
The First Collision for Full SHA-1

Marc Stevens1(B), Elie Bursztein2, Pierre Karpman1,
Ange Albertini2, and Yarik Markov2

1 CWI Amsterdam, Amsterdam, The Netherlands
info@shattered.io

2 Google Research, Mountain View, USA
https://shattered.io

Abstract. SHA-1 is a widely used 1995 NIST cryptographic hash func-
tion standard that was officially deprecated by NIST in 2011 due to
fundamental security weaknesses demonstrated in various analyses and
theoretical attacks.

Despite its deprecation, SHA-1 remains widely used in 2017 for docu-
ment and TLS certificate signatures, and also in many software such as
the GIT versioning system for integrity and backup purposes.

A key reason behind the reluctance of many industry players to replace
SHA-1 with a safer alternative is the fact that finding an actual collision
has seemed to be impractical for the past eleven years due to the high
complexity and computational cost of the attack.

In this paper, we demonstrate that SHA-1 collision attacks have finally
become practical by providing the first known instance of a collision.
Furthermore, the prefix of the colliding messages was carefully chosen
so that they allow an attacker to forge two distinct PDF documents
with the same SHA-1 hash that display different arbitrarily-chosen visual
contents.

We were able to find this collision by combining many special cryptan-
alytic techniques in complex ways and improving upon previous work. In
total the computational effort spent is equivalent to 263.1 calls to SHA-1’s
compression function, and took approximately 6 500 CPU years and 100
GPU years. While the computational power spent on this collision is
larger than other public cryptanalytic computations, it is still more than
100 000 times faster than a brute force search.

Keywords: Hash function · Cryptanalysis · Collision attack · Collision
example · Differential path construction

1 Introduction

A cryptographic hash function H : {0, 1}∗ → {0, 1}n is a function that computes
for any arbitrarily long message M a fixed-length hash value of n bits. It is
a versatile cryptographic primitive used in many applications including digital
signature schemes, message authentication codes, password hashing and content-
addressable storage. The security or even the proper functioning of many of these

c© International Association for Cryptologic Research 2017
J. Katz and H. Shacham (Eds.): CRYPTO 2017, Part I, LNCS 10401, pp. 570–596, 2017.
DOI: 10.1007/978-3-319-63688-7 19

The First Collision for Full SHA-1 571

applications rely on the assumption that it is practically impossible to find col-
lisions, i.e. two distinct messages x, y that hash to the same value H(x) = H(y).
When the hash function behaves in a “sufficiently random” way, the expected
number of calls to H (or in practice its underlying fixed-size function) to find a
collision using an optimal generic algorithm is

√

π/2 · 2n/2 (see e.g. [33, App-
ndix A]); an algorithm that is faster at finding collisions for H is then a collision
attack for this function.

A major family of hash function is “MD-SHA”, which includes MD5,
SHA-1 and SHA-2 that all have found widespread use. This family originally
started with MD4 [36] in 1990, which was quickly replaced by MD5 [37] in 1992
due to serious attacks [9,11]. Despite early known weaknesses of its underlying
compression function [10], MD5 was widely deployed by the software industry
for over a decade. The MD5CRK project that attempted to find a collision for
MD5 by brute force was halted early in 2004, when Wang and Yu produced
explicit collisions [49], found by a groundbreaking attack that pioneered new
techniques. In a major development, Stevens et al. [45] later showed that a more
powerful type of attack (the so-called chosen-prefix collision attack) could be
performed against MD5. This eventually led to the forgery of a Rogue Certifi-
cation Authority that in principle completely undermined HTTPS security [46]
in 2008. Despite this, even in 2017 there are still issues in deprecating MD5 for
signatures [18].

Currently, the industry is facing a similar challenge in the deprecation of
SHA-1, a 1995 NIST standard [31]. It is one of the main hash functions of today,
and it also has been facing important attacks since 2005. Based on previous suc-
cessful cryptanalysis [3–5] of SHA-0 [30] (SHA-1’s predecessor, that only differs
by a single rotation in the message expansion function), Wang et al. [48] pre-
sented in 2005 the very first collision attack on SHA-1 that is faster than brute-
force. This attack, while groundbreaking, was purely theoretical as its expected
cost of 269 calls to SHA-1’s compression function was practically out-of-reach.

Therefore, as a proof of concept, many teams worked on generating collisions
for reduced versions of the function: 64 steps [8] (with a cost of 235 SHA-1 calls),
70 steps [7] (cost 244 SHA-1), 73 steps [15] (cost 250.7 SHA-1) and finally 75
steps [16] (cost 257.7 SHA-1) using extensive GPU computation power.

In 2013, building on these advances and a novel rigorous framework for ana-
lyzing SHA-1, the current best collision attack on full SHA-1 was presented by
Stevens [43] with an estimated cost of 261 calls to the SHA-1 compression func-
tion. Nevertheless, a publicly known collision still remained out of reach. This
was also highlighted by Schneier [38] in 2012, when he estimated the cost of a
SHA-1 collision attack to be around US$ 700K in 2015, down to about US$ 173K
in 2018 (using calculations by Walker based on a 261 attack cost [43], Amazon
EC2 spot prices and Moore’s Law), which he deemed to be within the resources
of criminals.

More recently, a collision for the full compression function underlying
SHA-1 was obtained by Stevens et al. [44] using a start-from-the-middle app-
roach and a highly efficient GPU framework (first used to mount a similar

572 M. Stevens et al.

freestart attack on the function reduced to 76 steps [21]). This required only
a reasonable amount of GPU computation power, about 10 days using 64
GPUs, equivalent to approximately 257.5 calls to SHA-1 on GPU. Based on
this attack, the authors projected that a collision attack on SHA-1 may cost
between US$ 75K and US$ 120K by renting GPU computing time on Amazon
EC2 [39] using spot-instances, which is significantly lower than Schneier’s 2012
estimates. These new projections had almost immediate effect when CABForum
Ballot 152 to extend issuance of SHA-1 based HTTPS certificates was with-
drawn [13], and SHA-1 was deprecated for digital signatures in the IETF’s TLS
protocol specification version 1.3.

Unfortunately CABForum restrictions on the use of SHA-1 only apply to
actively enrolled Certification Authority certificates and not on any other cer-
tificates, e.g. retracted CA certificates that are still supported by older systems
(and CA certificates have indeed been retracted for continued use of SHA-1 cer-
tificates to serve to these older systems unchecked by CABForum regulations1),
and certificates for other TLS applications including up to 10% of credit card
payment systems [29,47]. It thus remains in widespread use across the software
industry for, e.g., digital signatures of software, documents, and many other
applications, most notably in the GIT versioning system.

It is well worth noting that academic researchers have not been the only
ones to compute (and exploit) hash function collisions. Nation-state actors [24,
25,34] have been linked to the highly advanced espionage malware “Flame” that
was found targeting the Middle-East in May 2012. As it turned out, it used a
forged signature to infect Windows machines via a man-in-the-middle attack on
Windows Update. Using a new technique of counter-cryptanalysis that is able to
expose cryptanalytic collision attacks given only one message from a colliding
message pair, it was proven that the forged signature was made possible by a
then secret chosen-prefix attack on MD5 [12,42].

2 Our Contributions

We are the first to exhibit an example collision for SHA-1, presented in Table 1,
thereby proving that theoretical attacks on SHA-1 have now become practical.
Our work builds upon the best known theoretical collision attack [43] with esti-
mated cost of 261 SHA-1 calls. This is an identical-prefix collision attack, where
a given prefix P is extended with two distinct near-collision block pairs such
that they collide for any suffix S:

SHA-1
(

P ||M
(1)
1 ||M

(1)
2 ||S

)

= SHA-1
(

P ||M
(2)
1 ||M

(2)
2 ||S

)

. (1)

The computational effort spent on our attack is estimated to be equivalent to
263.1 SHA-1 calls (see Sect. 6). There is certainly a gap between the theoretical
attack as presented in [43] and our executed practical attack that was based

1 For instance, SHA-1 certificates are still being sold by CloudFlare at the time of
writing: https://www.cloudflare.com/ssl/dedicated-certificates/.

https://www.cloudflare.com/ssl/dedicated-certificates/

The First Collision for Full SHA-1 573

Table 1. Colliding message blocks for SHA-1.

CV0 4e a9 62 69 7c 87 6e 26 74 d1 07 f0 fe c6 79 84 14 f5 bf 45

M
1

1
7f 46 dc 93 a6 b6 7e 01 3b 02 9a aa 1d b2 56 0b

45 ca 67 d6 88 c7 f8 4b 8c 4c 79 1f e0 2b 3d f6

14 f8 6d b1 69 09 01 c5 6b 45 c1 53 0a fe df b7

60 38 e9 72 72 2f e7 ad 72 8f 0e 49 04 e0 46 c2

CV
1

1
8d 64 d6 17 ff ed 53 52 eb c8 59 15 5e c7 eb 34 f3 8a 5a 7b

M
1

2
30 57 0f e9 d4 13 98 ab e1 2e f5 bc 94 2b e3 35

42 a4 80 2d 98 b5 d7 0f 2a 33 2e c3 7f ac 35 14

e7 4d dc 0f 2c c1 a8 74 cd 0c 78 30 5a 21 56 64

61 30 97 89 60 6b d0 bf 3f 98 cd a8 04 46 29 a1

CV2 1e ac b2 5e d5 97 0d 10 f1 73 69 63 57 71 bc 3a 17 b4 8a c5

CV0 4e a9 62 69 7c 87 6e 26 74 d1 07 f0 fe c6 79 84 14 f5 bf 45

M
2

1
73 46 dc 91 66 b6 7e 11 8f 02 9a b6 21 b2 56 0f

f9 ca 67 cc a8 c7 f8 5b a8 4c 79 03 0c 2b 3d e2

18 f8 6d b3 a9 09 01 d5 df 45 c1 4f 26 fe df b3

dc 38 e9 6a c2 2f e7 bd 72 8f 0e 45 bc e0 46 d2

CV
2

1
8d 64 c8 21 ff ed 52 e2 eb c8 59 15 5e c7 eb 36 73 8a 5a 7b

M
2

2
3c 57 0f eb 14 13 98 bb 55 2e f5 a0 a8 2b e3 31

fe a4 80 37 b8 b5 d7 1f 0e 33 2e df 93 ac 35 00

eb 4d dc 0d ec c1 a8 64 79 0c 78 2c 76 21 56 60

dd 30 97 91 d0 6b d0 af 3f 98 cd a4 bc 46 29 b1

CV2 1e ac b2 5e d5 97 0d 10 f1 73 69 63 57 71 bc 3a 17 b4 8a c5

on it. Indeed, the theoretical attack’s estimated complexity does not include
the inherent relative loss in efficiency when using GPUs, nor the inefficiency
we encountered in actually launching a large scale computation distributed over
several data centers. Moreover, the construction of the second part of the attack
was significantly more complicated than could be expected from the literature.

