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ABSTRACT

Space-borne measurements of  atmospheric greenhouse gas concentrations provide global  observation constraints  for
top-down  estimates  of  surface  carbon  flux.  Here,  the  first  estimates  of  the  global  distribution  of  carbon  surface  fluxes
inferred  from  dry-air  CO2 column  (XCO2)  measurements  by  the  Chinese  Global  Carbon  Dioxide  Monitoring  Scientific
Experimental  Satellite  (TanSat)  are  presented.  An  ensemble  transform  Kalman  filter  (ETKF)  data  assimilation  system
coupled with the GEOS-Chem global chemistry transport model is used to optimally fit model simulations with the TanSat
XCO2 observations,  which were retrieved using the Institute of  Atmospheric Physics Carbon dioxide retrieval  Algorithm
for Satellite remote sensing (IAPCAS). High posterior error reduction (30%–50%) compared with a priori fluxes indicates
that assimilating satellite XCO2 measurements provides highly effective constraints on global carbon flux estimation. Their
impacts are also highlighted by significant spatiotemporal shifts in flux patterns over regions critical to the global carbon
budget, such as tropical South America and China. An integrated global land carbon net flux of 6.71 ± 0.76 Gt C yr−1 over
12  months  (May  2017–April  2018)  is  estimated  from  the  TanSat  XCO2 data,  which  is  generally  consistent  with  other
inversions based on satellite data, such as the JAXA GOSAT and NASA OCO-2 XCO2 retrievals. However, discrepancies
were  found  in  some  regional  flux  estimates,  particularly  over  the  Southern  Hemisphere,  where  there  may  still  be
uncorrected bias between satellite measurements due to the lack of independent reference observations. The results of this
study  provide  the  groundwork  for  further  studies  using  current  or  future  TanSat  XCO2 data  together  with  other  surface-
based and space-borne measurements to quantify biosphere–atmosphere carbon exchange.
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1.    Introduction

Top-down carbon flux inversion by assimilating atmospheric carbon dioxide (CO2) measurements is a useful tool for
evaluating the global carbon budget and was used in the 2019 Refinement to the 2006 Intergovernmental Panel on Climate
Change (IPCC) Guidelines for National Greenhouse Gas Inventories. Ground-based measurements provide highly accurate
continuous data and have improved our understanding of global carbon flux. However, the sparseness and spatial inhomogen-
eity of the existing ground-based network limits our ability to infer consistent global- and regional-scale CO2 sources and
sinks (Scholes et al., 2009), especially for tropical and high-latitude regions.

To improve observation coverage, tailor-made satellites have been developed to provide atmospheric greenhouse gas
(GHG)  measurements  at  unprecedented  precision.  The  Japanese  GHG  monitoring  satellite  mission,  Greenhouse  Gases
Observing Satellite  (GOSAT),  was launched in 2009 (Kuze et  al.,  2009),  and the U.S.  satellite  mission,  Orbiting Carbon
Observatory 2 (OCO-2), was launched in 2014 (Crisp et al., 2017). 
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Satellite  measurements  are  advantageous  for  constraining top-down flux inversions  because  they provide  continuous
global  observation  coverage.  Although  satellite  measurements  are  not  as  accurate  as  ground-based  measurements,  the
increased spatial coverage can provide additional information not available from sparse surface networks (Buchwitz et al.,
2007), and such data have been used in surface carbon flux inversion studies (Peylin et al., 2013; Saeki et al., 2013; Jiang et
al., 2016; Chevallier et al., 2019; Wang et al., 2020). The CO2 column-averaged dry-air mole fractions (XCO2) measured by
GOSAT and OCO-2 have been applied in regional carbon flux optimization studies (Basu et al.,  2013; Maksyutov et al.,
2013; Feng et al., 2017; Chevallier et al., 2019; Wang et al., 2020).

Recent studies have shown that the accuracy of inversion results inferred from the GOSAT and OCO-2 retrievals is com-
parable  to  traditional  inversions  using  accurate  but  sparse  surface  networks,  indicating  that  satellite  GHG  observations
provide valuable complementary data for global carbon budget studies (Chevallier et al., 2019; Wang et al., 2020). Assimila-
tion of satellite GHG observations has significantly changed or raised questions about our understanding of spatiotemporal
patterns of surface CO2 fluxes. For example, GOSAT inversion data suggest high European biospheric uptake, nearly twice
that suggested by in situ-only studies (Houweling et al., 2015; Feng et al., 2016; Reuter et al., 2017), which would modify
the global  carbon flux distribution (Houweling et  al.,  2015).  Assimilated GOSAT and OCO-2 XCO2 measurements have
also revealed unexpectedly high net emissions from tropical Africa, which are thought to be mainly caused by substantial
land-use change, resulting in the release of carbon from large soil organic carbon stores (Palmer et al., 2019).

