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This article introduces the finite state projection �FSP� method for use in the stochastic analysis of
chemically reacting systems. One can describe the chemical populations of such systems with
probability density vectors that evolve according to a set of linear ordinary differential equations
known as the chemical master equation �CME�. Unlike Monte Carlo methods such as the stochastic
simulation algorithm �SSA� or � leaping, the FSP directly solves or approximates the solution of the
CME. If the CME describes a system that has a finite number of distinct population vectors, the FSP
method provides an exact analytical solution. When an infinite or extremely large number of
population variations is possible, the state space can be truncated, and the FSP method provides a
certificate of accuracy for how closely the truncated space approximation matches the true solution.
The proposed FSP algorithm systematically increases the projection space in order to meet
prespecified tolerance in the total probability density error. For any system in which a sufficiently
accurate FSP exists, the FSP algorithm is shown to converge in a finite number of steps. The FSP
is utilized to solve two examples taken from the field of systems biology, and comparisons are made
between the FSP, the SSA, and � leaping algorithms. In both examples, the FSP outperforms the
SSA in terms of accuracy as well as computational efficiency. Furthermore, due to very small
molecular counts in these particular examples, the FSP also performs far more effectively than �
leaping methods. © 2006 American Institute of Physics. �DOI: 10.1063/1.2145882�
I. INTRODUCTION

It is of great interest to the systems biology community
to develop an efficient means of analyzing chemical systems
in which small numbers of intracellular molecules randomly
interact. In many situations, especially in the case of cell fate
decisions, single molecular events may dramatically affect
every subsequent process. In such cases, deterministic mod-
els fail to capture the inherent randomness of the biological
processes, and stochastic models are necessary. Previous
studies have shown that if a chemically reacting system is
well mixed and has a fixed volume and fixed temperature,
then that system is a Markov process. In such a case, the
evolution of the probability density vector �pdv� of the sys-
tem’s chemical population can be described by the chemical
master equation �CME�.1,2 In most cases the CME has not
been directly solved, and analyses are often conducted using
Monte Carlo algorithms such as Gillespie’s stochastic stimu-
lation algorithm �SSA�.3,4 Although the SSA can produce
detailed realizations for stochastically evolving chemical
systems, the method can become very computationally ex-
pensive when the system undergoes enormous numbers of
individual reactions. In these cases it is often necessary to
sacrifice some of the precision of the SSA for faster, yet
approximate methods.

Approximations to the SSA can be grouped into two
categories: time-leaping methods and system-partitioning
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methods. The time-leaping methods rely on the assumption
that many reaction events will occur in a period of time
without significantly changing the reaction propensity func-
tions. This category includes the explicit and implicit � leap-
ing algorithms,5–7 which use Poisson random variables to
simulate how many times each reaction channel fires in a
given time interval. A major difficulty for the � leaping
method results when too many critical reactions are included
in a single leap such that the propensity functions change
excessively and/or some molecular populations become
negative. In Poisson � leaping, these concerns have been
addressed by adaptively restricting the size of each indi-
vidual � leap.7,8 In another approach, Tian and Burrage pro-
posed a � leaping strategy based upon binomial random vari-
ables rather than unbounded Poisson random variables.9

While these recent versions of � leaping are more robust than
their predecessors, their computational efficiency still re-
mains severely compromised in circumstances where very
small populations of interacting molecules result in fast, dra-
matic changes in propensity functions.

The second approach to speeding up the SSA involves
separating the system into slow and fast partitions. In these
approaches one analytically or numerically approximates the
dynamics of the fast partition and then stochastically simu-
lates the slow partition. In one of the first such methods, Rao
and Arkin applied a quasi-steady-state assumption to the fast
reactions and treated the remaining slow reactions as sto-
chastic events.10 In a similar study, Haseltine and Rawlings

also separated the system into slow and fast reactions but
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approximated the fast reactions deterministically or as
Langevin equations.11 Most recently, Cao et al. have parti-
tioned the system according to fast and slow species in order
to develop the slow-scale SSA �ssSSA�.12

For any Monte Carlo method, including all of those
above, computing a statistical description of the system’s dy-
namics, such as the probability density, mean, or variance,
requires a large number of individual process realizations.
For some systems, important biological traits may be very
rare, and extremely large numbers of simulations may be
required to get sufficiently precise statistics. For example,
the pyelonephritis-associated pili �Pap� epigenetic switch in
E. coli has an OFF to ON switch rate on the order of 10−4 per
cell per generation.13 In order to capture this switch rate with
a relative accuracy of 1%, one must run enough simulations
to get a resolution of better then 10−6. It may be shown that
one cannot attain this resolution before completing more
than 1�106 Monte Carlo simulations. In order to meet these
stringent requirements on precision for systems such as the
Pap switch, we now propose an entirely different approach.
This method, known as the finite state projection �FSP� al-
gorithm, differs from the SSA and its derivatives in that the
FSP algorithm provides a direct solution or approximation of
the CME without generating Monte Carlo simulations. Addi-
tionally, unlike Monte Carlo methods, the FSP provides a
guarantee as to its own accuracy.

The remainder of this paper is organized into four sec-
tions. The next section establishes the basic mathematical
theory needed for the FSP algorithm. The third section intro-
duces the steps of the FSP algorithm and illustrates how to
use the algorithm to describe how a chemical system evolves
according to the CME. The fourth section illustrates the
implementation of the FSP algorithm through two examples
from ongoing computational research concerning the Pap
epigenetic switch. The final section concludes with a discus-
sion of the capabilities of the proposed algorithm especially
in the context of its usefulness in the field of systems
biology.
P�X;t� = A · P�X;t� , �2.4�
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II. MATHEMATICAL BACKGROUND

Consider a well-mixed, fixed-temperature, and fixed-
volume system of N distinct reacting chemical species. De-
fine p�x ; t� to be the probability that the chemical system will
have a molecular population vector x at time t, where x
�NN is a vector of integers representing a specific popula-
tion of each of the N molecular species. Suppose that the
system’s chemical population can change through M differ-
ent reaction channels and let a��x�dt and �� be the non-
negative propensity function and the stoichiometric transi-
tion vector, respectively, of each of the �= �1,2 , . . . ,M�
reactions. Given that we know the probability density vector
at t, the probability that the system will be in the state x at
time t+dt is equal to the sum of �i� the probability that the
system begins in the state x at t and remains there until t
+dt and �ii� the probability that the system is in a different
state at time t and will transition to x in the considered time
step dt. This probability can be written as

p�x;t + dt� = p�x;t��1 − �
�=1

M

a��x�dt�
+ �

�=1

M

p�x − ��;t�a��x − ���dt . �2.1�

From Eq. �2.1� it is relatively simple to derive the differential
equation known as the CME:3

ṗ�x;t� = − p�x;t��
�=1

M

a��x� + �
�=1

M

p�x − ��;t�a��x − ��� .

