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The Finite Ridgelet Transform
for Image Representation

Minh N. Do, Member, IEEE, and Martin Vetterli, Fellow, IEEE

Abstract—The ridgelet transform [6] was introduced as a sparse
expansion for functions on continuous spaces that are smooth away
from discontinuities along lines. In this paper, we propose an or-
thonormal version of the ridgelet transform for discrete and fi-
nite-size images. Our construction uses the finite Radon transform
(FRAT) [11], [20] as a building block. To overcome the periodiza-
tion effect of a finite transform, we introduce a novel ordering of the
FRAT coefficients. We also analyze the FRAT as a frame operator
and derive the exact frame bounds. The resulting finite ridgelet
transform (FRIT) is invertible, nonredundant and computed via
fast algorithms. Furthermore, this construction leads to a family
of directional and orthonormal bases for images. Numerical results
show that the FRIT is more effective than the wavelet transform in
approximating and denoising images with straight edges.

Index Terms—Directional bases, discrete transforms, image
denoising, image representation, nonlinear approximation, Radon
transform, ridgelets, wavelets.

I. INTRODUCTION

M
ANY image processing tasks take advantage of sparse

representations of image data where most information
is packed into a small number of samples. Typically, these
representations are achieved via invertible and nonredundant
transforms. Currently, the most popular choices for this pur-
pose are the wavelet transform [1]–[3] and the discrete cosine
transform [4].

The success of wavelets is mainly due to the good perfor-
mance for piecewise smooth functions in one dimension. Un-
fortunately, such is not the case in two dimensions. In essence,
wavelets are good at catching zero-dimensional or point sin-
gularities, but two-dimensional piecewise smooth signals re-
sembling images have one-dimensional singularities. That is,
smooth regions are separated by edges, and while edges are dis-
continuous across, they are typically smooth curves. Intuitively,
wavelets in two dimensions are obtained by a tensor-product of
one dimensional wavelets and they are thus good at isolating

Manuscript received April 12, 2001; revised May 25, 2002. This work was
supported in part by a Ph.D. Fellowship from the Department of Communica-
tion Systems, EPFL, and the Swiss National Science Foundation under Grant
21-52439.97. The associate editor coordinating the review of this manuscript
and approving it for publication was Prof. Pierre Moulin.

M. N. Do was with the Audiovisual Communications Laboratory, Depart-
ment of Communication Systems, Swiss Federal Institute of Technology, Lau-
sanne, Switzerland. He is now with the Department of Electrical and Computer
Engineering, the Coordinated Science Laboratory, and the Beckman Institute,
University of Illinois, Urbana, IL 61801 USA (e-mail: minhdo@uiuc.edu).

M. Vetterli is with the Audiovisual Communications Laboratory, Department
of Communication Systems, Swiss Federal Institute of Technology, Lausanne,
Switzerland, and also with the Department of Electrical Engineering and
Computer Science, University of California, Berkeley, CA 94720 USA (e-mail:
martin.vetterli@epfl.ch).

Digital Object Identifier 10.1109/TIP.2002.806252

the discontinuity across an edge, but will not see the smooth-
ness along the edge.

To overcome the weakness of wavelets in higher dimensions,

Candès and Donoho [5], [6] recently pioneered a new system

of representations named ridgelets which deal effectively with

line singularities in 2-D. The idea is to map a line singularity

into a point singularity using the Radon transform [7]. Then,

the wavelet transform can be used to effectively handle the point

singularity in the Radon domain. Their initial proposal was in-

tended for functions defined in the continuous space.

For practical applications, the development of discrete ver-

sions of the ridgelet transform that lead to algorithmic imple-

mentations is a challenging problem. Due to the radial nature of

ridgelets, straightforward implementations based on discretiza-

tion of continuous formulae would require interpolation in polar

coordinates, and thus result in transforms that would be either

redundant or cannot be perfectly reconstructed.

In [8]–[10], the authors take the redundant approach in

defining discrete Radon transforms that can lead to invertible

discrete ridgelet transforms with some appealing properties.

For example, a recent preprint [10] proposes a new notion

of Radon transform for data in a rectangular coordinate such

that the lines exhibit geometrical faithfulness. Their transform

is invertible with a factor four oversampled. However, the

inverse transform is ill-conditioned in the presence of noise and

requires an iterative approximation algorithm.

In this paper, we propose a discrete ridgelet transform that

achieves both invertibility and nonredundancy. In fact, our

construction leads to a large family of orthonormal and direc-

tional bases for digital images, including adaptive schemes. As

a result, the inverse transform is numerically stable and uses

the same algorithm as the forward transform. Because a basic

building block in our construction is the finite Radon transform

[11], which has a wrap-around (or aliased line) effect, our

ridgelet transform is not geometrically faithful. The properties

of the new transform are demonstrated and studied in several

applications.