To find the first near-collision block pair (M
(1)
1 ,M

(2)
1) we employed the open-

source code from [43], which was modified to work with our prefix P given
in Table 2, and for large scale distribution over several data centers. To find

the second near-collision block pair (M
(1)
2 ,M

(2)
2) that leads to the collision was

more challenging, as the attack cost is known to be significantly higher, but also
because of additional obstacles.

In Sect. 5 we will discuss in particular the process of building the second near-
collision attack. Essentially we followed the same steps as was done for the first
near-collision attack [43], combining many existing cryptanalytic techniques. Yet
we further employed the SHA-1 collision search GPU framework from Karpman
et al. [21] to achieve a significantly more cost efficient attack.

We also describe two new additional techniques used in the construction of
the second near-collision attack. The first allowed us to use additional differential

574 M. Stevens et al.

Table 2. Identical prefix of our collision.

25 50 44 46 2d 31 2e 33 0a 25 e2 e3 cf d3 0a 0a %PDF-1.3.%......

0a 31 20 30 20 6f 62 6a 0a 3c 3c 2f 57 69 64 74 .1 0 obj.<</Widt

68 20 32 20 30 20 52 2f 48 65 69 67 68 74 20 33 h 2 0 R/Height 3

20 30 20 52 2f 54 79 70 65 20 34 20 30 20 52 2f 0 R/Type 4 0 R/

53 75 62 74 79 70 65 20 35 20 30 20 52 2f 46 69 Subtype 5 0 R/Fi

6c 74 65 72 20 36 20 30 20 52 2f 43 6f 6c 6f 72 lter 6 0 R/Color

53 70 61 63 65 20 37 20 30 20 52 2f 4c 65 6e 67 Space 7 0 R/Leng

74 68 20 38 20 30 20 52 2f 42 69 74 73 50 65 72 th 8 0 R/BitsPer

43 6f 6d 70 6f 6e 65 6e 74 20 38 3e 3e 0a 73 74 Component 8>>.st

72 65 61 6d 0a ff d8 ff fe 00 24 53 48 41 2d 31 ream......$SHA-1

20 69 73 20 64 65 61 64 21 21 21 21 21 85 2f ec is dead!!!!!./.

09 23 39 75 9c 39 b1 a1 c6 3c 4c 97 e1 ff fe 01 .#9u.9...<L.....

paths around step 23 for increased success probability and more degrees of free-
dom without compromising the use of an early-stop technique. The second was
necessary to overcome a serious problem of an unsolvable strongly over-defined
system of equations over the first few steps of SHA-1’s compression function that
threatened the feasibility of finishing this project.

As can be deduced from Eq. 1, our example colliding files only differ in two
successive random-looking message blocks generated by our attack. We exploit
these limited differences to craft two colliding PDF documents containing arbi-
trary distinct images. Examples can be downloaded from https://shattered.io.
PDFs with the same MD5 hash have previously been constructed by Gebhardt
et al. [14] by exploiting so-called Indexed Color Tables and Color Transformation
functions. However, this method is not effective for many common PDF viewers
that lack support for these functionalities. Our PDFs rely on distinct parsings
of JPEG images, similar to Gebhardt et al.’s TIFF technique [14] and Albertini
et al.’s JPEG technique [1]. Yet we improved upon these basic techniques using
very low-level “wizard” JPEG features such that these work in all common PDF
viewers, and even allow very large JPEGs that can be used to craft multi-page
PDFs. This overall approach and the technical details will be described in a
separate article [2].

The remainder of this paper is organized as follows. We first give a brief
description of SHA-1 in Sect. 3. Then, we give a high-level overview of our attack
in Sect. 4, followed by Sect. 5 that details the entire process and the cryptana-
lytic techniques employed, where we also highlight improvements with respect
to previous work. Finally, we discuss the large-scale distributed computations
required to find the two near-collision block pairs in Sect. 6. The parameters
used to find the second colliding block are given in the appendix, in Sect.A.

3 The SHA-1 Hash Function

We provide a brief description of SHA-1 as defined by NIST [31]. SHA-1 takes an
arbitrary-length message and computes a 160-bit hash. It divides the (padded)

https://shattered.io

The First Collision for Full SHA-1 575

input message into k blocks M1, . . . , Mk of 512 bits. The 160-bit internal state
CVj of SHA-1, called the chaining value, is initialized to a predefined initial
value CV0 = IV . Each message block is then fed to a compression function h
that updates the chaining value, i.e. CVj+1 = h(CVj ,Mj+1), for 0 ≤ j < k,
where the final CVk is output as the hash.

The compression function h takes a 160-bit chaining value CVj and a 512-
bit message block Mj+1 as inputs, and outputs a new 160-bit chaining value
CVj+1. It mixes the message block into the chaining value as follows, operating
on words, simultaneously seen as 32-bit strings and as elements of Z/232

Z: the
input chaining value is parsed as five words a, b, c, d, e, and the message block as
16 words m0, . . . , m15. The latter are expanded into 80 words using the following
recursive linear equation:

mi = (mi−3 ⊕ mi−8 ⊕ mi−14 ⊕ mi−16)
�1, for 16 ≤ i < 80.

Starting from (A−4, A−3, A−2, A−1, A0) := (e�2, d�2, c�2, b, a), each mi is mixed
into an intermediate state over 80 steps i = 0, . . . , 79:

Ai+1 = A�5
i + ϕi(Ai−1, A

�2
i−2, A

�2
i−3) + A�2

i−4 + Ki + mi,

where ϕi and Ki are predefined Boolean functions and constants:

Step i ϕ
i
(x, y, z) Ki

0 ≤ i < 20 ϕ
IF

= (x ∧ y) ∨ (¬x ∧ z) 0x5a827999

20 ≤ i < 40 ϕ
XOR

= x ⊕ y ⊕ z 0x6ed9eba1

40 ≤ i < 60 ϕ
MAJ

= (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) 0x8f1bbcdc

60 ≤ i < 80 ϕ
XOR

= x ⊕ y ⊕ z 0xca62c1d6

After the 80 steps, the new chaining value is computed as the sum of the
input chaining value and the final intermediate state:

CVj+1 = (a + A80, b + A79, c + A�2
78 , d + A�2

77 , e + A�2
76).

4 Overview of our SHA-1 Collision Attack

We illustrate our attack from a high level in Fig. 1. Starting from identical chain-
ing values for two messages, we use two pairs of blocks. The differences in the
first block pair cause a small difference in the output chaining value, which is
canceled by the difference in the second block pair, leading again to identical
chaining values and hence a collision (indicated by (2)). We employ differential

paths that are a precise description of differences in state words and message
words and of how these differences should propagate through the 80 steps.

Note that although the first five state words are fixed by the chaining value,
one can freely modify message words and thus directly influence the next sixteen

576 M. Stevens et al.

Fig. 1. Attack overview

state words. Moreover, with additional effort this can be extended to obtain lim-
ited influence over another eight state words. However, control over the remaining
state words (indicated by (1)) is very hard and thus requires very sparse target
differences that correctly propagate with probability as high as possible. Fur-
thermore, these need to be compatible with differences in the expanded message
words. The key solution is the concept of local collisions [5], where any state bit-
difference introduced by a perturbation message bit-difference is to be canceled
in the next five steps using correction message bit-differences.

To ensure all message word bit differences are compatible with the linear
message expansion, one uses a disturbance vector (DV) [5] that is a correctly
expanded message itself, but where every “1” bit marks the start of a local
collision. The selection of a good disturbance vector has a very high impact on
the overall attack cost. As previously shown by Wang et al. [48], the main reason
of using two block pairs (i.e. to search for a near-collision over a first message
block, that is completed to a full collision over a second) instead of only one
is that this choice alleviates an important restriction on the disturbance vector,
namely that there are no state differences after the last step. Similarly, it may be
impossible to unite the input chaining value difference with the local collisions for
an arbitrary disturbance vector. This was solved by Wang et al. [48] by crafting a
tailored differential path (called the non-linear (NL) path, indicated by (3)) that
over the first 16 steps connects the input chaining value differences to the local
collision differences over the remaining steps (called the linear path, referring to
the linear message expansion dictating the local collision positions).

One has to choose a good disturbance vector, then craft a non-linear differ-
ential path for each of the two near-collision attacks (over the first and second
message blocks), determine a system of equations over all steps and finally find
a solution in the form of a message block pair (as indicated by (4A) and (4B)).
Note that one can only craft the non-linear path for the second near-collision
attack once the chaining values resulting from the first block pair are known.
This entire process including our improvements is described below.

5 Near-Collision Attack Procedure

This section describes the overall procedure of each of the two near-collision
attacks. Since we relied on our modification of Stevens’ public source-code [17,43]

The First Collision for Full SHA-1 577

DV selection
Craft non-
linear path

Determine
attack

conditions

Find
additional
conditions

Fix
solvability
first steps

Find
speed-ups

(boomerangs)

Write attack
algorithm

Run attack

Fig. 2. The main steps for each near-collision attack.

for the first near-collision attack, we focus on our extended procedure for our
second near-collision attack. As shown in Fig. 2, this involves the following steps
that are further detailed below:

1. selection of the disturbance vector (same for both attacks);
2. construction of the non-linear differential path;
3. determine attack conditions over all steps;
4. find additional conditions beyond the fixed differential path for early-stop;
5. if necessary fix solvability of attack conditions over the first few steps;
6. find message modification rules to speed-up collision search;
7. write the attack algorithm;
8. finally, run the attack to find a near-collision block pair.

5.1 Disturbance Vector Selection

The selection of which disturbance vector to use is a major choice, as it directly
determines many aspects of the collision attack. These include the message XOR
differences, but also in theory the optimal attack choices over the linear path,
including the optimal set of candidate endings for the non-linear path together
with optimal linear message-bit equations that maximize the success probability
over the linear part.

Historically several approaches have been used to analyze a disturbance vec-
tor to estimate attack costs over the linear part. Initially, the Hamming weight of
the DV that counts the active number of local collisions was used (see e.g. [4,35]).
For the first theoretical attack on SHA-1 with cost 269 SHA-1-calls by Wang
et al. [48] a more refined measure was used, that counts the number of bit-
conditions on the state and message bits that ensure that the differential path
would be followed. This was later refined by Yajima et al. [51] to a more pre-
cise count by exploiting all possible so-called bit compressions and interactions
through the Boolean functions. However, this approach does not allow any dif-
ference in the carry propagation, which otherwise could result in alternate differ-
ential paths that may improve the overall success probability. Therefore, Mendel
et al. [28] proposed to use the more accurate probability of single local collisions
where carry propagations are allowed, in combination with known local collision
interaction corrections.

