
Tδhoku Math. Journ.
33(1981), 395-407.

THE FIRST EIGENVALUE OF THE LAPLACIAN ON TORI

KAZUMI TSUKADA

(Received April 25, 1980)

1. Introduction. Let M be an ^-dimensional compact connected
differentiate manifold. For every Riemannian metric g on M, let Δg be
the Laplacian acting on differentiate functions on M. We denote the
first eigenvalue of Δg by \(g) and the volume of (M, g) by Vol(Λf, g).
Berger [1] posed the following problem: Does there exist a positive
constant k(M) such that

for every Riemannian metric g on Ml Hersch [4] showed that if M is
diffeomorphic to the 2-dimensional sphere S2, then for every Riemannian
metric g on S2,

The equality holds if and only if g is a metric with the constant curvature.
On the other hand, recently the following people constructed examples

which admit a family of Riemannian metrics g(t) (0 < t < oo) such that

α(ίKί)) Vol(AΓ, g{t)f/n — - as t -> oo

(ff(t)) Vol(M, g(t))2/n -> 0 as t -> 0 .

( i ) Urakawa [8] constructed such a family of metrics on a compact
connected Lie group with a non-trivial commutator subgroup.

(ii) Tanno [7] constructed such on any odd dimensional sphere S2n+1

(n ^ 1).
(iii) Urakawa and Muto [10] constructed such on compact homo-

geneous spaces which satisfy some conditions.
(iv) Muto [5] constructed such on any even dimensional sphere

S2n (n ^ 2).
For an ^-dimensional torus Tn, it is known that there exists a

constant Jc(Tn) such that (*) holds for every "flat" metric (cf. [9]). In
this paper we prove that there exists no constant k(Tn) such that (*)
holds for any metric on Tn (n ^ 3). Namely we show the following.

THEOREM. On any n-dimensional torus Tn (n ^ 3), there exists a
family of metrics g{t) (0 < t < oo) such that
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)) » 0 as ί-^0

ami Vol(TΛ, #(*)) = constant.

The author wishes to thank Professor K. Ogiue for his many valuable
comments.

2. Some formulas for a Riemannian submersion. In [6] O'Neill
studied fundamental equations of a Riemannian submersion. We review
some formulas in it which are useful in the sequel. Given a Riemannian
submersion π:M->B, we denote by 3ΓE (resp. SίfΈ) a vertical part
(resp. a horizontal part) of a vector field E on M. Following O'Neill,
we define two tensor fields T and A for arbitrary vector fields E and
F by

TEF = ^ ^

and

AEF = ^ ^E

respectively, where we denote by V the Riemannian connection on M.
We review some formulas for the tensor field A which will be used

in the sequel. The tensor field A is called an integrability tensor
associated with the submersion.

DEFINITION. A basic vector field is a horizontal vector field X* which
is π-related to a vector field X on B, i.e., πXt — Xπ{u) for all ueM.

LEMMA 2.1. Suppose X* and F* are basic vector fields on M which
are related to X and Y on B. Then

(1) gίf{[X*, Y*]) is basic and is π-related to [X, Y].
( 2 ) <βέfVx*Y* is basic and π-related to VXY where V is the Rieman-

nian connection on B.

LEMMA 2.2. Let X and Ϋ be horizontal vector fields on M. Then
we have

AXΫ=T([X, ?])/2.

The proof of these results is found in [6].

3. The Laplacian of a metric g on M x S1. In this section, in the
same way as Vilms [11], we introduce a Riemannian metric g on a pro-
duct manifold M x S1 and calculate its Laplacian Ag.

Let (M, h) be an ^-dimensional (n ^ 2) compact connected Riemannian
manifold and ω be a 1-form on M. We denote R/2πZ by S1 and its
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coordinate system by {s}. We consider a product manifold M x S1 with
natural projections π: M x S1 —• M and 7]: M x S1 —> S1. We define a
Riemannian metric # on M x S1 by

βr = π*h + (α) + ds) (x) (α> + <Zs) ,

where we simply denote π*ω and η*ds by ω and ds, respectively. We
remark that (M x S1, #) may be regarded as a trivial SMmndle with a
connection ω + c£s.