As an illustration, consider the image denoising problem

where there exist other approaches that explore the geometrical

regularity of edges, for example by chaining adjacent wavelet

coefficients and then thresholding them over those contours

[12]. However, the discrete ridgelet transform approach, with

its “built-in” linear geometrical structure, provide a more direct

way—by simply thresholding significant ridgelet coefficients—

in denoising images with straight edges.

The outline of this paper is as follows. In the next section we

review the concept and motivation of ridgelets in the continuous

domain. In Section III, we introduce the finite Radon transform

1057-7149/03$17.00 © 2003 IEEE
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with a novel ordering of coefficients as a key step in our discrete

ridgelet construction. The finite Radon transform is then studied

within the frame theory. The finite ridgelet transform is defined

in Section IV, where the main result is a general family of or-

thonormal transforms for digital images. In Section V, we pro-

pose several variations on the initial design of the finite ridgelet

transform. Numerical experiments are presented in Section VI,

where the new transform is compared with the traditional ones,

especially the wavelet transform. We conclude in Section VII

with some discussions and an outlook.

II. CONTINUOUS RIDGELET TRANSFORM

We start by briefly reviewing the ridgelet transform and

showing its connections with other transforms in the contin-

uous domain. Given an integrable bivariate function , its

continuous ridgelet transform (CRT) in is defined by [5], [6]

(1)

where the ridgelets in 2-D are defined from a

wavelet-type function in 1-D as

(2)

Fig. 1 shows an example ridgelet function, which is oriented

at an angle and is constant along the lines

.

For comparison, the (separable) continuous wavelet trans-

form (CWT) in of can be written as

(3)

where the wavelets in 2-D are tensor products

(4)

of 1-D wavelets, .1

As can be seen, the CRT is similar to the 2-D CWT except that

the point parameters are replaced by the line parame-

ters . In other words, these 2-D multiscale transforms are

related by

Wavelets: -

Ridgelets: -

As a consequence, wavelets are very effective in representing

objects with isolated point singularities, while ridgelets are very

effective in representing objects with singularities along lines.

In fact, one can think of ridgelets as a way of concatenating 1-D

wavelets along lines. Hence the motivation for using ridgelets in

image processing tasks is appealing since singularities are often

joined together along edges or contours in images.

In 2-D, points and lines are related via the Radon transform,

thus the wavelet and ridgelet transforms are linked via the Radon

transform. More precisely, denote the Radon transform as

(5)

1In practice, however one typically enforces the same dilation scale on both
directions thus leading to three wavelets corresponding to horizontal, vertical,
and diagonal directions.

Fig. 1. Example ridgelet function  (x ; x ).

Fig. 2. Relations between transforms. The ridgelet transform is the application
of 1-D wavelet transform to the slices of the Radon transform, while the 2-D
Fourier transform is the application of 1-D Fourier transform to those Radon
slices.

then the ridgelet transform is the application of a 1-D wavelet

transform to the slices (also referred to as projections) of the

Radon transform

(6)

It is instructive to note that if in (6) instead of taking a 1-D

wavelet transform, the application of a 1-D Fourier transform

along would result in the 2-D Fourier transform. More specif-

ically, let be the 2-D Fourier transform of , then we

have

(7)

This is the famous projection-slice theorem and is commonly

used in image reconstruction from projection methods [13],

[14]. The relations between the various transforms are depicted

in Fig. 2.

III. FINITE RADON TRANSFORM

A. Forward and Inverse Transforms

As suggested in the previous section, a discrete ridgelet

transform can be constructed using a discrete Radon transform.
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Numerous discretizations of the Radon transforms have been

devised to approximate the continuous formulae [13]–[18].

However, most of them were not designed to be invertible

transforms for digital images. Alternatively, the finite Radon

transform theory (which means transform for finite length

signals) [11], [19]–[21] originated from combinatorics, pro-

vides an interesting solution. Also, in [22], a closely related

transform is derived from the periodization of the continuous

Radon transform.

The finite Radon transform (FRAT) is defined as summations

of image pixels over a certain set of “lines.” Those lines are

defined in a finite geometry in a similar way as the lines for the

continuous Radon transform in the Euclidean geometry. Denote

, where is a prime number. Note

that is a finite field with modulo operations [23]. For later

convenience, we denote .

The FRAT of a real function on the finite grid is defined

as

(8)

Here, denotes the set of points that make up a line on the

lattice , or, more precisely

(9)

Fig. 3 shows an example of the finite lines where points

in the grid are represented by image pixels. Note that due to

the modulo operations in the definition of lines for the FRAT,

these lines exhibit a “wrap around” effect. In other words, the

FRAT treat the input image as one period of a periodic image.

Later, we will present several ways to limit this artifact.

We observe that in the FRAT domain, the energy is best com-

pacted if the mean is subtracted from the image prior to

taking the transform given in (8), which is assumed in the se-

quel. We also introduce the factor in order to normalize

the -norm between the input and output of the FRAT.

