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THE FINITE MODEL PROPERTY FOR MIPQ
AND SOME CONSEQUENCES

GISELE FISCHER SERVI

The proof given in [l] that MIPQ has the finite model property is shown
to be erroneous. Through the use of slightly different techniques we prove
that this property nonetheless does hold. We then prove a representation
theorem for finite Monadic Heyting algebras which, together with the finite
model property for MIPQ, yields an algebraic proof of a theorem concern-
ing a translation map from MIPQ to a bimodal calculus (S4, S5)-C (see [3]).

1 MIPQ has the finite model property Following a suggestion of Prior,
R. A. Bull considers in [l] a modal calculus (MIPQ) which contains as its
base the intuitionist propositional calculus (IC) instead of the usual classi-
cal logic. For reasons that will become clear in section 2, from here on
this calculus will be called S5-IC. Hence S5-IC contains IC and the
following rules:

Rl a~*β

R 1 La-^β

R 2 a-*Mβ

R3 —"~*r ,, if a is fully modalized
(X —> Lp

a — β
R4 — if β is fully modalized.

For this modal extension of IC, R. A. Bull shows completeness with respect
to canonical models. We recall that in a canonical model (A, B, U, Π, -*, 0,1,
K,l>, A is a Heyting algebra, B is a relatively complete subalgebra of A
and K, I are two operators on A such that Kx = Min {ye B: x ^ y} and
\x= Maχ{yeB: y ^ x}. In [1] it is proven that S5-IC is characterized by
finite models,but it appears that the proof in question is wrong ~ >r, start-
ing from a canonical model, the author uses a construction whic > opposed
to what is maintained, does not yield a finite canonical model. Let us con-
sider the argument in [1]: given a canonical model {A, B, u, Π, —», 0, 1, K, I)
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and a sequence au . . .,aneA, take the finite sublattice generated by
0, 1, « ! , . . . , an. Call it A1 and define

a=Φb = Max {c e A': c ^ a —> 6}, a, & e A'

It is known that (A', U, Π, =Φ, 1} is a Heyting algebra. Now if the finite
sublattice Bf = B Π A', could be shown to be closed with respect to =Φ, then
B* would be a relatively complete subalgebra of A* determining K' and I' and
thus concluding the construction of a finite canonical model from an
arbitrary one. Unfortunately the proof that Br is a subalgebra of A' is
erroneous. To be more precise, given the above notations, it can be shown
that in general B' is not a Heting subalgebra of A'. Consider, for instance,
the following example:

^ ~f ψ Kx -> Ky

The twelve elements lattice represented in this figure is a Heyting algebra
A; a sublattice Ar is given by the starred elements and a relatively com-
plete subalgebra B of A is represented by the circled elements. Setting
B' = A' Π B, it is immediate that B1 is not a subalgebra of A1 for it does not
contain KΛr=̂ >K;y. Note that the proof in [l] could not be corrected by
simply taking the subalgebra Bo generated by Br in A1. For in order to
prove the finite model property we want a subalgebra Bo of A' such that if
Ko, lo a r e the operators with range Bo> then Koa = Ka and \oa = \a for each a
such that a, Ka, \ae A'. Bo does not in general satisfy to this condition as
can readily be seen, if we consider the example above and take Bo = A' and
a = Kx=Φ>Ky.

Yet as we shall see below, S5-IC does have in fact the finite model
property. To show this, we first recall the concept of Monadic Heyting
Algebras. We say that (A; u, Π, —>, K, I) is a Monadic Heyting algebra (HM)
if (A, U, Π, '-*) is a Heyting algebra and K, I: A—> A (called associated
quantifiers on A) are such that

(i) K [A], the range of K in A, is a subalgebra of A
(π) κμ] = ιμ]
(iii) (a) * < y iff Kx ^ y, x e A, y e K[A]

(b) x < y iff x ^ \y, xeK[A], y eA.

In [4] Monadic Heyting algebras were shown to be equivalent to canonical
models and since the former structures prove to be more convenient for
the problems we want to deal with, we shall from here on think of the HIVΓs
as the structures which give completeness for S5-IC. We then prove
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Theorem 1 Let © = (A; U, Γi, —% K, I) be a Monadic Heyting algebra and let
AΌ c A be a finite subset of A. Then there exists a finite HM, ©' =
(Ar; U, Π, ==>, K, l'> such that

(i) A 0 U { 1 A } U { 0 A } C A ' ,

(ii) (A', U, (Ί, K) is a (finite) existential sublattice o/©,1

(iii) if x, y, x —» yeAr, then x —> y = x =>y,
(iv) if x, \xeA', then \x = \'x.