We denote by ζ the vector field d/ds which is naturally regarded as
a vector field on M x S1. We denote by ξ a contravariant form of co
on If. We may naturally regard ξ as a vector field on M x S1. We
denote by Lx the Lie derivation with respect to X. We consider the
Laplacian AM on (M, h) as a differential operator acting on differentiable
functions on M x S1 in the following sense: For φ e C°°(M x S1), Δ ^ ^ , s) =
ΔMcΐφ{x) at (a;, s), where rs denotes the natural imbedding c8:M—>M x S1

given by <f8(#) = (a?, s).
We easily get:

LEMMA 3.1. The metric g on M x S1 has the following properties:
(1) The vector field ζ is a unit Killing vector field on (M x S1, g).
( 2 ) The projection π is a Riemannian submersion from (M x S1, g)

to (Λf, h) with totally geodesic fibres.

PROPOSITION 3.2. For φ e C°°(ikί x S1), w

Agφ = AMφ - (1 + I ω \2)LζLcφ + 2LζLζφ -

where we calculate the norm of a) and the co-differential operator δ with
respect to the metric h.

PROOF. For an arbitrary point xeM, let U be a neighborhood of x
in M and {Xu X2, , Xn} be a local field of orthonormal frames on U.
We naturally regard X3 as a vector field on U x S1 and define a vector
field Xf onUx S1 by Xf = Xd - α>(Z,)ζ. Then Xf is a basic vector
field which is related to Xά. We easily see that {Xf, X*, , XΛ*, ζ} is
a local field of orthonormal frames on U x S1. By the definition of the
Laplacian, for φ 6 C°°(M x S1) we have

-Δ,?> = Σ (^*^/^ - VX*X;^) + ζζφ - Vζζφ on U x S1 .

We see that Vζζ = 0 since ζ is a unit Killing vector field. By Lemma
2.1 and Lemma 2.2 we have
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T(Vx*Xf) = Ax*Xf = T([Xr, X/])/2 - 0

where VxjXs is regarded as a vector field on U x S1. Hence we get
Vx*Xf = Vx.Xj - ω(VXjXj)Z. Noticing that [Xjf ζ] = 0 and ζω{X}) = 0,
we have

XfXfψ - Vx*Xfφ = (X3- - ω(X3)ζ)(X3 - ω{X3)ζ)φ - (VXjXs - ω{VXjX,)ζ)φ

- {VX.XS)9 + ω(VXjX3)ζφ

= X}XiΨ - (V T r X> + ω(Xj)%ζφ

- {XMXi) ~ o){VXiX3))ζφ - 2co(Xj)Xjζφ .

Therefore we have

-A9φ = ^

- 2 Σ (j)&P Σ
3=1 3=1

= — AMφ + (1 + \ω\2)LζL:φ — 2LζLζφ + δθ)Lζφ .

Following Tanno [7], we define a family of Riemannian metrics git)
(0 < t < oo) by

g(t) = t-'g + (ί* - t-'Xω + ds) ® (ω + ds) 0 < t < oo .

By (ί)V and Ag{t)9 we denote the Riemannian connection and the Laplacian
with respect to g(t).

LEMMA 3.3. (M x S1, g(t)) has the following properties.
(1) Volume elements with respect to git) and g(l) = g are identical;

dVgU) = dVβ9 and Yo\(M x S\ g(t)) = Yol(M x S\ g).
(2) The vector field ζ is a Killing vector field with constant length

tn/\
(3) The projection π is a Riemannian submersion from (M x S1,

g(t)) to (M, t~ιh) with totally geodesic fibres.
( 4 ) Horizontal distributions associated with the submersion π: (M x

S1, git)) —> (M, ί"1^) α^d ίΛe submersion π: (M x S1, g) —> (Λf, Λ) are ί

(5) If X and Ϋ are horizontal vector fields, then we have (t)AχΫ =
A%Y, where {t)A denotes the integrability tensor associated with the
submersion π: (Λf x S\ g(t)) —> (Λf, ί"1^).

(6) Suppose X* cmd 3Γ* are δasΐc vector fields which are related
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to X and Y. Then we get (ί)Vx.Γ* = VX*Γ*.

