in [3].

t See reference [10].
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Lemma 3.1.   Let w E H'i^l), where I is an integer, I ^ 2, and let w - Q on Y.

Then there exists a function g E 7»'*(ß)> t ^ /, k ^ 1, such that, for a > 0,

(3.4) \W  -  gllffMO)   + A"
9n

A' + s ^ Cie)h2 \w\\nHm,

where t > 0 is arbitrary, C( e) depends only on e and not on w and h, and

(3.5) p. = min|j^ (/ - 1), <r, | + / - |J

with x = max (1, (a- + l)/2).

Proo/.   (1) By assumption, w E H\ti), I ^ 2. Therefore, ÓV/ó>n E Hl'3/2(Y)

andft

(3.6) l|dw/d/i|Ui-./.(D r,  ^ CIIHU '(D).

Define v = dw/dn on I\ Then there exists a harmonic function V E Hl '(fi) such

that K = v on r and such thatfff

(3.7)
FlUi-,0) á C ||p|U«-/-(P)

^ C ||w||H'(B).

(2) Using Theorem 3.1 of [11], there exists a function ^ G 7Í'(íi), / ^ Í: ^ s,

/ - 1 ^ s ^ 0, such that

(3.8) \\V-<p\\B.m ^ Ch* \\V\\B,-HQ),

where p = min [t — s, I — 1 — s]. Combining inequalities (3.7) and (3.8), we obtain

(3.9) ||K-*|I*«(« = Ch"\\f\\H,m.

Given e > 0, taking s = % + t and using the embedding theorem, we obtain

(3.10) || V - v\\B.lVs =g Cie)h'-3/2-' ll/IUio».

(3) By Theorem 4.4 of [11], for t ^ /, k ^ 1, there exists £ G 7¿'*(«) such that

(3.11) ||w - {|UM0, + A"'/2 ||Í|U.(r, è Cie)h— \\w\\H,m,

where é > 0 is arbitrary,

t — x
(3.12)

and

(3.13)

= 7^T(,-1)

x = max(l, | + è<r).

(4) For t ^ / ^ 2 and /c ̂  1, taking g = £ — AV G 7Î'*(Œ) and using inequalities
(3.10) and (3.11), we obtain

tt For a proof of this, see Theorem 9.4 of [8].

ttt See [8, p. 203].
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\w — g\\H*m + h
dw

dn
h' + 8

¡H'iT)

(3.14)

:     ||W-{+      Vh'    -    h'iV   -   V)\\'Hil0)

+ A — A' -   Vh' + h'i V - <p) + £
J/°(D

Ú Ct||w-{|||.(0) + h2'\\V-<p\\2H.m

+ h2' || V\\2HHa) + h- ||*||i.(r, + *' II V - Hll-CP)]

^ C(6)A2r-s ||Hfti<i».

where e > 0 is arbitrary and

(3.15)        r = minjj^ (/ - 1), c, t - 1 + a, I - 2 + a, I - | + |J

with

(3.16) x = max(l, \ia + 1)).

Recalling the assumption that t ^ / ^ 2, we obtain inequality (3.4) and the proof of

the lemma is complete.

We can now prove the improved version of Theorem 3.1.

Theorem 3.2. Let f E H\ü), where I is a nonnegative integer. Let u0 be the weak

solution of the problem (2.3), (2.4) and let v,,h E fz*(ß)> k % 1, t £ / + 2, a > 0,
be the approximate solution of the problem. Then

(3.17) ||«.-p,.»IUmo) ̂  cw«"- H/lUn,,

wAere « > 0 is arbitrary, C(e) is independent off and h and

(3.18)

with

(3.19)

= min(,, £±-1 + /, l^i (/+i))

x = max(l, \i<j + I)).

Proof.   Let us define a quadratic functional R„iv), v G HliÚ), similar to ex-

pression (3.1):

(3.20) RM = Biuo — v, u0 — v) + H
Jàup
\dn

,a   i       du0   ,
A   + v, — A   +

on
•>

Taking into account that u0 is the weak solution of the problem (2.3), (2.4), it is

easy to show that

(3.21) RM = KM + Ft(v),

where F,(v) is defined by expression (3.1) and

(3.22) K.(u0) = Biu0, ii0) + h'(du0/dn, du0/dn).
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Since / G #'(0), / ^ 0, then u0 G Hl+2(ü) and we have du0/dn E Hl+1/2(Y). There-

fore, expressions (3.20) and (3.22) both make sense. The functional Ka(u0) does not

depend upon v. Therefore, the minimizations of expression (3.1) and expression (3.20)

both lead to the same element v,,k.