578 M. Stevens et al.

The current state-of-the-art is joint-local-collision analysis (JLCA) intro-
duced by Stevens [41,43] which given sets of allowed differences for each state
word Ai and message word mi (given by the disturbance vector) computes the
exact optimal success probability over the specified steps by exhaustively evalu-
ating all differential paths with those allowed differences. This approach is very
powerful as it also provides important information for the next steps, namely
the set of optimal chaining value differences (by considering arbitrary high prob-
ability differences for the last five Ais) and the set of optimal endings for the
non-linear path, together with a corresponding set of message-bit equations,
using which the optimal highest success probability of the specified steps can
actually be achieved. The best theoretical collision attack on SHA-1 with cost
261 SHA-1 calls [43] was built using this analysis. As we build upon this collision
attack, we use the same disturbance vector, named II(52, 0) by Manuel [26] and
originally described by Jutla and Patthak [20].

5.2 Construction of a Non-linear Differential Path

Once the disturbance vector and the corresponding linear part of the differential
path have been fixed, the next step consists in finding a suitable non-linear path
connecting the chaining value pair (with fixed differences) to the linear part.
This step needs to be done separately for each near-collision attack of the full
collision attack2.

As explained for instance in [43], in the case of the first near-collision attack,
the attacker has the advantage of two additional freedoms. Firstly, an arbitrary
prefix can be included before the start of the attack to pre-fulfill a limited number
of conditions on the chaining value. This allows greater freedom in constructing
the non-linear path as this does not have to be restricted to a specific value
of the chaining value pair, whereas the non-linear path for the second near-
collision attack has to start from the specific given value of input chaining value
pair. Secondly, it can use the entire set of output chaining value differences with
the same highest probability. The first near-collision attack is not limited to a
particular value and succeeds when it finds a chaining value difference in this set,
whereas the second near-collision attack has to cancel the specific difference in
the resulting chaining value pair. Theory predicts the first near-collision attack
to be at least a factor six faster than the second attack [43]. For our collision
attack it is indeed the second near-collision attack that dominates the overall
attack complexity.

Historically, the first non-linear paths for SHA-1 were hand-crafted by Wang
et al. Several algorithms were subsequently developed to automatically search
for non-linear paths for MD5, SHA-1, and other functions of the MD-SHA family.
The first automatic search for SHA-1 by De Cannière and Rechberger [8] was
based on a guess-and-determine approach. This approach tracks the allowed

2 We eventually produced two message block pair solutions for the first near-collision
attack. This provided a small additional amount of freedom in the search for the
non-linear path of the second block.

The First Collision for Full SHA-1 579

values of each bit pair in the two related compression function computations.
It starts with no constraints on the values of these bit pairs other than the
chaining value pair and the linear part differences. It then repeatedly restricts
values on a selected bit pair and then propagates this information via the step
function and linear message expansion relation, i.e., it determines and eliminates
previously-allowed values for other bit pairs that are now impossible due the
added restriction. Whenever a contradiction occurs, the algorithm backtracks
and chooses a different restriction on the last selected bit pair.

Another algorithm for SHA-1 was introduced by Yajima et al. [52] that is
based on a meet-in-the-middle approach. It starts from two fully-specified differ-
ential paths; the first is obtained from a forward expansion of the input chaining
value pair, whereas the other is obtained from a backward expansion of the linear
path. It then tries to connect these two differential paths over the remaining five
steps in the middle by recursively iterating over all solutions over a particular
step.

A similar meet-in-the-middle algorithm was independently first developed for
MD5 and then adapted to SHA-1 by Stevens et al. [17,41,45], which operates
on bit-slices and is more efficient. The open-source HashClash project [17] seems
to be the only publicly available non-linear path construction implementation,
which we improved as follows. Originally, it expanded a large set of differential
paths step by step, keeping only the best N paths after each step, for some user-
specified number N . However, there might be several good differential paths
that result in the same differences and conditions around the connecting five
steps, where either none or all lead to fully-connected differential paths. Since
we only need the best fully-connected differential path we can find, we only need
to keep a best differential path from each subset of paths with the same differ-
ences and conditions over the last five steps that were extended. So to remove
this redundancy, for each step we extend and keep, say, the 4N best paths, then
we remove all such superfluous paths, and finally keep at most N paths. This
improvement led to a small but very welcome reduction in the amount of differ-
ential path conditions under the same path construction parameter choices, but
also allowed a better positioning of the largest density of sufficient conditions
for the differential path.

Construction of a very good non-linear path for the second near-collision
attack using our improved HashClash version took a small effort with our
improvements, yet even allowed us to restrict the section with high density of
conditions to just the first six steps. However, to find a very good non-linear
differential path that is also solvable turned out to be more complicated. Our
final solution is described in Sect. 5.5, which in the end did allow us to build
our attack on the best non-linear path we found without any compromises. The
fixed version of this best non-linear path is presented in Fig. 3, Sect. A.

5.3 Determine Attack Conditions

Having selected the disturbance vector and constructed a non-linear path that
bridges into the linear part, the next step is to determine the entire system of

580 M. Stevens et al.

equations for the attack. This system of equations is expressed entirely over the
computation of message M (1), and not over M (2), and consists of two types of
equations:

1. Linear equations over message bits. These are used to control the additive
signs of the message word XOR differences implied by the disturbance vector.
Since there are many different “signings” over the linear part with the same
highest probability, instead of one specific choice one uses a linear hull that
captures many choices to reduce the amount of necessary equations.

2. Linear equations over state bits given by a fixed differential path up to some
step i (that includes the non-linear path). These control whether there is a
difference in a state bit and which sign it has, furthermore they force target
differences in the outputs of the Boolean functions ϕi.

We determine this entire system by employing our implementation of joint-
local-collision analysis that has been improved as follows. JLCA takes input sets
of allowed differences for each Ai and mi and exhaustively analyzes the set of
differential paths with those allowed differences, which originally is only used to
analyze the linear part. We additionally provide it with specific differences for
Ai and mi as given by the non-linear path, so we can run JLCA over all 80 steps
and have it output an optimal fixed differential path over steps 0, . . . , 22 together
with an optimal set of linear equations over message bits over the remaining
steps. These are optimal results since JLCA guarantees these lead to the highest
probability that is possible using the given allowed differences, but furthermore
that a largest linear hull is used to minimize the amount of equations.

Note that having a fixed differential path over more steps directly provides
more state bit equations which is helpful in the actual collision search because we
can apply an early-stop technique. However, this also adds further restrictions on
Ai limiting a set of allowed differences to a single specific difference. In our case
limiting A24 would result, besides a drop in degrees of freedom, in a lower overall
probability, thus we only use a fixed differential path up to step 22, i.e., up to
A23. Below in Sect. 5.4 we show how we compensated for fewer state equations
that the actual collision search uses to early stop.

5.4 Find Additional State Conditions

As explained in Sect. 5.3, the system of equations consists of linear equations
over (expanded) message bits and linear equations over state bits. In the actual
collision search algorithm, we depend on these state bit equations to stop com-
putation on a bad current solution as early as possible and start backtracking.
These state bit equations are directly given by a fixed differential path, where
every bit difference in the state and message is fixed. Starting from step 23 we
allow several alternate differential paths that increase success probability, but
also allow distinct message word differences that lead to a decrease in the overall
number of equations. Each alternate differential path depends on its own (dis-
tinct) message word differences and leads to its own state bit equations. To find

The First Collision for Full SHA-1 581

additional equations, we also consider linear equations over state and message
bits around steps 21–25. Although in theory these could be computed by JLCA
by exhaustively reconstructing all alternate differential paths and then deter-
mining the desired linear equations, we instead took a much simpler approach.
We generated a large amount of random solutions of the system of equations
up to step 31 using an unoptimized general collision search algorithm. We then
proceeded to exhaustively test potential linear equations over at most four state
bits and message bits around steps 21–25, which is quite efficient as on average
only two samples needed to be checked for each bad candidate. The additional
equations we found and used for the collision search are shown in Table 4, Sect. A.

5.5 Fix Solvability over the First Steps

This step is not required when there are sufficient degrees of freedom in the non-
linear part, as was the case in the first-block near-collision attack. As already
noted, in the case of the second-block near-collision attack, the non-linear path
has to start will a fully-fixed chaining value and has significantly more condi-
tions in the first steps. As a result, the construction of a very good and solvable
non-linear differential path for the second near-collision attack turned out to
be quite complex. Our initially constructed paths unfortunately proved to be
unsolvable over the first few steps. We tried several approaches including using
the guess-and-determine non-linear path construction to make corrections as
done by Karpman et al. [21], as well as using worse differential path construc-
tion parameters, but all these attempts led to results that not only were unsat-
isfactory but that even threatened the feasibility of the second near-collision
attack. Specifically, both approaches led to differential paths with a significantly
increased number of conditions, bringing the total number of degrees of freedom
critically low. Moreover, the additional conditions easily conflicted with candi-
date speed-up measures named “boomerangs” necessary to bring the attack’s
complexity down to a feasible level. Our final solution was to encode this prob-
lem into a satisfiability (SAT) problem and use a SAT solver to find a drop-in
replacement differential path over the first eight steps that is solvable.

More specifically, we adapted the SHA-1 SAT system generator from
Nossum3 [32] (initially used to compute reduced-round practical preimages) to
generate two independent 8-step compression function computations, which we
then linked by adding constraints that set the given input chaining value pair,
the message XOR differences over m0, . . . , m7, the path differences of A4, . . . , A8

and the path conditions of A5, . . . , A8. In effect, we allowed complete freedom
over A1, A2, A3 and some freedom over A4. All solutions were exhaustively gen-
erated by MiniSAT4 and then converted into drop-in replacement paths, from
which we kept the one with fewest conditions.

This allowed us to build our attack on the best non-linear path we found
without any compromises and the corrected non-linear path is presented in Fig. 3,

3 https://github.com/vegard/sha1-sat.
4 http://minisat.se/.

https://github.com/vegard/sha1-sat
http://minisat.se/

582 M. Stevens et al.

Sect. A. Note that indeed the system of equations is over-defined: over the first
five steps, there are only 15 state bits without an equation, while at the same
time there are 23 message equations.

5.6 Find Message Modifications to Speed-Up Collision Search

To speed-up the collision search significantly, it is important to employ message
modification rules, that make small changes in the current message block that
do not affect any bit involved with the state and message-bit equations up to
some step n (with sufficiently high probability). This effectively allows such a
message modification rule to be applied to one solution up to step n to generate
several solutions up to the same step with almost no additional cost, thereby
significantly reducing the average cost to generate solutions up to step n.

The first such speed-up technique that was developed in attacks of the MD-
SHA family was called neutral bits, introduced by Biham and Chen to improve
attacks on SHA-0 [3]. A message bit is neutral up to a step n if flipping this
bit causes changes that do not interact with differential path conditions up to
step n with high probability. As the diffusion of SHA-0/SHA-1’s step function
is rather slow, it is not hard to find many bits that are neutral for a few steps.