Just as in the Euclidean geometry, a line on the affine

plane is uniquely represented by its slope or direction

( corresponds to infinite slope or vertical lines) and

its intercept . One can verify that there are lines

defined in this way and every line contains points. Moreover,

any two distinct points on belong to just one line. Also, two

lines of different slopes intersect at exactly one point. For any

given slope, there are parallel lines that provide a complete

cover of the plane . This means that for an input image

with zero-mean, we have

(10)

Thus, (10) explicitly reveals the redundancy of the FRAT: in

each direction, there are only independent FRAT coeffi-

cients. Those coefficients at directions together with the

mean value make up totally of inde-

pendent coefficients (or degrees of freedom) in the finite Radon

domain, as expected.

Fig. 3. Lines for the 7 � 7 FRAT. Parallel lines are grouped in each of the
eight possible directions. Images in order from top to bottom, left to right are
corresponding to the values of k from 0 to 7. In each image, points (or pixels)
in different lines are assigned with different gray-scales.

By analogy with the continuous case, the finite back-projec-

tion (FBP) operator is defined as the sum of Radon coefficients

of all the lines that go through a given point, that is

(11)

where denotes the set of indices of all the lines that go

through a point . More specifically, using (9) we

can write

(12)

From the property of the finite geometry that every two

points lie on exactly one line, it follows that every point in

lies on exactly one line from the set , except for the point

which lies on all lines. Thus, by substituting (8) into

(11) we obtain

(13)

So the back-projection operator defined in (11) indeed

computes the inverse FRAT for zero-mean images. Therefore

we have an efficient and exact reconstruction algorithm for the

FRAT. Furthermore, since the FBP operator is the adjoint of

the FRAT operator, the algorithm for the inverse of FRAT has

the same structure and is symmetric with the algorithm for the

forward transform.
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It is easy to see that the FRAT requires exactly additions

and multiplications. Moreover, for memory access efficiency,

[20] describes an algorithm for the FRAT in which for each pro-

jection we need to pass through every pixel of the original

image only once using histogrammers, one for each summa-

tion in (8) of that projection. For images of moderate sizes, we

observed that the actual computational time of the FRAT is com-

patible with other transforms, such as the 2-D

FFT, where the leading constant can be large. For example, on

a Sun Ultra 5 computer, both the forward and inverse FRAT’s

take less than a second to compute on an image of size 257

257.

B. Optimal Ordering of the Finite Radon Transform

Coefficients

The FRAT described in Section III-A uses (9) as a convenient

way of specifying finite lines on the grid via two parameters:

the slope and the intercept . However, it is neither a unique

nor the best way for our purpose. Let us consider a more general

definition of lines on the finite plane as

(14)

where and .

This is by analogy with the line equation:

in . Therefore, for a finite line defined as in (14),

has the role of the normal vector, while is the translation pa-

rameter. In this section, all equations involving line parameters

are carried out in the finite field , which is assumed in the

sequel without the indication of mod .

It is easy to verify that for a fixed normal vector ,

is a set of parallel lines in the plane.

This set is equal to the set of lines defined in

(9) with the same slope , where for and

for . Moreover, the set of lines with the normal

vector is equal to the set of lines with the normal vector

, for each .

With the general line specification in (14), we now define the

new FRAT to be

(15)

From the discussion above we see that a new FRAT projec-

tion sequence: , is simply a re-

ordering of a projection sequence

from (8). This ordering is important for us since we later apply

a 1-D wavelet transform on each FRAT projection. Clearly, the

chosen normal vectors control the order for the coeffi-

cients in each FRAT’s projection, as well as the represented di-

rections of those projections.

The usual FRAT described in Section III-A uses the set of

normal vectors , where

for and (16)

In order to provide a complete representation, we need the

FRAT to be defined as in (15) with a set of normal vectors

such that they cover all distinct FRAT

projections represented by . We have choices

for each of those normal vectors as

So what is the good choice for the normal vectors of

the FRAT? To answer this we first prove the following projec-

tion slice theorem for the general FRAT. A special case of this

theorem is already shown in [20].

Defining , the discrete Fourier transform

(DFT) of a function on can be written as

(17)

and for FRAT projections on as

(18)

Theorem 1 (Discrete Projection-Slice Theorem): The 1-D

DFT of a FRAT projection is identical to the

2-D DFT of evaluated along a discrete slice

through the origin at direction

(19)

Proof: Substituting (15) into (18) and using the fact that

the set of parallel lines provides a complete

cover of the plane , we obtain

From (19), we can see the role of the FRAT normal vectors

in the DFT domain: it controls the order of the coeffi-

cients in the corresponding Fourier slices. In particular,

equals to the first harmonic component of the FRAT projection

sequence with the normal vector . For the type of images

that we are interested in, e.g., of natural scenes, most of the en-

ergy is concentrated in the low frequencies. Therefore in these

cases, in order to ensure that each FRAT projection is smooth

or low frequency dominated so that it can be represented well

by the wavelet transform, the represented normal vector

should be chosen to be as “close” to the origin of the Fourier

plane as possible.

