The first eigenvalue of Laplacians on minimal surfaces in $\boldsymbol{S}^{\mathbf{3}}$

Dedicated to Professor Naomi Mitsutsuka on his 60th birthday

By Hiroshi MORI
(Received Dec. 26, 1983)

1. Introduction.

There are many complete surfaces with constant mean curvature in the Euclidean 3-space \boldsymbol{R}^{3} and in the hyperbolic 3 -space \boldsymbol{H}^{3} (see [2], [4]). But in the Euclidean 3 -sphere \boldsymbol{S}^{3} there have been few results on such surfaces except umbilic ones and flat tori (cf. [5]).

In this paper, we shall construct a one-parameter family of complete, rotational surfaces in \boldsymbol{S}^{3} with constant mean curvature, including a flat torus as an initial one. In particular, there is a one-parameter family of complete, rotational, minimal surfaces in S^{3}, including the Clifford torus. And we shall show that none of closed, rotational, minimal surfaces in \boldsymbol{S}^{3} is embedded and the first eigenvalues of some ones relative to the Laplacian are smaller than two except for the Clifford torus.

2. Preliminaries.

In this section, we shall review rotational surfaces in \boldsymbol{S}^{3}. At first, we note that S^{3} is realized as a hypersurface of the Euclidean 4 -space \boldsymbol{R}^{4} :

$$
S^{3}=\left\{\left(x_{1}, \cdots, x_{4}\right) \in R^{4} ; \sum_{j} x_{j}^{2}=1\right\} .
$$

In what follows, we denote by $\boldsymbol{S}^{2}(c)$ the Euclidean 2 -sphere of constant Gaussian curvature c (or equivalently, the 2 -sphere in R^{3} of radius $1 / \sqrt{c}$), and by $\boldsymbol{S}^{1}(r)$ the circle in \boldsymbol{R}^{2} of radius r. And we put $\boldsymbol{S}^{1}=\boldsymbol{S}^{1}(1)$ and $\boldsymbol{R}=\boldsymbol{S}^{1}(\infty)$ for convenience's sake. We note that $\boldsymbol{S}^{1}(r) \equiv \boldsymbol{R} / 2 \pi r \boldsymbol{Z}$ for a positive number r, where \boldsymbol{Z} is the set of all integers.

Up to an isometry of S^{3}, an umbilic surface and a flat torus in S^{3} are represented as follows. For each real number H, the isometric embedding $f: \boldsymbol{S}^{2}\left(H^{2}+1\right) \rightarrow \boldsymbol{S}^{3}, f(x, y, z)=\left(x, y, z, H / \sqrt{\left(H^{2}+1\right)}\right)$ of $\boldsymbol{S}^{2}\left(H^{2}+1\right)$ into \boldsymbol{S}^{3} defines an umbilic surface $\boldsymbol{M}^{2}(H)$ in \boldsymbol{S}^{3} with constant mean curvature H, and for $a=$ $\sqrt{\left[\left\{1-H / \sqrt{\left(H^{2}+1\right)}\right\} / 2\right]}$ and $b=\sqrt{\left(1-a^{2}\right)}$, the isometric embedding $f: \boldsymbol{S}^{1}(a) \times \boldsymbol{S}^{1}(b)$ $\rightarrow \boldsymbol{S}^{\mathbf{3}}, f((x, y),(u, v))=(x, y, u, v)$ of $\boldsymbol{S}^{1}(a) \times \boldsymbol{S}^{1}(b)$ into \boldsymbol{S}^{3} defines a flat torus
$\boldsymbol{T}^{2}(H)$ in \boldsymbol{S}^{3} with constant mean curvature H.
We shall construct rotational surfaces in \boldsymbol{S}^{3}. Let $\boldsymbol{\gamma}: \boldsymbol{J} \rightarrow \boldsymbol{S}^{3}, \gamma(s)=(x(s), y(s)$, $z(s), 0)$, be any C^{2}-curve in S^{3} which is parametrized by arc length, whose domain of definition \boldsymbol{J} is an open interval including zero, and for which the following relations hold on \boldsymbol{J}.
(ii)

$$
\begin{align*}
& x(s)^{2}+y(s)^{2}+z(s)^{2}=1 \tag{i}\\
& x^{\prime}(s)^{2}+y^{\prime}(s)^{2}+z^{\prime}(s)^{2}=1
\end{align*}
$$

