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THE FINITE VERTEX-PRIMITIVE AND VERTEX-BIPRIMITIVE
s-TRANSITIVE GRAPHS FOR s ≥ 4

CAI HENG LI

Abstract. A complete classification is given for finite vertex-primitive and
vertex-biprimitive s-transitive graphs for s ≥ 4. The classification involves
the construction of new 4-transitive graphs, namely a graph of valency 14
admitting the Monster simple group M, and an infinite family of graphs of
valency 5 admitting projective symplectic groups PSp(4, p) with p prime and
p ≡ ±1 (mod 8). As a corollary of this classification, a conjecture of Biggs and
Hoare (1983) is proved.

1. Introduction

Denote by Γ a finite connected graph with vertex set V Γ and edge set EΓ. For
a positive integer s, an s-arc of Γ is an (s+ 1)-tuple (v0, v1, . . . , vs) of vertices such
that {vi−1, vi} ∈ EΓ for 1 ≤ i ≤ s and vi−1 6= vi+1 for 1 ≤ i ≤ s − 1. Let Aut Γ
denote the full automorphism group of Γ. If G ≤ Aut Γ and G is transitive on V Γ
and on the set of s-arcs of Γ, then Γ is called a (G, s)-arc transitive graph; while
if in addition G is not transitive on the set of (s + 1)-arcs of Γ, then Γ is called a
(G, s)-transitive graph. In particular, if G = Aut Γ, then a (G, s)-arc transitive or
(G, s)-transitive graph is simply called an s-arc transitive graph or an s-transitive
graph, respectively. (We remark that for any positive integer s a cycle is (s+ 1)-arc
transitive so that it is not s-transitive, so the valency of an s-transitive graph is
greater than 2.) The main purpose of this paper is to classify finite vertex-primitive
and vertex-biprimitive s-transitive graphs for s ≥ 4.

Interest in s-transitive graphs stems from a beautiful result of Tutte (1947)
who proved that there exist no finite s-transitive cubic graphs for s ≥ 6. Tutte’s
Theorem was generalized by Weiss (1981) who proved that there exist no finite
s-transitive graphs for s = 6 and s ≥ 8. Since then, s-transitive graphs have
received considerable attention in the literature (see, for example, [11, 13, 24, 34]),
and investigating the following problem has become one of the central topics in
algebraic graph theory:

Problem. Construct and characterize s-transitive graphs for s ≥ 2, and in partic-
ular, for s = 4, 5 and 7.

It is known that for each value of s ∈ {1, 2, 3, 4, 5, 7}, there exist s-transitive
graphs (see Section 2). However, it is widely believed that s-transitive graphs for
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large values of s, that is s ∈ {4, 5, 7}, are rare and hard to construct. An s-transitive
graph is said to be basic if it is not a normal cover of a smaller s-transitive graph
(see [26]). It was shown by Conway that any s-transitive graph has a nontrivial
s-transitive normal cover (see [3, Section 19]). This suggests that the study of
s-transitive graphs should be divided into two steps: studying basic s-transitive
graphs and studying their normal covers (see [26]). Using such an approach, it is
shown in [18, 19] that the order of a finite s-transitive graph for s ≥ 4 is neither a
prime-power nor an odd integer.

Let s be an integer in {4, 5, 7}. Up to now, the only known basic s-transitive
graphs consist of the following graphs (see Sections 2 and 3): several infinite fam-
ilies of s-transitive graphs of valency 3 and valency 4, constructed in [4, 6, 7, 39];
the classical generalized (s − 1)-gon graphs which are bipartite; and three graphs
from sporadic simple groups: the Janko group J3, the Rudvalis group Ru and the
Thompson group Th, which were constructed in [37] and [28]. The J3-graph has
valency 5; the Ru-graph and the Th-graph have valency 6. These three graphs were
the only known non-bipartite s-transitive graphs for s ≥ 4 of valency greater than
4 until now. Here we construct a 4-transitive graph of valency 14 from the Monster
sporadic simple group, and an infinite family of 4-transitive graphs of valency 5
from the projective symplectic groups PSp(4, p) with p prime.

Theorem 1.1. There exists exactly one 4-transitive graph Γ such that Γ is vertex-
primitive and Aut Γ = M, the Monster simple group. Further, the graph Γ has
valency 14.

The Monster-graph is the only known non-bipartite basic s-transitive graph of
valency greater than 6, for s ≥ 4.

Theorem 1.2. For each prime p ≡ ±1 (mod 8), there exists exactly one 4-transi-
tive graph Γ such that Γ is vertex-primitive and Aut Γ = PSp(4, p). Further, Γ has
valency 5.

The PSp(4, p)-graphs form the only known infinite family of basic s-transitive
graphs of valency greater than 4, for s ≥ 4.

Moreover, it will be shown that the Monster-graph and the PSp(4, p)-graphs,
together with some other known graphs, form the class of vertex-primitive or vertex-
biprimitive s-transitive graphs for s ≥ 4. (A finite graph Γ is said to be vertex-
primitive if Aut Γ acts primitively on V Γ; while a bipartite graph Γ with bi-parts
∆1 and ∆2 is said to be vertex-biprimitive if the setwise stabilizer (Aut Γ)∆i is
primitive on ∆i.)

For two groups G and F , let G.F denote an extension of G by F , and G o F
denote a semidirect product of G by F . For a positive integer n, as in the Atlas [8],
denote by [n] a group of order n throughout the paper. Given a finite group G, a
core-free subgroup H of G and a 2-element g ∈ G \H with g2 ∈ H , the coset graph
Γ = Γ(G,H,HgH) is the graph with vertex set [G : H ], the set of right cosets of
H in G, such that Hx,Hy are adjacent if and only if yx−1 ∈ HgH (see Section 2
for more detailed discussions). The next theorem gives a complete classification of
finite vertex-primitive s-transitive graphs for s ∈ {4, 5, 7}.
Theorem 1.3. Let k, s be positive integers, and assume that s ≥ 4. A finite graph
Γ of valency k is vertex-primitive and s-transitive if and only if Γ ∼= Γ(G,H,HgH),
where G,H, k, s are as listed in Table 1. Further, such a graph Γ is uniquely deter-
mined by its order |V Γ|.
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Table 1.

Aut Γ = G H k s reference

PSL(2, p) S4 3 4 Wong (1967)
p ≡ ±1(mod 16) prime

PSL(3, 3).Z2 S4×Z2 3 5 Wong (1967)

PSp(4, p) Z4
2 oGL(2, 4) 5 4 Theorem 1.2

p ≡ ±1(mod 8) prime

J3 Z4
2 oGL(2, 4) 5 4 Weiss (1986)

Ru Z2
5 oGL(2, 5) 6 4 Stroth & Weiss (1990)

Th Z2
5 oGL(2, 5) 6 4 Stroth & Weiss (1990)

M Z2
13 o (Z4.PGL(2, 13)) 14 4 Theorem 1.1

Table 2.

