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1. Introduction. Let (Mn, g) be an ^-dimensional compact connect-
ed Riemannian manifold. The Laplacian acting on smooth functions on
M has a discrete spectrum with finite multiplicities. Hersch [6] showed
that for any Riemannian metric g on the two dimensional sphere S2,

\(g) vol (S2, g) ^ 8π

where \(g) denotes the first eigenvalue of the Laplacian with respect
to g. The equality holds if and only if g is the canonical metric (up to
a constant multiple).

This implies an affirmative answer to the Blaschke conjecture on S2

and gives another proof of Green's theorem [5] (cf. [3]). In connection
with this result, Berger [1] posed a problem: Does there exist a con-
stant k{M) satisfying

\(g)vόl(M*f gf/n S k{M)

for any Riemannian metric g on MΊ When M is a sphere, can one
characterize the canonical metric up to a constant multiple by the above
equality?

If this problem is affirmatively answered for an ^-dimensional
sphere Sn, the Blaschke conjecture is affirmatively answered for Sn (cf.
[3]). And it is interesting to know some relations between the spect-
rum theory and differential geometry. It is known (cf [1], [9]) that the
answer to this problem is affirmative when M is a fiat torus. But
Urakawa [8] gave a counterexample when M is a compact Lie group
with the nontrivial commutator subgroup, in particular, S3. Tanno [7]
also answered the problem negatively when M is S2n+1(n ^ 1). Urakawa
and Muto [10] showed that there are many counterexamples when M has
Euler number zero.

In this paper, we give a negative answer also when Mis S2n (wΞ>2).

THEOREM. There exists a continuous deformation gt (0 ^ t < oo) of
the canonical metric g0 on S2n (n^2) such that
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2. Construction of the deformation gt. Let (u°, u1, , u2n) be the
canonical coordinate system on R2n+1, N= (1, 0, , 0) and S = ( — 1, 0, , 0)
(n ^ 2). Let S2n be the unit sphere in R2n+1 and go(2n) the canonical
metric on S2n induced by the Euclidean structure on R2n+\ Let S2%~1 =
{(0, u\ , u2ίi) 6 S2*}. Let (r, a), r e (0, π), a; 6 S2*-1, be a geodesic polar
coordinate system around N on S2* — {N, S} with respect to go(2n), that
is, a? = (x1, •••, a;2*"1) is a local coordinate on S 2 Λ - 1 and r is the distance
from the north pole N. Let go(2n — 1) be the metric on S2""1 induced
by go(2n). Then its metric on S2"-1 has constant curvature 1. Let η be
a contact form on S2n~\ that is, η is a unit Killing form on (S2n~\
go(2n — 1)). Then there exists a 1-form fj on (S2w, go(2n)) such that

9<r>., = (sin rfηx on S2w - {N, S} ,

rjN = 0 , and ^ s = 0 .

Here we regard ηx as a covector at (r, α?) in S2 w via the geodesic polar
coordinate.

DEFINITION 2.1. We define a deformation gt(2n) (0 ^ £ <oo) of go(2w)
as follows:

(2.1) gt(2n) = go(2n) + tη®η , (0 ^ t < oo) .

In particular, on S2 ί l — {N, S},

gt(2n) = (ώr)2 + (sin r)2(gr0(2^ - 1) + t(sin r)2)? (x) 7) .

We notice here that go(2n — 1) = η® η + 7Γ*Λ(̂  — 1), where TΓ is the
Hopf fibering S2""1 —> CP"" 1 and Λ(w — 1) is the canonical metric on
CP*-\ Therefore on S2n - {N, S}f we have

(2.2) {det gt(2n)}WiX) = (1 + ί(sin r)2){det go(2n)},r,x) ,

where we denote by gt(2n) the coefficient matrix of gt(2n) with respect
to the coordinate (r, x) for any t e [0, oo). Let £ = (£*) be the dual vector
field of 77 on (S2*-1, go(2n - 1)). Then f is a unit Killing vector field on
S2n"\ Therefore the inverse matrix flrl(2n)~1 of gt(2n) with respect to
the coordinate (r, a?) is of the following form on S2n — {N, S}:

ίl 0
(2.3) &)1

\0 (sin r)~2gi\2n - 1) - ί ( l + t(sin r)2)-1?

LEMMA 2.2. Lei (ί) J52» 6e ίfee Laplacίan on S2n defined by gt(2n) and
ΔS2n-i the Laplacίan on S2""1 defined by go(2n — l). Then, on S2n — {N, S},
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{t)JS2n = (d2/dr2) + [(2n - l)(cosr)(sinr)" 1

+ ί(sin r)(cos r){l + ί(sin rf^^

+ (sin r)-2ΛS2n-i - t{l + ί(sin

where ζ is a unit Killing vector field on S 2 ί l - 1 and Sf^ is the Lie deri-
vation with respect to ξ.