We now consider the C^{2}-mapping $f: \boldsymbol{J} \times \boldsymbol{S}^{1} \rightarrow \boldsymbol{S}^{3}$,

$$
f(s, \theta)=(x(s), y(s), z(s) \cos \theta, z(s) \sin \theta)
$$

It can be easily shown that the first and the second fundamental forms of f are given by

$$
\begin{aligned}
\boldsymbol{I}= & d s^{2}+z^{2} d \theta^{2}, \\
\boldsymbol{I}= & \left\{x^{\prime \prime}\left(y z^{\prime}-y^{\prime} z\right)+y^{\prime \prime}\left(z x^{\prime}-z^{\prime} x\right)+z^{\prime \prime}\left(x y^{\prime}-x^{\prime} y\right)\right\} d s^{2} \\
& -z\left(x y^{\prime}-x^{\prime} y\right) d \theta^{2} .
\end{aligned}
$$

3. Rotational surfaces in S^{3} with constant mean curvature.

From the previous section we see that the C^{2}-mapping f is an immersion and is of constant mean curvature H if and only if on the interval \boldsymbol{J}, the following relations hold.

$$
\begin{gather*}
x^{2}+y^{2}+z^{2}=1 \tag{1}\\
x^{\prime 2}+y^{\prime 2}+z^{\prime 2}=1, \tag{2}\\
z^{2}\left(x^{\prime} y^{\prime \prime}-x^{\prime \prime} y^{\prime}\right)-z z^{\prime}\left(x y^{\prime \prime}-x^{\prime \prime} y\right)+\left(z z^{\prime \prime}-1\right)\left(x y^{\prime}-x^{\prime} y\right)=2 H z \tag{3}\\
0<z \tag{4}
\end{gather*}
$$

We now try to solve the above system explicitly. From (1) we may put x and y by

$$
\begin{align*}
& x=\sqrt{\left(1-z^{2}\right)} \cdot \cos \phi(s), \tag{5}\\
& y=\sqrt{\left(1-z^{2}\right)} \cdot \sin \dot{\phi}(s), \tag{6}
\end{align*}
$$

and then determine the function $\phi=\phi(s)$ satisfying (2).
A short computation shows that

$$
\begin{equation*}
\phi^{\prime 2}=\left(1-z^{2}-z^{\prime 2}\right)\left(1-z^{2}\right)^{-2} . \tag{7}
\end{equation*}
$$

We assume that

$$
1-z^{2}-z^{\prime 2}>0 \quad \text { on } \quad J
$$

From (7) and (8) we may put $\phi(s)$ as

$$
\begin{equation*}
\phi(s)=\int_{0}^{s}\left[1-z(t)^{2}-z^{\prime}(t)^{2}\right]^{1 / 2}\left[1-z(t)^{2}\right]^{-1} d t \tag{9}
\end{equation*}
$$

Putting (5), (6) and (9) into (3) we can show (cf. [3]) that

$$
\begin{equation*}
z z^{\prime \prime}+z^{\prime 2}+2 z^{2}-1=2 H z\left(1-z^{2}-z^{\prime 2}\right)^{1 / 2} \tag{10}
\end{equation*}
$$

Defining $u(s)$ by

$$
\begin{equation*}
u(s)=z(s)^{2}-1 / 2 \tag{11}
\end{equation*}
$$

we can show (cf. [4]) that the equation (10) with the conditions (4) and (8) is equivalent to the equation

$$
\begin{equation*}
u^{\prime 2}=-4\left(H^{2}+1\right) u^{2}+8 a H u+1-4 a^{2} \tag{12}
\end{equation*}
$$

with the conditions

$$
\begin{gather*}
|u|<1 / 2, \quad \text { and } \tag{13}\\
a-H u>0, \quad a: \text { constant. } \tag{14}
\end{gather*}
$$