�2.2�

By combining all possible reactions that begin or end
with the state x, the time derivative of the probability density
of state x can be written in vector form as
ṗ�x;t� = �− ��=1

M
a��x� a1�x − �1� a2�x − �2� ¯ aM�x − �M���

p�x;t�
p��x − �1�;t�
p��x − �2�;t�

	
p��x − vM�;t�


 . �2.3�
We will a priori fix a sequence x1 ,x2 , . . . of elements in
NN and define X : = �x1 ,x2 , . . . �T. The particular sequence
x1 ,x2 , . . . may be chosen to visit every element of the entire
space NN. In this case, the choice of X corresponds to a
particular enumeration of the space NN. Once X is selected,
we can write Eq. �2.3� as a single linear expression:

˙

where P�X ; t� : = �p�x1 , t� , p�x2 , t� , . . . �T is the complete prob-
ability density state vector at time t and A is the state reac-
tion matrix. The columns and rows of A are uniquely defined
by the system’s stoichiometry and the choice of X. Begin-
ning at any state xi, there can be a maximum of M possible
reactions; each reaction leads to a different state: x j =xi+��.

The state reaction matrix contains information regarding
every reaction, each weighted by the corresponding propen-

sity function, and the elements of A are given as
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Aij = �− ��=1

M
a��xi� for i = j

a��xi� for all j such that x j = xi + ��

0 Otherwise
� .

�2.5�

A has the properties that it is independent of t; all of its
diagonal elements are nonpositive, all its off-diagonal ele-
ments are non-negative, and all its columns sum to exactly
zero. The solution to the linear ordinary differential equation
�ODE� beginning at t=0 and ending at t= tf in Eq. �2.4� is the
expression

P�X;tf� = ��0,tf� · P�X;0� . �2.6�

In the case where there are only a finite number of reachable
states, the operator ��0, tf� is the exponential of Atf, and one
can compute the solution: P�X ; tf�=exp�Atf�P�X ;0�.

For the examples in this study, we are interested only in
the probability density at the final time tf. This information is
simply obtained by computing the exponential of Atf directly
and multiplying the resulting matrix by the initial probability
density vector. Moler and Van Loan provide many methods
for performing this computation in their celebrated 1978 pa-
per “Nineteen Dubious Ways to Compute the Exponential of
a Matrix”14 and its revisited edition of 2003.15 For our ex-
amples, all matrix exponentials are computed using the
expm() function in MathWorks MATLAB. This built-in routine
is based upon a scaling and squaring algorithm with a Pade
approximation. As a powerful alternative to MATLAB, Roger
Sidje’s EXPOKIT provides a powerful matrix exponential
package for programmers in C, C++, and FORTRAN. In some
situations, one may wish to obtain the probability density at
many intermediate times as well as the final time. For this it
may be more efficient not to directly calculate the matrix
exponential, but instead use a numerical stiff ODE solver
such as one of MATLAB’s ode15s or ode23s.

In practice there may be many simple chemical systems
for which the exponential representation will produce an ex-
act solution �see the example in Sec. IV A 1�. Such cases
include any system in which the number of molecules in
each species is bounded through considerations such as the
conservation of mass. However, when A is infinite dimen-
sional or extremely large, the corresponding analytic solution
is unclear or vastly difficult to compute. Even in these cases,
however, one may devise a systematic means of approximat-
ing the full system using finite-dimensional subsystems. This
systematic truncation approach is referred to as the finite
state projection method.

The presentation of the FSP method first requires the
introduction of some convenient notations. Let J
= 
j1 , j2 , j3 , . . . � denote an ordered index set corresponding to
a specific set of states, 
xj1 ,xj2 ,xj3 , . . . �. For any matrix, let
AIJ denote a submatrix of A such that the rows have been
chosen and ordered according to I and the columns have
been chosen and ordered according to J. For example, if A is

given by
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A = �1 2 3

4 5 6

7 8 9

 ,

and I and J are defined as 
3,1 ,2� and 
1,3�, respectively,
then the submatrix AIJ is given as

AIJ = �7 9

1 3

4 6

 .

Similarly let AJ denote the principle submatrix of A, in
which both rows and columns have been chosen and ordered
according to J. We will use the notation J� to denote the
complement of the set J on the entire set X. Define the se-
quence 
Jk� as a sequence of nested sets such that
J1�J2�J3�¯. In addition to the set notation, the vector 1
will be used to denote a column of all ones such that for any
vector v, the product 1Tv is the sum of the elements in v.
With this notation we can now state and prove the following
two theorems.

Theorem 2.1. If A�Rn�n has no negative off-diagonal
elements, then for any pair of index sets, J2�J1,

�exp�AJ2
��J1

� exp�AJ1
� � 0 . �2.7�

Proof. Because J2�J1, without loss of generality, AJ2
can be written in terms of AJ1

as

AJ2
= �AJ1

B

C D
� .

If one lets �=min
0,Aii�, where ��0, then one can write

AJ2
=�I+ ÃJ2

, where ÃJ2
is a non-negative matrix. Since the

matrix �I commutes with ÃJ2
, the matrix exponential of AJ2

can be wrriten as

exp�AJ2
� = exp���exp�ÃJ1

B

C D̃
� .