Proof: Let (A', U, Π, K) be the existential sublattice generated by Ao U
{l,θ}. It is known that the structure thus obtained is finite ([8]). Letting l0

be the interior operator determined by A', (i.e., \0[A] = A'), and defining

x=>y = lo(*-* y)> x,yeAr

I rx = \0\x, xe A'

we show that ©' = (A'; U, Π, ==>, K, I') is an HM. It is straightforward to
check that (Ar, U, Π, =Φ) is a Heyting algebra for which condition (iii) holds.
We prove first that the sublattice K[A'] is a subalgebra of (A', u, Π, =Φ>,
i.e., that it is closed with respect to =Φ. Note that K[A] is a Heyting
subalgebra of ©, hence for x, ye A', Kx —> K3; = K£ for some 2eA. Thus
K#==> K3; ̂  K# —> Ky = K̂ : which by condition (iii,a) on HM's, yields K(K# =̂ >
Ky) ^ Kz. But A1 is closed with respect to K, so K(K#=#>K;y) = IOK(K#==>
K3>) < \0Kz = κ#==>K;y. Hence Kx=ΦKy = K{Kx ==>Ky) e K[A']. To prove
that K[Af] = \'[A']9 it is sufficient to show that for all xe A\ I'KΛΓ = Kx and
K\rx ^ \'x. Since K# = IKΛ: (see [4]) we have K# = I0KΛΓ = \0\Kx = \'Kx.
Second from \'x^\x,it follows KI'Λ:^ KIΛ: = \x and therefore KI'Λ: = IOKI'# <
I0IΛΓ= \'X. That K satisfies (iii,a) of the definition of HM's is immediate
since it is the original operator restricted to A1 and K [A'] c K[A], In
order to prove that I' satisfies (iii,b) we suppose that xe K [A'] and x ̂  y.
Then for some ze A', Kz = x < y and thus Kz < I3;. But Kz = \0Kz ^ \0\y = \'y.
The second half of (iii,b) is staightforward. Last note that if x, \xe Af, then
\x = \0\x = \'x. Consequently©' is an HM having the required properties.

Theorem 2 S5-IC has the finite model property, i.e., for each non-theorem
a o/S5-IC, there is a finite HM which falsifies a.2

Proof: Suppose that a is a non-theorem of S5-IC with n subformulas. Then
there is an HM© and a homomorphism v: 3 -* © such that υ(a) Φ 1A. Let
A) = {ai> •> «w}be the set of elements that v assigns to the subformulas of
a. Then by Theorem 1, there is a finite HM©' satisfying conditions (i)
through (iv). Clearly these conditions ensure the existence of a homo-
morphism vf: 3 -+©' such that υ'(α) = v(a). For by (i) it is possible to

1. We recall that an existential lattice is a pair C4,K> where A is a distributive lattice with 0,1 and

K is an operator on A such that x < Kx, K0 = 0, K(x U j ; ) = K x U Ky, KQc Π Ky) = Kx Π Ky.

2. A formula a e 7$ (where ί̂  is the algebra of formulas of S5-IC) is true in an HMOS if for every

homomorphism v. ̂  -• « , v{ά) = 1^.
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choose v' in such a way that v* coincides with υ on the propositional
variables of α. Hence by (i) through (iv), v(β) = vr(β) for every subformula
β of a and hende v'(a) = υ(a) Φ 1Λ = lΛr, i.e., a is falsified in®'.

2 A consequence of the finite model property In a sense which was
explained in [1] and [2], S5-IC turns out to be an intuitionistic analogue of
Lewis' S5. In [3] we proposed a general criterion by means of which it is
possible to find the intuitionist counterpart of many other classical modal
systems. This criterion is based upon the existence of a theorem-
preserving translation T, from S5-IC to a bimodal calculus (S4, S5)-C.
While the theorem concerning the existence of translation T in [3] makes
use of both algebraic semantics and syntactic methods, we want to show in
this paper that once the finite model property for S5-IC has been estab-
lished, this same theorem can be proven using algebraic techniques only.3

In order to make this paper more readable, I recall a few concepts that
can be found in [3]. Let (S4, S5)-C be a ''bimodal calculus" having as
primitive connectives (v, Ί, Lu L2) with the following axioms and rules:

(bO all classical propositional tautologies with the usual definitions for Λ,

(b2) S4 axioms and rules on Lii Lra —> a
Li(« - β) - Lxa - Uβ
Lι a -> LiLid!

ha
hL,a

(b3) S5 axioms and rules on L2: L2a —• a
L2(a - β) - L2a — L2β

M2a -> L2 M2a, where M2 = lL2l

ho?

hL2a

(b4) M2 LiOί -» Li M2a.