The Chinese Global Carbon Dioxide Monitoring Scientific Experimental Satellite (TanSat), funded by the Ministry of
Science and Technology of China, the Chinese Academy of Sciences, and the China Meteorological Administration, was
launched in December 2016 (Liu and Yang, 2016; Ran et al., 2019). The first global XCO2 map measured by TanSat was
reported in a previous study (Yang et al., 2018), and Total Column Carbon Observing Network validation shows 2.2 ppm
accuracy for version 1 of the TanSat L2 data product (Liu et al., 2018). The accuracy and precision of TanSat XCO2 retriev-
als were further improved using a wavelength dependence gain factor to correct the spectrum continuum feature (Yang et
al., 2020). A new version of TanSat XCO2 was recently released to the public (Yang et al., 2021), which provides an oppor-
tunity to improve our knowledge of global carbon flux from flux inversions based on TanSat measurements.

In this study, we introduce the first estimate of global carbon flux based on TanSat global measurements. The follow-
ing section shows the TanSat measurements and methods used in the flux inversion. Section 3 introduces the main results of
the optimized carbon flux. We then close with our conclusions. 

2.    Method
 

2.1.    TanSat measurement

TanSat flies in a sun-synchronous low Earth orbit (LEO) with an equator crossing time around 1330 local time and oper-
ates in three observation modes including nadir (ND), glint (GL), and target modes. ND mode is used when TanSat flies
over land surfaces, and GL mode is activated over the ocean to increase the incident signal and ensure the signal-to-noise
ratios meet the requirements. The atmospheric carbon dioxide grating spectrometer on board TanSat provides hyperspectral
measurements of the O2 A band (0.76 μm) and CO2 weak (1.61 μm) and strong (2.04 μm) bands. The ND footprint size of
TanSat measurement is ~2 × 2 km with nine footprints across the track in a frame, while the total field-of-view width is ~18 km.
The TanSat repeat measurement cycle is 16 days, and the ND and GL measurements are staggered. In ND mode, TanSat
has the same ground track interval as OCO-2.

XCO2 retrieval is performed using the Institute of Atmospheric Physics carbon dioxide retrieval algorithm for satellite
remote sensing (Liu et al., 2013; Yang et al., 2015). The version 1 TanSat XCO2 retrievals only used the CO2 weak band
due to calibration issues on the O2 A band (which can cause critically biased estimates of surface pressure). Therefore, the
flux inversion precision and accuracy were not adequate for studying global surface carbon flux. Further study on solar calib-
ration measurements revealed a remaining feature on the solar spectrum fitting residual. A Fourier series model was applied
as a gain factor to the continuum in the retrieval, significantly improving the fitting residual, especially on the O2 A band.
The O2 A band and CO2 weak band measurements have been used together in new retrievals that correct the parameters of
water  vapor,  surface  pressure,  temperature,  aerosol,  cirrus,  and  instrument  model.  A  genetic  algorithm was  used  in  post
screening, and then a multiple linear regression model was applied to correct bias (Yang et al., 2020). In this study, we used
a 15-month (March 2017–May 2018) XCO2 retrieval from TanSat ND measurements.

Only “good” retrievals have been provided in the TanSat v2 product used in flux inversion. We used single sounding
uncertainty (posterior error) to construct weighted time–space average data (Crowell et al., 2019). First, we calculated a 1-
second span average: 
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XCO2,i
σiwhere  is the ith sounding value in a 1-second span with a total of N soundings, and  is the corresponding posterior

error. The summary includes all soundings in a 1-second span, and the uncertainty for the 1-second average is: 
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where we assumed soundings in a 1-second span were highly correlated. Because the posterior error mainly considered the
theoretical error from the measurement noise level, the  estimation was sometimes lower than real measurement uncer-
tainty. Therefore, we also considered the standard deviation ; the uncertainty of a 1-second span, , was the max-
imum of either  or . This differs from the 1-second spans of OCO-2 because TanSat L2 sounding values have
not been corrected for the bias of small areas. Thus, small systematic uncertainty, such as floor error, was not considered.

XCO2,5s σ5sIn this study, we used a 5-second span average for flux inversion. The  and  values were constructed using
the methods for 1-second spans of sounding measurements. 

2.2.    Carbon flux inversion system

We used an ensemble transform Kalman filter (ETKF) data assimilation system (Feng et al., 2009, 2011, 2016) to estim-
ate  global  and  regional  carbon  flux.  The  carbon  flux  and  CO2 concentration  were  optimized  by  TanSat  XCO2 measure-
ments via: 

xa
= xf
+K ·

[
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(
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)]

, (3)

xa xf

yobs

where  and  are the a posteriori and a priori fluxes, respectively. Hoo is the observation operator that describes the relation-
ship between the state vector  and the observations.  is  XCO2 measured by TanSat,  and K is  the Kalman gain matrix,
which determines the adjustment to the a priori based on the difference between the model and observations and their uncer-
tainties as follows: 
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where R is the observation error covariance matrix, namely, a diagonal matrix representing measurement errors, including
instrument error, retrieval error, model error, and representation error (Peylin et al.,  2002).  is the a priori error covari-
ance matrix. The Jacobian of the observation operator, H, maps  into observation space. In our carbon flux inversion sys-
tem, we used the chemistry transport model (CTM) GEOS-Chem (v9-02) in forward simulation [ ] and performed an
ensemble run to establish the connection between surface fluxes and atmospheric CO2 concentrations (H).

