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We extend the tools of quantum resource theories to scenarios in which multiple quanti-
ties (or resources) are present, and their interplay governs the evolution of physical systems.
We derive conditions for the interconversion of these resources, which generalise the first
law of thermodynamics. We study reversibility conditions for multi-resource theories, and
find that the relative entropy distances from the invariant sets of the theory play a funda-
mental role in the quantification of the resources. The first law for general multi-resource
theories is a single relation which links the change in the properties of the system during
a state transformation and the weighted sum of the resources exchanged. In fact, this law
can be seen as relating the change in the relative entropy from different sets of states. In
contrast to typical single-resource theories, the notion of free states and invariant sets of
states become distinct in light of multiple constraints. Additionally, generalisations of the
Helmholtz free energy, and of adiabatic and isothermal transformations, emerge. We thus
have a set of laws for general quantum resource theories, which generalise the laws of ther-
modynamics. We first test this approach on thermodynamics with multiple conservation
laws, and then apply it to the theory of local operations under energetic restrictions.
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1 Introduction

Resource theories. Resource theories are a versatile set of tools developed in quantum information
theory. They are used to describe the physical world from the perspective of an agent, whose ability to
modify a quantum system is restricted by either practical or fundamental constraints. These limitations
mean that while some states can still be created under the restricted class of operations (the free
or invariant set of states), other state transformations can only be done with the help of additional
resources. The goal of resource theories is then to quantify this cost, and to consequently assign a price
to every state of the system, from the most expensive to the free ones. Because of their very general
structure, which only involves the set of states describing a quantum system and a given set of allowed
operations for acting on such system, resource theories can be used to study many different branches of
quantum physics, from entanglement theory [1–5] to thermodynamics [6–13], from asymmetry [14–16]
to the theory of magic states [17–19]. Additionally, these theories can often be formulated within more
abstract, axiomatic frameworks [20–26].

Thanks to the underlying common structure present in all the theories described within this frame-
work, one can find general results which apply to all. For example, a resource theory may be equipped
with a zeroth, second, and even third law, i.e., relations that regulate the different aspects of the theory,
which are reminiscent of the Laws of Thermodynamics. In fact, we have that the zeroth law for resource
theories states that there exists equivalence classes of free states, and that states from one of these
classes are the only ones that can be freely added to the system without trivialising the theory [27]. The
second law of resource theories states that some quantities, linked to the amount of resource contained
in a system, never increase under the action of the allowed operations [28], and for reversible resource
theories satisfying modest assumptions, this quantity is unique [29–33] — an example of this is the
free energy, which is a monotone in thermodynamics as it decreases in any cyclic process, and the local
entropy for pure state entanglement theory. Finally, one might have a generalisation of the third law
which places limitations on the time needed to reach a state when starting from another one, rather
than simply telling us whether such transformation is possible or not [34]. With the present work, we
aim to derive the first law for resource theories, and to do so we will have to extend the framework so as
to include multiple resources. The law we derive connects the amount of different resources exchanged
during a state transformation to the change, quantified by a specific monotone, between the initial and
final state of the system. When considering thermodynamics, this law connects the amount of work
and heat exchanged during a process to the internal energy of the systems.

Multiple resources. It is often the case that many resources are needed to perform a given task.
For instance, thermodynamics can be understood as a resource theory with multiple resources [35, 36],
where in order to transform the state of the system we need both energy and information, or equivalently,
work and heat. As another example, some quantum computational schemes consider the idealized case
in which the input qubits are pure, and the gates acting on them create coherence. In order to better
understand the role played in quantum computation by these two resources, coherence and purity, a
possible approach might consist in combining the resource theories of purity [7, 37] and coherence [38–
40] together. Other examples of theories in which multiple resources are considered can be found in
the literature [35, 36, 41–47]. Given the success of resource theories to describe physical situations
where only one resource is involved, it seems natural to ask the question whether the framework can
be extended to the case in which more resources are involved. For example, it is known that the
resource theoretic approach to thermodynamics allows us to derive a second law relation even in the
case in which many (commuting, non-commuting) conserved quantities are present [48–52], and one
can consider trade-offs of these [53]. We are thus interested in understanding if one can extend these
results to other resource theories, and whether a first law of general resource theories exists.