Fig. 4 illustrates this by showing an example of a discrete

Fourier slice. The normal vector for the corresponding FRAT

projection can be chosen as a vector from the origin to any other

point on the Fourier slice. However, the best normal vector is

selected as the closest point to the origin. The choice of the

normal vector as the closest point to the origin causes

the represented direction of the FRAT projection to have the

least “wrap around” due to the periodization of the transform.

The effect of the new ordering of FRAT coefficient in the image

domain is illustrated in Fig. 5 for the same example projection.

As can be seen, the “wrap around” effect is significantly reduced

with the optimal ordering compared to the usual one.
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Fig. 4. Example of a discrete Fourier slice (indicated by the black squares)
with the best normal vector for that FRAT projection. In this example, p = 17
and the slope k = 11. The normal vector can be chosen as a vector from the
origin to any other points on the Fourier slide. The best normal vector is (1; 3)
(the solid arrow).

Formally, we define the set of optimal normal vectors

as follows:

(20)

Here, denotes the centralized function of period

: round . Hence,

represents the distance from the origin to the point on

the periodic Fourier plane as shown in Fig. 4. The constraint

is imposed in order to remove the ambiguity in

deciding between and as the normal vector

for a projection. As a result, the optimal normal vectors are

restricted to have angles in . We use the -norm for

solving (20). Minimization is simply done for each

by computing distances in (20) and select the smallest

one. Fig. 6 shows an example of the optimal set of normal

vectors. In comparison with the usual set of normal vectors

as given in (16), the new set

provides a much more uniform angular coverage.

After obtaining the set of normal vectors , we can

compute the FRAT and its inverse with the same fast algorithms

using histogrammers described in Section III-A. For a given ,

solving (20) requires operations and therefore it is negli-

gible compared to the transforms themselves. Furthermore, this

can be pre-computed, thus only presents as a “one-time” cost.

For the sake of simplicity, we write for in the

sequel. In other words, from now we regard as an index in the

set of optimal FRAT normal vectors rather than a slope. Like-

wise, the line is simply rewritten as , for

, .

(a)

(b)

Fig. 5. Lines for the FRAT projection as shown in Fig. 4 using (a) usual
ordering and (b) optimal ordering. They both represent the same set of lines
but with different orderings. The orderings are signified by the increasing of
gray-scales. The arrows indicate the represented directions in each case.

C. Frame Analysis of the FRAT

Since the FRAT is a redundant transform, it can be studied as

a frame operator. In this section we will study the FRAT in more

detail and reveal some of its properties in this frame setting. A

detailed introduction to frames can be found in [3] and [24].

Suppose that is a linear operator from to , defined

by

for (21)
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Fig. 6. Set of normal vectors, which indicate the represented directions, for the FRAT of size p = 17 using (a) usual ordering and (b) optimal ordering.

The set is called a frame of if there exist

two constants and such that

(22)

where and are called the frame bounds. When

the frame is said to be tight. If the frame condition is satisfied

then is called a frame operator. It can be shown that any finite

set of vectors that spans is a frame. The frame bound ratio

indicates the numerical stability in reconstructing from

; the tighter the frame, the more stable the reconstruction

against coefficient noise.

The frame operator can be regarded as a left matrix multipli-

cation with , where is an matrix in which its th

row equals to . The frame condition (22) can be rewritten as

(23)

Since is symmetric, it is diagonalizable in an or-

thonormal basis [25], thus, (23) implies that the eigenvalues of

are between and . Therefore, the tightest possible

frame bounds and are the minimum and maximum

eigenvalues of , respectively. In particular, a tight frame is

equivalent to , which means the transpose of

equals to its left inverse within a scale factor .

Now let us return to the FRAT. Since it is invertible it can be

regarded as a frame operator in with the frame

defined as

(24)

where denotes the characteristic function for the set , which

means equals to 1 if and 0 otherwise. Note

that this frame is normalized since . By writing

images as column vectors, the FRAT can be regarded as a left

matrix multiplication with , where

is the incidence matrix of the affine geometry :

equals to 1 if and 0 otherwise.

Proposition 1: The tightest bounds for the FRAT frame

in are and .

Proof: From (23), these tightest bounds can be computed

from the eigenvalues of . Since is the

incidence matrix for lines in , equals the

number of lines that go through both and . Using

the properties of the finite geometry that every two points

lie in exactly one line and that there are exactly lines that

go through each point, it follows that the entries of equal to

along its diagonal and elsewhere.

The key observation is that is a circulant matrix,

hence its eigenvalues can be computed as the -points

discrete Fourier transform (DFT) on its first column

[1, Sec. 2.4.8]. Writing as

we obtain

where the DFT is computed for the Dirac and constant signals.