We  used  sequentially  assimilated  TanSat  5-second  averaged  measurements  day  by  day  in  each  assimilation  step  (1
month)  to  optimize the a  priori  estimation of  surface CO2 fluxes.  The GEOS-5 meteorological  analyses,  provided by the
NASA Goddard Global Modelling and Assimilation Office, were used to drive the GEOS-Chem run. The model was run at
a horizontal resolution of 4° (latitude) × 5° (longitude) with 47 vertical levels, which spanned from the surface to the meso-
sphere, typically with 35 levels in the troposphere. Monthly inventories have been used as the a priori flux for GEOS-Chem
runs, including ocean flux (Takahashi et al., 2009), biomass burning fluxes (van der Werf et al., 2010), 3-hourly terrestrial
biosphere fluxes (Olsen, 2004), and fossil fuel emissions (Oda and Maksyutov, 2011). For the terrestrial biosphere, we used
a  3-hour  flux  to  better  represent  and  optimize  the  uptakes  and  emissions  from photosynthesis  and  respiration  processes,
respectively (Olsen, 2004). The inversion for surface flux spanned 792 regions globally, including 475 land regions and 317
ocean regions, based on a TransCom 3 study (Gurney et al., 2002). 

3.    Results
 

3.1.    Annually integrated global carbon net flux

In this study, only the ND model land observations were applied to constrain the flux optimization. Due to the low sig-
nal-to-noise ratio, the ND measurements over the ocean are not provided in the L2 XCO2 data product, and no further inform-
ation is provided by TanSat ocean measurements. Therefore, a very strong prior constraint was applied to the ocean CO2

flux. The inversion result is shown as carbon flux based on CO2 flux using the mass ratio between CO2 and carbon.
Error reduction for global carbon sinks indicates how well the measurements optimized the estimations. The error reduc-

tion in July was greater than in other months (Fig. 1); for example, it was > 50% in northern Asia, Europe, and America,
but lower in Australia, southern Asia, and India. South America and Africa showed 20%–40% error reduction. TanSat meas-
urements improved results in South Africa mostly in April and October, in North and South America mostly in July, and in
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northern Eurasia in all three months.
The global annual carbon sinks (Fig. 2) constrained by TanSat measurements differed significantly from a priori fluxes.

For example, the land sink increased in most of Northern Asia, Europe, and the Americas, but decreased in the middle of
Africa and India. Similar results have been reported in GOSAT and OCO-2 CO2 flux inversion studies (Wang et al., 2019,
2020).  The land sink also increased in  southwest  China,  which is  consistent  with carbon flux estimations based on addi-
tional  ground-based  in-situ  measurements  from  Asia  (Wang  et  al.,  2020).  The  optimization  was  not  significant  over  the
ocean because no direct measurements were used to constrain the oceanic carbon flux.

Our TanSat inversion indicated a land net flux integrated over 12 months (May 2017–April  2018) of 6.71 Gt C yr−1

with an uncertainty of 0.76 Gt C yr−1. Table 1 shows the land carbon net flux over the same period constrained by the new
L2 OCO-2 XCO2 data product (v10) as a reference. The annul integrated OCO-2 net carbon flux was 5.13 ± 0.59 Gt C yr−1,
which is 23.5% lower than the TanSat results. Several studies have reported different carbon flux estimations based on satel-
lite  measurements  for  2009  onwards.  The  GOSAT  measurement  was  the  first  spaced-based  GHG  measurement  used  in
global CO2 flux estimation (Basu et al., 2013). GOSAT measurements indicated land net carbon fluxes estimated by the car-
bon tracker (Peters et al., 2007; https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/) of 7.86 ± 1.26 Gt C yr−1 in 2017 and
7.61 ± 1.78 Gt C yr−1 in 2018. The OCO-2 model intercomparison project showed 10 inversion model parallel studies with
results ranging from 5.75 to 8.97 Gt C yr−1 from June 2017 to May 2018. 