T = soc(G) G H ∩ T k s reference

PSL(3, q) G ≤ Aut(T ) [q2] o (Zl.PGL(2, q)) q + 1 4 Section 2
where l = q−1

(q−1,3)

Sp(4, 2m) G ≤ Aut(T ) [23m] oGL(2, 2m) 2m + 1 5 Section 2

G2(3m) G ≤ Aut(T ) [35m] oGL(2, 3m) 3m + 1 7 Section 2

PSL(2, p) PGL(2, p) H = S4 3 4 Biggs & Hoare [4]
p ≡ ±1 (mod 8)

A6 PΓL(2, 9) H = S4×Z2 3 5 Tutte’s 8-Cage

M12 M12 .Z2 H = Z2
3 oGL(2, 3) 4 4 Weiss (1985)

Remark. The J3-graph was used to characterize the Janko simple group J3 by Weiss
[37]; the Ru-graph was used to characterize the Rudvalis simple group Ru by Stroth
and Weiss [28].

Some vertex-biprimitive s-transitive graphs are covers of vertex-primitive s-
transitive graphs. For a (G, s)-transitive graph Σ = Γ(G,H,HgH), let F = G×〈z〉
where z is an involution, and let Γ = Γ(F,H,HgzH). Then Γ is an (F, s)-transitive
bipartite graph, and is called the standard double cover of Σ. The following the-
orem gives a complete classification of finite vertex-biprimitive s-transitive graphs
for s ∈ {4, 5, 7}.

Theorem 1.4. Let k, s be positive integers, and assume that s ≥ 4. A finite graph
Γ of valency k is vertex-biprimitive and s-transitive if and only if either

(i) Γ is the standard double cover of a vertex-primitive s-transitive graph (clas-
sified in Theorem 1.3); or

(ii) Γ ∼= Γ(G,H,HgH) such that G, soc(G) ∩ H, k, s are as listed in Table 2,
where q is a prime-power, and p is a prime.

Further, such a graph Γ is uniquely determined by its order |V Γ|.

Remark. The M12-graph was used to characterize the Mathieu group M12 by Weiss
[36].

This result does not help to describe all s-transitive graphs for s ≥ 4 as there is
no reduction to the primitive and biprimitive case. The major problem remaining
is to handle the quasiprimitive and bi-quasiprimitive cases (see [20]).
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It follows from these theorems that there exist no finite vertex-primitive 7-
transitive graphs, and that all finite vertex-biprimitive 7-transitive graphs of va-
lency k admit G2(3m) and have k = 3m + 1, for some m.

Wong [39] constructed the PSL(3, 3).Z2-graph (see Example 3.3) and proved
that it is the unique vertex-primitive cubic 5-transitive graph. Biggs and Hoare [4]
constructed an infinite family of bipartite 5-transitive cubic graphs from PΓL(2, p2)
(see Example 3.6). Motivated by Wong’s classification, they further conjectured
that each 5-transitive cubic biprimitive graph is either one of these graphs, or is a
standard double cover of the PSL(3, 3).Z2-graph given in Table 1. It is an immediate
consequence of Theorems 1.3 and 1.4 that this conjecture is true.

Corollary 1.5. The only vertex-biprimitive 5-transitive graphs of valency 3 are
the PΓL(2, 9)-graph, which is Tutte’s 8-Cage, and the standard double cover of the
PSL(3, 3).Z2-graph.

In Section 2, we describe generalized polygon graphs in terms of coset graphs,
and state the results of Weiss [33] and Gardiner [10], which provide a method for
constructing s-transitive graphs for s ≥ 4. Then in Section 3, we reproduce most of
the known s-transitive graphs for s ∈ {4, 5, 7} and construct some new 4-transitive
graphs in a uniform manner. Finally, we complete the proofs of Theorems 1.1–1.4
in Section 4.

2. Amalgams of s-transitive graphs for s ∈ {4, 5, 7}

In this section, we study a method of constructing s-transitive graphs in terms of
coset graphs. Let G be a finite group, and let H be a subgroup of G. The subgroup
H is said to be core-free if H contains no nontrivial normal subgroups of G. Denote
by [G : H ] the set of right cosets of H in G, and for a subset S of G, denote by S
the set of right cosets of H contained in HS, that is, {Hs | s ∈ S}. Recall that for
an element g ∈ G\H such that g2 ∈ H , the coset graph Γ(G,H,HgH) is the graph
with vertex set [G : H ] and with Hx,Hy adjacent if and only if yx−1 ∈ HgH . By
definition, the set of vertices Hx of Γ(G,H,HgH) which are adjacent to the vertex
H is equal to gH = {Hgh | h ∈ H}, denoted by Γ(H) as usual. It follows that the
group G in its coset action by right multiplication on [G : H ] is transitive on the
vertex set of Γ(G,H,HgH), and in this G-action the subgroup H is the stabilizer
of the vertex H in G and acts transitively on Γ(H). Thus G acts transitively on
the vertex set and the arc set of Γ(G,H,HgH), that is, Γ(G,H,HgH) is a G-arc-
transitive graph. The valency of Γ(G,H,HgH) equals the cardinality of Γ(H), that
is, |[HgH : H ]|. Clearly, |[HgH : H ]| = |[H : H ∩Hg]|, and by definition, it is also
clear that Γ(G,H,HgH) is connected if and only if 〈H, g〉 = G.

Let α and β denote the vertex H and the vertex Hg, respectively. Then, as
observed before, Gα = H , and further, Gβ = Hg. Since g2 ∈ H , g interchanges α
and β, and so interchanges Gα and Gβ . Now Gαβ , the subgroup of G which fixes
both α and β, equals H ∩Hg; while G{α,β}, the subgroup of G which fixes the edge
{α, β}, equals 〈H ∩Hg, g〉.

As we have noticed, the subgroup H acts transitively on Γ(H) and has point-
stabilizer H ∩Hg. Thus the H-action on Γ(H) is equivalent to the coset action of
H on [H : H ∩Hg]. For convenience, we summarize the above observations in the
following lemma (see [27]).
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Lemma 2.1. Let G be a finite group, and let Γ = Γ(G,H,HgH) be a coset graph
of G. Denote by α, β the vertices H,Hg, respectively, of Γ. Then the following are
true:

(1) Γ is G-arc-transitive and has valency |[H : H ∩Hg]|;
(2) Γ is connected if and only if 〈H, g〉 = G;
(3) Gα = H, Gβ = Hg, Gαβ = H ∩Hg and G{α,β} = 〈H ∩Hg, g〉.

These simple properties suggest some method for constructing arc-transitive
graphs with certain extra conditions.

Typical examples of s-transitive graphs for s ≥ 4 come from the parabolic ge-
ometries of the rank 2 Lie type groups A2(q) ∼= PSL(3, q), B2(2m) ∼= Sp(4, 2m) and
G2(3m), corresponding to s = 4, 5 and 7, respectively. These graphs are the so-
called classical generalized polygon graphs (see [31] or [13, p. 423]). In this section,
we first describe these graphs in terms of coset graphs, and then state a result of
Weiss about automorphism groups of s-transitive graphs, that is the classification
of the amalgams for s-transitive graphs for s ∈ {4, 5, 7}. Recall that for a positive
integer n, [n] denotes a group of order n.