PROOF. (1), (2), (3), and (4) are easily checked. (5) By Lemma 2.2,
we get wAχΫ = T([X, Ϋ])/2 = AXΫ. (6) By Lemma 2.1 and Lemma 2.2,
we have T(WVZ.Y*) = (ί)Ax*Γ* = AX*Y* = T(VX*Y*), £^(WVX*Y*) =
((ί)VxF)*, where (ί)V denotes the Riemannian connection with respect to
(M, t~ιh). Since (M, t~λh) is a homothetic deformation of (M, h), (<)V
coincides with V. Therefore we have ((ί)VxΓ)* = (VXΓ)* = J^(VX*Γ*).
Hence we get (6).

As for the relation between Ag and Δg{t), we show the following.

PROPOSITION 3.4. For φeC^iMxS1), we have AgU)φ = tΔgφ +
(ί - t-n)L:Lζφ.

PROOF. We use again a local frame field {X*f •••, JΓ*, ζ} given in
the proof of Proposition 3.2. By Lemma 3.3 (4), Xf is a basic vector
field associated with the submersion π: (M x S\ g(t)) —> (M, t^h). We
easily see that {t1/2X?, ••-, t1/2X%, t~n/2Q is an orthonormal frame field on
U x S1 with respect to the metric git). Noticing that {t)Vz*X* = Vx*Xf,
we have

- Agwφ = ±(t1/2Xft1/2Xfφ - ( ί)V ίV2χ*ί1/2X^) + t-n/2ζt~n/2ζφ
3=1 3

- ί Σ (^;-ϊ?9> - VX*X;^) + ζζφ - (ί - ί

= - ίΔ f f ^ - (t - t-n)L:L:φ .

4. Proof of Theorem in the 3-dimensional case. 4.1. T%e Laplacian
of warped product. Ejiri [3] studied the Laplacian of a warped product.
Here we review his results. Let (B, g) and (F, h) be Riemannian mani-
folds and / be a positive differentiable function on B. Consider the
product manifold B x F with projections π: B x F -+ B and η: B x F —>
ί7. The warped product M = B x f F is the manifold B x F furnished
with the Riemannian structure g defined by

g(X, Y) = g{π*X, π*Y) + f(πu)h(^X9 η+Y)

for tangent vectors X, YeTuM. We denote by ΔM, ΔB, and Δ^ the
Laplacians of (M, g), (B, g) and (F, h), respectively. By grad / we denote
the gradient of / defined by the metric tensor g and we regard grad /
as a vector field on M. Ejiri found the following relation among ΔBf ΔF

and ΔM.
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LEMMA 4.1. [3]

AM = AB - (n/f) grad/ + (l/f)2AF ,

where n is the dimension of F.

In this note we deal with a warped product S1 X/S1, where S1

denotes R/2πZ.

COROLLARY 4.2.

where t (resp. u) is the coordinate for the first (resp. second) S1 and
f = df/dt.

4.2. A construction of a Riemannian metric on T3. We introduce
a Riemannian metric g on T3 as follows. We consider T3 as T2 x S1 and
we apply the method in §3. We define (T2,h) as the warped product
T2 = S1 x / S1, where / is a positive function on S1. By S1 we mean
Rj2πZ and we use {ί, u} as the coordinate system on T2 = S1 x f S1. Put
ξ = 3/3 .̂ Then its dual 1-form on Sλx fi1 is /2c£w, which is denoted by
ω. Following §3, we define a Riemannian structure g on T3 = Γ2 x S 1

by ^ = τr*Λ + (ft) + ds) ® (ft) + ds). Then the Riemannian metric is
represented as

\θ /2

in terms of the coordinate system {t, u, s}.
Therefore we get:

LEMMA 4.3. The volume element dVg of (ϊ73, g) is given by dVg —
fdt A du A ds.

Now we calculate the Laplacian of (ϊ73, g).

PROPOSITION 4.4.

Δ, - -32/dt2 - (/7/)(3/3ί) - (1/fYLtLt - (1 + /2)LcLζ + 2LξLζ .

PROOF. It is easily checked that ξ is a Killing vector field. So we
have δω = div ξ = 0. Applying Proposition 3.2 and Corollary 4.2 we
obtain Proposition 4.4 immediately.