Expanding the matrix exponential term by term produces

exp�AJ2
� = exp�����I 0

0 I
� + �ÃJ1

B

C D̃
�

+
1

2�ÃJ1

2 + BC ÃJ1
B + BD̃

CÃJ1
+ D̃C CB + D̃2

� + ¯ � .

Using the property that ÃJ2
is a non-negative matrix, we can
rewrite the exponential as
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exp�AJ2
� = exp����exp�ÃJ1

� + Q̃11 Q̃12

Q̃21 Q̃22

�
=�exp�AJ1

� + Q11 Q12

Q21 Q22
� ,

where Qij =exp���Q̃ij are non-negative matrices. Hence,

�exp�AJ2
��J1

� �exp�AJ1
� 0

0 0
�

J1

= exp�AJ1
� ,

and the proof is complete. �

As stated above, the full state reaction matrix A in Eq.
�2.4� has no negative off-diagonal terms and therefore satis-
fies the assumptions of Theorem 2.1. Consider two sub-
systems of the full system described by Eq. �2.4�, which
include the states indexed by the sets J1 and J2, where
J2�J1. Since the probability density vector P�X ; t� is always
non-negative, Theorem 2.1 assures that

�exp�AJ2
tf��J1

P�XJ1
;0� � exp�AJ1

tf�P�XJ1
;0� ,

where XJ1
is the vector of those elements of X indexed by J1.

As will be seen later, this result guarantees that as one adds
more states to finite truncation of the infinite system, the
solution to Eq. �2.4� increases monotonically.

In addition to always being non-negative, the solution of
Eq. �2.4� at any time tf always sums to exactly 1. These
properties and the non-negativity of the off-diagonal ele-
ments of A allow one to prove a second theorem and relate
the solution of Eq. �2.4� with a finite state description to that
with the full state description.

Theorem 2.2. Consider any Markov process in which
the probability density state vector evolves according to the
linear ODE:

Ṗ�X;t� = A · P�X;t� ,

where A has no negative off-diagonal entries. Let AJ be a
principle submatrix of A and let P�XJ ;0� be a vector of the
corresponding elements of P�X ;0�.

If for 	
0 and tf �0

1Texp�AJtf�P�XJ;0� � 1 − 	 , �2.8�

then

exp�AJtf�P�XJ;0� � P�XJ;tf� � exp�AJtf�P�XJ;0� + 	1 .

�2.9�

Proof. We begin by proving the left-hand inequality. The
evolution of the full probability density vector is governed
by the ODE:

� Ṗ�XJ;t�

Ṗ�XJ�;t�
� = � AJ AJJ�

AJ�J AJ�J�
�� P�XJ;t�

P�XJ�;t� � , �2.10�

where the submatrices AJJ� and AJ�J are non-negative since

A has no negative off-diagonal terms. The evolution of the
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probability density of the set of states indexed by J is given
by the finite linear ODE:

Ṗ�XJ;t� = AJP�XJ;t� + AJJ�P�XJ�;t� , �2.11�

whose solution is given by

P�XJ;tf� = exp�AJtf�P�XJ;0�

+ �
0

tf

exp�AJ�tf − ���AJJ�P�XJ�;��d�

�exp�AJtf�P�XJ;0� ,

where the last inequality follows from the non-negativity of
AJJ�, the non-negativity of the vector of probability densities
P�XJ� ; t�, and the non-negativity of exp�AJt� for t�0 guar-
anteed by Theorem 2.1.

The proof of the right-hand inequality uses the fact that
the probability density on the infinite space is non-negative
and sums to exactly 1, and therefore the probability of the
J-indexed set must also be non-negative and sum to no more
than 1: 1TP�XJ ; tf��1. Using this together with �2.8� gives

1T exp�AJtf�P�XJ;0� � 1 − 	

�1TP�XJ;tf� − 	 ,

We have also shown that P�X j ; tf��exp�AJtf�P�XJ ;0�.
Hence, the above inequality holds componentwise, i.e.,

P�XJ;tf� � exp�AJtf�P�XJ;0� + 	1 , �2.12�

which completes the proof. �

Theorems 2.1 and 2.2 will hereafter be referred to as the
finite state projection theorems. The FSP theorems tell us
two very important pieces of information. First, Theorem 2.1
shows that as we increase the size of the finite projection
space, the approximation result monotonically increases.
Second, Theorem 2.2 guarantees that the approximate solu-
tion never exceeds the actual solution and gives us certificate
of how close the approximation is to the true solution.

To interpret the underlying intuition of the finite state
projection method, it is helpful to represent all possible states
of a discrete valued Markov process as nodes on an infinite
N-dimensional integer lattice. For chemical systems N could
correspond to the number of molecular species, and the
nodes correspond to distinct population vectors xi. As an
example, Fig. 1 �top� illustrates a two-dimensional state lat-
tice. We are interested in projecting this infinite lattice onto
the subset enclosed by the gray square, which corresponds to
some index set J. This projected system is shown in Fig. 1

�bottom�, where the truncated system corresponds to the set J
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composed with its complement J�, where J� has been aggre-
gated to a single point. All reactions beginning within the set
J are included in the projected space formulation exactly as
they are in the original. These include transitions between
states within J as well as reactions that begin in J and end in
J�. The propensity functions of these reactions completely
determine the J-indexed principle submatrix of the state re-
action matrix AJ. Since the projected system is finite dimen-
sional, its exact solution at any time can be computed using
the matrix exponential function and the truncated initial
probability density vector. This FSP solution describes all
trajectories fully enclosed in J. Intuitively, Theorem 2.1
shows that as the set J increases, fewer trajectories are lost to
J�and the probability of remaining in J increases. Theorem
2.2 shows that the probability that the system is currently in
J must be at least as large as the probability that the system
has been in J for all times t=0 to t= tf. In the following
section, we use this intuition and the FSP theorems to de-
velop a very useful algorithm with which many interesting
chemical reaction problems may be solved.

III. THE FINITE STATE PROJECTION ALGORITHM

The results in the previous section suggest a systematic
procedure to to evaluate Markov processes such as those

FIG. 1. Conceptual figure for the finite state projection method. �Top� Sche-
matic of an infinite integer lattice representing all possible states in a generic
discrete valued Markov process. �Bottom� Projection of the infinite state
system to a finite set of states.
described by the chemical master equation. This algorithm,
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which we refer to as the finite state projection algorithm, can
be stated as follows

The Finite State Projection Algorithm

Step 0.