A 4-transitive graph from PSL(3, q). Let T = PSL(3, q), where q = pm, p
is a prime and m ≥ 1. Then T has two conjugacy classes of maximal parabolic
subgroups, and has a graph automorphism g, which is of order 2; further, g fuses
the two conjugacy classes of maximal parabolic subgroups. Let P be a maximal
parabolic subgroup of T . Then P = [q2] o (Z q−1

(q−1,3)
.PGL(2, q)) and P ∩ P g =

[q3]o (Zq−1×Z q−1
(q−1,3)

). Now g2 = 1 ∈ P , 〈P, g〉 = 〈T, g〉, and |[P : P ∩P g]| = q+1.
Thus the coset graph

Γ = Γ(〈T, g〉, P, PgP )

is a bipartite (〈T, g〉, 4)-transitive graph of valency q + 1 (see Theorem 2.2). More-
over, Aut Γ = Aut(PSL(3, q)), and thus Γ is (G, 4)-transitive for each G with
〈T, g〉 ≤ G ≤ Aut(PSL(3, q)); in particular, Γ is 4-transitive. Let d, f be a diagonal
or a field automorphism, respectively, of T . Then o(d) = (q − 1, 3), o(f) = m, and
d, f, P can be chosen so that d, f normalize P . Let R be a subgroup of 〈d, f〉, and
let

G = T.R.〈g〉.
Then R normalizes T, P and P ∩ P g. Thus T.R has a subgroup H := P.R such
that L := H ∩Hg = (P ∩ P g).R. Then we have

H = ([q2]o (Z q−1
(q−1,3)

.PGL(2, q))).R, L = ([q3]o (Zq−1 × Z q−1
(q−1,3)

)).R.

Finally, we note that NG(L) = L.Z2 (see [16]).

A 5-transitive graph from Sp(4, 2m). Let T = Sp(4, q), where q = 2m for some
m ≥ 1. Then T has two conjugacy classes of maximal parabolic subgroups, which
are fused in Aut(T ). Let f be a field automorphism, and let g ∈ Aut(T )\Inn(T ).〈f〉.
(Note that we are identifying T with Inn(T ).) Then o(f)

∣∣m, Aut(T )/〈T, f〉 ∼= Z2

and g2 ∈ 〈f〉. Let P be a maximal parabolic subgroup of T . Then g, f, P may be
chosen so that f normalizes P but g does not, and P = [q3]oGL(2, q). Let R ≤ 〈f〉
contain g2, and set

G = T.〈R, g〉.
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Table 3.

k = q + 1 s Gα = H Gαβ = L

q + 1 4 ([q2]o (Z q−1
(q−1,3)

.PGL(2, q))).R ([q3]o (Zq−1 × Z q−1
(q−1,3)

)).R

2m + 1 5 ([q3]oGL(2, q)).R ([q4]o Z2
q−1).R

3m + 1 7 ([q5]oGL(2, q)).R ([q6]o Z2
q−1).R

Then T.R has a subgroup H := P.R such that g2 ∈ H and 〈H, g〉 = G. Thus the
coset graph Γ = Γ(G,H,HgH) is a (G, 5)-transitive graph of valency q + 1 (see
Theorem 2.2). Moreover, Aut Γ = Aut(T ), and Γ is 5-transitive. The subgroups
H,L < G have the form

H = ([q3]oGL(2, q)).R, L = ([q4]o Z2
q−1).R.

We notice that NG(L) = L.Z2 (see [16]).

A 7-transitive graph from G2(3m). Let T = G2(q), where q = 3m for some
m ≥ 1. Then T has two conjugacy classes of maximal parabolic subgroups, and has
a graph automorphism g, which is of order 2; further, g fuses the two conjugacy
classes of parabolic subgroups. Let P be a parabolic subgroup of T . Then P =
[q5] o GL(2, q), and P, g may be chosen so that P ∩ P g = [q6] o Z2

q−1. Now
g2 = 1 ∈ P , 〈P, g〉 = 〈T, g〉, and |[P : P ∩ P g]| = q + 1. Thus the coset graph

Γ = Γ(〈T, g〉, P, PgP )

is a bipartite (〈T, g〉, 7)-transitive graph of valency q + 1 (see Theorem 2.2). More-
over, Aut Γ = Aut(G2(q)), and thus Γ is (G, 7)-transitive for each G with 〈T, g〉 ≤
G ≤ Aut(G2(q)); in particular, Γ is 7-transitive. Choose a field automorphism f of
T such that f normalizes P . Let R be a subgroup of 〈f〉, and let

G = T.R.〈g〉.
Then R normalizes T, P and P ∩ P g. Thus T.R has a subgroup H := P.R such
that L := H ∩Hg = (P ∩ P g).R. Then we have

H = ([q5]oGL(2, q)).R, L = ([q6]o Z2
q−1).R.

Finally, we note that, by [15, Theorem B], NG(L) = L.Z2.
These three classes of graphs are important because of the following result (see

[10] and [33, 35], also refer to [13, Theorem 2.1.5]).

Theorem 2.2. Let Γ be a connected graph of valency k, and let G ≤ Aut Γ be such
that Γ is transitive on V Γ. Let α, β ∈ V Γ be a pair of adjacent vertices.

(1) (Weiss [33, 35]) Assume that s ≥ 4 and that Γ is (G, s)-transitive. Then
s ∈ {4, 5, 7}, k = q + 1 where q is a prime power, and the stabilizers Gα and
Gαβ are completely known, as in Table 3. Further, either Γ is s-transitive, or
k = 3, s = 4, and Γ is 5-transitive.

(2) (Gardiner [10, Theorem 3.1]) Assume that H is a subgroup of G which satisfies
line 1, 2 or 3 of Table 3. If there exists an arc-transitive graph Γ(G,H,HgH)
of valency k, then Γ(G,H,HgH) is s-transitive for s = 4, 5 or 7, respectively.

Remark on Theorem 2.2. The valency of the graph Γ and the arc-stabilizer L are
uniquely determined by the point-stabilizer H . Actually, L is the normalizer of a
Sylow p-subgroup of H , where q is a p-power, and the valency is equal to |H |/|L|.
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Hence, in particular, all subgroups of H isomorphic to L are conjugate (in H) to
L.

To end this section, we describe a possible (and often efficient) method for con-
structing s-arc transitive graphs for s ≥ 4. Let Γ(G,H,HgH) be a coset graph,
and let L = H ∩Hg and K = 〈L, g〉. Then we have three subgroups H,L,K of G,
which have the properties:

H ∩K = L, |[K : L]| = 2, and |[H : L]| equals the valency of Γ(G,H,HgH).

A triple (H,L,K) with these properties is called an amalgam (see [11, 13]). Thus,
constructing arc-transitive graphs with certain extra property is equivalent to seek-
ing suitable groups G and suitable pairs {H, g}; the latter is in turn equivalent
to seeking suitable amalgams (H,L,K). A procedure for constructing s-transitive
graphs may be stated as follows:
(A) find a suitable group G which has a subgroup H as listed in Table 3;
(B) find a subgroup L of H such that H acting on [H : L] is of degree q + 1;
(C) analyze NG(L) to decide whether there exists a 2-element g ∈ NG(L)\L such

that g2 ∈ H and 〈H, g〉 = G.
We note that there may be different 2-elements g ∈ NG(L) \L such that g2 ∈ H

and 〈H, g〉 = G. Thus for a pair (G,H), there may be different arc-transitive
graphs Γ(G,H,HgH), which in general are not isomorphic. However, for certain s-
transitive graphs for s ≥ 4, we have the uniqueness of such graphs as in Lemma 2.3.