Therefore the eigenvalues of are and 1, the latter with

multiplicity of . As a result, the tightest frame bounds for

FRAT as and .

For reconstruction, the FBP defined in (11) can be repre-

sented by a left multiplication with matrix , where

equals to 1 if and 0 otherwise. From

the definition of , we have

So the transform matrices for the operators FRAT and FBP

are transposed of each other. Let denotes the subspace of

zero-mean images defined on . Since the FBP is an inverse of

the FRAT for zero-mean images, we have the following result.

Proposition 2: On the subspace of zero-mean images ,

the FRAT is a tight frame with , which means

(25)

Remark 1: It is instructive to note that constant images on

are eigenvectors of with the eigenvalue .

Taking constant images out leaves a system with all unity eigen-

values, or a tight frame on the remaining subspace. Thus, we

have another interpretation of FRAT being a normalized tight

frame for zero-mean images.

By subtracting the mean from the image before applying the

FRAT, we change the frame bound ratio from to 1 and

obtain a tight frame. Consequently, this makes the reconstruc-

tion more robust against noise on the FRAT coefficients due to

thresholding and/or quantization. This follows from the result

in [26] that with the additive white noise model for the coeffi-

cients, the tight frame is optimal among normalized frames in

minimizing mean-squared error.
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IV. ORTHONORMAL FINITE RIDGELET TRANSFORM

With an invertible FRAT and applying (6), we can obtain

an invertible discrete ridgelet transform by taking the discrete

wavelet transform (DWT) on each FRAT projection sequence,

, where the direction is fixed. We

call the overall result the finite ridgelet transform (FRIT). Fig. 7

depicts these steps.

Typically is not dyadic, therefore a special border handling

is required. The Appendix details one possible way of com-

puting the DWT for prime length signals. Due to the periodicity

property of the FRAT coefficients for each direction, periodic

wavelet transforms are chosen and assumed in this section.

Recall that the FRAT is redundant and not orthogonal. Next

we will show that by taking the 1-D DWT on the projections of

the FRAT in a special way, we can remove this redundancy and

obtain an orthonormal transform.

Assume that the DWT is implemented by an orthogonal tree-

structured filter bank with levels, where and are low

and high pass synthesis filters, respectively. Then the family of

functions

is the orthogonal basis of the discrete-time wavelet series [1].

Here, denotes the equivalent synthesis filters at level , or,

more specifically

The basis functions from are called the scaling func-

tions, while all the others functions in the wavelet basis are

called wavelet functions. Typically, the filter is designed to

satisfy the high pass condition, so that the corre-

sponding wavelet has at least one vanishing moment. Therefore,

, , which means all wavelet

basis functions have zero mean.

For a more general setting, let us assume that we have a col-

lection of 1-D orthonormal transforms on (which can

be the same), one for each projection of FRAT, that have bases

as

The only condition that we require for each of these bases can

be expressed equivalently by the following lemma.

Lemma 1 (Condition ): Suppose that is an

orthogonal basis for the finite-dimensional space , then the

following are equivalent.

1) This basis contains a constant function, say , i.e.,

, .

2) All other basis functions, , , have

zero mean.

Fig. 7. Diagram for the FRIT. After taking the FRAT, a DWT is applied on
each of the FRAT slices or projections where k is fixed.

Proof: Denote . If ,

then from the orthogonality assumption that ,

we obtain , .

Conversely, assume that each basis function ,

, has zero mean. Denote the subspace that is spanned by

these functions and is its orthogonal complement subspace

in . It is clear that has dimension 1 with as its basis.

Consider the subspace . We have

, , thus . On the

other hand, , therefore .

This means is a constant function.

As shown before, the Condition is satisfied for all wavelet

bases, or in fact any general tree-structured filter banks where

the all-lowpass branch is carried to the maximum number of

stages (i.e., when only one scaling coefficient is left).

By definition, the FRIT can be written as

(26)

Here, is the FRAT frame which is defined in (24).

Hence, we can write the basis functions for the FRIT as follows:

(27)

We can next prove the result on the orthogonality of a modi-

fied FRIT.

Theorem 2: Given orthonormal bases in (which

can be the same): , , that satisfy the

Condition then

is an orthonormal basis in , where are defined in

(27) and is the constant function, ,

.

Proof: Let us consider the inner products between any two

FRIT basis functions
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Using properties of lines in the finite geometry , it is easy

to verify that

if

if

if .

(28)

Thus, when the two FRIT basis functions have the same di-

rection, , then

So the orthogonality of these FRIT basis functions comes

from the orthogonality of the basis . In partic-

ular, we see that have unit norm. Next, for the case when

the two FRIT basis functions have different directions, ,

using (28) we obtain

In this case, if either or is nonzero, e.g., , then

using the Condition of these bases, , it

implies .