From (12) we may define $u(s)$ by

$$
\begin{equation*}
u(s)=\left(1+H^{2}\right)^{-1}\left[a H+\sqrt{\left(\frac{1+H^{2}}{4}-a^{2}\right)} \cdot \cos 2 \sqrt{\left(1+H^{2}\right)} s\right] \tag{15}
\end{equation*}
$$

provided

$$
\begin{equation*}
a^{2} \leqq\left(1+H^{2}\right) / 4 \tag{16}
\end{equation*}
$$

It follows from (15) that \boldsymbol{J}, the domain of definition of $u(s)$, may be extended to $\boldsymbol{S}^{1}(r), r=1 / 2 \sqrt{\left(1+H^{2}\right)}$. Denote the extended function by the same symbol. Then, for ${ }_{j i}^{\circ}$ the extended function $u(s)$ we see that the conditions (13), (14) and (16) are equivalent to the following inequality

$$
\begin{equation*}
|H|<2 a \leqq \sqrt{\left(1+H^{2}\right)} \tag{17}
\end{equation*}
$$

Putting (15) into (11), (9), (5) and (6) we have the triple of solutions of the system (1), (2), (3) and (4).

Reversing the above argument, replacing the constant a by $\sqrt{\left[\left(1+H^{2}\right) / 4-a^{2}\right]}$, and taking the completeness into consideration we have the following result.

THEOREM 1. Let H be a constant, and for each constant $a, 0 \leqq a<1 / 2$, we define the function $z(s)$ by

$$
z(s)=\sqrt{\left[\frac{1}{2}+\left\{H \sqrt{\left(\left(1+H^{2}\right) / 4-a^{2}\right)}+a \cos 2 \sqrt{\left(1+H^{2}\right)} s\right\} /\left(1+H^{2}\right)\right]}, \quad s \in \boldsymbol{R}
$$

and the function $\phi(s)$ by (9). We define r by $r=\sqrt{\left[\left\{1-H / \sqrt{\left(1+H^{2}\right)}\right\} / 2\right]}$ for $a=0$, or, $r=\inf \left\{k / 2 \sqrt{\left(1+H^{2}\right)} ; k\right.$ and $\phi\left(k \pi / \sqrt{\left(1+H^{2}\right)}\right) / 2 \pi$ are positive integers $\}$ for $a>0$. Then the analytic mapping $f: \boldsymbol{S}^{1}(r) \times \boldsymbol{S}^{1} \rightarrow \boldsymbol{S}^{\mathbf{3}}$,

$$
f(s, \theta)=\left(\sqrt{\left(1-z(s)^{2}\right)} \cdot \cos \phi(s), \sqrt{\left(1-z(s)^{2}\right)} \cdot \sin \phi(s), z(s) \cos \theta, z(s) \sin \theta\right),
$$

defines a complete, rotational surface $\boldsymbol{M}(a, H)$ in \boldsymbol{S}^{3} with constant mean curvature H.

Putting $H=0$ in the theorem we have the following result.
Corollary. For each constant $a, 0 \leqq a<1 / 2$, we define the function $\phi(s, a)$ by

$$
\phi(s, a)=\sqrt{\left(\frac{1}{4}-a^{2}\right)} \int_{0}^{s}\left(\frac{1}{2}+a \cos 2 t\right)^{-1 / 2}\left(\frac{1}{2}-a \cos 2 t\right)^{-1} d t, \quad s \in \boldsymbol{R} .
$$

We define r_{a} by $r_{a}=1 / \sqrt{2}$ for $a=0$, or, $r_{a}=\inf \{k / 2 ; k$ and $\phi(k \pi, a) / 2 \pi$ are positive integers\} for $a>0$. Then the analytic mapping $f: \boldsymbol{S}^{\mathbf{1}}\left(r_{a}\right) \times \boldsymbol{S}^{1} \rightarrow \boldsymbol{S}^{\mathbf{3}}$,

$$
\begin{array}{cc}
f(s, \theta)=\left(\sqrt{\left(\frac{1}{2}-a \cos 2 s\right)} \cdot \cos \phi(s, a),\right. & \sqrt{\left(\frac{1}{2}-a \cos 2 s\right)} \cdot \sin \phi(s, a), \\
\sqrt{\left(\frac{1}{2}+a \cos 2 s\right)} \cdot \cos \theta, & \left.\sqrt{\left(\frac{1}{2}+a \cos 2 s\right)} \cdot \sin \theta\right),
\end{array}
$$