3.2.    Seasonal and regional CO2 flux

Seasonal  net  carbon flux  was  grouped every  three  months  and denoted  following the  Northern  Hemisphere  seasons,
namely,  summer  (June,  July,  August),  autumn  (September,  October,  November),  winter  (December,  January,  February),
and spring (March, April, May). The distribution of global carbon flux differed significantly from a priori flux after assimila-
tion of TanSat measurements (Fig. 3). For example, the measurements (satellite data) significantly changed carbon fluxes
for South America for the whole year (Fig. 4). The South America tropical region showed the largest impacts from TanSat
measurements, with the seasonal phase shifted significantly from a priori fluxes. We found that the satellite did not provide
dense measurements over tropical South America, but even a small amount of TanSat data can still significantly change the
carbon  flux  feature.  TanSat  measurements  increased  carbon  sinks  in  spring  and  summer  around  Eurasia,  including  in
Europe and boreal and temperate Eurasia, compared with a priori fluxes. North Africa also showed significant increases in
the carbon sink in winter. In addition, the seasonal variation of India decreased during spring and summer.

We also observed changes in China’s carbon flux in autumn, winter, and spring; in general, the carbon sink increased
compared to a priori fluxes, especially in southwest China in the summer and autumn. Similar results have been reported by
studies of vegetation trend measurements (Chen et al., 2019) and flux estimations (Wang et al., 2020).

Figure  5 shows regional  carbon flux  from OCO-2 and TanSat  measurements,  as  well  as  a  priori  fluxes.  OCO-2 and
TanSat have similar optimization effects on a priori  fluxes in most regions.  The biggest discrepancy was in the Southern
Hemisphere, where TanSat measurements and a priori fluxes indicated a source, whereas OCO-2 measurements indicated a
sink; the difference in outcomes was driven in large part by results from tropical and temperate South America. This contra-
diction has also been reported when comparing results from GOSAT and OCO-2 measurements (Wang et al., 2019). 

 

 

Fig. 1. The reductions in uncertainty for (a) July 2017, (b) October 2017, (c) January 2018, and (d) April 2018.

1436 TANSAT FLUX VOLUME 38

 

  

https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/
https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/


Table 1.   The a priori and a posteriori fluxes estimated by TanSat (v2) and OCO-2 (v10) for 11 TransCom regions and continents.

Region

A priori TanSat OCO-2

Flux 1-σ Flux 1-σ Flux 1-σ

North American Boreal (NAB) 0.17 0.33 −0.82 0.19 −0.23 0.19
North American Temperate (NAT) 1.52 0.58 1.53 0.29 1.62 0.27

South American Tropical (SAT) 0.094 0.40 0.78 0.26 0.09 0.22
South American Temperate (SAM) 0.49 0.39 0.065 0.26 −0.76 0.20

North Africa (NAF) 0.20 0.24 1.059 0.18 0.81 0.15
South Africa (SAF) −0.057 0.44 0.74 0.25 −0.19 0.18

Eurasia Boreal (EAB) 0.10 0.60 −1.12 0.23 −0.12 0.25
Eurasia Temperate (EAT) 3.83 0.42 3.68 0.24 2.89 0.22

Tropical Asia (TA) 1.23 0.27 0.90 0.20 0.61 0.16
Australia (AUS) 0.069 0.20 −0.21 0.17 −0.056 0.15

Europe (EU) 1.15 0.66 −0.18 0.30 0.18 0.28
North land (NL) 6.78 1.43 3.10 0.52 4.34 0.41
South land (SL) 0.50 0.62 0.60 0.38 −1.00 0.30

Tropical land (TL) 1.52 0.54 2.73 0.36 1.51 0.30
Global Land 9.08 1.74 6.71 0.77 5.13 0.59

 

 

Fig.  2.  The annual  carbon sink optimized by GOSAT measurements  (b)  from a priori  estimates (a).  The color  bar
indicates the carbon sink.
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Fig.  3.  The a  priori  (upper  row) and a  posteriori  (lower row) seasonal  carbon sinks constrained by TanSat  measurements.
The columns indicate summer, autumn, winter, and spring from left to right.
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Fig. 3. (Continued).
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4.    Conclusions and outlook

We described the first attempt at estimating global carbon flux using TanSat XCO2 measurements. We used an ETKF
data assimilation system coupled with the GEOS-Chem CTM in a top-down carbon flux inversion. The error reduction com-
pared to a priori estimates demonstrated the impact of assimilating global satellite XCO2 measurements, which resulted in sig-
nificant changes in spatiotemporal flux patterns throughout the year from May 2017 to April 2018. Our TanSat inversion
indicated  an  annual  integrated  global  land  carbon  net  flux  of  6.71  ±  0.76  Gt  C  yr−1,  compared  to  annual  totals  of  5.75–
8.97 Gt C yr−1 for inversions based on OCO-2 XCO2 data.

These carbon flux data are publicly accessible worldwide on the China GEO TanSat data service archive, the Coopera-
tion on the Analysis  of  Carbon Satellites  Data (CASA; www.chinageoss.org/tansat),  which is  hosted by the International
Reanalysis Cooperation on Carbon Satellites Data (IRCSD).