Finally, note that , for all directions [see

(10)]. So, together with the assumption that are constant

functions, we see that all of the FRIT basis functions ,

correspond to the mean of the input image so we

only need to keep one of them (in any direction), which is de-

noted as . The proof is now complete.

Remark 2:

1) An intuition behind the above result is that at each level

of the DWT decomposition applied on the FRAT projec-

tions, all of the nonorthogonality and redundancy of the

FRAT is pushed into the scaling coefficients. When the

DWT’s are taken to the maximum number of levels then

all of the remaining scaling coefficients at different pro-

jections are the same, hence we can drop all but one of

them. The result is an orthonormal FRIT.

2) We prove the above result for the general setting where

different transforms can be applied on different FRAT

projections. The choice of transforms can be either

adaptive, depending on the image, or pre-defined. For

example, one could employ an adaptive wavelet packet

scheme independently on each projection. The orthog-

onality holds as long as the “all lowpass” branch of the

general tree-structured filter bank is decomposed to a

single coefficient. All other branches would contain at

least one highpass filter thus leading to zero-mean basis

functions.

3) Furthermore, due to the “wrap around” effect of the

FRAT, some of its projections could contain strong

periodic components so that a more oscillated basis like

the DCT might be more efficient. Also note that from

Theorem 1, if we apply the 1-D Fourier transform on all

Fig. 8. Illustration on the construction of orthogonal FRIT basis for a 2 �
2 block using the Haar wavelet. Upper: Basis images for the FRAT. Lower:
Basis images for the orthogonal FRIT. These images are obtained by taking the
(scaled) Haar transform for each pair (corresponding to one projection) of the
FRAT basis images. The constant image results from all projections and thus
we can drop all but one of them.

of the FRAT projections then we obtain the 2-D Fourier

transform. For convenience, we still use the term FRIT to

refer to the cases where other transforms than the DWT

might be applied to some of the FRAT projections.

To gain more insight into the construction for the orthogonal

FRIT basis, Fig. 8 illustrates a simple example of the transform

on a 2 2 block using the Haar wavelet. In this case, the FRIT

basis is the same as the 2-D Haar wavelet basis, as well as the

2-D discrete Fourier basis.

V. VARIATIONS ON THE THEME

A. Folded FRAT and FRIT

The FRAT in the previous sections is defined with a peri-

odic basis over . This is equivalent to applying the trans-

form to a periodization of the input image . Therefore rela-

tively large amplitude FRAT coefficients could result due to the

possible discontinuities across the image borders. To overcome

this problem, we propose a similar strategy as in the block co-

sine transform by extending the image symmetrically about its

borders [3].

Given that is a prime number and , then is odd and

can be written as . Consider an input image

, . Fold this image with respect to the lines

and to produce a image , in which (also

see Fig. 9.

(29)

The periodization of is symmetric and continuous

across the borders of the original image, thus eliminating the

jump discontinuity that would have resulted from the periodic

extension of . Applying the FRAT to the results

in transform coefficients. Notice the new range for the

pixel indices of the image . We will show that the FRAT

coefficients of exhibit certain symmetry properties

so that the original image can be perfectly reconstructed by

keeping exactly coefficients.

Consider the 2-D DFT of

Using the symmetry property of in (29), we obtain
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Fig. 9. Extending the image symmetrically about its borders in order to reduce
the discontinuities across the image borders due to the periodization.

Theorem 1 shows that the FRAT , of

can be computed from the inverse 1-D DFT as

where . The symmetry of thus

yields

(30)

and

(31)

From (30) we have or each projection

is symmetric about , and (31) reveals the duplications

among those projections. In fact, with the set of optimal normal

vectors in (20), except for two projections indexed by and

(the vertical and horizontal projections, respectively) all

other projections have an identical twin. By removing those du-

plications we are left with projections.

For example, we can select the set of independent projec-

tions as the ones with normal vectors in the first quadrant [refer

to Fig. 6(b)]. Furthermore, as in (10), the redundancy among the

projections of the folded FRAT can be written as

(32)

The next proposition summarizes the above results.

Proposition 3: The image can be perfectly recon-

structed from the following coefficients:

such that and (33)

and the mean of the image .

To gain better energy compaction, the mean should be sub-

tracted from the image previous to taking the FRAT. The

set of independent coefficients in (33) is referred as the folded

FRAT of the image .

(a)

(b)

Fig. 10. (a) Test image: a truncated Gaussian image of size 256 � 256 that

represents the function f(x ; x ) = 1 e . (b) Compari-
son of nonlinear approximations using four different 2-D transforms: DCT,
DWT, FRIT with usual ordering and FRIT with optimal ordering.

Fig. 11. Nonlinear approximation comparison at different orientation
of the line singularity in the truncated Gaussian images f (x ; x ) =

1 e . In each case, we keep the most 0.5%
significant coefficients.
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(a)

(b)

Fig. 12. From left to right, reconstructed images from the 32, 64, 128, and 256 most significant coefficients of the DWT and FRIT, out of 65 536 coefficients.
(a) Using DWT and (b) using FRIT.