defines a complete, rotational, minimal surface \boldsymbol{M}_{a} in \boldsymbol{S}^{3}.
Remark 1. For $a=0$, the surface $\boldsymbol{M}(a, H)$ (resp. \boldsymbol{M}_{a}) is nothing but the flat torus $\boldsymbol{T}^{2}(H)$ (resp. the Clifford torus). In case where $\phi\left(\pi / \sqrt{\left(1+H^{2}\right)}\right) / \pi$ (resp. $\phi(\pi, a) / \pi)$ is irrational for $a>0, r$ (resp. r_{a}) is defined to be infinity and $\boldsymbol{S}^{1}(r)=\boldsymbol{R}$ (resp. $\boldsymbol{S}^{1}\left(r_{a}\right)=\boldsymbol{R}$). From the proof of Theorem 2 below we can show that for different a, b in $[0,1 / 2), \boldsymbol{M}_{a}$ is not isometric to \boldsymbol{M}_{b}. It follows from Lemma 1 below that there exists a countable set of numbers a such that \boldsymbol{M}_{a} is a closed minimal surface in \boldsymbol{S}^{3}.

4. Geometric properties of \boldsymbol{M}_{a}.

In this section we shall prove the following results.
Theorem 2. Let \boldsymbol{M}_{a} be a closed, rotational, minimal surface in \boldsymbol{S}^{3} as in Corollary. If $0<a<1 / 2$, then \boldsymbol{M}_{a} is not embedded in $\boldsymbol{S}^{\mathbf{3}}$ and whose Gaussian curvature varies in a neighborhood of zero in \boldsymbol{R}.

Theorem 3. Let \boldsymbol{M}_{a} be as in Theorem 2. There exists a constant δ in $(0,1 / 2)$ such that if $0<a<\delta$, then the first eigenvalue of the closed surface \boldsymbol{M}_{a} relative to the Laplacian is smaller than two.

We shall prepare the following lemmas for proving the above theorems.
Lemma 1. Let $\phi(s, a)$ be as in Corollary and put " $g(a)=\phi(\pi, a), 0 \leqq a<$ $1 / 2$. Then it follows that $g(a)$ is strictly decreasing and continuous in a, and that
$\pi<g(a)<g(0)=\sqrt{2} \pi$ for $a, 0<a<1 / 2$.
Remark 2. We can show that $g(a) \rightarrow c \leqq \pi^{2} / 3,(a \rightarrow 1 / 2)$.
Proof. Putting $b=2 a$ and changing variables by $t=2 \mathrm{~s}$ we have that for each $b, 0 \leqq b=2 a<1$,

$$
\begin{align*}
& h(b) \equiv g(a) \\
& \begin{aligned}
&:=\sqrt{\left[2\left(1-b^{2}\right)\right]} \int_{0}^{\pi / 2}\left\{(1-b \cos t)^{-1}(1+b \cos t)^{-1 / 2}\right. \\
&\left.\quad+(1+b \cos t)^{-1}(1-b \cos t)^{-1 / 2}\right\} d t .
\end{aligned} \tag{18}
\end{align*}
$$

Since $0 \leqq b<1$ we get the following expansion of absolutely convergent series

$$
\begin{aligned}
& (1-b \cos t)^{-1}(1+b \cos t)^{-1 / 2} \\
& =\sum_{k=0}^{\infty}(b \cos t)^{k} \sum_{m=0}^{\infty} \frac{(-1)^{m}(2 m-1)!!}{(2 m)!!}(b \cos t)^{m} \\
& =\sum_{m=0}^{\infty}\left(\sum_{k=0}^{m} \frac{(-1)^{k}(2 k-1)!!}{(2 k)!!}\right)(b \cos t)^{m} .
\end{aligned}
$$