A nice improvement of the original neutral bits technique was ultimately
described by Joux and Peyrin as “boomerangs” [19]. It consists in carefully
selecting a few bits that are all flipped together in such a way that this effectively
flips, say, only one state bit in the first 16 steps, and such that the diffusion of
uncontrollable changes is significantly delayed. This idea can be instantiated effi-
ciently by flipping together bits that form a local collision for the step function.
This local collision will eventually introduce uncontrollable differences through
the message expansion; however, these do not appear immediately, and if all
conditions for the local collision to be successful are verified, the first few steps
after the introduction of its initial perturbation will be free of any difference.
Joux and Peyrin then noted that sufficient conditions for the local collision can
be pre-satisfied when creating the initial partial solution, effectively leading to
probability-one local collisions. This leads to a few powerful message modifica-
tion rules that are neutral up to very late steps.

A closely-related variant of boomerangs is named advanced message modi-

fication by Wang et al. in their attack of the MD-SHA family (see e.g. [48]).
While the objective of this technique is also to exploit the available freedom in
the message, it applies this in a distinct way by identifying ways of interacting
with an isolated differential path condition with high probability. Then, if an
initial message pair fails to verify a condition for which a message modification
exists, the bits of the latter are flipped, so that the resulting message pair now
verifies the condition with high probability.

In our attack, we used both neutral bits and boomerangs as message modifi-
cation rules. This choice was particularly motivated by the ability to efficiently
implement these speed-up techniques on GPUs, used to compute the second
block of the collision, similar to [21,44].

The First Collision for Full SHA-1 583

Our search process for finding the neutral bits follows the one described
in [44]. Potential boomerangs are selected first, one being eligible if its initial
perturbation does not interact with differential path conditions and if the cor-
rections of the local collision do not break some linear message-bit-relation (this
would typically happen if an odd number of bits to be flipped are part of such
a relation). The probability with which a boomerang eventually interacts with
path conditions is then evaluated experimentally by activating it on about 4 000
independent partial solutions; the probability threshold used to determine up to
which step a boomerang can be used is set to 0.9, meaning that it can be used
to generate an additional partial solution at step n from an existing one if it
does not interact with path conditions up to step n with probability more than
0.1. Once boomerangs have been selected, the sufficient conditions necessary
to ensure that their corresponding local collisions occur with probability 1 are
added to the differential path, and all remaining free message bits are tested
for neutrality using the same process (i.e., a bit is only eligible if flipping it
does not trivially violate path conditions or make it impossible to later satisfy
message-bit-relations, and its quality is evaluated experimentally).

The list of neutral bits and boomerangs used for the second block of the
attack is given in Sect. A. There are 51 neutral bits, located on message words
m11 to m15, and three boomerangs each made of a single local collision started
on m6 (for two of them) or m9.

5.7 Attack Implementation

A final step in the design of the attack is to implement it. This is needed for
obvious reasons if the goal is to find an actual collision as we do here, but it is also
a necessary step if one wishes to obtain a precise estimate of the complexity of the
attack. Indeed, while the complexity of the probabilistic phase of the attack can
be accurately computed using JLCA (or can also be experimentally determined
by sampling many mock partial solutions), there is much more uncertainty as to
“where” this phase actually starts. In other words, it is hard to exactly predict
how effective the speed-up techniques can be without actually implementing
them. The only way to determine the real complexity of an attack is then to
implement it, measure the rate of production of partial solutions up to a step
where there is no difference in the differential path for five consecutive state
words, and use JLCA to compute the exact probability of obtaining a (near-)
collision over the remaining steps.

The first near-collision block pair of the attack was computed with CPUs,
using an adapted version of the HashClash software [17]. As the original code
was not suitable to run on a large scale, a significant effort was spent to make
it efficient on the hundreds of cores necessary to obtain a near-collision in rea-
sonable time. The more expensive computation of the second block was done on
GPUs, based on the framework used by Karpman et al. [21], which we briefly
describe below.

The main structure used in this framework consists in first generating base

solutions on CPUs that fix the sixteen free message words, and then to use GPUs

584 M. Stevens et al.

to extend these to partial solutions up to a late step, by only exploiting the free-
dom offered by speed-up techniques (in particular neutral bits and boomerangs).
These partial solutions are then sent back to a CPU to check if they result in
collisions.

The main technical difficulty of this approach is to make the best use of the
power offered by GPUs. Notably, their programming model differs from the one
of CPUs in how diverse the computations run on their many available cores can
be: on a multicore CPU, every core can be used to run an independent process;
however, even if a recent GPU can feature many more cores than a CPU (for
instance, the Nvidia GTX 970 used in [21,44] and the initial implementation of
this attack features 1664 cores), they can only be programmed at the granularity
of warps made of 32 threads, which must then run the same code. Furthermore,
divergence in the control flow of threads of a single warp is dealt with by serial-
izing the diverging computations; for instance, if a single thread takes a different
branch than the rest of the warp in an if statement, all the other threads become
idle while it is taking its own branch. This limitation would make a näıve parallel
implementation of the usage of neutral bits rather inefficient, and there is instead
a strong incentive to minimize control-flow divergence when implementing the
attack.

The approach taken by Karpman et al. [21] to limit the impact of the inherent
divergence in neutral bit usage is to decompose the attack process step by step
and to use the fair amount of memory available on recent GPUs to store partial
solutions up to many different steps in shared buffers. In a nutshell, all threads
of a single warp are asked to load their own partial solution up to a certain state
word Ai, and they will together apply all neutral bits available at this step, each
time checking if the solution can be validly extended to a solution up to Ai+1;
if and only if this is the case, this solution is stored in the buffer for partial
solutions up to Ai+1, and this selective writing operation is the only moment
where the control flow of the warps may diverge.

To compute the second block pair of the attack, and hence obtain a full
collision, we first generated base solutions consisting of partial solutions up to
A14 on CPU, and used GPUs to generate additional partial solutions up to A26.
These were further probabilistically extended to partial solutions up to A53, still
using GPUs, and checking whether they resulted in a collision was finally done on
a CPU. The probability of such a partial solution to also lead to a collision can be
computed by JLCA to be equal to 2−27.8, and 2−48.7 for partial solutions up to
A33 (these probabilities could in fact both be reduced by a factor 20.6; however,
the ones indicated here correspond to the attack we carried out). On a GTX 970,
a prototype implementation of the attack produced partial solutions up to A33

at a rate of approximately 58 100 per second, while the full SHA-1 compression
function can be evaluated about 231.8 times per second on the same GPU. Thus,
our attack has an expected complexity of 264.7 on this platform.

Finally, adapting the prototype GPU implementation to a large-scale
infrastructure suitable to run such an expensive computation also required a
fair amount of work.

The First Collision for Full SHA-1 585

6 Computation of the Collision

This section gives some details about the computation of the collision and pro-
vides a few comparisons with notable cryptographic computations.

6.1 Units of Complexity

The complexity figures given in this section follow the common practice in the
cryptanalysis of symmetric schemes of comparing the efficiency of an attack to
the cost of using a generic algorithm achieving the same result. This can be
made by comparing the time needed, with the same resources, to e.g. compute
a collision on a hash function by using a (memoryless) generic collision search
versus by using a dedicated process. This comparison is usually expressed by
dividing the time taken by the attack, e.g. in core hours, by the time taken to
compute the attacked primitive once on the same platform; the cost of using a
generic algorithm is then left implicit. This is for instance how the figure of 264.7

from Sect. 5.7 has been derived.
While this approach is reasonable, it is far from being as precise as what a

number such as 264.7 seems to imply. We discuss below a few of its limitations.

The Impact of Code Optimization. An experimental evaluation of the com-
plexity of an attack is bound to be sensitive to the quality of the implementation,
both of the attack itself and of the reference primitive used as a comparison.
A hash function such as SHA-1 is easy to implement relatively efficiently, and
the difference in performance between a reference and optimized implementation
is likely to be small. This may however not be true for the implementation of
an attack, which may have a more complex structure. A better implementation
may then decrease the “complexity” of an attack without any cryptanalytical
improvements.

Although we implemented our attack in the best way we could, one cannot
exclude that a different approach or some modest further optimizations may
lead to an improvement. However, barring a radical redesign, the associated
gain should not be significant; the improvements brought by some of our own
low-level optimizations was typically of about 15%.

The Impact of the Attack Platform. The choice of the platform used to run
the attack may have a more significant impact on its evaluated complexity. While
a CPU is by definition suitable to run general-purpose computations, this is not
the case of e.g. GPUs. Thus, the gap between how fast a simple computation,
such as evaluating the compression function of SHA-1, and a more complex one,
such as our attack, need not be the same on the two kinds of architectures. For
instance, the authors of [21] noticed that their 76-step freestart attack could
be implemented on CPU (a 3.2 GHz Haswell Core i5) for a cost equivalent to
249.1 compression function computations, while this increased to 250.25 on their
best-performing GTX 970, and 250.34 on average.

586 M. Stevens et al.

This difference leads to a slight paradox: from an attacker’s point of view, it
may seem best to implement the attack on a CPU in order to be able to claim a
better attack complexity. However, a GPU being far more powerful, it is actually
much more efficient to run it on the latter: the attack of [21] takes only a bit
more than four days to run on a single GTX 970, which is much less than the
estimated 150 days it would take using a single quad-core CPU.

We did not write a CPU (resp. GPU) implementation of our own attack for
the search of the second (resp. first) block, and are thus unable to make a similar
comparison for the present full hash function attack. However, as we used the
same framework as [21], it is reasonable to assume that the gap would be of the
same order.

How to Pick the Best Generic Attack. As we pointed out above, the
common methodology for measuring the complexity of an attack leaves implicit
the comparison with a generic approach. This may introduce a bias in suggesting
a strategy for a generic attacker that is in fact not optimal. This was already
hinted in the previous paragraph, where we remarked that an attack may seem
to become worse when implemented on a more efficient platform. In fact, the
underlying assumption that a generic attacker would use the same platform as
the one on which the cryptanalytic attack is implemented may not always be
justified: for instance, even if the latter is run on a CPU, there is no particular
reason why a generic attacker would not use more energy-efficient GPUs or
FPGAs. It may thus be hard to precisely estimate the absolute gain provided
by a cryptanalytic attack compared to the best implementation of a generic
algorithm with identical monetary and time resources, especially when these
are high.

The issues raised here could all be addressed in principle by carefully imple-
menting, say van Oorschot and Wiener’s parallel collision search on a cluster
of efficient platforms [33]. However, this is usually not done in practice, and we
made no exception in our case.

Despite the few shortcomings of this usual methodology used to evaluate the
complexity of attacks, it remains in our opinion a reliable measure thereof, that
allows to compare different attack efforts reasonably well. For want of a better
one, it is also the approach used in this paper.