Define the propensity functions and stoichiometry for all
reactions.
Choose the initial probability density vector, P�X ;0�.
Choose the final time of interest, tf.
Specify the total amount of acceptable error, 	
0.
Choose an initial finite set of states, XJo

, for the FSP.
Initialize a counter, i=0.

Step 1.

Use propensity functions and stoichiometry to form AJi
.

Compute �Ji
=1T exp�AJi

tf�P�XJi
;0�.

Step 2.

If �Ji
�1−	, Stop.

exp�AJi
tf�P�XJi

;0� approximates P�XJi
; tf� to within a to-

tal error of 	.

Step 3.

Add more states to find XJi+1
.

Increment i and return to Step 1.

In Step 3 of the above algorithm, the choice of how to
add new states to the finite projection space is not explicitly
stated. While Theorem 2.1 guarantees that adding new states
can only improve the accuracy of the approximate solution,
it does not explicitly state which additions are most benefi-
cial. In practice there may be many methods of choosing
how to add states to the projection, and the efficiency of
each method may depend upon the class of problem. In gen-
eral, the best methods will utilize knowledge of the stoichi-
ometry of the chemical reactions and avoid including un-
reachable states. The following subsection illustrates one
such method which introduces and utilizes a concept of

FIG. 2. Schematic of a two-dimensional integer lattice representing the
infinite states of a discrete valued Markov process. Each integer valued state
vector �a ,b� is represented by a circle and the directionality of transitions
between states is shown by the connecting arrows.
N-step reachability.
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A. State space expansion through N-step reachability

In order to properly introduce the process of expanding
the state space through the idea of reachability, we must first
introduce some additional concepts. Consider the generic
two-dimensional infinite state space lattice shown in Fig. 2.
In general, any chemically reacting system can be repre-
sented by an N-dimensional integer lattice, where N is the
number of reacting species and where every node on the
lattice is unique and can be enumerated. In Fig. 2, each circle
represents a specific population vector xT= �a ,b�, and the ini-
tial condition is shaded in black. Reactions are shown with
arrows connecting the states. For this specific system, the
diagonal-oriented reactions are reversible, or bidirectional,
while the horizontal reactions are irreversible.

Let Ik denote the set of all states that can be reached
from the initial condition in k or fewer chemical reactions.
For instance, in Fig. 2, Io consists of only the initial condi-
tion, which is labeled with the number zero. Similarly, I1

includes the initial condition and all nodes containing the
number 1. In general, Ik contains all states in Ik−1 combined
with all states that can be reached via a single reaction be-
ginning in Ik−1. Consider any finite set of states IR which are
reachable from the initial set I0. It is not difficult to see that
there will always exist a finite integer kR such that Ik� IR for
all k�kR. For this method of including sequentially reach-
able states, the following result guarantees that if a finite
state projection exists that satisfies the stopping criterion,
then the FSP algorithm will converge in a finite number of
steps.

Proposition 3.1. Suppose that there exists a finite set of
states indexed by S for which the FSP meets the stopping
criterion:

1T exp�AStf�P�XS;0� � 1 − 	 . �3.1�

Then there exists a number of reactions, m, such that the set
of reachable states, Ik also satisfies �3.1� for all k�m.

Proof. The finite set S can be separated into the reach-
able subset R and the unreachable subset U. Without loss of
generality, the state reaction matrix AS can be written as

AS = �AR B

C AU
� ,

and the initial condition, which must be contained in the
reachable space, can be written as

P�XS;0� = �P�XR;0�
P�XU;0� � = �P�XR;0�

0
� .

Since the states in U are unreachable from the states in R, the
matrix C is zero. Through series expansion, the exponential
of AStf can be written as

exp�AStf� = �� I 0

0 I
� + �AR B

0 AU
�tf

+
1

2
�AR

2 ARB + BAU

0 AU
2 �tf

2 + ¯ � .

Combining terms allows one to write the matrix exponential

as
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exp�Aptf� = �exp�Atf� Q

0 exp�AUtf�
� ,

where Q is a positive matrix. Substituting this expression
into Eq. �3.1� gives

1 − 	 � 1T exp�AStf�P�XS;0� = 1T exp�ARtf�P�XR;0� .

�3.2�

Choose m large enough such that Im�R, then the set indexed
by Ik satisfies Eq. �3.1� for all k�m, completing the proof.�

Proposition 3.1 requires that there exists a finite set of
states in which the system remains �with probability 1−	� for
the entire time interval, t� �0, tf�. If this assumption is satis-
fied, then the N-step FSP algorithm will produce an accept-
able approximation within a finite number of steps. If the
population of the system is bounded �i.e., by conservation of
mass or volume�, then such a set will obviously exist. How-
ever, one can construct some pathological examples, where
the population becomes unbounded for some t� �0, tf� �with
probability greater than 	�. For such examples, the FSP will
fail to find a sufficient approximation to the entire probability
density vector. Such pathological examples cannot exist in
biology, but if such an example did exist, all other methods
�SSA, � leaping, and others� would similarly fail.

The next section utilizes the FSP algorithm in order to
solve the CME for two chemically reacting systems taken
from the field of systems biology. The first example illus-
trates the simplest case where there are a known, finite num-
ber of possible states and the CME can be solved exactly. In
this case Step 3 of the FSP algorithm may be skipped. The
second example allows for regulatory protein translation and
degradation events such that there is an infinite number of
reachable states. In this case the FSP of the original chemical
Markov process results in an approximate solution of the
CME.