PROOF. We denote the geodesic polar coordinate (r, x~\ , a52*-1)by
(v\ , v2n) and set θ = (det gt{2n))m with respect to (v\ , v2n). Then

{t)JS2n = θ-\d/dv>)(θQίk(2n)(d/dvk)) .

Therefore by (2.2) and (2.3), we have

(2.4) {t)As*n = (d2/dr2) + [(2n - l)(cos r)(sin r ) " 1

+ £(sin r)(cos r){l + ί(sin r)2}-1](3/3r) + (sin r ) " 2 J ^ - i

- t{l + ί(sin rJ'J-^det go(2n - 1))"1/2

x (3/3^){(det go(2n - I))1/2ζψ(d/dx>)} .

As η is a coclosed form on (S2n~\ go(2n — 1)), we have 0 = — δ)y =
Fit? + (dξΊdx*), where § is the co-differentiation of (S2"-1, go(2n - 1)) and
Γ}fc is the ChristoffeΓs symbol on (S2n~\ go(2n - 1)). Therefore the last
term on the right hand side of (2.4) coincides with — ί(l +

q.e.d.

3. The estimate of the first eigenvalue. We first consider the
eigenfunctions of ΔSm. Let λfc be the A -th eigenvalue of Δsm and Vk be
the vector space of eigenf unctions corresponding to Xk. Then on
(S , Λ(m)) (cf [2]),

Xk = k{k + m - 1) , k ^ 0 ,

dim Ffe = m+kCk - TO+fe-2Cfc_2 , fc ^ 2 ,

dim F o = 1 , dim V1 — m + 1 .

As ζ is a unit Killing vector field on S2n~ι (n ^ 2), ^ commutes
with JS2n-i and induces a linear endomorphism on Vk. We define an
inner product < , > on smooth functions on Sm as follows:

for any f,ge C°°(Sm), where eZvol(Sm, go(m)) is the volume element with
respect to go(m). By Stokes' theorem, ^fζ induces a skew-symmetric
linear endomorphism on Vk with respect to the above inner product.
Tanno [7] gave a decomposition of Vk with respect to the action of
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LEMMA 3.1 (Tanno [7]). On (S2n~\ go(2n - 1)), (n ^ 2), we have

Vk= Vk,0+ Vk>1+ + Vk,ίk/2] ,

for any integer k ^ 0, where [k/2] is the integer part of k/2, and for
any fe VktP, O^p^ [k/2], £f^f + (k - 2p)2f = 0.

Now let / be a non-zero eigenfunction of {t)ΔS2n corresponding to λ.
Then we can regard / as /(r, x) e C°°((0, π) x S2*"1). Let {φl,p(k ^ 0, 0 £
p <; [k/2], 1 <; i <* dim Vk,p)} be a complete orthonormal basis on the space
of square integrable functions on S2^1 with respect to go(2n — 1),where
φi p e VktP. We set

= ί
J

f(r, x)φUx)dvol(S2«-\ go(2n - 1)) .
S2n~ι

Then aktP e C2([0, π]). Note that there exist some k, p, i such that
< P * 0.

Now as 4g2»-i and ^fξ^fξ are self-adjoint with respect to < , >, αί>p(r)
must satisfy the following equation:

(3.1) [(d2/dr2) + [(2n - l)(cos r)(sin r)~ι

+ t(sin r)(cos r){l + *(sin r)8}-1]^/^) + [λ - k(k + 2n- 2)(sin r)" 2

+ t(k - 2ί9)2{l + ί(sin r)2}-1]^ = 0 , on (0, π) .

LEMMA 3.2. When X <2n — 2 and k^l, (3.1) has no nontrivial
solution in C\[0, π]) for any p, 0 ^ p ^ [Λ/2], α^d ί ^ 0.

PROOF. By λ < 2^ — 2 and & :> 1, we see that on (0, π),

X- k(k + 2n- 2)(sin r)-2 + t(fc - 2j9)2{l + ί(sin r)2} < 0 .

Let φeC2([0, π]) be a solution of (3.1). Multiply both sides of (3.1) by
(sinr)2 and take the limits as r —> 0 and r—>π. Then 95(0) = 9>(τr) = 0.
Therefore by Rolle's theorem, there exists r0 e (0, π) such that
(dφ/dr)(r0) = 0. For any r0 e (0, π) satisfying (dφ/dr)(rQ) = 0, we have

(d2φ/dr2)(r0)= -[λ - Λ(* + 2^ - 2)(sin ro)~2 + ί(fc - 2p)2{l + ί(sin rtfy^r,) .

If we assume φ is a non-trivial solution, then by the uniqueness of a
solution for an initial condition, φ(r0) Φ 0. So (d2φ/dr2)(r0) > 0 if φ(r0) > 0
and (d2φ/dr2)(r0)<0 if φ(ro)<O. This contradicts the fact φ(Q)=φ(π) = Q.

q.e.d.