Contribution of this work. In this paper we present a framework for resource theories with
multiple resources, introduced in Sec. 2. In our framework we first consider the different constraints
and conservation laws that the model needs to satisfy, and for each of these constraints, we introduce
the corresponding single-resource theory. Then, we define the class of allowed operations of the multi-
resource theory as the set of maps lying in the intersection of all the classes of allowed operations of the
single-resource theories. Due to this construction, we find that a multi-resource theory with m resources
has at least m invariant sets (i.e., sets of states that are mapped into themselves by the action of the
allowed operations of the theory), each of them corresponding to the set of free states of one of the
m single-resource theories. In order to make the paper self-contained, in Sec. 2 we also provide a brief
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Figure 1: An example of a multi-resource theory is thermodynamics, where energy and information are resources
which can be inter-converted. In the figure, we represent three different systems. The main system is a Szilárd
box, i.e., a box which can be divided in two partitions, here containing a single particle of gas. We can either
know in which side of the box the particle is, or we might not have this information (if, for instance, the partition
is removed and the particle is free to move between sides). We additionally have a thermal reservoir surrounding
the box, with a well-defined temperature T , and we have an ancillary system that we use to store energy (or
work), which we refer to as the battery. We can then consider the following two processes. Left. Landauer’s
erasure is the process of converting some of the energy contained in the battery, ∆W , into information, ∆I,
which is then used to reset the state of the particle in the box (from completely unknown, I

2
, to perfectly known,

|0〉, in this case). The conversion is realised using the thermal environment, and energy and information are
exchanged at the rate kBT , which only depends on the properties (the temperature) of the reservoir. Right. In
the other direction we can convert information, ∆I, into work, ∆W , at the same exchange rate. Information is
extracted form the box, and converted using the thermal bath into energy, which is then stored in the battery.
Here, we generalise the function of the thermal reservoir to other multi-resource theories, and we name this
system the bank, since it allows for the exchange of one resource into another.

review of the resource theoretic formalism (see Ref. [32, 54] for reviews on this topic).
We then study, in Sec. 3, the properties of general multi-resource theories in the asymptotic limit,

that is, when the agent is allowed to act globally over many identical copies of the system. This
limit is of fundamental importance in resource theories since it allows us to investigate reversibility and
the emergence of unique measures for quantifying different resources [32]. In a reversible theory, we
have that the resources consumed to perform a given state transformation can always be completely
recovered with the reverse transformation, so that no resource is ever lost. In single-resource theories,
we can rephrase this notion of reversibility in terms of rates of conversion, but for general multi-resource
theories this is not always possible. As a result, we focus our study on multi-resource theories that
satisfy an additional property, which we refer to as the asymptotic equivalence property [23, 35], see
Def. 1 below. We show that, when a multi-resource theory satisfies the asymptotic equivalence property,
there is a unique measure associated with each resource present in the theory. Furthermore, when the
invariant sets of the theory satisfy some natural properties, we find that the unique measures are given
by the (regularised) relative entropy distances from these sets, each of those associated with a different
resource. Finally, we show that when a resource theory satisfies asymptotic equivalence, it is also
reversible in the sense that resources are never lost during a state transformation, and they can be
recovered. This result can be seen as the extension of what has already been shown for reversible
single-resource theories [28, 29, 32, 33].

In Sec. 4 we address the question of whether it is possible to exchange resources. We consider the
case in which different resources are individually stored in separate systems, which we call batteries.
Then, we investigate under which conditions it is possible to find an additional system, which we
refer to as a bank1, that allows us to reduce the amount of resource contained in one battery while
simultaneously increasing the amount of resource in another battery. During such conversion, we ask
the bank not to change its properties – with respect to a specific measure defined in Eq. (37) – so as
to be able to use this system again. For example, in thermodynamics the thermal bath plays the role
of the bank, as it allows us to exchange energy for information and vice versa, see Fig. 1. In order to
study interconversion, we demand the invariant sets of the theory to satisfy an ”additivity” condition,

1We apologise in advance for introducing this terminology into the field of resource theories, but the banks considered
here exchange resources without charging interest or fees, and are thus more akin to community cooperative banks than
their more exploitative cousins.
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which is satisfied by some resource theories, for example by thermodynamics and purity theory. We find
that a multi-resource theory needs to have an empty set of free states for a bank to exist, and when
this condition is satisfied we derive an interconversion relation, see Thm. 9, which defines the rates at
which resources are exchanged.

We additionally show that, when the agent is allowed to use batteries and bank, they can perform
any state transformation using variable amounts of resources. Indeed, since the agent can use the bank
to inter-convert between resources, they can decide to invest a higher amount of one resource to save
on the others. This freedom is reflected in our framework by a single relation, the first law of resource
theories, which connects the different resources, each of them weighted by the corresponding exchange
rate, to the change of a particular monotone between the initial and final state of the system, see
Cor. 13. This equality is a generalisation of the first law of thermodynamics, where the sum of the work
performed on the system and the heat absorbed from the environment is equal to the change in internal
energy of the system. In fact, the first law of thermodynamics can be understood as equating various
relative entropy distances which quantify different types of resources, as we discuss at the beginning of
Sec. 4.