From this and the same expansion for the second term of the integrand in (18) we obtain that

$$
\begin{align*}
h(b) & \left.=\sqrt{ }\left[8\left(1-b^{2}\right)\right]\right]_{0}^{\pi / 2} \sum_{m=0}^{\infty} S_{m}(b \cos t)^{2 m} d t \tag{19}\\
& =\sqrt{\left[8\left(1-b^{2}\right)\right]} \sum_{m=0}^{\infty} b^{2 m} S_{m} \frac{(2 m-1)!!}{(2 m)!!} \frac{\pi}{2},
\end{align*}
$$

where $S_{m}=\sum_{k=0}^{2 m}(-1)^{k}(2 k-1)!!/(2 k)!!$. It can be easily seen that

$$
\begin{equation*}
S_{0}=1, \quad S_{m}<1 \quad(m \geqq 1) . \tag{20}
\end{equation*}
$$

And, from the fact that for each constant $c, 0<c \leqq 1$, the sequence $S_{m}(c)=$ $\left.\sum_{k=0}^{2 m}((2 k-1)!!) /(2 k)!!\right)(-c)^{k}$ is strictly decreasing and converges to $1 / \sqrt{(1+c)}$ it follows that

$$
\begin{equation*}
1 / \sqrt{2}<S_{m} \quad(m \geqq 0) \tag{21}
\end{equation*}
$$

From the fact that for each $b, 0 \leqq b<1, \quad \sum_{m=0}^{\infty}((2 m-1)!!/(2 m)!!) b^{2 m}=1 / \sqrt{\left(1-b^{2}\right)}$ together with (19), (20) and (21) we see that

$$
\begin{equation*}
\pi<h(b) \leqq \sqrt{2} \pi \quad \text { for } \quad 0 \leqq b<1 \tag{22}
\end{equation*}
$$

We shall now prove that $h(b)$ is strictly decreasing and continuous in b, $0 \leqq b<1$. For each non-negative integer m we denote $(2 m-1)!!S_{m} /(2 m)!$! by T_{m} and consider the function

$$
\begin{equation*}
g(x)=\sqrt{(1-x)} \cdot \sum_{m=0}^{\infty} T_{m} x^{m}, \quad|x|<1 . \tag{23}
\end{equation*}
$$

We notice that the series $\sum_{m=0}^{\infty} T_{m} x^{m}$ is absolutely convergent in $x,|x|<1$,
from which $g(x)$ is a C^{∞} function of x and its derivative $g^{\prime}(x)$ is given by

$$
\begin{align*}
g^{\prime}(x) & =-1 / 2 \sqrt{(1-x)} \cdot \sum_{m=0}^{\infty} T_{m} x^{m}+\sqrt{(1-x)} \cdot \sum_{m=0}^{\infty} m T_{m} x^{m-1} \\
& =1 / 2 \sqrt{(1-x)} \cdot \sum_{m=0}^{\infty}\left[2(m+1) T_{m+1}-(2 m+1) T_{m}\right] x^{m} . \tag{24}
\end{align*}
$$

From the fact that $2(m+1) T_{m+1}-(2 m+1) T_{m}=(2 m+1)!!\left(S_{m+1}-S_{m}\right) /(2 m)!!<0$ together with (24) we see that the function $g(x)$ is strictly decreasing in x, $0 \leqq x<1$. From this together with (18), (19), (22) and (23) we see that our assertion is valid.

We shall review a distance on the set \mathfrak{M} of all C^{∞} Riemannian metrics on a closed n-manifold \boldsymbol{M} (see [6] for detail) for proving Lemma 2 below. For each point x in \boldsymbol{M}, let \boldsymbol{P}_{x} (resp. \boldsymbol{S}_{x}) be the set of all symmetric positive definite (resp. merely symmetric) bilinear forms on $\boldsymbol{T}_{x} \boldsymbol{M} \times \boldsymbol{T}_{x} \boldsymbol{M}$, where $\boldsymbol{T}_{x} \boldsymbol{M}$ is the tangent space of \boldsymbol{M} at x. We can define a distance ρ_{x} on $\boldsymbol{P}_{x}, x \in \boldsymbol{M}$, by

$$
\rho_{x}(\phi, \psi)=\inf \{\delta>0 ; \exp (-\delta) \cdot \phi<\psi<\exp \delta \cdot \phi\}
$$

where, for ϕ, ψ in $\boldsymbol{S}_{x}, \phi<\psi$ means that $\psi-\phi \in \boldsymbol{S}_{x}$ is positive definite on $\boldsymbol{T}_{x} \boldsymbol{M}$ $\times \boldsymbol{T}_{x} \boldsymbol{M}$. And we can define a distance ρ on \mathfrak{M} by

$$
\rho(g, h)=\sup \left\{\rho_{x}\left(g_{x}, h_{x}\right) ; x \in \boldsymbol{M}\right\}, \quad g, h \in \mathfrak{M} .
$$