4.3. Eigenvalues and eig en functions of (T3, g). By C°°(T3) we denote
the space of complex-valued differ en tiable functions on T3. We define a
scalar product on C°°(T3) by
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(φ9 ^X = \ φψdV9 = [ φffdt A du A ds for φ, ψ e C°°(Γ3) .

On the other hand, we introduce on T3 another Riemannian metric gQ

which is the natural Riemannian product on S1 x S1 x S1. We define a
scalar product with respect to gQ by

= 1 Λ ώ Λ

We denote the minimum of / and the maximum of / by m and M,
respectively. Then we have m || φ\\\<> \\ φ\\\^M\\ φ\\l for φ e C°°(JΓ3), where
as usual || ||0 and || ||j. denote the norms on C°°(TS) defined by < , >0

and < , >!, respectively. Therefore we get:

LEMMA 4.5. // {<p$\f=ι is a complete basis for (C°°(T3), < , >x), then it
is also a complete basis for (C°°(T3), < , >0), and vice versa.

By C^iS1), we denote the space of complex-valued differentiate

functoins on S1 with a scalar product (φ, ψ) = \ φψfdt. For integers

k and i, we define a differential operator acting on C^iS1) by

L(k; l)φ = -d2φ/df - (f'/fXdφ/dt) + (1/f - kffφ + k2φ .

LEMMA 4.6. L(k; I) is a strongly elliptic self-adjoint operator acting

on

PROOF. We will show that it is a self-adjoint operator. For <pf ψ e
S1), we have

= \s/{-d*φ/dt* - (f'/f)(dφ/dt) + (Iff - kffφ + k*φ}ψdt

dtV dt ) dt dt J dt dt dt dt

f f + JW-VJW+ /***}*.
Similarly we have

(φ, L(k; l)ψ) = \ ί/^2 *± + f(l/f -
J51 \ at at

Let {̂ i(fc; I) ̂  μ2(k; I) ̂  •} be the eigenvalues of L(k; I), and φό(k\ I)
be the eigenfunction such that L(k; l)<Pj(k; I) — μά(k\ I)φ3 (k; I). By Lemma
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4.6, for each pair (ft, I), {φό(k\ l)\f=1 is a complete basis of (^(S1). As is
well known, eίks (keZ) is an eigenf unction of —d2/ds2 on S1. We write
θh{β) = eiks and f{{u) = eilu for k,leZ.

<p/fc; a n eigenfunction of Ag and its eigenvalueLEMMA 4.7.

is μd(k; I):

A9φ3(k; Z)f A = μs(k; ΐ)φό{k\

PROOF. We see that Lξψt = ilψt and Lζθk = ikθk. Applying Proposi-
tion 4.4, we obtain the result.

Next we have:

PROPOSITION 4.8. {φό{k\ l)ψιθk, k, leZ, j = 1, 2, •• •} is a complete
basis for (C°°(r3), < , \) and hence {μ3 (k; I); k, I e Z, j = 1, 2, •} is the
spectrum of (T\ g).

PROOF. Let uh(t) = eίht, heZ, be an eigenfunction of —d2/dt2 on S\
Since for each (ft, ΐ), [φό(k\ Z)}"=1 is a complete basis for ^ ( S 1 ) , for wA

there exist a5 e C, j = 1, 2, , such that lim^oo || wA — ΣJ=i UJΦJΦ; I) \\ = 0,
where || || denotes the norm on (^(S1) defined by the scalar product
< , > with respect to the measure fdt. Therefore we have

P

3=1

Σ

Σ α y
1/2

from which it follows that lim^oo || uh^fik — Σy=i aύΨά^\ ϊ)fβk Hi = 0, where
|| ||i denotes the norm on C°°(TS) defined by < , >x. On the other hand,
it is well known that {wfcf,fffc; h, l,keZ} is a complete basis for (COO(T13),
< , >0) (cf. [2]). By Lemma 4.5 {u^θ^ h, I, keZ} is also a complete basis
for (C°°(T3), < , >i) The above arguments imply that {?>,•(&; Z ) ^ * ; k,leZ
j = 1, 2, •} is a complete basis for (C°°(T3), < , >x).