Next we consider the case of k = 0 in (3.1). Set 2 = cos r. If
y(cosr) is a solution of (3.1), then the function y(z) must be in C2( — 1, 1)
and satisfy the following equation (3.1'):

(3.1') (1 - * V - [2n + ί(l - Z2){1 + t{l-z2))~ιW + ^V = 0 on (-1 , 1),
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where y'{z) (resp. y"(z)) denotes (dy/dz)(z) (resp. (d2y/dz2)(z)). Set y(z) =
Σi^o djZ' formally. Then we obtain 2a2—— λα0, 6(1 + ί)α8 = {(2w — λ) +

+ 1 — λ)£}αx and

(3.2) (1 + ί)((i + 2)(i + l)α i + 2 - t{(i + 2)2 + (2n - 4)(i + 2) - 2(2* - 2)-λ}α,

= (1 + *)i(i - l)ty - t{f + (2w - 4)i - 2(2n - 2) - λ}αy-2

+ (2nj - X)a,j , j ^ 2 .

The function ?/ is well-defined by (3.2), that is, Σ i ^ o ^ ' is absolutely
convergent on ( — 1,1). It is classical that (3.1) is equivalent to (3.Γ).
By (3.2), we can choose yλ = Σ^<Aυ 22i a n ( * V* = Σ ^ i ^ - i^ ' " 1 as a funda-
mental system of (3.1').

LEMMA 3.3. Let α o = - 1 αweZ ^ = 1. Then aό > 0 0" ^ 1) if 0 < λ <
2w.

PROOF. We first consider α2 i. By ao=— 1 and α2 = λ/2, we have
12(1 + ί)α4 - ί{42 + 4(2^ - 4) - 2(2^ - 2) - λ}α2 = 2α2 + (4n - λ)α2 > 0.
Therefore α4 > 0. We assume aά > 0 for any even integer j , 4 ^ j ^ m
for some even integer m. Set bd = (1 + t)0" + 2)(i + l)α i + 2 - ί{(i + 2)2+
(2w - 4)(j + 2) - 2(2w - 2) -λ}α y . Then by (3.2), bd = 6y_2 + (2ni - λ)α, .
By our assumption, bm = δm_2 + (2nm — X)am > bm-2 > > δ2 > 0. Thus
am+2 > 0.

Next we consider a2j-λ. By aλ = 1 and α3 = 6~1[{2^ + (2n + l)ί}(l +
ί)" 1 — λ] > 0, we have bz = (2n — λ) + (6^ — λ)α3 > 0. In the same way
as in the case of α2 i, we obtain as > 0 for any odd integer j > 0. q.e.d.

LEMMA 3.4. When 0 < λ < n, (3.1') has no nontrivial bounded solu-
tion in C2( — 1, 1) for any t^0.

PROOF. We first consider yt. By (3.2),

a2j+2 = ί(l + t)-ι{(2j + 2)2 + (2n - 4)(2i + 2) - 2(2τι - 2) - λ}

x{(2j + 2)(2i + l)}-1^- + {(1 + t){2j + 2)(2j + I)}"1

x I 2α2 Σ

When 0 <X <n and 1 ^ ΐ ^ i, we have Δni — λ > 3?u. When
0 < λ < w , 7 i ^ 2 and i ^ 3, we have

{(2i + 2)2 + (2w - 4)(2i + 2) - 2(2^ - 2) - \}{(2j + 2)(2j + I)}"1

= (2j/2j + 2)[1 + (4nj - 2j - λ){2i(2i + I)}"1] > (2j/2j + 2) .

By Lemma 3.3, we have aό > 0 (j ^ 1) when 0 <X<n, αo= — 1 and
αx = 1. Thus there exists a positive constant K such that α2 > (K/2)a2,
α4 > (K/4)a2 and αβ > (K/6)a2. We assume α2i > (K/2j)a2 for 3 <; j" ̂  m.
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Then as n ^ 2 and m ^ 3, we have

a2m+2 > it/1 + ί)(2m/2m + 2)(ίΓ/2m)α2 + {(1 + ί)(2m + 2)(2m + I)}"1

x Σ (3nj/2j)Ka2
3=1

t)(K/2m + 2)α2 + (1/1 + t)(K/2m + 2)α2 - (jfiΓ/2m + 2)α2 .

Therefore ^(s) > - 1 + (ίΓ/2)α2{log(l - z2)-1}, when z ^ 0. Thus ^(z) is
unbounded on ( — 1,1). Similarly we can show that y2(z) is unbounded
on ( — 1,1). Since {y19 y2} give a fundamental system of (3.1'), we obtain
the desired result. q.e.d.

THEOREM 3.5. There exists a continuous deformation gt (0 <£ t <oo)
o/ £/&β canonical metric g0 on S2n (n ^ 2)

PROOF. Set #* = gt(2n). Then Lemmas 3.2 and 3.4 imply \jigt) =± n
for any t ^ 0. By (2.2), we have

vol(S2 , flr4) = voKiS2-1, go(2n - 1))Γ(1 + ί(sin r)2)1/2(sin r)2n~ιdr
Jo

—> oo (ί —> oo) . q .e .d.
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