For each g in \mathfrak{M} we denote by $\lambda_{m}(g)$ the m-th eigenvalue of (\boldsymbol{M}, g) relative to the Laplacian Δ_{g}. Here the eigenvalues are counted repeatedly as many times as their multiplicities:

$$
0=\lambda_{0}(g)<\lambda_{1}(g) \leqq \lambda_{2}(g) \leqq \cdots \leqq \lambda_{m}(g) \leqq \cdots \uparrow \infty .
$$

S. Bando and H. Urakawa have proved the following result.

Proposition 1. Let M and \mathfrak{M} be as above. Let g be in \mathfrak{M} and δ a positive number. Then $h \in \mathfrak{M}, \rho(h, g)<\delta$ implies $\left|\lambda_{m}(h)-\lambda_{m}(g)\right| \leqq\{\exp ((n+1) \delta)-1\} \lambda_{m}(g)$, for $m \geqq 0$.

We shall use this proposition in the following situation. For each natural number k we may regard the closed 2 -manifold $\boldsymbol{T}^{2}(k):=\boldsymbol{S}^{1}(k / 2) \times \boldsymbol{S}^{1}$ with the Riemannian metric $\boldsymbol{I}_{a}=d s^{2}+(1 / 2+a \cos 2 s) d \theta^{2},|a|<1 / 2$, as the k-fold Riemannian covering manifold of the torus $\boldsymbol{S}^{1}(1 / 2) \times \boldsymbol{S}^{1}$ with the metric \boldsymbol{I}_{a}.

Lemma 2. Let $\boldsymbol{T}^{2}(k)$ and \boldsymbol{I}_{a} be as above. There exists a constant $\delta, 0<\delta<$ $1 / 2$, which is independent of k, such that if $|a|<\delta$ and $k \geqq 2$, then the first eigenvalue $\lambda_{1, k}(a)$ of $\left(\boldsymbol{T}^{2}(k), \boldsymbol{I}_{a}\right)$ relative to the Laplacian is smaller than two.

Proof. At first, it is known (see [1]) that the first eigenvalue of the Laplacian for the Riemannian product metric of $\boldsymbol{T}^{2}(k)$ is $4 / k^{2}$, namely,

$$
\begin{equation*}
\lambda_{1, k}(0)=4 / k^{2} \quad \text { for } \quad k \geqq 2 . \tag{25}
\end{equation*}
$$

Next, we shall compute the distance $\rho\left(\boldsymbol{I}_{a}, \boldsymbol{I}_{b}\right), a, b \in(-1 / 2,1 / 2)$, explicitly. Let a, b be in $(-1 / 2,1 / 2)$ and (s, θ) a point in $T^{2}(k)$. Then it can be easily shown that at the point (s, θ) the condition that $\exp (-\delta) \boldsymbol{I}_{a}<\boldsymbol{I}_{b}<\exp \boldsymbol{\delta} \cdot \boldsymbol{I}_{a}$ is equivalent to the condition that $|\log [(1+2 b \cos 2 s) /(1+2 a \cos 2 s)]|<\delta$. It follows from this fact that

$$
\begin{equation*}
\rho_{(s, \theta)}\left(\boldsymbol{I}_{a}, \boldsymbol{I}_{b}\right)=|\log [(1+2 b \cos 2 s) /(1+2 a \cos 2 s)]| . \tag{26}
\end{equation*}
$$