IV. EXAMPLES OF THE APPLICATION OF THE FSP
ALGORITHM

The following two examples illustrate the use of the fi-
nite state projection algorithm for the numerical study of the
Pap epigenetic switch. This inherently stochastic genetic
switch determines whether or not E. coli bacteria will ex-
press the hairlike surface structures known as Pap pili. These
pilli enable E. coli to attach to host cells and establish infec-
tions and account for nearly 90% of upper urinary tract in-
fections in women. The biological model is based upon ex-

perimental observations made by Low and Co-Workers at
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UCSB,13,16,17 and specific results of the more detailed model
are presented by Munsky et al.18 Figure 3 shows a simple
illustration of the system consisting of the single pap operon
with two binding sites and a regulatory protein, leucine-
responsive regulatory protein �LRP�. LRP binds reversibly at
either or both of the pap binding sites such that the operon
can exhibit a total of four different configurations. Each of
these configurations is considered as a separate chemical spe-
cies: g1 to g4 as defined in Fig. 3. When LRP binds to the
upstream site �left� and not to the downstream �right� site the
cell is considered to be in a production state— when in this
state �circled in Fig. 3�, the cell can produce the proteins
necessary to begin production of pili. All other configura-
tions do not produce the necessary proteins. In this paper, we
consider only a small submodule of the full Pap system. In
the more detailed model, the switch depends upon additional
chemical species, and the pap operon can achieve 64 distinct
configurations. Although we have successfully implemented
the FSP algorithm on the full 64-configuration model �see
Ref. 18 or some preliminary results�, the objective of this
paper is to solely illustrate the use of the FSP algorithm. We
are interested in the state of the system at a specific instant in
time tf at which the cell’s fate is decided; in our example,
this decision occurs at 10 s.

In addition to the operon and LRP, the model also con-
siders the local regulatory protein, PapI, which acts to de-
crease the rate at which LRP unbinds from the operon. In the
real system the change in the population of PapI serves as a
positive feedback loop in that larger concentrations of PapI
make it more likely for the gene to express the g2 configu-
ration and continue to produce pili.16,17 In the first example,
the population of PapI is assumed to be constant, and the
system has exactly four reachable states from the initial con-
dition. In this case the chemical master equation can be
solved exactly to find the probability density vector at any
future time. In the second example the population of PapI is
allowed to change according to translation and degradation
events, and the resulting Markov process describing the
chemical system has an infinite number of possible states. In
each example, the solution scheme is first presented, fol-
lowed by documentation of the specific parameters and a
presentation of computed results. The FSP analyses are then
compared to those obtained through use of the SSA and an

FIG. 3. Schematic of the four possible DNA-LRP binding configurations of
the pap operon and the eight possible LRP binding and unbinding reactions.
The circled state corresponds to the production state in which transcription
of the messenger RNA’s for pili production and PapI translation is possible.
explicit � leaping algorithm, and comments are made regard-
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ing the comparative efficiency and accuracy of the three
methods. In this study, we choose not to make comparisons
between the FSP and partitioning methods such as the slow-
scale SSA. Such a comparison is deemed unnecessary—one
can also apply many of the same partitioning approximations
for similar advantages to the FSP �work in preparation for
submission elsewhere�. All codes are implemented on a
1.50 GHz Intel Pentium 4 processor running a Linux envi-
ronment; the SSA and the adaptive step � leaping algorithm
implementations are conducted using UCSB’s software
package STOCHKIT,19 and all FSP analyses are conducted us-
ing Math Works MATLAB 7.0.

A. Example 1: Exact probability density vector
solution for finite state problem

In the first example, we consider the Pap system shown
in Fig. 3, in which it is assumed that the total concentrations
of both LRP and PapI are finite integer quantities fixed at u0

and �0, respectively. With these assumptions, one can
uniquely write out all four possible state descriptions in
terms of the populations of each of the important considered
species.

X = 
xi� =��
g1

g2

g3

g4

LRP

PapI


� �4.1�

=��
1

0

0

0

u0

r0


,�
0

1

0

0

u0 − 1

r0


,�
0

0

1

0

u0 − 1

r0


,�
0

0

0

1

u0 − 2

r0


� .

The propensity function for each of the eight possible chemi-
cal reactions, a��X� for �= 
1,2 , . . . ,8�, is given by a PapI-
dependent reaction rate constant, c���PapI��, multiplied by
the product of the concentrations of the reactants. For ex-
ample, reaction number 1 of the form R1 :g1+LRP→g2 has a
propensity function: a1=c1��PapI���g1��LRP�, where the
brackets �¯� around a chemical species denote the popula-
tion of that chemical species. Since in this case the popula-
tions of PapI and LRP are assumed to be constant, and gi

is either 0 or 1, the complete reaction matrix A can be writ-

ten as

 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



044104-8 B. Munsky and M. Khammash J. Chem. Phys. 124, 044104 �2006�
A = �
− c1u0 − c3u0 c2 c4 0

c1u0 − c2 − c5�u0 − 1� 0 c6

c3u0 0 − c4 − c7�u0 − 1� c8

0 c5�u0 − 1� c7�u0 − 1� − c6 − c8


 . �4.2�
Suppose that we know that at time t=0 the system is in the
x1 state—it has the initial probability density vector,
P�X ;0�= �P�x1 ;0� P�x2 ;0� P�x3 ;0� P�x4 ;0��T= �1 0 0 0�T.
Then we can exactly calculate the solution of the probability
density vector at time tf as P�X ; tf�=exp�Atf�P�X ;0�.

Table I provides the system parameters and reaction con-
stants for this example. For the state reaction matrix A given
in Eq. �4.2�, the state transition matrix, exp�Atf�, has been
calculated in MATALB using the command expm��. Figure 4
�black bars� shows the probability density vector of the sys-
tem at the final time, tf =10 s as calculated using the FSP.
Figure 4 also shows the same probability density vectors as
averaged using 104 simulations of the SSA �dark gray bars�
included in the software package STOCHKIT.19 In terms of ac-
curacy, Fig. 4 shows that the SSA and the FSP produce very
similar results. However, even after 104 simulations, the pdv
acquired with the SSA differs noticeably from the more ac-
curate FSP solution. Suppose we are only interested in the
probability that the gene will be in the g1 configuration.
From the FSP computation this state has a probability of
0.002 433. Five independent sets of 104 SSA simulations pre-
dicted this probability to be 0.0029, 0.0025, 0.0027, 0.0027,
and 0.0016, respectively. Thus the SSA results have relative
errors that range from −34% to +19%. Depending upon the
needs of the researcher, such errors may be unacceptable,
and more simulations will be required. As the number of

TABLE I. Reactions and parameters used in the SSA and exact FSP solu-
tions for the four-state, eight-reaction system describing the Pap epigenetic
switch.