Finally, in Sec. 5 we provide two examples of multi-resource theories which admit an interconversion
relation between their resources. The first example concerns thermodynamics of multiple conserved
quantities, for which the interconversion of resources was shown in Ref. [48]. The second example
concerns the theory of local control under energy restrictions. Here we consider a system with a non-
local Hamiltonian, and we assume that the experimentalists acting on this system only have access to a
portion of the system. In this scenario, the entanglement between the different portions of the system
and the overall energy of the global system are the main resources of the theory, and we study under
which conditions we can inter-convert energy and entanglement. For a summary of how to apply our
work to an arbitrary resource theory, see the flowchart in Fig. 7.

2 Framework for multi-resource theories

Let us now introduce the framework for multi-resource theories. A multi-resource theory is useful
when we need to describe a physical task or process which is subjected to different constraints and
conservation laws. The first step consists in associating each of these constraints with a single-resource
theory, whose class of allowed operations satisfies the specific constraint or conservation law. The
multi-resource theory is then obtained by defining its class of allowed operations as the intersection
between the sets of allowed operations of the different single-resource theories previously defined. In
this way, we are sure of acting on the quantum system with operations that do not violate the multiple
constraints imposed on the task.

2.1 Single-resource theory

For simplicity, we restrict ourselves to the study of finite-dimensional quantum systems. Therefore,
the system under investigation is described by a Hilbert space H with dimension d. The state-
space of this quantum system is given by the set of density operators acting on the Hilbert space,
S (H) = {ρ ∈ B (H) | ρ ≥ 0, Tr [ρ] = 1}, where B (H) is the set of bounded operators acting on H.
A single-resource theory for the quantum system under examination is defined through a class of al-
lowed operations C, that is, a constrained set of completely positive maps acting on the state-space
S (H)2 [29]. The constraints posed on the set of allowed operations are specific to the resource theory
under consideration. For example, in the theories that study entanglement it is often the case that we
constrain the set of allowed operations to be composed by the maps that are local, and only make use
of classical communication [1]. In asymmetry theory, instead, we only allow the maps whose action is
covariant with respect to the elements of a given group [14]. Furthermore, in the resource theoretic

2Although the operations we consider are endomorphisms of a given state space, our formalism is still able to describe
the general case in which the agent modifies the quantum system. If the agent’s action transforms the state of the original
system, associated with H1, into the state of a final system H2, we can model this action with a map acting on the state
space of H = H1 ⊗ H2. Suppose the operation maps ρ1 ∈ S (H1) into σ2 ∈ S (H2). Then, the map acting on S (H)
takes the state ρ1 ⊗ γ2 and outputs the state γ′

1
⊗ σ2, where γ1 and γ′

2
are free states for the systems described by H2

and H1, respectively.
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approach to thermodynamics we can, without loss of generality, constrain this set to those operations,
known as Thermal Operations, which preserve the energy of a closed system, and can thermalise the
system with respect to a background temperature [6, 10, 11, 55]. Once the set of allowed operations is
defined, it is usually possible to identify which states in S (H) are resourceful, and which ones are not.
In particular, the set of free states for a single-resource theory, F ⊂ S (H), is composed of those states
that can always be prepared using the allowed operations, no matter the initial state of the system.
Mathematically, this set of states is defined as

F = {σ ∈ S (H) | ∀ ρ ∈ S (H) ,∃ E ∈ C : E(ρ) = σ} . (1)

For example, in entanglement theory the free states are the separable states, in asymmetry theory they
are the ones that commute with the elements of the considered group, and in thermodynamics they are
the thermal states at the background temperature.

An invariant set is a set of states that is preserved under action of any allowed operation. From the
definition of free states in Eq. (1), it is easy to show that F is an invariant set, and we write this as
E(F) ⊆ F for all E ∈ C. It is worth noting that while the set of free states is invariant, the opposite
clearly does not need to be true. In particular, when we study multi-resource theory, we will see that
several invariant sets can be found, and still there might be no free set for the theory. Due to the
invariant property of free states, we can also define the class of allowed operations in a different way.
Instead of considering the specific constraints defining the set of allowed operations C, we can simply
assume that this set is a subset of the bigger class of completely positive and trace preserving (CPTP)
maps

C̃ = {E : B (H)→ B (H) | E (F) ⊆ F} , (2)

that is, the set of maps for which the free states F form an invariant set. It is worth noting that C is
often a proper subset of C̃. For example, in entanglement theory, we have that C might be composed
by local operations and classical communication (LOCC), which is a proper subset of the set of all
quantum channels which preserve the separable states. Indeed, the map that swaps between the local
states describing the quantum system is clearly not LOCC, but it preserves separable states [56].