4.4. Estimates of eigenvalues of the operator L(k; I). In this part,
making use of the minimum principle we estimate eigenvalues of L(fc; I)
from below. First of all, we apply the minimum principle to the self-
adjoint operator L(k; I). Then we have

μx(k; I) - inf (L(k; l)
Ψ

= inf ί {/9»'̂  + f(l/f - kffφφ + f¥φφ}dt I \ fφφdt
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= infί ifφψ + f(l/f - kfYφφ}dt I \ fφφdt + V,

where φ' = dφ/dt and ψ = dφ/dt and the infimum is taken over all
non-zero φ in C^iS1).

LEMMA 4.9. // / is not constant on S1 and at least one of k and I
is not zero, then there exists a positive constant ε > 0 which does not
depend on k and I such that

inf {( fφψdt + ( f(l/f - kffφφdt] I \ fφφdt ^ S ,

where the infimum is taken over all φ as above.

PROOF. Let m and M be the minimum and the maximum of /,
respectively. In the proof of this lemma, for simplicity we omit S1 in
the integral sign. We have

(**) {\ j
> %{\VFdt + ̂ ( l - kffφψdt) I \φψdt .

When k = 0, since I is not zero, we have

Let 6X = inf J\<p'<p'd£ + (1/Mm)ypφdt I I γpφdt. ελ is positive. Then, in

the case k = 0, we have

(**) ^ mεJM for any φ e C^iS1) , φ m 0 .

When fc ^ 0, we have

(**) ^ - ^ ( [ ^ ' d ί + ̂  ((/2 - llkfφψdt] I \φψdt

ψdt + J^Γ S(/2 - ιlkγψm\ I \φm •
We put a = (ikf2 — m2)/2. Since / is not constant, a is positive. Let tx

be a point which attains the maximum of /. Then there exists a positive
number δ > 0 such that f\t) - a > 0 for t e (t, - δ, t, + δ). There exists
anon-negative differentiate function g1 such that supp^)c(t x — δ,
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(/2 — άf ^ g\ on S1, and g1 is not identically zero. Let t2 be a point
which attains the minimum of /. Then there exists a positive number
δ' > 0 such that a - f\t) > 0 for t e (ί2 - δ', ί2 + δ'). Similarly there
exists a non-negative function g2 on S 1 such that supp(gr2)c(ί2 — δ', ί2 + δ'),
(α — / 2 ) 2 ^ g\ on S1, and #2 is not identically zero. If l/k is not greater
than α, then we have (/2 — l/k)2 >̂ fir2. When Z/ft is not less than a, then
we have (/2 - l/k)2 ^ #2. We put

ε2 = inf if φψdt + -A-f tf^ί). / f φφdt ,

and

- inf ^φ'φ'dt + ΛJ^g\φφd^ j \φφdt ,

where the infimum is taken over all non-zero φ in C^iS1). Since gt and
g2 are not identically zero, we have ε2 > 0 and ε3 > 0. Therefore,
when l/k ^ a, we have

(**) ^ mε2/M for any φ e C^S1) , φ & 0 .

Similarly, when l/k^a, we have

(**) ^ mε3/If for any y e C^S1) , φ ΐ O .

By putting ε = the minimum of {meJM, mε2/M, meJM}, we get
Lemma 4.9.

When k = I = 0, we see that ^ ( 0 ; 0) = 0 and its eigenfunction is
constant. Moreover, we have μ2(0; 0) > 0.

PROPOSITION 4.10. Let ε be the minimum of μ2(0; 0) and ε in Lemma
4.9. We have fij(k; I) — k2 ^ έ > 0 /or αŵ / j when at least one of k and
I is not zero, and for j ^ 2 when k = I = 0.

4.5. Proof of Theorem in the ^-dimensional case. Following §3, we
define a family of Riemannian metrics on Γ3 by

g(t) = t~ιg + (t2 - t-ι)(ω + ds)(g)(ω + ds) , 0 < ί < oo .