6.2 The Computation

The major challenge when running our near-collision attacks distributed across
the world was to adapt it into a distributed computation model which pursues
two goals: the geographically distributed workers should work independently
without duplication of work, and the number of the wasted computational time
due to worker’s failures should be minimized. The first goal required storage with
the ability endure high loads of requests coming from all around the globe. For
the second goal, the main sources of failures we found were preemption by higher-
priority workers and bugs in GPU hardware. To diminish the impact of these

The First Collision for Full SHA-1 587

failures, we learned to predict failures in the early stages of computation and
terminated workers without wasting significant amounts of computational time.

First Near-Collision Attack. The first phase of the attack, corresponding to
the generation of first-block near collisions, was run on a heterogeneous CPU
cluster hosted by Google, spread over eight physical locations. The computation
was split into small jobs of expected running time of one hour, whose objectives
were to compute partial solutions up to step 61. The running time of one hour
proved to be the best choice to be resilient against various kind of failures (mostly
machine failure, preemption by other users of the cluster, or network issues),
while limiting the overhead of managing many jobs. A MapReduce paradigm
was used to collect the solutions of a series of smaller jobs; in hindsight, this was
not the best approach, as it introduced an unnecessary bottleneck in the reduce
phase.

The first first-block near collision was found after spending about 3583 core
years that had produced 180 711 partial solutions up to step 61. A second near
collision block was then later computed; it required an additional 2987 core years
and 148 975 partial solutions.

There was a variety of CPUs involved in this computation, but it is reasonable
to assume that they all were roughly equivalent in performance. On a single
core of a 2.3 GHz Xeon E5-2650v3, the OpenSSL implementation of SHA-1 can
compute up to 223.3 compression functions per second. Taking this as a unit, the
first near-collision block required an effort equivalent to 260 SHA-1 compression
function calls, and the second first block required 259.75.

Second Near-Collision Attack. The second more expensive phase of the
attack was run on a heterogeneous cluster of K20, K40 and K80 GPUs, also
hosted by Google. It corresponded to the generation of a second-block near-
collision leading to a full collision.

The overall setup of the computation was similar to the one of the first
block, except that it did not use a MapReduce approach and resorted to using
simpler queues holding the unprocessed jobs. A worker would then select a job,
potentially produce one or several partial solutions up to step 61, and die on
completion.

The collision was found after 369 985 partial solutions had been produced5.
The production rates of partial 61-step solutions of the different devices used
in the cluster were of 0.593 per hour for the K80 (which combines two GPU
chips on one card), 0.444 for the K40 and 0.368 for the K20. The time needed
for a homogeneous cluster to produce the collision would then have been of 114
K20-years, 95 K40-years or 71 K80-years.

The rate at which these various devices can compute the compression function
of SHA-1 is, according to our measurements, 231.1 s−1 for the K20, 231.3 s−1 for

5 We were quite lucky in that respect. The expected number required is about 2.5
times more than that.

588 M. Stevens et al.

the K40, and 231 s−1 for the K80 (230 s−1 per GPU). The effort of finding the
second block of the collision for homogeneous clusters, measured in number of
equivalent calls to the compression function, is thus equal to 262.8 for the K20
and K40 and 262.1 for the K80.

Although a GTX 970 was only used to prototype the attack, we can also
consider its projected efficiency and measure the effort spent for the attack w.r.t.
this GPU. From the measured production rate of 58 100 step 33 solutions per
second, we can deduce that 0.415 step 61 solutions can be computed per hour
on average. This leads to a computational effort of 102 GPU years, equivalent
to 263.4 SHA-1 compression function calls.

The monetary cost of computing the second block of the attack by rent-
ing Amazon instances can be estimated from these various data. Using a
p2.16xlarge instance, featuring 16 K80 GPUs and nominally costing US$ 14.4
per hour would cost US$ 560K for the necessary 71 device years. It would be
more economical for a patient attacker to wait for low “spot prices” of the
smaller g2.8xlarge instances, which feature four K520 GPUs, roughly equiva-
lent to a K40 or a GTX 970. Assuming thusly an effort of 100 device years, and
a typical spot price of US$ 0.5 per hour, the overall cost would be of US$ 110K.

Finally, summing the cost of each phase of the attack in terms of compression
function calls, we obtain a total effort of 263.1, including the redundant second
near-colliding first block and taking the figure of 262.8 for the second block col-
lision. This should however not be taken as an absolute number; depending on
luck and equipment but without changing any of the cryptanalytical aspects of
our attack, it is conceivable that the spent effort could have been anywhere from,
say, 262.3 to 265.1 equivalent compression function calls.

6.3 Complexity Comparisons

We put our own result into perspective by briefly comparing its complexity to a
few other relevant cryptographic computations.

Comparison with MD5 and SHA-0 Collisions. An apt comparison is first
to consider the cost of computing collisions for MD5 [37], a once very popular
hash function, and SHA-0 [30], identical to SHA-1 but for a missing rotation
in the message expansion. The most efficient known identical-prefix collision
attacks for these three functions are all based on the same series of work from
Wang et al. from the mid-2000s [48–50], but have widely varying complexities.

The best current identical-prefix collision attacks on MD5 are due to Stevens
et al., and require the equivalent of about 216 compression function calls [46].
Furthermore, in the same paper, chosen-prefix collisions are computed for a cost
equivalent to about 239 calls, increasing to 249 calls for a three-block chosen-
prefix collision as was generated on 200 PS3s for the rogue Certification Author-
ity work.

Though very similar to SHA-1, SHA-0 is much weaker against collision
attacks. The best current such attack on SHA-0 is due to Manuel and Peyrin [27],
and requires the equivalent of about 233.6 calls to the compression function.

The First Collision for Full SHA-1 589

Identical-prefix collisions for MD5 and SHA-0 can thus be obtained within
a reasonable time by using very limited computational power, such as a decent
smartphone.

Comparison with RSA Modulus Factorization and Prime Field

Discrete Logarithm Computation. Some of the most expensive attacks
implemented in cryptography are in fact concerned with establishing records of
factorization and discrete logarithm computations. We believe that it is instruc-
tive to compare the resources necessary in both cases. As an example, we consider
the 2009 factorization of a 768-bit RSA modulus from Kleinjung et al. [22] and
the recent 2016 discrete logarithm computation in a 768-bit prime field from
Kleinjung et al. [23].

The 2009 factorization required about 2000 core years on a 2.2 GHz AMD
Opteron of the time. The number of single instructions to have been executed
is estimated to be of the order of 267 [22]6.

The 2016 discrete logarithm computation was a bit more than three times
more expensive, and required about 5300 core years on a single core of a 2.2GHz
Xeon E5-2660 [23].

In both cases, the overall computational effort could have been decreased
by reducing the time that was spent collecting relations [22,23]. However, this
would have made the following linear-algebra step harder to manage and a longer
computation in calendar time. Kleinjung et al. estimated that a shorter sieving
step could have resulted in a discrete logarithm computation in less than 4000
core years [23].

To compare the cost of the attacks, we can estimate how many SHA-1 (com-
pression function) calls can be performed in the 5300 core years of the more
expensive discrete logarithm record [23]. Considering again a 2.3 GHz Xeon E5-
2650 (slightly faster than the CPU used as a unit by Kleinjung et al.) running
at about 223.3 SHA-1 calls per second, the overall effort of [23] is equivalent
to approximately 260.6 SHA-1 calls. It is reasonable to expect that even on an
older processor the performance of running SHA-1 would not decrease signifi-
cantly; taking the same base figure per core would mean that the effort of [22]
is equivalent to approximately 258.9–259.2 SHA-1 calls.

In absolute value, this is less than the effort of our own attack, the more
expensive discrete logarithm computation being about five times cheaper7, and
less than twice more expensive than computing a single first-block near collision.
However, the use of GPUs for the computation of the second block of our attack
allowed both to significantly decrease the calendar time necessary to perform the
computation, and its efficiency in terms of necessary power: as an example, the
peak power consumption of a K40 is only 2.5 times the one of a 10-core Xeon
E5-2650, yet it is about 25 times faster at computing the compression function of

6 Note that the comparison between factorization and discrete logarithm computation
mentioned in [23] gives for the former a slightly lower figure of about 1700 core years.

7 But now is also a good time to recall that directly comparing CPU and GPU cost
is tricky.

590 M. Stevens et al.

SHA-1 than the whole CPU, and thence 10 times more energy-efficient overall.
The energy required to compute a collision using GPUs is thus about twice less
than the one required for the discrete logarithm computation8. As a conclusion,
computing a collision for SHA-1 seems to need slightly more effort than 768-bit
RSA factorization or prime-field discrete logarithm computation but, if done on
GPUs, the amount of resources necessary to do so is slightly less.

Acknowledgements. We thank the anonymous reviewers for their helpful comments,
and Michael X. Lyons for pointing out a few minor inconsistencies between the pre-
sented differential path and the actual colliding blocks.

A The Attack Parameters

The first block of the attack uses the same path and conditions as the one
given in [43, Sect. 5], which we refer to for a description. This section gives
the differential path, linear (message) bit-relations and neutral bits used in our
second-block near-collision attack.

We use the notation of Table 3 to represent signed differences of the differ-
ential path and to indicate the position of neutral bits.

We give the differential path of the second block up to A23 in Fig. 3. We
also give necessary conditions for A22 to A26 in Table 4, which are required for
all alternate differential paths allowed. In order to maximize the probability,
some additional conditions are also imposed on the message. These message-bit-
relations are given in Table 5. The rest of the path can then be determined from
the disturbance vector.

We also give the list of the neutral bits used in the attack. There are 51 of
them over the seven message words m11 to m15, distributed as follows (visualized
in Fig. 4):

Table 3. Meaning of the bit difference symbols, for a symbol located on At[i]. The
same symbols are also used for m.

8 This is assuming that the total energy requirements scale linearly with the consump-
tion of the processing units.

The First Collision for Full SHA-1 591

Fig. 3. The differential path of the second block up to A23.

Table 4. Additional necessary conditions used for A22 to A26.

– m11: bit positions (starting with the least significant bit at zero) 7, 8, 9, 10,
11, 12, 13, 14, 15

– m12: positions 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
– m13: positions 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 30
– m14: positions 4, 6, 7, 8, 9, 10
– m15: positions 5, 6, 7, 8, 9, 10, 12

592 M. Stevens et al.

Table 5. Linear part message-bit-relations for the second block path.

Fig. 4. The 51 single neutral bits used in the second block attack.

Not all of the neutral bits of the same word (say m13) are neutral up to the
same point. Their repartition in that respect is as follows, a graphical represen-
tation being also given in Fig. 5.