TanSat provides preliminary global measurements that extend the ground-based network from local measurements to
global estimates. However, the coverage, repeat, pixel size, and accuracy of measurements are still inadequate to meet the
Global Stocktake of the Paris Agreement and inventory validation requirements of IPCC standards. For example, GOSAT
measurements have indicated that flux estimation is sensitive to measurement coverage (Deng et al., 2014). XCO2 measure-
ments are also sensitive to regional flux inversion (Feng et al., 2009; Palmer et al., 2011). The future European Copernicus
Carbon Dioxide Monitoring satellite mission (Kuhlmann et al.,  2019) will improve measurements of global coverage and
investigations of  anthropogenic  emissions.  The plan for  the next  TanSat  mission has  been discussed and is  in  the design
phase. One possibility is a multi-satellite LEO constellation. Several satellites would capture global background measure-

 

 

Fig. 3. (Continued).
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ments with large pixel size and a wide swath, while others would focus on target measurements for city and point sources
with a small pixel size. This would capture carbon sinks and sources at multiple scales to elucidate the influences of natural
processes and anthropogenic activities on the carbon cycle.

Column CO2 measurements are still inadequate for separating local carbon exchanges from long-range transport pro-
cesses because the signal is mixed into the column value (Keppel-Aleks et al., 2011). The signal of local flux is critical to
city and point-source research. Ground-based measurements near the surface will be helpful for future investigations. There-
fore, coordinating satellites and surface measurement networks will significantly improve the study of small-scale anthropo-

 

 

Fig. 4. The a priori and a posteriori CO2 flux trends for 11 TransCom land regions shown with measurement quantities. The
names at the top of each subplot indicate regions.
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genic emission sources.

Acknowledgements. This work is supported by the National Key R&D Program of China (Grant No. 2016YFA0600203), the Key
Research  Program  of  the  Chinese  Academy  of  Sciences  (ZDRW-ZS-2019-1),  the  National  Key  R&D  Program  of  China  (Grant  No.
2017YFB0504000), and the Youth Program of the National Natural Science Foundation of China (Grant No. 41905029). Liang FENG is
supported by the UK NERC National Centre for Earth Observation (NCEO). The TanSat L1B data service is provided by IRCSD and
CASA (131211KYSB20180002).  We also thank the FENGYUN Satellite Data Center of  the National  Satellite Meteorological  Center,
who  provided  the  TanSat  L1B  data  service.  The  authors  thank  the  TanSat  mission  and  highly  appreciate  the  support  from  everyone
involved.

REFERENCES
 

Basu, S., and Coauthors, 2013: Global CO2 fluxes estimated from GOSAT retrievals of total column CO2. Atmospheric Chemistry and
Physics, 13, 8695−8717, https://doi.org/10.5194/acp-13-8695-2013. 

Buchwitz,  M.,  O.  Schneising,  J.  P.  Burrows,  H.  Bovensmann,  M.  Reuter,  and  J.  Notholt,  2007:  First  direct  observation  of  the  atmo-
spheric CO2 year-to-year increase from space. Atmospheric Chemistry and Physics, 7,  4249−4256, https://doi.org/10.5194/acp-7-
4249-2007. 

Chen, C., and Coauthors, 2019: China and India lead in greening of the world through land-use management. Nature Sustainability, 2,
122−129, https://doi.org/10.1038/s41893-019-0220-7. 

Chevallier, F., M. Remaud, C. W. O’Dell, D. Baker, P. Peylin, and A. Cozic, 2019: Objective evaluation of surface- and satellite- driven
carbon dioxide atmospheric inversions. Atmos. Chem. Phys., 19, 14233−14251, https://doi.org/10.5194/acp-19-14233-2019. 

Crisp, D., and Coauthors, 2017: The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometric-
ally calibrated products. Atmospheric Measurement Techniques, 10, 59−81, https://doi.org/10.5194/amt-10-59-2017. 

Crowell, S., and Coauthors, 2019: The 2015-2016 carbon cycle as seen from OCO-2 and the global in situ network. Atmospheric Chem-
istry and Physics, 19, 9797−9831, https://doi.org/10.5194/acp-19-9797-2019. 

Deng, F., and Coauthors, 2014: Inferring regional sources and sinks of atmospheric CO2 from GOSAT XCO2 data. Atmospheric Chem-
istry and Physics, 14, 3703−3727, https://doi.org/10.5194/acp-14-3703-2014. 

Feng, L., P. I. Palmer, H. Bösch, and S. Dance, 2009: Estimating surface CO2 fluxes from space-borne CO2 dry air mole fraction observa-
tions  using  an  ensemble  Kalman  Filter. Atmospheric  Chemistry  and  Physics, 9,  2619−2633, https://doi.org/10.5194/acp-9-2619-
2009. 

Feng, L., P. I. Palmer, Y. Yang, R. M. Yantosca, S. R. Kawa, J.-D. Paris, H. Matsueda, and T. Machida, 2011: Evaluating a 3-D trans-
port  model  of  atmospheric  CO2 using  ground-based,  aircraft,  and  space-borne  data. Atmospheric  Chemistry  and  Physics, 11,
2789−2803, https://doi.org/10.5194/acp-11-2789-2011. 