By Proposition 3.4, we have ΔgU)φ = £Δff̂ > + (ί — t~2)LζLζφ. We put
, fc, ί € Z, j = 1, 2, . Then we have

By Lemma 3.3 (1), {Ψύkΰ k, leZ, j = 1, 2, •} is a complete basis with
respect to g(t) for the space of differentiable functions on T3. So
{t(μj(k; I) - &2) + t-2k2; k, I e Z, j = 1, 2, - -} is the spectrum of (Γ3, flr(ί)).
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When k — I — 0 and j = 1, Ψlt0,0 is a constant function with 0 as its
eigenvalue. By Proposition 4.10, for a non-zero eigenvalue of Ag{t) we
have t(μj(k; I) - ¥) + t~2k2 ;> tέ. Therefore we obtain λα(ί/(ί)) -> oo as
ί —> oo. We easily get \(g(t)) —> 0 as ί —> 0. On the other hand, by
Lemma 3.3 (1) we see that Vol(T3, g(t)) = Vol(T3, g). Thus Theorem in
the 3-dimensional case is proved.

5. Proof of Theorem for Tn (n ^ 4). When n ^ 5, we can prove
Theorem by following the same process as in the 4-dimensional case. So
we will prove Theorem only in the 4-dimensional case in this section.

5.1. A construction of a Riemannian metric g on T4. Following
§3 again, we define a Riemannian metric g on T4. We consider T4 as
a product manifold T3 x S1 with the natural projection ft: f x S ! - > Γ3.
T3 is furnished with the Riemannian metric g given in §4. By ώ we
denote the 1-form dual to the vector field ζ in (T3, g). Then we have
ώ = ω + ds. We define g on T4 by

g = π*g + (ώ + ds) (x) (ώ + ds) ,

where {s} is a normal coordinate system in S1. By ζ we denote the
vector field d/ds in T\

Noticing that ζ is a unit Killing vector field in (Γ3, g), by Proposition
3.2 we easily get:

PROPOSITION 5.1. For φeC°°{T") we have

Δ~φ = Agφ — 2

Contrary to the arguments in § 4, we denote by λ5- (0 = λ0 < λx <
λ2 < •) the j-th. eigenvalue of (T\ g) with its eigenspace V(λy). Since
ζ is a unit Killing vector field on (T3, g)9 Lζ and Ag commute, which
implies that Lζ is a linear transformation of F(λ, ). By the results in
§4, the following is clear.

LEMMA 5.2. For each eigenvalue X3 of Ag, V(X/) has the orthogonal
decomposition:

where LQφ = ikψ for φe Vk(Xj) keZ. (Here we do not care if some
Vk(Xj) is trivial or not.) Moreover, the above decomposition has the
following property. If Xj is not zero and Vk(Xj) is not trivial, then
there exists a positive number έ > 0 such that X3- — k2 ^ έ and έ does
not depend on j and k.
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By Φh, he Z, we denote an eigenf unction eihs on S\ By Proposition
5.1, we have:

PEOPOSITION 5.3. // Vk(Xj) is not trivial, φφh is an eigenfunction of
(T\ g) with its eigenvalue Xά + 2h2 — 2kh for φ e Vk(X5) and φh. The set
of eigenfunctions of this form is a complete basis for C°°(Γ4) with
respect to g.

5.2. Proof of Theorem. Following §3, we define a family of Rieman-
nian metrics g(t) by

g{t) = t-'g + (f - t-'Xώ + ds)(g)(ώ + ds) 0 < t < oo .

By Proposition 3.4, we have Δ (̂ί)Φ = tA^Φ + (t — t~z) L^L^Φ. Then we have
^7it)ψΦh — {tfaj + h2 — 2kh) + t~Bh2}φφh. By the same arguments as in §4,
each eigenvalue of (T\ g(t)) has the above form, i.e., t(X3 + h2 — 2kh) +
t~3h2. If j Φ 0, by Lemma 5.2 we have

ί(λy + h* - 2kh) + t~*h2 ^ t(k2 + ε + h2 - 2kh) ^ ί(e + (k ~ h)2) ^ tέ .

If j = 0, then k = 0 and we have ί(λ0 + &2 - 2kh) + ί~%2 = th2 + r%2.
Therefore for every positive eigenvalue λ of (Γ4, £(*)) we have λ ^ ίε',
where ε' is the minimum of 1 and έ. So we have \{g(t)) —> ©o as ί —> oo.
We easily get \(§(t)) -> 0 as ί -> 0. On the other hand, by Lemma 3.3
(1) we see that Vol(Γ4, g(t)) = Vol(T4, ^).
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