However, orthogonality might be lost in the folded FRIT (re-

sulting from applying 1-D DWT on projections of the

folded FRAT), since the basis functions from a same direction of

the folded FRAT could have overlap. Nevertheless, if we loosen

up the orthogonality constraint, then by construction, the folded

FRAT projections are symmetric with

respect to and . This allows the use of folded

wavelet transform with biorthogonal symmetric wavelets [27]

or orthogonal symmetric IIR wavelets [28].

B. Multilevel FRITs

In the FRIT scheme described previously, multiscale comes

from the 1-D DWT. As a result, at each scale, there is a large

number of directions, which is about the size of the input image.

Moreover, the basis images of the FRIT have long support,

which extend over the whole image.

Here we propose a different scheme where the number of di-

rections can be controlled, and the basis functions have smaller

support. Assume that the input image has the size , where

and are prime numbers. First, we apply

the orthonormal FRIT to nonoverlapping subimages of

size , where . Each sub-image is trans-

formed into “detail” FRIT coefficients plus a mean value.

These mean values form an coarse approximate image of

the original one. Then the process can be iterated on the coarse

version up to levels. The result is called as multilevel FRIT

(MFRIT).

At each level, the basis functions for the “detail” MFRIT co-

efficients are obviously orthogonal within each block, and also

with other blocks since they do not overlap. Furthermore, these

basis functions are orthogonal with the constant function on

their block, and thus orthogonality holds across levels as well.

Consequently, the MFRIT is an orthonormal transform.

By collecting the MFRIT coefficients into groups depending

on their scales and directions, we obtain a subband-like decom-

position with scales, where level has directions. When

, the orthonormal FRIT using the Haar DWT is the same

as the 2 2 Haar DWT (see Fig. 8). Therefore the MFRIT

scheme includes the multilevel 2-D Haar DWT. In general,

when , the MFRIT offers more directions than the 2-D

DWT and can be useful in certain applications such as texture

analysis.

VI. NUMERICAL EXPERIMENTS

A. Nonlinear Approximation

Following the study of the efficiency of the ridgelet transform

in the continuous domain using the truncated Gaussian func-

tions [6], we first perform numerical comparison on a 256

256 image of the function:

[see Fig. 10(a)], using four 2-D transforms: DCT, DWT, FRAT,

and FRIT. The comparison is evaluated in terms of the nonlinear

approximation power, i.e., the ability of reconstructing the orig-

inal image, measured by signal-to-noise ratios (SNR’s), using

the largest magnitude transform coefficients. For the FRAT

and FRIT, we extend the image size to the next prime number,

257, by replicating the last pixel in each row and column. We

use the orthogonal Symmlet wavelet with four vanishing mo-

ments [24] for both the DWT and the FRIT.

Our initial experiments indicate that in order to achieve good

results, it is necessary to apply strong oscillated bases to certain

FRAT projections to handle to the “wrap around” effect (refer to

the remarks at the end of Section IV). For images with linear sin-

gularities, we find that in the FRAT domain, most of the image

energy and singularities are contained in the projections with

the least “wrap around” [see Fig. 13(b)]. Therefore, without re-

sorting to adaptive methods, we employ a simple, pre-defined

scheme where the DWT is only applied to the projections with

, while the remaining projections use the DCT.
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We use in our experiments, which means in the tested

FRIT, only 16 FRAT projections are represented by the DWT.

Although this version of the FRIT contains most of Fourier-type

basis functions, due to the concentration of energy mentioned

above, the resulting nonlinear approximation images are mainly

composed of the ridgelet-type functions that fit around the linear

edge.

Fig. 10(b) display the comparison results. We omit the FRAT

since its performance is much worse than the others. Clearly the

FRIT achieves the best result, as expected from the continuous

theory. Furthermore, the new ordering of the FRAT coefficients

is crucial for the FRIT in obtaining good performance.

We then compare the performance where the singularity line

varies its orientation. Consider the truncated Gaussian image

again, using the function

. Due to the circular symmetry, we only need to con-

sider . Fig. 11 shows the results where the FRIT

(with optimal ordering) consistently outperforms both the DWT,

more than 2 dB on the average, as well as the DCT.

Our next test is a real image of size 256 256 with straight

edges. Fig. 12 shows the images obtained from nonlinear ap-

proximation using the DWT and FRIT. As can be seen, the FRIT

correctly picks up the edges using the first few significant coef-

ficients and produces visually better approximated images. But

let us point out that even this simple test image can not be rep-

resented as a summation of a few “global” linear singularities

(like the Gaussian truncated images), and thus it is not in the

optimal class of the ridgelet transform.