Lemma 2.3. Let Γ = Γ(G,H,HgH) be a connected (G, s)-transitive graph, where
s ∈ {4, 5, 7}, and let L = H ∩ Hg. Assume that NG(L) = K = L.Z2. For any
2-element f ∈ G with f2 ∈ H, if Γ(G,H,HfH) is connected and s-transitive, then

Γ(G,H,HfH) = Γ(G,H,HgH).

Proof. By Theorem 2.2, H ∩ Hf ∼= L. It then follows from the remark on Theo-
rem 2.2 that H ∩Hf is conjugate in H to L. Hence

H ∩Hh−1fh = (H ∩Hf )h = L

for some h ∈ H . Since (h−1fh)2 ∈ H , we have that

Lh
−1fh = (H ∩Hh−1fh)h

−1fh = Hh−1fh ∩H = L,

that is, h−1fh ∈ NG(L). Since |NG(L)/L| = 2 and g ∈ NG(L) \ L, we have
NG(L) = L ∪ Lg. Hence h−1fh ∈ NG(L) \ L = Lg, and so h−1fh = h′g for some
h′ ∈ L. Therefore, HfH = Hh−1fhH = Hh′gH = HgH , and thus we have that
Γ(G,H,HfH) = Γ(G,H,HgH).

An immediate consequence of this lemma is

Corollary 2.4. The classical generalized polygon graphs (constructed above) are
uniquely determined by their automorphism groups.

3. Constructing s-arc transitive graphs

In this section, we will first describe the constructions of most known examples of
s-arc transitive graphs for s ∈ {4, 5, 7} in a uniform way, apart from the polygonal
graphs described in Section 2, and then construct some new 4-transitive graphs:
one from the Monster simple group M; an infinite family of graphs from PSp(4, p)
with p a prime. (As usual, for positive integers m and n, by the notation m

∣∣n we
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mean m divides n, and by m
∥∥n we mean m strictly divides n, that is, m

∣∣n and
m is coprime to n/m.)

In the following, for a finite group G and a prime p
∣∣ |G|, denote by Gp a Sylow

p-subgroup of G. The first lemma provides a method to construct certain arc-
transitive graphs.

Lemma 3.1. Let G be a finite group. Assume that G has a maximal subgroup
H which is core-free, and assume further that H contains a subgroup P such
that |NG(P )|/|NH(P )| is even. Then there exists g ∈ G \ H such that Γ :=
Γ(G,H,HgH) is a connected G-arc transitive graph of valency |[H : H ∩Hg]|.

Proof. By the assumption, there exists a 2-element g ∈ NG(P ) \NH(P ) such that
g2 ∈ NH(P ). Thus we have g2 ∈ H , and g /∈ H . Since H is a maximal subgroup
of G, G = 〈H, g〉. By Lemma 2.1(1), the coset graph Γ(G,H,HgH) is a connected
G-arc transitive graph of valency |[H : H ∩Hg]|.

Lemma 3.2. Let G be a finite group, and let K be a 2-subgroup of G. Assume
that |G|/|K| is even. Then NG(K)/K is of even order.

Proof. Let G2 be a Sylow 2-subgroup of G which contains K. Then G2 > K, and
by [30, p. 88], NG2(K) > K, so the conclusion of the lemma follows.

In the rest of this section, we describe some constructions of s-transitive graphs
for s ∈ {4, 5, 7}. All of them involve nonabelian simple groups.

3.1. Graphs of valency 3 and 4. Note that GL(2, 2) ∼= S3, Z2
2 oGL(2, 2) ∼= S4,

and Z3
2 o GL(2, 2) ∼= S4×Z2. Thus, for cubic s-transitive graphs, the amalgams

have been often written as special forms, that is, either

s = 4 and (H,L) = (S4,D8), or
s = 5 and (H,L) = (S4×Z2,D8×Z2).

In particular, in either case L is a 2-group. Assume thatG is a finite group which has
subgroups H and L satisfying these conditions. By Lemma 3.2, if |G|/|L| is even,
then NG(L)/L is of even order, and thus there exists a 2-element g ∈ NG(L)\H such
that g2 ∈ H . Assume further that H is a maximal subgroup. Then 〈H, g〉 = G.
Therefore, we have the following examples of s-transitive graphs for s = 4 or 5.
These were first constructed by Wong (1967).

Example 3.3. Let

G = Aut(PSL(3, 3)) = PSL(3, 3).Z2.

By the Atlas [8], G has a maximal subgroup

H ∼= S4×Z2,

and |G|/|H | is even. Thus there exists a vertex-primitive (G, 5)-transitive cubic
graph Γ = Γ(G,H,HgH) such that Aut Γ = G and

L = H ∩Hg ∼= D8×Z2.

Noting that 25
∥∥ |G| (see the Atlas [8]), it follows from Lemma 3.2 that NG(L) =

[25], and so NG(L)/L ∼= Z2. By Lemma 2.3, Γ is a unique (G, 5)-transitive cubic
graph.
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Example 3.4. Let

G = PSL(2, p) where p ≡ ±1 (mod 16) is a prime.

Then by [30, p. 417], G has a maximal subgroup

H ∼= S4,

and thus |G|/|H is even. So there exists a vertex-primitive (G, 4)-transitive cubic
graph Γ = Γ(G,H,HgH) such that Aut Γ = G and

L = H ∩Hg ∼= D8 .

Checking subgroups of G which contain L (see [30, p. 417]), we conclude that
NG(L) ∼= D16 and so NG(L)/L ∼= Z2. By Lemma 2.3, Γ is a unique (G, 4)-transitive
cubic graph.

Assume now that |G|/|L| is odd but |Aut(G)|/|L| is even. Then in some cir-
cumstances there exists a 2-element g ∈ N〈G,g〉(L) \ H such that g2 ∈ H . If, in
addition, H is a maximal subgroup of G, then 〈H, g〉 = 〈G, g〉. Thus we have the
next examples of bipartite s-transitive graphs for s = 4 or 5. These were first
constructed by Biggs and Hoare [4] (also see [3, 18b]).

Example 3.5. Let T = PSL(2, p) where p ≡ ±1 (mod 8). Then T has two conju-
gacy classes of maximal subgroups S4, which are fused in

G = PGL(2, p),

see [30, p. 417]. Let H be such that

S4
∼= H < T.

Then |T |/|H | is odd but |G|/|H | is even. Thus there exists a 2-element g ∈ G \H
such that g2 ∈ H , 〈H, g〉 = G and H∩Hg = L. Thus there exists a bipartite (G, 4)-
transitive cubic graph Γ = Γ(G,H,HgH) such that Aut Γ = G.Z2 = PGL(2, p)
and

L = H ∩Hg ∼= D8 .

Checking subgroups of G which contain L (see [30, p. 417]), we may conclude that
NG(L) is a Sylow 2-subgroup of G, which is of order 16. Thus NG(L)/L ∼= Z2. By
Lemma 2.3, Γ is a unique (G, 4)-transitive cubic graph.

The 5-transitive cubic graphs given in the next example were also constructed
by Biggs and Hoare [4].

Example 3.6. Let T = PSL(2, p2) where p is a prime and p2 ≡ ±1 (mod 8). Then
Out(T ) ∼= Z2

2 and

G := Aut(T ) = PΓL(2, p2).