From $\boldsymbol{S}^{\mathbf{1}}(k / 2) \equiv \boldsymbol{R} / k \pi \boldsymbol{Z}$ and (26) we see that

$$
\begin{align*}
\rho\left(\boldsymbol{I}_{a}, \boldsymbol{I}_{b}\right): & =\sup \left\{\rho_{(s, \theta)}\left(\boldsymbol{I}_{a}, \boldsymbol{I}_{b}\right) ;(s, \theta) \in \boldsymbol{T}^{2}(k)\right\} \\
& =\sup \{|\log [(1+2 b) /(1+2 a)]|,|\log [(1-2 b) /(1-2 a)]|\} . \tag{27}
\end{align*}
$$

It follows from Proposition 1, (25) and (27) that there exists a constant $\delta, 0<\delta$ $<1 / 2$, which is independent of k, such that

$$
\lambda_{1, k}(a)<2 \quad \text { for } a,|a|<\delta, \quad \text { and } \quad k \geqq 2 .
$$

This completes the proof.
Proof of Theorem 2. From the minimality of \boldsymbol{M}_{a} in \boldsymbol{S}^{3} and the equation of Gauss it follows that at each point (s, θ) in $\boldsymbol{S}^{1}\left(r_{a}\right) \times \boldsymbol{S}^{1}$, the domain of definition of the immersion f, the Gaussian curvature \boldsymbol{K}_{a} of \boldsymbol{M}_{a} is

$$
\begin{equation*}
\boldsymbol{K}_{a}=4 a\left(a \cos ^{2} 2 s+\cos 2 s+a\right)(1+2 a \cos 2 s)^{-2} . \tag{28}
\end{equation*}
$$

Using (28) we can easily show that the range of \boldsymbol{K}_{a} is the closed interval $[-4 a /(1-2 a), 4 a /(1+2 a)]$ which implies that the second assertion of this theorem is true.

Next, we notice that

$$
\begin{equation*}
\phi(k \pi, a)=k \phi(\pi, a) \quad \text { for } a, 0 \leqq a<1 / 2, \quad k: \text { integer. } \tag{29}
\end{equation*}
$$

From (29) and Lemma 1 we can easily show that $r_{a}=k / 2$ for some integer $k \geqq 3$, or $r_{a}=\infty$, where r_{a} is defined to be as in Corollary. And it is easily seen that for such r_{a}, the mapping $\phi(\cdot, a): \boldsymbol{S}^{1}\left(r_{a}\right) \rightarrow \boldsymbol{R}, s \rightarrow \phi(s, a)$, is not one-toone. This implies that the first assertion of this theorem is true.

Proof of Theorem 3. From the proof of Theorem 2 we see that the closed, rotational, minimal surface \boldsymbol{M}_{a} in $\boldsymbol{S}^{\mathbf{3}}$ is isometric to $\boldsymbol{T}^{\mathbf{2}}(k)=\boldsymbol{S}^{1}(k / 2) \times \boldsymbol{S}^{1}$ with the Riemannian metric $\boldsymbol{I}_{a}=d s^{2}+(1 / 2+a \cos 2 s) d \theta^{2}$ for some integer $k \geqq 3$. From this observation together with Lemmas 1 and 2 it follows that our assertion is true.

Acknowledgement. The present author would like to express his hearty thanks to Professor S. Tanno for his useful comments.

References

[1] M. Berger, P. Gauduchon and E. Mazet, Le spectre d’une variété riemannienne, Lecture Notes in Math., 194, Springer-Verlag, 1971.
[2] K. Kenmotsu, Surfaces of revolution with prescribed mean curvature, Tôhoku Math. J., 32 (1980), 147-153.
[3] H. Mori, Minimal surfaces of revolution in \boldsymbol{H}^{3} and their global stability, Indiana Univ. Math. J., 30 (1981), 787-794.
[4] H. Mori, Stable complete constant mean curvature surfaces in \boldsymbol{R}^{3} and \boldsymbol{H}^{3}, Trans. Amer. Math. Soc., 28 (1983), 671-687.
[5] K. Nomizu and B. Smyth, A formula of Simons' type and hypersurfaces with constant mean curvature, J. Diff. Geom., 3 (1969), 367-377.
[6] S. Bando and H. Urakawa, Generic properties of the eigenvalue of the Laplacian for compact Riemannian manifolds, Tôhoku Math. J., 35 (1983), 155-172.

Hiroshi Mori
Department of Mathematics
Faculty of Education
Toyama University
Toyama 930
Japan