To gain more insight into the FRIT, Fig. 13(a) shows the top

five FRAT projections for the “object” image that contain most

of the energy, measured in the -norm. Those projections cor-

respond to the directions that have discontinuities across, plus

the horizontal and vertical directions. Therefore, we see that at

first the FRAT compacts most of the energy of the image into

a few projections [see Fig. 13(b)], where the linear discontinu-

ities create “jumps.” Next, taking the 1-D DWT on those pro-

jections, which are mainly smooth, compacts the energy further

into a few FRIT coefficients.

B. Image Denoising

The motivation for the FRIT-based image denoising method

is that in the FRIT domain, linear singularities of the image are

represented by a few large coefficients, whereas randomly lo-

cated noisy singularities are unlikely to produce significant co-

efficients. By contrast, in the DWT domain, both image edges

and noisy pixels produce similar amplitude coefficients. There-

fore, a simple thresholding scheme for FRIT coefficients can

be very effective in denoising images that are piecewise smooth

away from singularities along straight edges.

We consider a simple case where the original image is con-

taminated by an additive zero-mean Gaussian white noise of

variance . With an orthogonal FRIT, the noise in the transform

domain is also Gaussian white of the same variance. Therefore

it is appropriate to apply the thresholding estimators that were

proposed in [29] to the FRIT coefficients. More specifically, our

denoising algorithm consists of the following steps.

Step 1) Applying FRIT to the noisy image.

(a)

(b)

Fig. 13. (a) Top five FRAT projections of the “object” image that contain
most of the energy. (b) Distribution of total input image energy among FRAT
projections. Only the top 30 projections are shown in the descending order.

Step 2) Hard-thresholding of FRIT coefficients with the uni-

versal threshold where pixels.

Step 3) Inverse FRIT of the thresholded coefficients.

For an image which is smooth away from linear singularities,

edges are visually well restored after Step 3. However due to the

periodic property of the FRIT, strong edges sometimes create

“wrap around” effects which are visible in the smooth regions

of the image. In order to overcome this problem, we optionally

employ a 2-D adaptive filtering step.

Step 4) (Optional) Adaptive Wiener filtering to reduce the

“wrap around” effect.

In some cases, this can enhances the visual appearance of the

restored image.

The above FRIT denoising algorithm is compared with the

analogous wavelet hard-thresholding method using the same

threshold value. Fig. 14 shows the denoising results on the real

image. The FRIT is clearly shown to be more effective than the

DWT in recovering straight edges, as well as in term of SNRs.
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(a)

(b)

(c)

Fig. 14. Comparison of denoising on the “object” image. (a) Using DWT; SNR
= 19.78 dB. (b) Using FRIT; SNR = 19.67 dB. (c) Using FRIT and Wiener
filter; SNR = 21.07 dB.

VII. CONCLUSION AND DISCUSSION

We presented a new family of discrete orthonormal trans-

forms for images based on the ridgelet idea. Owning to or-

thonormality, the proposed ridgelet transform is self-inverting—

the inverse transform uses the same algorithm as the forward

transform—and has excellent numerical stability. Experimental

results indicate that the FRIT offers an efficient representation

for images that are smooth away from line discontinuities or

straight edges. A Matlab code implementing the transforms and

experiments in this paper is available at an author’s Web page

http://www.ifp.uiuc.edu/~minhdo.

However, it is important to emphasize that the ridgelet trans-

form is only suited for discontinuities along straight lines. For

complex images, where edges are mainly along curves and there

are texture regions (which generate point discontinuities), the

ridgelet transform is not optimal. Therefore, a more practical

scheme in employing the ridgelet transform would first utilize

a quad-tree division of images into suitable blocks where edges

look straight and then apply the finite ridgelet transform to each

block.

APPENDIX

ORTHOGONAL WAVELET TRANSFORM FOR NONDYADIC

LENGTH SIGNALS

In the construction of the orthonormal FRIT, we need wavelet

bases for signals of prime length . In addition, those bases have

to satisfy the Condition in Lemma 1. Let be the

nearest dyadic number to that is smaller than or equal to .

Suppose that is small, then one simple way of taking the

wavelet transform on a sequence of samples is to apply the

usual wavelet transform on the first samples and then extend

it to cover the remaining samples.

Let to be the basis vectors of an orthonormal

wavelet transform of length with decomposition levels. We

assume periodic extension is used to handle the boundary. Sup-

pose that corresponds to the single scaling coefficient or the

mean value, then all other vectors must have zero mean (see

Lemma 1). Denote be the vector with entries, all equal to

. Consider the following vectors defined in

Here, is the scale factor such that . The orthog-

onality of the new set can be easily verified

given the fact that are orthonormal vectors

with zero mean. Therefore, is an orthonormal

basis for that satisfies the Condition . For a length input

vector , the transform coefficients cor-

respond to , where , can be computed effi-

ciently using the usual DWT with levels on the first samples

. The last scaling coefficient is then

replaced by coefficients corresponding to the basis

vectors , . Thus the new basis in also

has fast transforms.
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