Reactions
Number Stoichiometry Rate constant �c�� Units

R1 g1+LRP→g2 1 s−1

R2 g2→g1+LRP 2.50–2.25 �r / �1+r�� s−1

R3 g1+LRP→g3 1 s−1

R4 g3→g1+LRP 1.20–0.20 �r / �1+r�� s−1

R5 g2+LRP→g4 0.01 s−1

R6 g4→g2+LRP 1.20–0.20 �r / �1+r�� s−1

R7 g3+LRP→g4 0.01 s−1

R8 g4→g3+LRP 2.50–2.25 �r / �1+r�� s−1

Parameters and initial conditions
Parameter Notation Value

LRP population uo 100
PapI population ro 5
Initial time to 0 s
Final time tf 10 s
Initial pdv P�X ;0� �1,0 ,0 ,0�T
Downloaded 29 Mar 2006 to 169.231.32.215. Redistribution subject to
simulations increases, the SSA approaches the accuracy of
the FSP; however, even at 106 runs the relative errors of only
four sets of simulations ranged as high as 0.6%. On average,
each SSA run required the simulation of about 24 events.
However, if one were to increase all of the rate constants by
a large constant �or equivalently increase the time of simu-
lation�, then the number of reactions would increase propor-
tionately. As more reactions occur, the computational effort
of the SSA also increases, while the effort required for the
FSP method remains unchanged. For a comparison of the
time required, the FSP solution took less than 0.3 s while the
SSA took approximately 0.4 s to simulate the system 104

times or 40 s to simulate the system 106 times.

1. Comparison to � leaping

As stated above, the use of time-leaping methods has
dramatically improved the computational efficiency of the
SSA in many circumstances. However, for this particular ex-
ample, these methods offer no advantage. At any instant in
time, each of the four molecular species, g1 to g4, has a
population of either 0 or 1. It is not possible for any reaction
to occur twice consecutively without resulting in negative
populations. Furthermore, every propensity function
switches between zero and some positive value within the
space of a single reaction. In order to avoid impossible popu-
lations, therefore, no � leap may include more than a single
reaction, which is no better than an SSA step. The reader

FIG. 4. Probability density vector for the simple four-state model at time
tf =10 s as calculated directly using the exact FSP method �black bars� and
as averaged using 104 runs of the stochastic simulation algorithm �dark gray
bars� and an adaptive � leaping algorithm �light gray bars�. Initial conditions
were pap operon configuration, g1, at to=0 s �see parameters and initial

conditions in Table I�.
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should note that the statement applies to binomial � leaping
as well as Poisson � leaping. For example, STOCHKIT’s adap-
tive step size � leaping code19 automatically reverts to the
SSA and takes about 0.4 s for 104 realizations. Figure 4
�light gray bars� illustrates the results using 104 � leaping
simulations.

B. Example 2: Approximate probability density vector
solution for the Pap system with translation and
degradation of PapI

In most realistic biological systems, the chemical con-

centrations of regulatory proteins are constantly changing by

0 0 0 0 0 0 0 cD�r�
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discrete values through, transcription, translation, degrada-
tion, and similar events. In this example we add additional
such reactions to the above system and allow the population
of PapI to change over time. For later convenience, we use
the variable r to denote the concentration of PapI: r
��PapI�. Suppose r increases by a stochastic reaction that
can occur when the gene is in the g2 configuration. Also, let
r decrease through a stochastic degradation event that is in-
dependent of the gene state. The propensity functions for
these events can then be given, respectively, as aT=cT�g2�
and aD=cDr. Because r is allowed to change, the set of all

possible states becomes
X =��
g1

g2

g3

g4

LRP

PapI



i

�=��
1

0

0

0

u0

ri


,�
0

1

0

0

u0 − 1

r


,�
0

0

1

0

u0 − 1

r


,�
0

0

0

1

u0 − 2

r0


� for r = 
0,1,2, . . . � . �4.3�

At this point it is useful to establish a unique ordering system for the elements in the state space X. For this particular problem,
it is convenient to arrange the states according to the population of PapI:

j = �
�4r + 1� if �g1� = 1

�4r + 2� if �g2� = 1

�4r + 3� if �g3� = 1

�4r + 4� if �g4� = 1
� = �

i=1

4

�r + i�gi�� , �4.4�

where j is the index of the state x j �X. The system changes from one state to another through three types of reactions: First,
the operon configuration can change according to the reactions described above in the first example. The rates for these
reactions are now dependent upon the variable concentration of PapI:Ar=A�r�, where the form of A is given in Eq. �4.2� The
second reaction type allows for the translation of PapI only when the pap operon is in the g2 configuration. The third type
allows for PapI to degrade. Using the ordering defined in Eq. �4.4�, all reactions can be combined to form the global reaction
matrix:

A =�
A0 − T0 − D0 D1 0 0 ¯

T0 A1 − T1 − D1 D2 0 ¯

0 T1 A2 − T2 − D2 D3 �

	 0 T2 A3 − T3 − D3 �

	 � 0 T3 �

	 � � 0 �

	 � � � �

� , �4.5�

where the transcription and the degradation matrices T and D, respectively, are given by

T =�
0 0 0 0

0 cT 0 0

0 0 0 0� and D =�
cD�r� 0 0 0

0 cD�r� 0 0

0 0 cD�r� 0 � . �4.6�
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The production and degradation of PapI are modeled as sto-
chastic events, such that it is possible �although with zero
probability if cT is finite and cD is nonzero� that infinitely
more PapI-production events will occur than PapI-
degradation events in finite time. This suggests that the value
of r must be allowed to grow unbounded, and we cannot
compute an exact analytical solution as in the previous ex-
ample. In this case it will be necessary to truncate A using
the FSP algorithm.