Now let T be the function from S5-IC formulas to (S4, S5)-C formulas
such that for each propositional variable p,

T(p) = Li/>

and if a, β are formulas of S5-IC, then

T(αvβ) = lotvlβ
T(αΛβ) = TαΛTβ

T(α-* |3) = L i(Tα- Ίβ)
l(Ίa) = LiΊTα
T(Mcr) = M2la
T(Lα) = LγL2Λa

In [3], we proved

3. Then, this paper settles a question mentioned in [3].
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Theorem 3 Vt^^a, t h e n I(S4, S5)-C TQ?>

using first, completeness results for S5-IC and (S4, S5)-C in the class of
all HM's and all bimodal algebras4 respectively, and second the following

Lemma 1 Let © = (B, l u K2) be a bimodal algebra. If we define G(B) =
{x e B: x = I xx\ and

K = K2hG(£)
I = lil2I^GθB), where l2 = ~K2~

thenGfa) = (G(B), K, l> is an HM to be called the HM associated with the
bimodal algebra 93.

Our aim is to give an algebraic proof of the converse of Theorem 3.
We shall be able to do so, once we establish that every finite HM is, up to
isomorphism, associated with a bimodal algebra and such will be the topic
of section 3.

3 A representation theorem for finite HM's From here on =Φ, —> will
stand for the Heyting and Boolean relative pseudo complement respectively.
Similarly - will denote the Heyting pseudo complement while ~ will
represent Boolean complementation. Now let (A; K, I) be a finite HM. It is
well known (see [6]) that there is a topological Boolean algebra (B; li) such
that A = G(B) = |J\B] with x =¥y = \x(x — y) and -x = li(~#) for all x, ye G(B).
Then K[A] = \[A]QA c B. Let B' be the Boolean subalgebra of B generated
by K[A]. Bearing these facts in mind we can prove the following two
lemmas

Lemma 2 There is a (Boolean) quantifier K2 on B such that K2[£] = B\

Proof: Br is a finite, hence relatively complete, subalgebra of B.

Lemma 3 For every xe B', l ^ e K [A] = \[A].
m

Proof: If xe B'', then x = Π (β, - b{) with ai9 b{ e K[A] (see [6]). So:

m m m

\,x= li Π (a{ — hi) = Π \dai -* δ, ) = Π (α,- *Φb{) e K[A].
i=l ί=l ι=l

And now for the representation theorem for finite HM's:

Theorem 4 For every finite HM, ©= (A; K, I), ί&erg exists a finite bimodal
algebra φ = (B, \l9 K2> such that & is (up to isomorphism) the HM associated
with 53.

Proof: Let (B; lx) be as in the comments preceding Lemma 2. Let K2 be as
in Lemma 2 and put Kλ = ~ lx ~, l2 = ~ K2 ~. We prove that 53 = (5, L, K2) is

4. A bimodal algebra (see [3]) is a triple <5,l l 5 K2> where B is a boolean algebra, K2 a boolean

quantifier and Ij an interior operator having the following property: for all x e B, K2\\X <

I JKJX or equivalently K2I iX = I iK2l JΛ:.
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a bimodal algebra with © = G(33). We show first that K = K2|̂  A. For every

xeA, x ^ KxeBr = K2[B] (Lemma 2) thus K2# ^ KΛΓ. On the other hand

K2xeB' so by Lemma 3, l^xe K[A], But ΛΓ= 1 ^ ^ ^ K ^ and hence Kx ^

\λK2x ^ K2x. We can now prove that © is a bimodal algebra, i.e., that

K2IIΛ;< I I K 2 # for every xeB. Since A = \ι[B] and K and K2 coincide on

elements of A, we have K2li# = Kl^ = IxKIXΛΓ = I1K2I1Λ: ^ \λK2x. Last we prove

I = !il2Γ^- Let xe A; from x ^ \xe B* we get \2x ^ \x and hence \j\2x ^ \λ\x =

\x. Vice versa, from Lemma 3 we have \& ^ ILI2ΛΓe K [A], thus 11^ ^ ^ l ^ .

It follows \x>\ι\2x.

4 A theorem on translation T We can now give an algebraic proof of the

converse of Theorem 3. First we recall that in [3], we proved

Lemma 4 Let SB = (B; \ly K2) be a bimodal algebra. For every formula a of

S5-IC, Tα is true in 53 iff a is true iwGW, the HM associated with*&.

We then prove

Theorem 5 If l(s4> S 5 μ c Tα, then f ^ r α.

Proof: Suppose that α is a non-theorem of S5-IC, then by Theorem 2, there

exists a finite HM, <£* which falsifies α. By Theorem 4, there is a bimodal

algebra $3 such that © = G08) is the HM associated with 53. Then by

Lemma 4, Tα is not true in 53, hence by completeness Tα is not a theorem

of (S4, S5)-C.
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