Using Lemma 3.1, we see that there exists a function g E y'hk(ty such that

(3.23) R.(ji)£ C(e)h2"-( ||/|||.(B)>

where e > 0, C(«) is independent of h and /, and

(3.24) p = min|j-^-y (/+ 1), e,\+ ¡ + {[

From inequality (3.23) and the definition of v,,h, we obtain

(3.25) RM.Ù Ú C(e)A2"- \\f\\BHQ),

where p is given by expression (3.24). Therefore,

(3.26) Biuo - v,,h, uo - v,,h) Û Cie)h2"-' \\f\\%,im

and

(3.27)

From

(v„h,ve,h)£ Ch2*+-' \\f\\%lm + CÜ

g C[A2"+'-' + A2'] \\1\\%,m

/dug    du0\

\dn   ' dn I

||«o — vc.h\\2H,m á C[Biu0 — v,,k, u0 — ¡>„,a) + (v,,k,v,,h)],

we obtain

(3.28) ||«„ -»..»||ir.<o>  ^ ÇA'"' ||/||jr«<n>.

where

k = min[(r, p] — p.

This completes the proof of Theorem 3.2 for / a nonnegative integer and t ^ / + 2.

By using basic theorems about interpolated Sobolev spaces, we can easily generalize

the theorem to cover the case of / being any nonnegative real number.

Let us now compare Theorem 3.1 to Theorem 3.2. The advantages of Theorem 3.2

over 3.1 are as follows:

(i) For a < t, convergence is independent of the value of /.

(ii) For / sufficiently large, we can select a- so that p. = / + 1 — «.

(hi) From (i), we see that the error is not too sensitive to the changes in <r.

4. The Error Estimate in L2(0). Let us now derive the error estimate in the

space L2(ti). The main idea of the proof is similar to the proof of the error bounds

in the finite element method without penalty.

Theorem 4.1. Let f E H'iü), where I is a nonnegative integer, and let u0 be the

weak solution of the problem (2.3), (2.4). Let a ^ 0. For t ^ I + 2 and k ^ I, let

v« .h E y'h'k(tt) be the approximate solution introduced in Section 3. Then

(4.1) ||«o -D,.JU.,B)  ^ C(e)Ar w'm,
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where t > 0, C( e) does not depend on h and / and

(4.2) t = min[/c + p, k + \a, p + \<r, a]

with p given by expression (3.18), and k given by

t — x
(4.3) k = -r    and   x = max

{>'-¥)■

Proof.   (1) Let us denote the error by th = u0 — u, ,A. In Theorem 3.2, we proved

that

IHUmid ̂ CM"' |l/lUn»,
where p was given by expression (3.18). Therefore, we also have

lklU.(o> ^ C(i)A"- ll/IUno,.

Denote by Kk G Hl(ti) a function such that

(4.4) BiVh,v) = ieh,v)

for all b G #¿(í2). Then K* is the weak solution of the problem (2.3), (2.4) with

/ = (h. Therefore,

II Vk\\„,m ^ C ||e»||Ll(fl).

(2) The approximate solution v,,h minimizes expression (3.20). Therefore, for

every v E 7*'*(iî), we have

(4.5) Bieh, v) + h-(^ h' - e„, vj = 0.

By Theorem 4.4 of [11] for t ^ 2 and fc ̂  1, there exists a function gh E 7Í'*(0)

such that

(4 6) II K* _ S* I U'«)> + h~"2 ||ft||w.<r>

^ C(é)A""' M K»||,.(B)  è Cie)h'- |K|U.<».

where k = it — x)/it — 1) and x = max (1, %(o- + 1)).

(3) It is easy to see that

(4.7) B(eh,  Vh) = fe, th) + (*, d Vh/dn).

By using Eq. (4.5) with b = g*, we obtain

(4.8) fife,,  F*) + fife, gh -   Vh) = A-'fe, gh) - (duo/dn, g„>.

Hence, by Eq. (4.7),

(4 9) Iklll.w ^ Ifife, gh - vh)\ + *" |<*, g*)|

+ Re», aK»/3n)| + \(dn0/dn, gh)\.

Furthermore, we have

i4 jQs Ifife, ft — vh)\ ^ | fe | |ff.(l!) lift— vh\\H,m

g CA"+"-' ||/||„(0) IklU,,«.
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Using inequalities (3.27) and (4.6) and the fact that u0 = 0 and Vk = 0 on r, we obtain

|<éa. ft)I ^  lklUs<n ||s|U,(r,

Ú Ch'+'/2-'[h^'/2-' + A'] ||/||,.(B) |k|U,(»,

|fe, dVk/dn)\ Û  |felk<r> \\dVk/dn\\L,tr>

á C[A*+"S- + A']||/||„(» |fe|U,(!i)

(4.11)

(4.12)

and

(4 13) IvWa», ft)I á c U/H,.,» ||ft|U,,p,

=§ A"+'/2-IklU.,» U/H,.,».

Substituting inequalities (4.10)-(4.13) into (4.9), we obtain

(4.14) IklU,,» Ú CWt*'- + h*+'/2-' + h>+'/2~' + h'] ||/||,.(0)

and the theorem is proved.

Theorem 4.1 was formulated only for / a nonnegative integer. By using the theory

of interpolated spaces, it is easy to get analogous results for / any nonnegative real

number.
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