Suppose that at time t=0 it is known that the gene is in
the g1 configuration and there are exactly r0 molecules of
PapI present in the system:

P�XJo
;0� = �

1

0

0

0

 ,

where

J0 = �
4ro + 1

4ro + 2

4ro + 3

4ro + 4

 .

Then, using the FSP algorithm, if we can find a principle
submatrix AJk

, such that

1T exp�AJk
tf�P�XJk

;0� � 1 − 	 , �4.7�

then we are guaranteed that the probability density for every
state at time t= tf is within the bounds given by

exp�AJk
tf�P�XJk

;0� � P�XJk
;tf�

� exp�AJk
tf�P�XJk

;0� + 	1 . �4.8�

For this problem, it is easy to choose a searching algorithm
to dictate the expansion of the set Jk until the condition
specified by Eq. �3.1� is met. The most reasonable search
algorithm is to simply continue adding adjacent block struc-
tures of the form given in Eq. �4.5�—this corresponds to
increasing the space of sets that are sequentially reachable
from Jo through PapI translation and degradation events.

Table II provides the reaction parameters that, in addi-
tion to those in Table I, have been used for this example. We
have specified a total error tolerance of 	=10−6 for the prob-
ability density vector at time tf. We chose this error tolerance
in order to predict a switch rate on the order of 10−4 to within
a 1% relative error. Figure 5 shows the lower bound on the
probability density vector at the final time as computed with
the FSP algorithm. In this figure, the states have been ar-
ranged according to their index as specified in Eq. �4.4�.
Recall that although inclusion of states is based upon reach-
ability, the choice of enumeration is arbitrary, such that it is
often necessary to reorder and combine states to illustrate
more meaningful results. For instance, in this example we
may be most interested in the distribution of the different
operon states: g1 through g4 or the distribution of the popu-
lation of PapI. Figure 6 shows the partial probability density

vectors for the population of PapI as separated for each pos-
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sible operon configuration. From the figure, one can observe
that the production operon configuration, g2 �top right�, has a
different distribution shape than do the the other states. In
particular, the median population of PapI is much larger
when the operon is in the g2 configuration. In this Pap sys-
tem, the population of PapI can be related to amount of pili
expression found on the bacteria, and it might not actually be
interesting to know the gene configuration of the system. In
this case, it is helpful to consider the distribution in the for-
mat of Fig. 7, which shows the probability density of the
total amount of PapI. For these results, the FSP required the
inclusion of all values of r from 0 to 30 �corresponding to a
total of 124 states�, and the sum of the probability density
was found to be greater than 0.999 999. The results provide
us a guarantee that the probability of every state �including
those with more than 30 copies of r� is known within a
positive error of 10−6. We also have a guarantee that the error
in the full probability density vector is non-negative and
sums to less than 10−6.

TABLE II. Reactions and parameters used in the SSA and exact FSP solu-
tions for the Pap epigenetic switch in which the population of the regulatory
protein PapI may change according to stochastic translation and degradation
events. See also Table I.

Reactions
Number Stoichiometry Rate constant �c�� Units

RT g2→g2+r 10 s−1

RD r→� 1 s−1

Parameters and initial conditions
Parameter Notation Value

Initial catalyst protein ro 5
Initial pap operon state g1 ¯

Initial state jo=4r0+1 21
Initial pdv P�XJo

;0�=1 ¯

Allowable error in pdv 	 10−6

FIG. 5. Probability density vector solution for the Pap model in which PapI
is allowed to change through stochastic translation and degradation events.
The states are ordered according to Eq. �4.4�, and the density vector is
shown as time tf =10 s for the initial condition of state j=21 ��PapI�=5
molecules and pap operon in state g1� at time to=0 s �see also parameters

and initial conditions in Tables I and II�.
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The most biologically interesting results correspond to
cells in which there is a large amount of PapI; these are the
cells that will actually succeed in turning ON and express
pili. For our model, we define an ON cell as a cell that
contains at least 20 molecules of PapI. In Fig. 7, ON cells are
all those to the right of the dashed line. From the figure one
can immediately see that the probability turning ON is very
low; using the FSP, this probability is guaranteed to be
within the interval of �1.376,1.383��10−4. We also con-
ducted five sets of 105 SSA simulations—each with a differ-
ent seed for the random number generator. In these numeri-
cal experiments, the SSA computed the probability of having
more than 20 molecules of PapI to be 
1.3,1.8,1.7,1.3, and
0.9� �10−4. For the five sets of 105 SSA simulations, the
relative error ranged between −35% and +30%. For compari-
son, the relative error of the FSP is guaranteed to be in the

FIG. 6. Solution for the Pap model in which PapI is allowed to change
through stochastic translation and degradation events. The probability den-
sity vector from Fig. 5 is separated into four components according to when
the pap operon is in �top left� g1, �top right� g2, �bottom left� g3, and �bottom
right� g4 �see also Fig. 5�.

FIG. 7. The probability density vector of the population of PapI as calcu-
lated in Sec. IV B at final time tf =10 s. All cells that contain more than 20

molecules of PapI are considered to be ON �see also Figs. 5 and 6�.
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range of −0.46% –0.00% �more than three orders of magni-
tude more precise than 105 simulations of the SSA�. Figure 8
�light line� plots the average number of times the SSA pro-
duces the result that there are more than 20 molecules of
PapI at time tf as a function of the number of simulation
runs. The horizontal line in the figure shows the probability
as calculated using the FSP algorithm, where the thickness of
the line exceeds the difference between the computed upper
and lower bounds. As in the previous example, more SSA
simulations allow for better accuracy at the cost of additional
computational expense. For a comparison of the methods’
efficiency and accuracy, Table III provides the computational
time and relative error in the prediction of the Pap OFF to
ON switching rate after 
1.25, 2.50, 5.00, and 10.00��105

simulations. From the table one can immediately see that the
performance of the FSP is superior to that of the SSA for this
example.