Feng, L., P. I. Palmer, R. J. Parker, N. M. Deutscher, D. G. Feist, R. Kivi, I. Morino, and R. Sussmann, 2016: Estimates of European
uptake of CO2 inferred from GOSAT XCO2 retrievals: Sensitivity to measurement bias inside and outside Europe. Atmos. Chem.
Phys., 16, 1289−1302, https://doi.org/10.5194/acp-16-1289-2016. 

Feng, L., and Coauthors, 2017: Consistent regional fluxes of CH4 and CO2 inferred from GOSAT proxy XCH4: XCO2 retrievals, 2010-
2014. Atmospheric Chemistry and Physics, 17, 4781−4797, https://doi.org/10.5194/acp-17-4781-2017. 

Gurney, K. R., and Coauthors, 2002: Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models.
Nature, 415, 626−630, https://doi.org/10.1038/415626a. 

Houweling, S., and Coauthors, 2015: An intercomparison of inverse models for estimating sources and sinks of CO2 using GOSAT meas-
urements. J. Geophys. Res., 120, 5253−5266, https://doi.org/10.1002/2014JD022962. 

 

 

Fig. 5.  The carbon flux estimated by TanSat and OCO-2 measurements and the a priori flux in 11 TransCom land
regions, South Land (SL), North Land (NL), and globally.

1442 TANSAT FLUX VOLUME 38

 

  

https://doi.org/10.5194/acp-13-8695-2013
https://doi.org/10.5194/acp-7-4249-2007
https://doi.org/10.5194/acp-7-4249-2007
https://doi.org/10.1038/s41893-019-0220-7
https://doi.org/10.5194/acp-19-14233-2019
https://doi.org/10.5194/amt-10-59-2017
https://doi.org/10.5194/acp-19-9797-2019
https://doi.org/10.5194/acp-14-3703-2014
https://doi.org/10.5194/acp-9-2619-2009
https://doi.org/10.5194/acp-9-2619-2009
https://doi.org/10.5194/acp-11-2789-2011
https://doi.org/10.5194/acp-16-1289-2016
https://doi.org/10.5194/acp-17-4781-2017
https://doi.org/10.1038/415626a
https://doi.org/10.1002/2014JD022962
https://doi.org/10.5194/acp-13-8695-2013
https://doi.org/10.5194/acp-7-4249-2007
https://doi.org/10.5194/acp-7-4249-2007
https://doi.org/10.1038/s41893-019-0220-7
https://doi.org/10.5194/acp-19-14233-2019
https://doi.org/10.5194/amt-10-59-2017
https://doi.org/10.5194/acp-19-9797-2019
https://doi.org/10.5194/acp-14-3703-2014
https://doi.org/10.5194/acp-9-2619-2009
https://doi.org/10.5194/acp-9-2619-2009
https://doi.org/10.5194/acp-11-2789-2011
https://doi.org/10.5194/acp-16-1289-2016
https://doi.org/10.5194/acp-17-4781-2017
https://doi.org/10.1038/415626a
https://doi.org/10.1002/2014JD022962


Jiang,  F.,  and  Coauthors,  2016:  A  comprehensive  estimate  of  recent  carbon  sinks  in  China  using  both  top-down  and  bottom-up
approaches. Sci. Rep., 6, 22130, https://doi.org/10.1038/srep22130. 

Keppel-Aleks, G., P. O. Wennberg, and T. Schneider, 2011: Sources of variations in total column carbon dioxide. Atmospheric Chem-
istry and Physics, 11, 3581−3593, https://doi.org/10.5194/acp-11-3581-2011. 

Kuhlmann,  G.,  G.  Broquet,  J.  Marshall,  V.  Clément,  A.  Löscher,  Y.  Meijer,  and  D.  Brunner,  2019:  Detectability  of  CO2 emission
plumes of cities and power plants with the Copernicus Anthropogenic CO2 Monitoring (CO2M) mission. Atmospheric Measure-
ment Techniques, 12, 6695−6719, https://doi.org/10.5194/amt-12-6695-2019. 

Kuze, A., H. Suto, M. Nakajima, and T. Hamazaki, 2009: Thermal and near infrared sensor for carbon observation Fourier-transform spec-
trometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Appl. Opt., 48, 6716−6733, https://doi.org/
10.1364/AO.48.006716. 

Liu,  Y.,  D.  X.  Yang,  and Z.  N.  Cai,  2013:  A retrieval  algorithm for  TanSat  XCO2 observation:  Retrieval  experiments  using GOSAT
data. Chinese Science Bulletin, 58, 1520−1523, https://doi.org/10.1007/s11434-013-5680-y. 