By [30, p. 417], T has two conjugacy classes of subgroups which are isomorphic to
S4, which are fused in G. It follows that the group PΣL(2, p2) has two conjugacy
classes of subgroups that are isomorphic to S4×Z2, which are fused in G. Let H
be a subgroup of PΣL(2, p2) such that

H ∼= S4×Z2.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3520 CAI HENG LI

Then a Sylow 2-subgroup L of H is isomorphic to D8×Z2, and is a proper subgroup
of a Sylow 2-subgroup S of G. Therefore, there exists a 2-element g ∈ S \ L
normalizing L, and so

H ∩Hg = L ∼= D8×Z2.

Now it is easily shown that 〈H, g〉 is contained in no proper subgroup of G, so
〈H, g〉 = G. Therefore, by Lemma 3.1 and Theorem 2.2, the coset graph Γ =
Γ(G,H,HgH) is a 5-transitive cubic graph, which is bipartite. Analyzing subgroups
of G which contain L (see [30, p. 417]), we may obtain that NG(L) is a Sylow 2-
subgroup of G, which has order 32. Hence NG(L)/L ∼= Z2. By Lemma 2.3, Γ is a
unique (G, 5)-transitive cubic graph. Since H is maximal in PΣL(2, p2) if and only
if p = 3, Γ is biprimitive if and only if p = 3. We note that PSL(2, 9) ∼= A6, and
the corresponding graph is Tutte’s 8-Cage.

Next we consider 4-valent graphs. Note that GL(2, 3) ∼= Q8o S3. Thus, for
s-transitive graphs of valency 4 with s ∈ {4, 5, 7}, the amalgams also have a special
forms, that is, either

s = 4 and (H,L) = (Z2
3 o (Q8o S3), [33]o Z2

2),

or

s = 7 and (H,L) = ([35]o (Q8o S3), [36]o Z2
2).

We note that in this case L = NH(L3), where L3 is a Sylow 3-subgroup of H ,
and thus NG(L) ≤ NG(L3). The 4-transitive graph given in the next lemma was
constructed and used to characterize the group M12 by Weiss [36].

Lemma 3.7. Let T = M12, the Mathieu simple group of degree 12, and let G =
Aut(T ) = T.Z2. Then there exists a unique connected 4-transitive graph Γ of va-
lency 4 such that Γ is biprimitive and Aut Γ = G.

Proof. By the Atlas [8], T has two conjugacy classes of maximal subgroups isomor-
phic to Z2

3o(Z2. S4), which are fused in G into maximal subgroups of G isomorphic
to 31+2

+ oD8. Let H be a subgroup of T such that

H ∼= Z2
3 o (Z2. S4).

(We note that in this case, H is isomorphic to Z2
3 oGL(2, 3).) Let H3 be a Sylow

3-subgroup of H and let L = NH(H3). Then H3
∼= 31+4

+ , and

L ∼= 31+4
+ o [22].

It follows from the Atlas [8] that NG(L) = 31+4
+ oD8. Thus there exists a 2-element

g ∈ NG(L) \ H such that L = H ∩ Hg. Since H is a maximal subgroup of T , it
follows that 〈H, g〉 = G. Thus, by Lemma 2.1, the coset graph Γ = Γ(G,H,HgH)
is a connected arc-transitive graph of valency 4, and further by Lemma 3.1 and
Theorem 2.2, Γ is 4-transitive. Since g /∈ T , T is not transitive on V Γ, and thus
Γ is bipartite, say with parts ∆1 and ∆2. As H is a maximal subgroup of T , Γ is
biprimitive. It follows from Theorem 2.2 that Aut Γ = G. Since NG(L)/L ∼= Z2,
by Lemma 2.3, Γ is the unique (G, 4)-transitive graph of valency 4.
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An infinite family of non-bipartite 5-transitive cubic graphs was constructed
by Conder (1988) from the alternating groups An and the symmetric groups Sn.
Very recently, an infinite family of non-bipartite 7-transitive graphs of valency 4
was constructed by Conder and Walker (1998), also from the alternating groups
An and the symmetric groups Sn. These graphs are neither vertex-primitive nor
vertex-biprimitive.

3.2. Graphs of valency 5. Weiss (1986) constructed a 4-transitive graph of va-
lency 5 from the Janko simple group J3, and used the graph to characterize the
simple group. Here we first give a description for the Weiss graph, and then con-
struct an infinite family of 4-transitive graphs of valency 5 from a class of symplectic
simple groups. We notice that for a (G, 4)-transitive graph of valency 5,

Z4
2 oGL(2, 4) ≤ H ≤ (Z4

2 oGL(2, 4)).Z2,

and

[26].Z2
3 ≤ L ≤ [26].Z2

3.Z2;

in particular, L is a Hall {2, 3}-subgroup of H .

Lemma 3.8. Let T be the Janko simple group J3. Then there exists a unique
4-transitive graph Γ of valency 5 such that Aut Γ = Aut(T ) = T.Z2 and Γ is
vertex-primitive.

Proof. Let G = Aut(T ). By the Atlas [8], G has one conjugacy class of maximal
subgroups isomorphic to Z4

2 o (Z3 × A5).Z2
∼= Z4

2 o GL(2, 4).Z2. Let H < G be
such that

H ∼= Z4
2 oGL(2, 4).Z2,

and let L be a Hall {2, 3}-subgroup of H . Then

L ∼= [26].Z2
3.Z2,

and by the Atlas [8], NG(L) = 22+4 o (S3× S3) = L.Z2. Thus there exists a 2-
element g in NG(L)\H such that 〈H, g〉 = G, g2 ∈ H , L = H∩Hg and |H : L| = 5.
Therefore, by Lemma 2.1 and Theorem 2.2, the coset graph Γ = Γ(G,H,HgH) is
a 4-transitive graph of valency 5, which is the Weiss graph given in [37]. It follows
from Theorem 2.2 that Aut Γ = G. Finally, by Lemma 2.3, Γ is a unique (G, 4)-
transitive graph of valency 5.

Next we construct an infinite family of 4-transitive graphs of valency 5.

Lemma 3.9. Let G = PSp(4, p), where p is a prime and 24.3
∥∥ (p2 − 1). Then

there exists a unique 4-transitive graph Γ of valency 5 such that Gα ∼= Z4
2 o S5,

Aut Γ = G and Γ is vertex-primitive.

Proof. By [16, Proposition 4.6.9], G has one conjugacy class of maximal subgroups
isomorphic to Z4

2.(Ω
−
4 (2).Z2) ∼= Z4

2.PGL(2, 4) ∼= Z4
2. S5. Let H be a maximal sub-

group of G such that

H ∼= Z4
2. S5,

and let L be a subgroup of H such that

L ∼= Z4
2. S4 .
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Write H = N1. S5, and L = N1.(N2. S3), where N1
∼= Z4

2 and N2
∼= Z2

2. Let L2 be
a Sylow 2-subgroup of L, and let G2 be a Sylow 2-subgroup of G containing L2.
Then |G2| = 28, |L2| = 27, and so G2 > L2. Now M := O2(L) = N1.N2. Since
CH(N1) = N1, we have that M is not abelian, and hence M has exponent 4. Let
b ∈M be of order 4. Then b = bN1 ∈ (N1.A4)/N1 is an involution. It is clear that
each involution of A4 is a square of an element of S4 of order 4, that is, there exists
c ∈ L/N1 = S4 such that c2 = b. Let c be a preimage of c in L. Then the order of
c is divisible by 8, and so L2 is of exponent 8.