– Bits neutral up to A14 (included): m11[9,10,11,12,13,14,15],
m12[2,14,15,16,17,18,19,20], m13[12,16]

– Bits neutral up to A15 (included): m11[7,8], m12[9,10,11,12,13], m13[15,30]
– Bits neutral up to A16 (included): m12[5,6,7,8], m13[10,11,13]
– Bits neutral up to A17 (included): m13[5,6,7,8,9], m14[10]
– Bits neutral up to A18 (included): m14[6,7,9], m15[10,12]
– Bits neutral up to A19 (included): m14[4,8], m15[5,6,7,8,9]

A bit neutral to Ai is then used to produce partial solutions at Ai+1. One should
also note that this list only includes a single bit per neutral bit group, and some
additional flips may be necessary to preserve message-bit-relations.

Out of the three boomerangs used in the attack, one first introduced a per-
turbation on m9 on bit 7, and the other two on m6, on bit 6 and on bit 8. All
three boomerangs then introduce corrections to ensure a local collision. Because
these local collisions happen in the first round, where the Boolean function is
ϕIF, only two corrections are necessary for each of them.

The First Collision for Full SHA-1 593

Fig. 5. The 51 single neutral bits regrouped by up to where they are neutral.

Fig. 6. Boomerang local collision patterns using symbols. The first perturbation differ-
ence is highlighted with a black symbol. Associated correcting differences are identified
with the corresponding white symbol.

The lone boomerang introduced on m9 is neutral up to A22, and the couple
introduced on m6 are neutral up to A25. The complete sets of message bits
defining all of them are shown in Fig. 6, using a “difference notation”.

References

1. Albertini, A., Aumasson, J.-P., Eichlseder, M., Mendel, F., Schläffer, M.: Malicious
hashing: Eve’s variant of SHA-1. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS,
vol. 8781, pp. 1–19. Springer, Cham (2014). doi:10.1007/978-3-319-13051-4 1

2. Albertini, A., et al.: Exploiting identical-prefix hash function collisions. Draft
(2017)

3. Biham, E., Chen, R.: Near-collisions of SHA-0. In: Franklin, M. (ed.) CRYPTO
2004. LNCS, vol. 3152, pp. 290–305. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-28628-8 18

4. Biham, E., Chen, R., Joux, A., Carribault, P., Lemuet, C., Jalby, W.: Collisions of
SHA-0 and reduced SHA-1. In: Cramer [6], pp. 36–57 (2005)

http://dx.doi.org/10.1007/978-3-319-13051-4_1
http://dx.doi.org/10.1007/978-3-540-28628-8_18
http://dx.doi.org/10.1007/978-3-540-28628-8_18

594 M. Stevens et al.

5. Chabaud, F., Joux, A.: Differential collisions in SHA-0. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 56–71. Springer, Heidelberg (1998). doi:10.
1007/BFb0055720

6. Cramer, R. (ed.): EUROCRYPT. LNCS, vol. 3494. Springer, Cham (2005)
7. Cannière, C., Mendel, F., Rechberger, C.: Collisions for 70-step SHA-1: on the full

cost of collision search. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS,
vol. 4876, pp. 56–73. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77360-3 4

8. De Cannière, C., Rechberger, C.: Finding SHA-1 characteristics: general results
and applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006). doi:10.1007/11935230 1

9. Boer, B., Bosselaers, A.: An attack on the last two rounds of MD4. In: Feigenbaum,
J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 194–203. Springer, Heidelberg (1992).
doi:10.1007/3-540-46766-1 14

10. Boer, B., Bosselaers, A.: Collisions for the compression function of MD5. In:
Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 293–304. Springer,
Heidelberg (1994). doi:10.1007/3-540-48285-7 26

11. Dobbertin, H.: Cryptanalysis of MD4. In: Gollmann, D. (ed.) FSE 1996. LNCS,
vol. 1039, pp. 53–69. Springer, Heidelberg (1996). doi:10.1007/3-540-60865-6 43

12. Fillinger, M., Stevens, M.: Reverse-engineering of the cryptanalytic attack used
in the flame super-malware. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9453, pp. 586–611. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48800-3 24

13. Cab Forum: Ballot 152 - Issuance of SHA-1 certificates through 2016. Cabfo-
rum mailing List (2015). https://cabforum.org/pipermail/public/2015-October/
006081.html

14. Gebhardt, M., Illies, G., Schindler, W.: A note on practical value of single hash
collisions for special file formats. In: NIST First Cryptographic Hash Workshop,
October 2005

15. Grechnikov, E.: Collisions for 72-step and 73-step SHA-1: improvements in the
method of characteristics. Cryptology ePrint Archive, Report 2010/413 (2010)

16. Grechnikov, E., Adinetz, A.: Collision for 75-step SHA-1: intensive parallelization
with GPU. Cryptology ePrint Archive, Report 2011/641 (2011)

17. Hashclash project webpage. https://marc-stevens.nl/p/hashclash/. Accessed May
2017

18. InfoWorld: Oracle to Java devs: stop signing jar files with MD5, January 2017
19. Joux, A., Peyrin, T.: Hash functions and the (amplified) boomerang attack. In:

Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 244–263. Springer, Heidel-
berg (2007). doi:10.1007/978-3-540-74143-5 14

20. Jutla, C.S., Patthak, A.C.: A matching lower bound on the minimum weight of
SHA-1 expansion code. IACR Cryptology ePrint Archive 2005, 266 (2005)

21. Karpman, P., Peyrin, T., Stevens, M.: Practical free-start collision attacks on 76-
step SHA-1. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215,
pp. 623–642. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 30

22. Kleinjung, T., et al.: Factorization of a 768-bit RSA modulus. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 333–350. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-14623-7 18

23. Kleinjung, T., Diem, C., Lenstra, A.K., Priplata, C., Stahlke, C.: Computation of a
768-bit prime field discrete logarithm. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10210, pp. 185–201. Springer, Cham (2017). doi:10.1007/
978-3-319-56620-7 7

http://dx.doi.org/10.1007/BFb0055720
http://dx.doi.org/10.1007/BFb0055720
http://dx.doi.org/10.1007/978-3-540-77360-3_4
http://dx.doi.org/10.1007/11935230_1
http://dx.doi.org/10.1007/3-540-46766-1_14
http://dx.doi.org/10.1007/3-540-48285-7_26
http://dx.doi.org/10.1007/3-540-60865-6_43
http://dx.doi.org/10.1007/978-3-662-48800-3_24
http://dx.doi.org/10.1007/978-3-662-48800-3_24
https://cabforum.org/pipermail/public/2015-October/006081.html
https://cabforum.org/pipermail/public/2015-October/006081.html
https://marc-stevens.nl/p/hashclash/
http://dx.doi.org/10.1007/978-3-540-74143-5_14
http://dx.doi.org/10.1007/978-3-662-47989-6_30
http://dx.doi.org/10.1007/978-3-642-14623-7_18
http://dx.doi.org/10.1007/978-3-642-14623-7_18
http://dx.doi.org/10.1007/978-3-319-56620-7_7
http://dx.doi.org/10.1007/978-3-319-56620-7_7

The First Collision for Full SHA-1 595

24. CrySyS Lab: sKyWiper (a.k.a. flame a.k.a. flamer): a complex malware for targeted
attacks. Laboratory of Cryptography and System Security, Budapest University of
Technology and Economics, 31 May 2012

25. Kaspersky Lab: The flame: questions and answers. Securelist blog, 28 May 2012
26. Manuel, S.: Classification and generation of disturbance vectors for collision attacks

against SHA-1. Des. Codes Cryptogr. 59(1–3), 247–263 (2011)
27. Manuel, S., Peyrin, T.: Collisions on SHA-0 in one hour. In: Nyberg, K. (ed.)

FSE 2008. LNCS, vol. 5086, pp. 16–35. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-71039-4 2

28. Mendel, F., Pramstaller, N., Rechberger, C., Rijmen, V.: The impact of carries
on the complexity of collision attacks on SHA-1. In: Robshaw, M. (ed.) FSE
2006. LNCS, vol. 4047, pp. 278–292. Springer, Heidelberg (2006). doi:10.1007/
11799313 18

29. Third author’s mum, T.: SHA-1 is still being used. Personnal communication
30. National Institute of Standards and Technology: FIPS 180: Secure Hash Standard,

May 1993
31. National Institute of Standards and Technology: FIPS 180-1: Secure Hash Stan-

dard, April 1995
32. Nossum, V.: SAT-based preimage attacks on SHA-1. Master’s thesis, University of

Oslo (2012)
33. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic appli-

cations. J. Cryptol. 12(1), 1–28 (1999)
34. Post, T.W.: US, Israel developed flame computer virus to slow Iranian nuclear

efforts, officials say, June 2012
35. Pramstaller, N., Rechberger, C., Rijmen, V.: Exploiting coding theory for collision

attacks on SHA-1. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS,
vol. 3796, pp. 78–95. Springer, Heidelberg (2005). doi:10.1007/11586821 7

36. Rivest, R.L.: The MD4 message digest algorithm. In: Menezes, A.J., Vanstone, S.A.
(eds.) CRYPTO 1990. LNCS, vol. 537, pp. 303–311. Springer, Heidelberg (1991).
doi:10.1007/3-540-38424-3 22

37. Rivest, R.L.: RFC 1321: The MD5 Message-Digest Algorithm, April 1992
38. Schneier, B.: When will we see collisions for SHA-1? Blog (2012)
39. Amazon Web Services: Amazon EC2 - Virtual Server Hosting. aws.amazon.com.