Liu,  Y.,  and  D.  X.  Yang,  2016:  Advancements  in  theory  of  GHG  observation  from  space. Science  Bulletin, 61(5),  349−352,
https://doi.org/10.1007/s11434-016-1022-1. 

Liu,  Y.,  and  Coauthors,  2018:  The  TanSat  mission:  Preliminary  global  observations. Science  Bulletin, 63(18),  1200−1207,
https://doi.org/10.1016/j.scib.2018.08.004. 

Maksyutov, S.,  and Coauthors,  2013: Regional CO2 flux estimates for 2009−2010 based on GOSAT and ground-based CO2 observa-
tions. Atmospheric Chemistry and Physics, 13, 9351−9373, https://doi.org/10.5194/acp-13-9351-2013. 

Oda, T., and S. Maksyutov, 2011: A very high-resolution (1 km×1 km) global fossil fuel CO2 emission inventory derived using a point
source  database  and  satellite  observations  of  nighttime  lights. Atmospheric  Chemistry  and  Physics, 11,  543−556,
https://doi.org/10.5194/acp-11-543-2011. 

Olsen, S. C., 2004: Differences between surface and column atmospheric CO2 and implications for carbon cycle research. J. Geophys.
Res., 109, D02301, https://doi.org/10.1029/2003JD003968. 

Palmer, P., L. Feng, and H. Boesch, 2011: Spatial resolution of tropical terrestrial CO2 fluxes inferred using space-borne column CO2
sampled in different earth orbits:  The role of spatial  error correlations. Atmospheric Measurement Techniques, 4(9),  1995−2006,
https://doi.org/10.5194/amt-4-1995-2011. 

Palmer, P. I., L. Feng, D. Baker, F. Chevallier, H. Bösch, and P. Somkuti, 2019: Net carbon emissions from African biosphere domin-
ate pan-tropical atmospheric CO2 signal. Nature Communications, 10, 3344, https://doi.org/10.1038/s41467-019-11097-w. 

Peters, W., and Coauthors, 2007: An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proceed-
ings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America, 104(48),  18  925−18  930, https://doi.org/10.1073/
pnas.0708986104. 

Peylin, P., D. Baker, J. Sarmiento, P. Ciais, and P. Bousquet, 2002: Influence of transport uncertainty on annual mean and seasonal inver-
sions of atmospheric CO2 data. J. Geophys. Res., 107(D19), 4385, https://doi.org/10.1029/2001JD000857. 

Peylin,  P.,  and  Coauthors,  2013:  Global  atmospheric  carbon  budget:  Results  from  an  ensemble  of  atmospheric  CO2 inversions.
Biogeosciences, 10, 6699−6720, https://doi.org/10.5194/bg-10-6699-2013. 

Ran,  Y.,  and  X.  Li,  2019:  TanSat:  A  new  star  in  global  carbon  monitoring  from  China. Scientific  Bulletin, 64(5),  284−285,
https://doi.org/10.1016/j.scib.2019.01.019. 

Reuter,  M.,  and  Coauthors,  2017:  How  much  CO2 is  taken  up  by  the  European  terrestrial  biosphere? Bull.  Amer.  Meteor.  Soc., 98,
665−671, https://doi.org/10.1175/BAMS-D-15-00310.1. 

Saeki, T., and Coauthors, 2013: Inverse modeling of CO2 fluxes using GOSAT data and multi-year ground-based observations. SOLA,
9, 45−50, https://doi.org/10.2151/sola.2013-011. 

Scholes, R. J., P. M. S. Monteiro, C. L. Sabine, and J. G. Canadell, 2009: Systematic long-term observations of the global carbon cycle.
Trends in Ecology & Evolution, 24, 427−430, https://doi.org/10.1016/j.tree.2009.03.006. 

Takahashi, T., and Coauthors, 2009: Corrigendum to “Climatological mean and decadal change in surface ocean PCO2, and net sea-air
CO2 flux  over  the  global  oceans”  [Deep  Sea  Res.  II  56  (2009)  554–577]. Deep Sea  Research  Part  I:  Oceanographic  Research
Papers, 56, 2075−2076, https://doi.org/10.1016/j.dsr.2009.07.007. 

van der Werf, G. R., and Coauthors, 2010: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and
peat fires (1997−2009). Atmospheric Chemistry and Physics, 10, 11 707−11 735, https://doi.org/10.5194/acp-10-11707-2010. 

Wang,  H.,  F.  Jiang,  J.  Wang,  W.  Ju,  and  J.  M.  Chen,  2019:  Terrestrial  ecosystem carbon  flux  estimated  using  GOSAT and  OCO-2
XCO2 retrievals. Atmos. Chem. Phys., 19, 12067−12082, https://doi.org/10.5194/acp-19-12067-2019. 

Wang, J., and Coauthors, 2020: Large Chinese land carbon sink estimated from atmospheric carbon dioxide data. Nature, 586, 720−723,
https://doi.org/10.1038/s41586-020-2849-9. 