Since G2 > L2, there exists g ∈ NG(L2) \ L2 such that g2 ∈ L2. Suppose that
Mg 6= M . Then, since M,Mg are subgroups of L2 of index 2, 〈M,Mg〉 = M ◦Mg =
L2. However, as M is of exponent 4, every element of M ◦Mg is of order at most
4, which is a contradiction since L2 = M ◦Mg is of exponent 8. Hence Mg = M ,
that is g normalizes M . In particular, M is a normal subgroup of 〈L, g〉. It is
now easy to obtain that 〈L, g〉/M is of order 12 and thus g normalizes L, so that
L = H ∩ Hg. Hence the coset graph Γ = Γ(G,H,HgH) is arc-transitive and of
valency 5. It then follows from Theorem 2.2 that Γ is 4-transitive and Aut Γ = G.
Analyzing maximal subgroups of G which contain L (see [16]), we may conclude
that NG(L) = 〈L, g〉 ∼= L.Z2. By Lemma 2.3, Γ is a unique (G, 4)-transitive graph
of valency 5.

3.3. Graphs of valency greater than 5. Here we will construct two 4-transitive
graphs of valency 6, and a 4-transitive graph of valency 14. We observe that if
k = p+ 1 ≥ 6 for some prime p, then a (G, 4)-arc transitive graph of valency k is
4-transitive;

H = Z2
p o Z p−1

(p−1,3)
.PGL(2, p),

and

L = [p3]o (Zp−1 × Z p−1
(p−1,3)

).

In particular, L = NH(Lp) for a Sylow p-subgroup Lp. Thus NG(L) ≤ NG(Lp).
The construction of the graphs of valency 6 in the next lemma was first obtained
by Stroth and Weiss [28].

Lemma 3.10. Let T be one of the sporadic simple groups Ru, Th or M. Then
there exists a unique 4-transitive graph Γ such that Aut Γ = T , and further, Γ has
valency 6 in the cases where T = Ru or Th, while Γ has valency 14 when T = M.

Proof. Since the construction for the Ru-graph is similar to the construction for
the Th-graph, we only describe the latter.

Let T be the Thompson group Th. By the Atlas [8], T has one conjugacy class
of maximal subgroups that are isomorphic to Z2

5 o Z4. S5
∼= Z2

5 oGL(2, 5). Let H
be a subgroup of T such that

H ∼= Z2
5 oGL(2, 5),

and let H5 be a Sylow 5-subgroup of H . Then

L := NH(H5) ∼= 51+2
+ .(Z4.Z4),

and however, by the Atlas [8], NT (H5) ∼= 51+2
+ .(Z4. S4). Let M be a Hall {2, 5}-

subgroup of NT (H5) which contains L. Then L has index 2 in M , and thus there
exists a 2-element g ∈M \ L such that g2 ∈ L < H and g normalizes L. It follows
that L = H ∩Hg. Now |H : L| = 6, and as H is a maximal subgroup of T , 〈H, g〉 =
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T . Therefore, by Lemma 3.1 and Theorem 2.2, the coset graph Γ = Γ(T,H,HgH)
is a connected 4-transitive graph of valency 6. It also follows from Theorem 2.2
that Aut Γ = T . Now H has a normal subgroup N such that 51+2

+ .Z4
∼= N C L.

Thus N C LCNT (L) ≤NT (H5) = N. S4. Thus Z4
∼= L/N CNT (L)/N ≤ S4, and

so NT (L)/N ∼= D8. In particular, NT (L)/L ∼= Z2, and so by Lemma 2.3, Γ is a
unique (T, 4)-transitive graph of valency 6.

Now let T be the Monster simple group M. By the Atlas [8], T has one conjugacy
class of maximal subgroups which are isomorphic to Z2

13o (Z4.PSL(2, 13).Z2). Let
H be a subgroup of T such that

H ∼= Z2
13 o (Z4.PSL(2, 13).Z2),

and let H13 be a Sylow 13-subgroup of H . Then

L := NH(H13) ∼= 131+2
+ .(Z3 × (Z4.Z4)),

and however, by the Atlas [8], NT (H13) ∼= 131+2
+ o (Z3 × Z4. S4). Let L{2,3} and

P be Hall {2, 3}-subgroups of L and NT (H13), respectively, such that L{2,3} <
P . It follows that either L{2,3} C P , or NP (L{2,3}) ∼= Z3 × [25]. In either case,
|P |/|L{2,3}| is even, and thus there exists a 2-element g ∈ NT (H13) \L such that g
normalizes L and g2 ∈ L < H . Now |H : L| = 14, and as H is a maximal subgroup
of T , 〈H, g〉 = T . Therefore, by Lemma 3.1 and Theorem 2.2, the coset graph
Γ = Γ(T,H,HgH) is a connected 4-transitive graph of valency 14. Note that H
has a normal subgroup N such that 131+2

+ .Z12
∼= N C L CNT (L) ≤ NT (H13) =

N. S4. Hence Z4
∼= L/N CNT (L)/N ≤ S4, and so NT (L)/N ∼= D8. In particular,

NT (L)/L ∼= Z2, and so by Lemma 2.3, Γ is a unique (T, 4)-transitive graph of
valency 14.

To complete the proof of this lemma, we only need to prove that Aut Γ = T .
Suppose that Aut Γ 6= T . Since H is a maximal subgroup of T , T is primitive
on V Γ. Thus any group X with T < X ≤ Aut Γ is primitive on V Γ. Choose X
such that T is maximal in X . Since Aut(T ) = T and T is primitive on V Γ, it
follows that NAut Γ(T ) = T . Since Γ is of valency 14, all prime divisors of |Xα| are
less than 14. As 17 exactly divides |T |, we have that 17 exactly divides |X | and
note that 17 divides |V Γ|. It then follows from the O’Nan-Scott theorem (see [24])
that X is an almost simple group. Now both T and Xα are maximal subgroups
of X , and X = TXα, which is a maximal factorization of X . By Corollary 4
and Theorems B and C of [21], there exists no such triple (T,Xα, X), which is a
contradiction. Therefore, Aut Γ = T , and Lemma 3.10 is proved.

4. Proofs of the theorems

This section is devoted to proving Theorems 1.1–1.4. Let Γ be a (G, s)-transitive
graph, where G ≤ Aut Γ and s ∈ {4, 5, 7}, such that G is primitive or biprimitive
on V Γ. If Γ is bipartite with parts ∆1 and ∆2, then G∆1 = G∆2 is primitive on
∆1 and ∆2. Let{

Ω = V Γ, G+ = G, if Γ is non-bipartite,
Ω = ∆1, G+ = G∆1 , if Γ is bipartite with parts ∆i.

Then G+ is a primitive permutation group on Ω (see [25, Theorem 2.1]). Thus for
α ∈ Ω, Gα = G+

α is a maximal subgroup of G+. The first lemma gives a reduction
to almost simple groups.
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Lemma 4.1. Let Γ be a graph such that G ≤ Aut Γ is primitive or biprimitive on
V Γ and Γ is (G, s)-transitive for some s ∈ {4, 5, 7}. Then G+ is an almost simple
group, and further, either

(i) G is an almost simple group, or
(ii) Γ is the double cover of a vertex-primitive (G+, s)-transitive graph.