Accessed Jan 2016
40. Shoup, V. (ed.): CRYPTO. LNCS, vol. 3621. Springer, Heidelberg (2005)
41. Stevens, M.: Attacks on hash functions and applications. Ph.D. thesis, Leiden

University, June 2012
42. Stevens, M.: Counter-cryptanalysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO

2013. LNCS, vol. 8042, pp. 129–146. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40041-4 8

43. Stevens, M.: New collision attacks on SHA-1 based on optimal joint local-collision
analysis. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 245–261. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9 15

44. Stevens, M., Karpman, P., Peyrin, T.: Freestart collision for full SHA-1. In:
Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 459–483.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49890-3 18

45. Stevens, M., Lenstra, A., Weger, B.: Chosen-prefix collisions for MD5 and collid-
ing X.509 certificates for different identities. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515, pp. 1–22. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-72540-4 1

http://dx.doi.org/10.1007/978-3-540-71039-4_2
http://dx.doi.org/10.1007/978-3-540-71039-4_2
http://dx.doi.org/10.1007/11799313_18
http://dx.doi.org/10.1007/11799313_18
http://dx.doi.org/10.1007/11586821_7
http://dx.doi.org/10.1007/3-540-38424-3_22
https://aws.amazon.com
http://dx.doi.org/10.1007/978-3-642-40041-4_8
http://dx.doi.org/10.1007/978-3-642-40041-4_8
http://dx.doi.org/10.1007/978-3-642-38348-9_15
http://dx.doi.org/10.1007/978-3-662-49890-3_18
http://dx.doi.org/10.1007/978-3-540-72540-4_1
http://dx.doi.org/10.1007/978-3-540-72540-4_1

596 M. Stevens et al.

46. Stevens, M., Sotirov, A., Appelbaum, J., Lenstra, A., Molnar, D., Osvik, D.A.,
Weger, B.: Short chosen-prefix collisions for MD5 and the creation of a rogue
CA certificate. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 55–69.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-03356-8 4

47. ThreadPost: SHA-1 end times have arrived, January 2017
48. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup [40],

pp. 17–36 (2005)
49. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer [6],

pp. 19–35 (2005)
50. Wang, X., Yu, H., Yin, Y.L.: Efficient collision search attacks on SHA-0. In: Shoup

[40], pp. 1–16 (2005)
51. Yajima, J., Iwasaki, T., Naito, Y., Sasaki, Y., Shimoyama, T., Peyrin, T., Kunihiro,

N., Ohta, K.: A strict evaluation on the number of conditions for SHA-1 collision
search. IEICE Transactions, vol. 92-A, no. 1, pp. 87–95 (2009). http://search.ieice.
org/bin/summary.php?id=e92-a 1 87&category=A&year=2009&lang=E&abst=

52. Yajima, J., Sasaki, Y., Naito, Y., Iwasaki, T., Shimoyama, T., Kunihiro, N., Ohta,
K.: A new strategy for finding a differential path of SHA-1. In: Pieprzyk, J.,
Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 45–58. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-73458-1 4

http://dx.doi.org/10.1007/978-3-642-03356-8_4
http://search.ieice.org/bin/summary.php?id=e92-a_1_87&category=A&year=2009&lang=E&abst=
http://search.ieice.org/bin/summary.php?id=e92-a_1_87&category=A&year=2009&lang=E&abst=
http://dx.doi.org/10.1007/978-3-540-73458-1_4

	Preface
	Crypto 2017 The 37th IACR International Cryptology Conference
	Contents – Part I
	Functional Encryption
	Stronger Security for Reusable Garbled Circuits, General Definitions and Attacks
	1 Introduction
	1.1 Our Contributions
	1.2 Our Techniques

	2 Preliminaries
	2.1 Functional Encryption
	2.2 Partially Hiding Predicate Encryption
	2.3 Full Security for Single Key Linear FE
	2.4 Algorithms Used by Our Constructions
	2.5 Fully Homomorphic Encryption

	3 Insecurity of Predicate Encryption Schemes Against General Adversaries
	3.1 Attack #1 on Using 1-Keys.

	4 (1, `39`42`"613A``45`47`"603Apoly) Very Selective PHPE
	4.1 Construction
	4.2 Proof of Security

	5 Upgrading Very Selective to Semi Adaptive Security for PHPE
	6 (1,`39`42`"613A``45`47`"603Apoly)-Functional Encryption
	6.1 Construction
	6.2 Proof of Security

	References

	Generic Transformations of Predicate Encodings: Constructions and Applications
	1 Introduction
	1.1 Our Contributions
	1.2 Prior Work
	1.3 Comparison with Agrawal and Chase (EUROCRYPT 2017)

	2 Background
	2.1 Notation
	2.2 Predicate Encodings
	2.3 Tag-Based Encodings
	2.4 Pair Encodings

	3 Predicate Encodings: Properties and Consequences
	3.1 Algebraic Properties of Predicate Encodings
	3.2 Optimizing Predicate Encodings
	3.3 Combining Predicates

	4 Tag-Based Encodings
	5 Pair Encodings
	5.1 Embedding Predicate Encodings into Pair Encodings
	5.2 Comparison Between Encoding Transformations

	6 Constructions
	6.1 Combining Predicates
	6.2 Improved Predicate Encodings
	6.3 Extra Features

	A Proofs from Main Body
	References

	Practical Functional Encryption for Quadratic Functions with Applications to Predicate Encryption
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	2.1 Complexity Assumptions
	2.2 Functional Encryption
	2.3 Bilinear Maps Functionality
	2.4 Predicate Encryption

	3 Our Functional Encryption for Bilinear Maps from MDDH
	3.1 Private-Key, Single-Ciphertext Secure FE for Bilinear Maps
	3.2 Public-Key FE for Bilinear Maps

	4 Our Efficient Functional Encryption for Bilinear Maps in the GGM
	5 Predicate Encryption for Bilinear Maps Evaluation
	5.1 Applications of PE for Bilinear Maps Evaluation

	References

	Foundations I
	Memory-Tight Reductions
	1 Introduction
	1.1 Our Results

	2 Complexity Measures
	2.1 Computational Model
	2.2 Complexity Measures
	2.3 Case Study I: Unforgeability of Digital Signatures
	2.4 Case Study II: Collision-Resistance Definitions

	3 Techniques to Obtain Memory Efficiency
	3.1 Pseudorandom Functions
	3.2 Generating (Pseudo)random Coins
	3.3 Random Oracles
	3.4 Random Oracle Index Guessing Technique
	3.5 Single Rewinding Technique

	4 Streaming Algorithms and Memory-Efficiency
	4.1 The Data Stream Model
	4.2 mUFCMA-to-UFCMA Lower Bound
	4.3 mCRt-to-CRt Lower Bound

	5 Memory-Tight Reduction for RSA Full Domain Hash Signatures
	6 Memory-Sensitive Problems
	References

	Be Adaptive, Avoid Overcommitting
	1 Introduction
	1.1 Adaptive Secret Sharing for Monotone Circuits
	1.2 Generalized Selective Decryption
	1.3 Yao's Garbled Circuits
	1.4 Constrained Pseudorandom Functions

	2 Notation
	3 The Framework
	3.1 Example: GSD on a Path

	4 Adaptive Secret Sharing for Monotone Circuits
	4.1 The Scheme of Yao
	4.2 Hybrids and Pebbling Configurations

	5 Open Problems
	References

	Two-Party Computation
	The TinyTable Protocol for 2-Party Secure Computation, or: Gate-Scrambling Revisited
	1 Introduction
	2 Construction
	2.1 Free XOR
	2.2 Removing NOT-Gates
	2.3 Generalisation to Bigger Tables

	3 The Linear MAC Scheme
	3.1 Basic Version
	3.2 The Homomorphic Vector Version
	3.3 Batched Opening

	4 Preprocessing
	5 Implementation
	6 An Asymptotically Better Solution
	References

	Privacy-Free Garbled Circuits for Formulas: Size Zero and Information-Theoretic
	1 Introduction
	1.1 Our Contribution
	1.2 Organization

	2 Preliminaries
	2.1 Formulaic Circuits
	2.2 Privacy-Free Garbling Scheme

	3 Privacy-Free Garbling for Formulas
	3.1 Garbling Individual Gates
	3.2 Garbling an Entire Circuit

	4 Full Proof of Security
	4.1 Single Gate Case
	4.2 Reduction Step
	4.3 Adaptive Security

	5 Breaking the Lower Bound of [ZRE15]
	5.1 Linear Garbling
	5.2 Where the [ZRE15] Technique for Bounding Privacy-Free Garbling Fails

	6 -fan-in Gates
	6.1 Threshold Gates
	6.2 Improved -fan-in XOR
	6.3 Improved -fan-in AND

	7 Online-Efficient Zero-Knowledge
	A Zero-Knowledge from Garbled Circuits: Required Functionalities
	References

	Secure Arithmetic Computation with Constant Computational Overhead
	1 Introduction
	1.1 Our Contribution
	1.2 Overview of Techniques
	1.3 Related Work

	2 Preliminaries
	2.1 The Arithmetic Setting
	2.2 Decomposable Affine Randomized Encoding (DARE)

	3 Vector OLE of Large Width
	3.1 Ingredients
	3.2 From Fast Hard/Easy Code to Reverse Vector-OLE
	3.3 From Reverse Vector-OLE to Vector-OLE

	4 Batch-OLEs
	4.1 From Vector-OLE to NC0 Functionalities
	4.2 From Pseudorandom-OLE to OLE
	4.3 From NC0 PRG to Batch-OLE

	5 Applications of Vector-OLE
	6 Implementation
	6.1 Choice of the Matrix M
	6.2 ECC: Using Luby Transform Codes
	6.3 Doing Oblivious Transfers
	6.4 Communication Overhead
	6.5 Test Set-Up and Results

	7 About the Assumptions
	7.1 Instantiating Assumption2 (Fast Pseudorandom Matrix)
	7.2 Instantiating Assumption4 (NC0 Polynomial-Stretch PRG)

	A The Rank of Sparse Matrices
	References

	Encryption Switching Protocols Revisited: Switching Modulo p
	1 Introduction
	2 Cryptographic Building Blocks
	2.1 Homomorphic Encryption Schemes
	2.2 One Round 2-Party Decryption
	2.3 Homomorphically Computing a Product with +
	2.4 2-Party Re-encryption

	3 Encryption Switching Protocols
	4 Generic Construction of an ESP on a Ring
	4.1 Switching Protocols over R*
	4.2 Modification of to Embed the Zero Message
	4.3 Full Switching Protocols
	4.4 2-Party ESP Between +.Encrypt(m) and 0.Encrypt(m)

	5 Instantiation of Our Generic Construction on Z/pZ
	5.1 Additively Homomorphic Scheme over Z/pZ
	5.2 Multiplicatively Homomorphic Scheme over Z/pZ
	5.3 ESP over Z/pZ: Efficiency and Comparisons

	6 ESP Secure Against Malicious Adversaries
	7 Conclusion
	A 2-Party Decryption: Zero-Knowledge
	B Proof of Theorem 5
	References

	Bitcoin
	The Bitcoin Backbone Protocol with Chains of Variable Difficulty
	1 Introduction
	2 Model and Definitions
	3 Blockchains of Variable Difficulty
	4 The Bitcoin Backbone Protocol with Variable Difficulty
	4.1 The Protocol
	4.2 Properties of the Backbone Protocol with Variable Difficulty
	4.3 Application: Robust Transaction Ledger

	5 Overview of the Analysis
	6 Full Analysis
	6.1 Additional Notation, Definitions, and Preliminary Propositions
	6.2 Chain-Growth Lemma
	6.3 Typical Executions: Definition and Related Proofs
	6.4 Typical Executions are Good and Accurate
	6.5 Common Prefix and Chain Quality
	6.6 Persistence and Liveness

	A Martingale Sequences and Other Mathematical Facts
	References

	Bitcoin as a Transaction Ledger: A Composable Treatment
	1 Introduction
	2 A Composable Model for Blockchain Protocols in the Permissionless Model
	3 The Transaction-Ledger Functionality
	4 Bitcoin as a Transaction Ledger Protocol
	4.1 The Bitcoin Ledger as a UC Protocol
	4.2 The Bitcoin Ledger
	4.3 Security Analysis
	4.4 Comparison with Existing Work