1. Comparison to � leaping

As above, the use of time-leaping methods can do little
to improve the computational efficiency of the SSA for this
example. In this case, negative molecular populations will
always result if any LRP binding/unbinding reaction is simu-
lated twice consecutively before a different LRP binding/
unbinding event. In order to avoid impossible populations,
therefore, one must use an adaptive step size algorithm, and
no � leap may be allowed to include more than a single
reaction from the set R1 to R8. Exploring the SSA simula-

FIG. 8. Predictions of Pap OFF to ON switching rate using the SSA �light
gray� and an explicit, adaptive step size � leaping algorithm �dark gray�
from STOCHKIT. The x axis shows the number of simulations that have been
conducted and the y axis shows the corresponding computed probability of
turning ON. As the number of simulations increases, the probabilities com-
puted with the Monte Carlo methods converge toward the more precise FSP
solution �horizontal line�. However, a large relative error persists even after
106 simulations. For comparison, the thickness of the horizontal line corre-
sponds to the upper and lower bounds on the switch rate as computed using
the FSP algorithm. See also Table III.
tions, we found that more than one quarter of all of the
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reactions involved operon configuration changes. Therefore,
if we make the liberal assumptions that a single � leap step is
as fast as a single SSA step and that there is exactly one R1 to
R8 reaction included in each � leap, then a � leaping method
can boost the speed of the SSA by a maximum factor of less
than 4. It must be mentioned, however, that PapI production
and degradation reactions can also result in excessively large
changes in propensity functions, thus further restricting the
size of allowable time leaps. In practice � leap steps may
take far longer to compute than individual SSA steps, and
one would expect that � leaping will provide far less benefit
over the SSA in this example. As in the previous example, it
does not matter what type of � leaping is chosen �Poisson or
binomial�; the leap size will be similarly restricted in each.
As an example of the failure of � leaping to handle this
example, we have again utilized STOCHKIT

19 and we have set
the program to use an adaptive explicit � leaping algorithm.8

For this algorithm, computation took about 14 seconds for
105 runs �the same as the direct step SSA�, and the accuracy
was similar to that of the SSA. The dark gray line in Fig. 8
illustrates the convergence of the � leaping predictions as
more and more simulations have been conducted �see also
Table III�.

V. CONCLUSIONS

This paper introduced the finite state projection �FSP�
method and the FSP algorithm for the approximate solution
of the chemical master equation. Unlike previous Monte
Carlo-type analyses, the FSP directly computes the system’s
probability density vector at a given time without requiring
the computation of large numbers of process realizations. In

TABLE III. A comparison of the efficiency and accuracy of the FSP, SSA,
and adaptive explicit � leaping methods for the prediction of the Pap OFF to
ON switching rate. Using the FSP, it takes less than 4 s to guarantee that the
OFF to ON switch rate is within the interval of �1.376,1.383��10−4, a
relative error of less than 0.5%. The table shows the results of a single set of
106 statistically independent simulations for each of the SSA and the �
leaping methods. The relative errors have been calculated after 
1.25, 2.50,
5.00, and 10.00��105 simulations. Simulation sets with different random
number generator seed values will produce different results �some are better
and some are worse—results not shown�. In contrast, every run of the FSP
algorithm always produces the exact same result. All codes are run on the
same 1.50 GHz Intel Pentium 4 processor running a Linux environment. See
also Fig. 8.

Method Number of simulations Time �s�
Relative error

in switch rate �%�

FSP Does not applya 
4 
0.5
SSAb 1.25�105 �18 38.8
SSA 2.5�105 �35 27.3
SSA 5.0�105 �70 9.9
SSA 10.0�105 �140 8.5
� leaping 1.25�105 �18 9.9
� leaping 2.5�105 �35 24.4
� leaping 5.0�105 �70 7.0
� leaping 10.0�105 �140 6.0

aThe FSP is run only once with a specified allowable total error of 10−6.
bSSA and � leaping simulations have been conducted using STOCHKIT �Ref.
19�.
the case of any Markov process containing only a finite num-
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ber of states, the FSP method provides an exact analytical
solution. When the number of possible states is infinite, the
approximate solution on the projected space guarantees up-
per and lower bounds on the solution of the true system. The
FSP algorithm provides a systematic means of increasing the
size of the finite state projection until these bounds are
within any prespecified error tolerance. The FSP method was
effectively demonstrated on a real biological example prob-
lem: the Pap epigenetic switch in E. coli. Given a known
initial state, we have used the FSP to generate the probability
density vector at a later time of interest. We have compared
the accuracy and efficiency of the FSP and two popular
Monte Carlo methods: the SSA and an adaptive step size
explicit �-leaping algorithm. In these examples, we have
shown that the FSP algorithm outperforms both of the two
Monte Carlo methods, especially when computing the prob-
ability of unlikely events, such as Pap OFF to ON switching.
This example and others suggest that the FSP is a very prom-
ising method—especially in the field of system’s biology,
where very small chemical populations are common and in
which unlikely events may be of critical importance.

For biological problems such as the Pap example, the
nature of the FSP, in addition to being more efficient and
more accurate than existing Monte Carlo methods, provides
a wealth of information and opens new doors for stochastic
analyses. For example, one could easily adjust the FSP to
precisely compute the probability of avoiding undesirable
system trajectories throughout prespecified periods of time.
One may also use the FSP to easily and efficiently perform
parametric sensitivity and robustness analyses on the dynam-
ics of the biological system. However, in its current basic
form, the FSP method is not yet feasible for all classes of
systems. For example, when there is a high probability that
species populations will undergo large excursions in small
periods of time, the basic FSP algorithm will require solu-
tions to very large numbers of coupled linear ODEs.

While such computations present a significant challenge,
there are several approaches that will help the FSP to meet
these challenges. Krylov subspace methods for sparse sys-
tems could effectively enable the computation of the matrix
exponential times a vector for very large systems �tens of
thousands�. Furthermore, several readily available tools fa-
cilitate lower-order approximations of larger systems and
promise significant reductions in computational cost. State
aggregation and multiscale partitioning also provide enor-
mous benefits over the original FSP. These approaches along
with advanced approaches for updating the finite projection
subset are currently being developed and will be presented
elsewhere. While the practical limits of the finite-projection-
based approach are yet unknown, future implementations
will greatly expand the class of problems for which the FSP
is an efficient and versatile tool for stochastic analysis.
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