Proof. By Theorem 2.2, for α ∈ Ω, GΓ(α)
α is a 2-transitive permutation group on

Γ(α) such that soc(GΓ(α)
α ) ∼= PSL(2, q), where q is a power of a prime p with

|Γ(α)| = q + 1. Since G+ is primitive, by Praeger [24, 25] and in terms of [26], G+

is of type HA, AS, PA or TW.
Suppose first that G+ is of type HA or TW. Then soc(G+) is regular on Ω. Let

P be the normal subgroup of Gα of order qs−2, and let X = soc(G+) o P . Then
X CG+, and so 1 6= X

Γ(α)
α CGΓ(α)

α . As GΓ(α)
α is 2-transitive, XΓ(α)

α is transitive on
Γ(α), which is a contradiction since |Γ(α)| = q + 1 and XΓ(α)

α is a p-group.
Suppose now that G+ is of type PA, and let N = soc(G+). Then 1 6= N

Γ(α)
α C

G
Γ(α)
α . As GΓ(α)

α is 2-transitive, NΓ(α)
α is transitive on Γ(α), and hence NΓ(α)

α ≥
PSL(2, q). It follows that the unique insoluble composition factor of Gα (isomorphic
to PSL(2, q)) is a composition factor of Nα. However, as G+ is of type PA, Nα =
R1 × · · · × Rk, where k ≥ 2 and R1

∼= · · · ∼= Rk. This is not possible. Therefore,
G+ is almost simple, that is, soc(G+) = T is a nonabelian simple group.

Assume that G is not an almost simple group. It follows that CG(T ) 6= 1. Since
|G|/|G+| = 2 and CG+(T ) = 1, we have that C := CG(T ) ∼= Z2. Now C CG, and
it then follows that G = G+ × C. Let Σ = ΓC , the quotient of Γ induced by C.
Then Γ is the standard double cover of Σ. Further, G+ ∼= G/C ≤ Aut Σ, G/C is
primitive on V Σ, and by [24, Theorem 4.1], Σ is (G/C, s)-transitive.

Thus, to complete the proofs of Theorems 1.3 and 1.4, we only need to consider
almost simple groups. So we assume that G is an almost simple group with socle
T = soc(G) = soc(G+), and that Γ is a (G, s)-transitive graph with s ∈ {4, 5, 7}.
We analyse the finite nonabelian simple groups class by class.

Lemma 4.2. Assume that T = soc(G) ∼= An for some n ≥ 5. Then n = 6, and Γ
is a bipartite 5-transitive cubic graph, which is isomorphic to Tutte’s 8-Cage (see
Example 3.6).

Proof. Assume that n = 6. Then T ∼= PSL(2, 9), and PSL(2, 9) ≤ G ≤ PΓL(2, 9).
By information given in the Atlas [8], PΓL(2, 9) has a maximal subgroup S4×Z2,
and further we may conclude that the pair (PΓL(2, 9), S4×Z2) gives rise to the
smallest graph Γ constructed in Example 3.6, which is bipartite, cubic and 5-
transitive.

Suppose that n 6= 6. Then either G = G+, or G+ = T and G ∼= Sn. In particular,
G+ ∼= An or Sn. Now G+ naturally acts on Ω = {1, 2, . . . , n}, and G+

α is a maximal
subgroup of G+. Consider the G+

α -action on Ω. Note that G+
α has the form of H

given in Table 3 of Theorem 2.2, and in particular, the unique insoluble composition
factor of G+

α is PSL(2, q). By the O’Nan-Scott theorem (see [21, p. 130]), we may
conclude that n = p2 and G+

α = AGL(2, p)∩G+ = (Z2
po(Zp−1.PSL(2, p).Z2))∩G+.

Suppose that Tα = Z2
p o (Zp−1.PSL(2, p).Z2) = AGL(2, p). Then there exists

an involution σ of Sn \An which normalizes Tα. However, by the O’Nan-Scott
theorem, 〈Tα, σ〉 is not a subgroup of Sn, which is a contradiction. Thus Tα =
Z2
p o (Zp−1.PSL(2, p)). If Γ is non-bipartite, then Γ is (T, s)-transitive, which is a
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contradiction since Tα does not satisfy Theorem 2.2. If Γ is bipartite, then G+ = T
and so G+

α = Tα = Z2
p o (Zp−1.PSL(2, p)), which is again a contradiction since G+

does not satisfy Theorem 2.2.

Lemma 4.3. Assume that T = soc(G) is a sporadic simple group. Then T = M12,
J3, Ru, Th or M, and Theorems 1.3 and 1.4 hold.

Proof. For a vertex α of Γ, Tα satisfies Theorem 2.2. Thus, by information given in
the Atlas [8] and the recent result in [23, 38], the pair (T, Tα) is one of the following:

(M12,Z2
3 oGL(2, 3)); (M22,Z4

2 o PSL(2, 4).Z2); (M23,Z4
2 oGL(2, 4).Z2);

(J3,Z4
2 oGL(2, 4)); (McL,Z4

3 oM10); (He,Z2
7 o SL(2, 7));

(Ru,Z2
5 oGL(2, 5)); (Th,Z2

5 oGL(2, 5)); (M,Z2
13 o (Z4.PSL(2, 13).Z2)).

Suppose that T = M22 or M23. Then the graph Γ has valency 5, and |T : Tα| is
odd, which is a contradiction. Next suppose (T, Tα) = (McL,Z4

3 oM10). If there
exists such a graph Γ, then Tα∩T gα = T3oQ8 where T3

∼= Z4
3 is a Sylow 3-subgroup

of T and g normalizes T3oQ8. Thus we have NT (T3) = T3o [16]. However, by the
Atlas [8], this is not possible. An argument for T = He using Sylow 7-subgroups,
which is analogous to the argument for McL using Sylow 3-subgroups, proves that
T 6= He.

The pair (T, Tα) = (M12,Z2
3 o GL(2, 3)) gives rise to the bipartite graph Γ de-

scribed in Lemma 3.7 such that Aut Γ = Aut(M12) = M12 .Z2. The pair (T, Tα) =
(J3,Z4

2oGL(2, 4)) gives rise to the Weiss graph (see Lemma 3.8). The pair (Ru,Z2
5o

GL(2, 5)) gives rise to the Stroth-Weiss graph, one of the graphs constructed in
Lemma 3.10; while the pairs (Th,Z2

5oGL(2, 5)) and (M,Z2
13o (Z4.PSL(2, 13).Z2))

give rise to the other two graphs constructed in Lemma 3.10.

We note that, by Lemma 3.10 and Lemma 4.3, we have completed the proof of
Theorem 1.1.

Assume next that soc(G) is a classical simple group of Lie type. Note that H is
a maximal local subgroup of G+. All possibilities for H are described in [16], and
we will analyse the classification in [16] to complete this case. For convenience, we
first deal with some small groups, using information given in the Atlas [8].

Lemma 4.4. The socle T = soc(G) of G is not one of the following groups:
(1) PSL(3, 2), PSL(4, 2), PSL(5, 2), PSL(4, 3);
(2) PSU(4, 2), PSU(5, 2), PSU(6, 2), PSU(3, 3), PSU(4, 3);
(3) PSp(6, 2), PSp(8, 2), PSp(4, 3)(∼= PSL(4, 2)), PSp(6, 3);
(4) O+

8 (2), O−8 (2), O+
10(2), O−10(2), O7(3), O+

8 (3), O−8 (3).