	5 Implementing a Stronger Ledger
	References

	Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol
	1 Introduction
	2 Model
	3 Our Protocol: Overview
	4 Our Protocol: Static State
	4.1 Basic Concepts and Protocol Description
	4.2 Forkable Strings
	4.3 Common Prefix
	4.4 Chain Growth and Chain Quality

	5 Our Protocol: Dynamic Stake
	5.1 Using a Trusted Beacon
	5.2 Simulating a Trusted Beacon
	5.3 Robust Transaction Ledger

	6 Incentives
	7 Stake Delegation
	References

	Multiparty Computation
	Robust Non-interactive Multiparty Computation Against Constant-Size Collusion
	1 Introduction
	1.1 Our Results
	1.2 Related Work
	1.3 Organization of the Paper

	2 Overview
	2.1 Defining the Indexing Function
	2.2 Reduction of Sel i to Message-Outputting Protocols
	2.3 Robust Message-Outputting Protocols
	2.4 Putting It All Together

	3 Preliminaries
	3.1 NIMPC Definition
	3.2 Group Embedding

	4 Selectors
	4.1 Definitions
	4.2 Construction of Linear Selectors
	4.3 NIMPC for Abelian Programs

	5 Admissible Linear Indexing Functions
	5.1 Definition
	5.2 Relation with Codes
	5.3 Constructions
	5.4 Lower Bound (on the Need for Constant t)

	6 From 0-Robustness to O(1)-Robustness
	6.1 Definition of an NIMPC Transformation
	6.2 Actual Transformation

	7 NIMPC for Symmetric Functions
	7.1 Symmetric Functions
	7.2 Overview of the Construction
	7.3 Formal Construction

	References

	The Price of Low Communication in Secure Multi-party Computation
	1 Introduction
	2 Model, Definitions and Building Blocks
	3 Sublinear Communication with Static Corruptions
	4 Sublinear Communication with Adaptive Corruptions
	4.1 Security with Erasures
	4.2 Security Without Erasures

	5 Sublinear Communication with Active (Static) Corruptions
	References

	Topology-Hiding Computation on All Graphs
	1 Introduction
	1.1 Our Results
	1.2 High-Level Overview of Our Techniques
	1.3 Related Work
	1.4 Organization of Paper

	2 Preliminaries
	2.1 Computation and Adversarial Models
	2.2 Notation
	2.3 UC Security
	2.4 Simulation-Based Topology Hiding Security
	2.5 Privately Key-Commutative and Rerandomizable Encryption

	3 Topology Hiding Broadcast Protocol for General Graphs
	3.1 Proof of Completeness
	3.2 Proof of Soundness
	3.3 Proof of Main Theorem

	4 Complexity and Optimizations
	4.1 Communication Complexity
	4.2 Better Bounds on Cover Time for Some Graphs

	5 Conclusion and Future Work
	References

	A New Approach to Round-Optimal Secure Multiparty Computation
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Concurrent Work
	1.4 Related Work
	1.5 Full Version

	2 Definitions
	2.1 Oblivious Transfer
	2.2 Randomizing Polynomials
	2.3 Non-malleable Commitments
	2.4 Delayed-Input Non-malleable Zero Knowledge
	2.5 Extractable Commitment Scheme

	3 Robust Semi-honest MPC
	3.1 Four Round Robust Semi-honest MPC

	4 Five Round Malicious MPC
	5 Four Round Malicious MPC
	References

	Award Papers
	Watermarking Cryptographic Functionalities from Standard Lattice Assumptions
	1 Introduction
	1.1 Background
	1.2 Our Contributions
	1.3 Additional Related Work

	2 Construction Overview
	3 Preliminaries
	4 Translucent Constrained PRFs
	4.1 Security Definitions

	5 Translucent Puncturable PRFs from LWE
	5.1 Main Construction
	5.2 Concrete Parameter Instantiations

	6 Watermarkable PRFs from Translucent PRFs
	6.1 Watermarking PRFs
	6.2 Watermarking Construction

	References

	Identity-Based Encryption from the Diffie-Hellman Assumption
	1 Introduction
	1.1 Our Results

	2 Our Techniques
	2.1 Chameleon Encryption
	2.2 From Chameleon Encryption to Identity-Based Encryption

	3 Preliminaries
	3.1 Computational Problems
	3.2 Identity-Based Encryption
	3.3 Garbled Circuits

	4 Chameleon Encryption
	5 Constructions of Chameleon Encryption from CDH
	5.1 Instantiations

	6 Construction of Identity-Based Encryption
	6.1 Proof of Correctness
	6.2 Proof of Security
	6.3 Proof of Lemma2

	7 Construction of Hierarchical Identity-Based Encryption
	7.1 Proof of Correctness
	7.2 Proof of Security
	7.3 Proof of Lemma3

	References

	The First Collision for Full SHA-1
	1 Introduction
	2 Our Contributions
	3 The SHA-1 Hash Function
	4 Overview of our SHA-1 Collision Attack
	5 Near-Collision Attack Procedure
	5.1 Disturbance Vector Selection
	5.2 Construction of a Non-linear Differential Path
	5.3 Determine Attack Conditions
	5.4 Find Additional State Conditions
	5.5 Fix Solvability over the First Steps
	5.6 Find Message Modifications to Speed-Up Collision Search
	5.7 Attack Implementation

	6 Computation of the Collision
	6.1 Units of Complexity
	6.2 The Computation
	6.3 Complexity Comparisons

	A The Attack Parameters
	References

	Obfuscation I
	Indistinguishability Obfuscation from SXDH on 5-Linear Maps and Locality-5 PRGs
	1 Introduction
	1.1 Our Results
	1.2 Concurrent and Independent Work
	1.3 Subsequent Works

	2 Overview
	2.1 Bootstrapping
	2.2 Quadratic Secret-Key FE
	2.3 Degree-D Secret-Key FE
	2.4 Construction of HIPE
	2.5 Simple Function Hiding IPE
	2.6 On Instantiation with Noisy Multilinear Maps

	References

	Indistinguishability Obfuscation from Trilinear Maps and Block-Wise Local PRGs
	1 Introduction
	1.1 Block-Wise Locality
	1.2 From Block-Wise Locality to IO and FE
	1.3 Subsequent Works

	2 Block-Wise Local PRGs
	2.1 Pseudorandom Generators, Locality, and Block-Wise Locality
	2.2 Graph-Based Block-Wise Local Functions
	2.3 Pseudorandom and Unpredictability Generators
	2.4 Block-Wise Local Small-Bias Generators
	2.5 Hardness Amplification via the XOR Construction

	3 IO from Block-Wise Locality-(L, log) PRG and L-Linear Maps
	3.1 Step 1: Constructing Weakly-Compact FE

	4 FE from (log)-Bit-Input IO for P/poly
	4.1 From 1-Key to Collusion-Resistant FE, Generically

	References

	Lower Bounds on Obfuscation from All-or-Nothing Encryption Primitives
	1 Introduction
	2 Preliminaries
	2.1 Primitives
	2.2 Black-Box Constructions and Separations
	2.3 Black-Box Separations
	2.4 Tools for Getting Black-Box Lower Bounds for IO

	3 An Abstract Extension of the Black-Box Model
	3.1 An Abstract Model for Extended Primitives and Constructions
	3.2 Extended Black-Box Constructions

	4 Separating IO from Instance Revealing Witness Encryption
	4.1 Overview of Proof Techniques
	4.2 The Ideal Model
	4.3 Witness Encryption Exists Relative to
	4.4 Compiling Out from IO

	References

	Structure vs. Hardness Through the Obfuscation Lens
	1 Introduction
	1.1 Our Results
	1.2 Overview of Techniques

	2 One-Way Permutations, Indistinguishability Obfuscation, and Hardness in SZK
	2.1 SZK and Statistical Difference
	2.2 Fully Black-Box Constructions of Hard SD Problems from IO and OWPs

	3 One-Way Functions, Indistinguishability Obfuscation, and Hardness in NP coNP
	3.1 NP coNP
	3.2 Fully Black-Box Constructions of Hardness in NP coNP from IO and IOWFs

	4 Collision-Resistance from IO and SZK-Hardness
	References

	Conditional Disclosure of Secrets
	Conditional Disclosure of Secrets: Amplification, Closure, Amortization, Lower-Bounds, and Separations
	1 Introduction
	2 Our Results
	2.1 Closure Properties
	2.2 Amplification
	2.3 Amortizing CDS over Long Secrets
	2.4 Linear Lower-Bound
	2.5 CDS vs. Linear CDS vs. Communication Complexity
	2.6 Discussion: The Big Picture

	3 Preliminaries
	3.1 Conditional Disclosure of Secrets
	3.2 Private Simultaneous Message Protocols
	3.3 Randomized Encoding and CDS Encoding

	4 Closure Properties
	4.1 Reversing Linear CDS
	4.2 Reversing General CDS
	4.3 Closure Under Formulas

	5 Amplifying Correctness and Privacy of CDS
	6 Amortizing the Communication for Long Secrets
	7 A Linear Lower Bound on CDS
	8 Separating CDS and Insecure Communication
	A Communication Complexity and Imperfect CDS Protocols
	References

	Conditional Disclosure of Secrets via Non-linear Reconstruction
	1 Introduction
	1.1 Our Results and Techniques
	1.2 Our CDS Protocols
	1.3 Our PSM Protocols
	1.4 Discussion

	2 Preliminaries
	2.1 Conditional Disclosure of Secrets
	2.2 Private Simultaneous Message
	2.3 Predicates and Reductions
	2.4 Secret Sharing

	3 CDS for Degree-2 and 3 Polynomials with Applications to INDEX and ABE
	3.1 Degree-2 Polynomials MPOLY2n1,n2 over Fq
	3.2 Degree 3 Polynomials MPOLY3n1,n2,n3 over F2
	3.3 CDS for INDEXn
	3.4 Attribute-Based Encryption for Degree-2 Polynomials

	4 CDS for INDEX from Matching Vector Families
	4.1 CDS for INDEXn with no(1) communication
	4.2 Applications to ALLN and Secret-Sharing

	5 PSM for Polynomials with Applications to INDEX
	5.1 Degree-k Polynomials MPOLYkn1,�,nk
	5.2 Degree-4 Functions
	5.3 Applications to INDEXn and ALLN

	A PSM with One-Sided Privacy (1/2-PSM)
	A.1 Private Simultaneous Message with One-Sided Privacy
	A.2 Degree 2 Polynomials
	A.3 One-Side PSM Lower Bounds for INDEXn

	B CDS for Degree-2 Polynomials MPOLY2n1,n2
	References

	Author Index