Yang, D. X., Y. Liu, Z. N. Cai, J. B. Deng, J. Wang, and X. Chen, 2015: An advanced carbon dioxide retrieval algorithm for satellite
measurements  and its  application to  GOSAT observations. Science Bulletin, 60(23),  2063−2066, https://doi.org/10.1007/s11434-
015-0953-2. 

Yang, D. X., Y. Liu, Z. N. Cai, X. Chen, L. Yao, and D. R. Lu, 2018: First global carbon dioxide maps produced from TanSat measure-
ments. Advances in Atmospheric Sciences, 35, 621−623, https://doi.org/10.1007/s00376-018-7312-6. 

Yang, D. X., and Coauthors, 2020: Toward high precision XCO2 retrievals from TanSat observations: Retrieval improvement and valida-
tion against TCCON measurements. J. Geophys. Res., 125, e2020JD032794, https://doi.org/10.1029/2020JD032794. 

Yang,  D.  X.,  and Coauthors,  2021:  A new TanSat  XCO2 global  product  towards climate  studies. Advances in  Atmospheric  Sciences,
38(1), 8−11, https://doi.org/10.1007/s00376-020-0297-y.

SEPTEMBER 2021 YANG ET AL. 1443

 

  

https://doi.org/10.1038/srep22130
https://doi.org/10.5194/acp-11-3581-2011
https://doi.org/10.5194/amt-12-6695-2019
https://doi.org/10.1364/AO.48.006716
https://doi.org/10.1364/AO.48.006716
https://doi.org/10.1007/s11434-013-5680-y
https://doi.org/10.1007/s11434-016-1022-1
https://doi.org/10.1016/j.scib.2018.08.004
https://doi.org/10.5194/acp-13-9351-2013
https://doi.org/10.5194/acp-11-543-2011
https://doi.org/10.1029/2003JD003968
https://doi.org/10.5194/amt-4-1995-2011
https://doi.org/10.1038/s41467-019-11097-w
https://doi.org/10.1073/pnas.0708986104
https://doi.org/10.1073/pnas.0708986104
https://doi.org/10.1029/2001JD000857
https://doi.org/10.5194/bg-10-6699-2013
https://doi.org/10.1016/j.scib.2019.01.019
https://doi.org/10.1175/BAMS-D-15-00310.1
https://doi.org/10.2151/sola.2013-011
https://doi.org/10.1016/j.tree.2009.03.006
https://doi.org/10.1016/j.dsr.2009.07.007
https://doi.org/10.5194/acp-10-11707-2010
https://doi.org/10.5194/acp-19-12067-2019
https://doi.org/10.1038/s41586-020-2849-9
https://doi.org/10.1007/s11434-015-0953-2
https://doi.org/10.1007/s11434-015-0953-2
https://doi.org/10.1007/s00376-018-7312-6
https://doi.org/10.1029/2020JD032794
https://doi.org/10.1007/s00376-020-0297-y
https://doi.org/10.1038/srep22130
https://doi.org/10.5194/acp-11-3581-2011
https://doi.org/10.5194/amt-12-6695-2019
https://doi.org/10.1364/AO.48.006716
https://doi.org/10.1364/AO.48.006716
https://doi.org/10.1007/s11434-013-5680-y
https://doi.org/10.1007/s11434-016-1022-1
https://doi.org/10.1016/j.scib.2018.08.004
https://doi.org/10.5194/acp-13-9351-2013
https://doi.org/10.5194/acp-11-543-2011
https://doi.org/10.1029/2003JD003968
https://doi.org/10.5194/amt-4-1995-2011
https://doi.org/10.1038/s41467-019-11097-w
https://doi.org/10.1073/pnas.0708986104
https://doi.org/10.1073/pnas.0708986104
https://doi.org/10.1029/2001JD000857
https://doi.org/10.5194/bg-10-6699-2013
https://doi.org/10.1016/j.scib.2019.01.019
https://doi.org/10.1175/BAMS-D-15-00310.1
https://doi.org/10.2151/sola.2013-011
https://doi.org/10.1016/j.tree.2009.03.006
https://doi.org/10.1016/j.dsr.2009.07.007
https://doi.org/10.5194/acp-10-11707-2010
https://doi.org/10.5194/acp-19-12067-2019
https://doi.org/10.1038/s41586-020-2849-9
https://doi.org/10.1007/s11434-015-0953-2
https://doi.org/10.1007/s11434-015-0953-2
https://doi.org/10.1007/s00376-018-7312-6
https://doi.org/10.1029/2020JD032794
https://doi.org/10.1007/s00376-020-0297-y

	1 Introduction
	2 Method
	2.1 TanSat measurement
	2.2 Carbon flux inversion system

	3 Results
	3.1 Annually integrated global carbon net flux
	3.2 Seasonal and regional CO2 flux

	4 Conclusions and outlook