Proof. For the groups listed in (1), from information given in the Atlas [8], if
T = PSL(3, 2), then H = S4, but T is 2-transitive on [T : H ], a contradiction;
while if T is one of the other groups in (1), there is no a subgroup H of T satisfying
Theorem 2.2.

Now consider the groups listed in (2). By the Atlas [8], only PSU(4, 2) and
PSU(4, 3) have subgroups satisfying Theorem 2.2. If T = PSU(4, 2), then H is
isomorphic to [24]oA5 or [33]o2 A4. Thus the valency k = 5 or 4, andK ∼= ([26].3).2
or [34].[4], but PSU(4, 2) has no such subgroups. If T = PSU(4, 3), then H is
isomorphic to 34 o A6 or [35].2 S4. Thus K should be isomorphic to [36].[8], but
PSU(4, 3) has no such subgroups.

Similarly, from the information given in the Atlas [8], we may easily conclude
that T is not one of the groups in (3) or (4).
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Next we check subgroups in Ci for 1 ≤ i ≤ 8 described in [16]. Observing the
form of the point-stabilizer in G, by Sections 4.2, 4.4, 4.5, 4.7 and 4.8 and by
Lemma 4.4, we may conclude that H is not in C2 ∪ C4 ∪ C5 ∪ C7 ∪ C8. Thus we only
need to consider the remaining three cases.

Lemma 4.5. Assume that T = soc(G) is a classical simple group of Lie type. Then
T = A6, PSL(3, 3), PSL(3, q), PSp(4, 2m), PSL(2, p), or PSp(4, p) with p ≡ ±1
(mod 8), and Γ is one of the graphs given in Tables 1 and 2.

Proof. First assume that H is a subgroup of G in C1, namely a reducible subgroup.
Checking Section 4.1 of [16] and using Lemma 4.4, we find that one of the following
holds:
T = PSL(3, q) and Tα = [q2].Z q−1

(q−1,3)
PGL(2, q) (see [16, Proposition 4.1.17]);

T = PSp(4, q) and Tα = [q3].GL(2, q) where q is a 2-power (see [16, Proposi-
tion 4.1.19]).

We note that although for T = PSU(4, q) where q is a 3-power, T has a subgroup
M which has a normal subgroup N of order q5 and has a unique insoluble composi-
tion factor isomorphic to PSL(2, q), M/N 6∼= GL(2, q). A similar situation happens
for the group PSL(4, q). Therefore, T is isomorphic to PSL(3, q) or PSp(4, q). The
former gives rise to the generalized 3-gon graphs, and the latter gives rise to the
generalized 4-gon graphs described in Section 2.

Now assume that H is a subgroup of type C3, that is a field extension subgroup.
Then by Section 4.3 of [16], we may conclude that T = PSL(2, 32) ∼= A6, and
H ∩ T ∼= PGL(2, 3) ∼= S4. This case gives rise to one of the graphs Γ constructed
in Example 3.6 such that Aut Γ = PΓL(2, 32).

Finally, we assume that H is a subgroup of G in C6, namely a symplectic-type
normalizer. Checking Section 4.6 of [16] and by Lemma 4.4, we may conclude that
one of the following cases holds:

(1) T = PSL(3, 3), and H ∩ T ∼= PSL(2, 3).Z2
∼= S4 (see [16, Proposition 4.6.5]);

(2) T = PSL(2, p) with p ≡ ±1 (mod 8) and H ∼= S4 (see [16, Proposition 4.6.7]);
(3) T = PSp(4, p) with p ≡ ±1 (mod 8), and H ∼= Z4

2.(Ω
−
4 (2).Z2) ∼= Z4

2.GL(2, 4)
(see [16, Proposition 4.6.9]).

Case (1) gives rise to the Wong-graph described in Example 3.3. Case (2) gives
rise to the Biggs-Hoare-graphs Γ described in Example 3.5 such that Aut Γ =
PGL(2, p); if further p ≡ ±1 (mod 16), then Case (2) gives rise to the Wong-
graphs described in Example 3.4. Case (3) gives rise to the graphs constructed in
Lemma 3.9. This completes the proof of the lemma.

We remark that, by Lemma 3.9 and Lemma 4.5, we have completed the proof of
Theorem 1.2.

Finally, we deal with exceptional simple groups of Lie type.

Lemma 4.6. If T is an exceptional simple group of Lie type, then T = G2(q) with
q = 3m for some m ≥ 1, and Tα ∼= [q5]oGL(2, q), as in Theorem 1.4.

Proof. Let T = soc(G) be an exceptional simple group of Lie type over GF (tf )
where t is a prime. Let H be a maximal subgroup of T which is isomorphic to Tα.

Assume first that T = F4(q), Ei(q) for i ∈ {6, 7, 8}, or 2 E6(q).
Let E be a minimal normal subgroup of H , and let InnDiag(T ) be the group

generated by all inner and diagonal automorphisms of T . Then E is elementary
abelian and H = NT (E). By [5], there are four cases to be considered:
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(i) E < InnDiag(T ) and H is of maximal rank;
(ii) E < InnDiag(T ) and H is not of maximal rank;
(iii) E 6< InnDiag(T );
(iv) t

∣∣ |E|, so that H is a maximal parabolic subgroup of G.
Suppose that case (i) holds. Then all possibilities for H are listed in [5, Tables 5.1

and 5.2]. We may easily conclude that no subgroups H satisfy Theorem 2.2, which
is a contradiction.

Suppose that case (ii) holds. Then all possibilities are listed in [5, Table 1].
Checking the list, we find that H has a nonabelian simple composition factor not
isomorphic to PSL(2, q), which is a contradiction.

Suppose that case (iii) holds. Then E ∩ InnDiag(T ) = 1. It follows from [12,
Sections 7 and 9] that H ∩ T = CT (α) 6= 1 for some outer automorphism α of T of
prime order. Therefore, by [2, Section 19] and [5, Proposition 2.7], either CT (α) is a
group of Lie type over a maximal subfield of GF (tf ), or CT (α) is 2 F4(q), 2 E6(q1/2),
C4(q) with q odd, or F4(q). Each of them contains an insoluble composition factor
not isomorphic to PSL(2, q), which is a contradiction.

Suppose that case (iv) holds. Then H is an extension of a t-group by the Cheval-
ley group determined by a maximal subdigram of the Dynkin diagram of T . It
follows that either H contains a nonabelian composition factor not isomorphic to
PSL(2, q), or T = F4(2). The former is not the case. By the Atlas [8], F4(2) has
no maximal subgroup satisfying Theorem 2.2, which is a contradiction.

Now consider the remaining exceptional simple groups T of Lie type. All maxi-
mal subgroups of such groups T are completely known: [29] for T = Sz(q), [22] for
T =2 F4(q2), [15] for T =2 G2(q), and [14] for T =3 D4(q). Checking these lists
of maximal subgroups of T , we may conclude that T = G2(q) with q = 3m and
Tα = [q5] o GL(2, q). This gives rise to the generalized 6-gon graphs described in
Section 3. The proof of the lemma is completed.

Combining Lemmas 4.1–4.6, we have completed the proofs of Theorem 1.3 and
Theorem 1.4.
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