We can also extend the single-resource theory to the case in which we consider n ∈ N copies of the
quantum system. The class of allowed operations, which in this case we refer to as C(n), is still defined
by the same constraints, but now acts on S (H⊗n), the state-space of n copies of the system. For
example, in the resource theory of thermodynamics with Thermal Operations we have that the energy
of a closed system needs to be exactly conserved. For a single system, this implies that the operations
need to commute with the Hamiltonian H(1). For n non-interacting copies of the system, instead, the

operations commute with the global Hamiltonian Hn =
∑n
i=1 H

(1)
i . Within the state-space S (H⊗n),

we can find the set of free states, F (n) ⊂ S (H⊗n). It is worth noting that the set of free states for
n copies of the system is such that F⊗n ⊆ F (n), that is, it contains more states than just the tensor
product of n states in F . This is the case, for example, of entanglement theory, where among the free
states for two copies of the system we can find states that are locally entangled, since each agent is
allowed to entangle the partitions of the system they own. On the contrary, the two sets coincide for
any n ∈ N for the resource theory of thermodynamics, where the free state is the Gibbs state of a given
Hamiltonian. Anyway, it is still the case that F (n) is invariant under the class C(n), and therefore we
can think of the set of allowed operations acting on n copies of the system as a subset of the bigger
set of CPTP maps

C̃(n) =
{

En : B
(

H⊗n
)

→ B
(

H⊗n
)

| En
(

F (n)
)

⊆ F (n)
}

. (3)

Thus, in order to extend a single-resource theory to the many-copy case, we need to take into account
the sequence of all sets of allowed operations C(n), where n ∈ N is the number of copies of the system
the maps are acting on.

It is worth noting that the allowed operations we have introduced keep the number of copies of the
system fixed, see Eq. (3). Indeed, we only consider these maps because, when the number of input
and output systems of a quantum channel changes, the internal structure of the channel involves the
discarding (or the addition) of some of these systems. However, in a (reversible) resource theory, one
can perform such operations only if the amount of resources is kept constant. This is certainly possible
if we are to add or trace out some free states of the theory (which do not contain any resource), but as
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we will see in the next section, multi-resource theory not always have any free states. For this reason,
we decide to only focus on maps that conserve the number of systems, even for single-resource theories.

We can now address the problem of quantifying the amount of resource associated with different
states of the quantum system. In resource theories, a resource quantifier is called monotone. This
object is a function f from the state-space S (H) to the set of real numbers R, which satisfies the
following property,

f (E(ρ)) ≤ f (ρ) , ∀ ρ ∈ S (H) , ∀ E ∈ C. (4)

The above inequality can be interpreted as a “second law” for the resource theory, since there is a
quantity (the monotone) that never increases as we act on the system with allowed operations. In
the thermodynamic case, in fact, we know that the Second Law of Thermodynamics imposes that
the entropy of a closed system can never decrease as time goes by. We can extend the definition of
monotones to the case in which we consider n copies of the system. In this case, the function f maps
states in S (H⊗n) into R, and an analogous relation to the one of Eq. (4) holds, this time for states
in S (H⊗n) and the set of allowed operations C(n). Finally, we can also define the regularisation of a
monotone f as

f∞(ρ) = lim
n→∞

f (ρ⊗n)

n
, (5)

where ρ ∈ S (H), and ρ⊗n ∈ S (H⊗n). Notice that, given a generic monotone f , we need the above
limit to exist and be finite in order to define its regularisation.

For each resource theory there exists several monotones, and we can always build one out of a
contractive distance [33]. Consider the distance C (·, ·) : S (H)× S (H)→ R such that

C (E(ρ), E(σ)) ≤ C (ρ, σ) , ∀ ρ, σ ∈ S (H) , ∀ E CPTP map. (6)

Then, a monotone for the single-resource theory with allowed operations C and free states F is

MF (ρ) = inf
σ∈F

C (ρ, σ) , (7)

where it is easy to show that MF satisfies the property of Eq. (4), which follows from the fact that F is
invariant under the set of allowed operations C, and from the contractivity of C (·, ·) under any CPTP
map. A specific example of a monotone obtained from a contractive distance is the relative entropy
distance from the set F . Consider two states ρ, σ ∈ S (H), such that supp (ρ) ⊆ supp (σ). Then, we
define the relative entropy between these two states as

D(ρ ‖σ) = Tr [ρ (log ρ− log σ)] . (8)

The relative entropy is contractive under CPTP maps [57], and even if it does not satisfy all the axioms
to be a metric3 over S (H), we can still obtain a monotone out of this quantity, building it as in Eq. (7).
This monotone is

EF (ρ) = inf
σ∈F

D(ρ ‖σ), (9)

and is known as the relative entropy distance from F . When the separable states form the set F , for
example, the monotone is the relative entropy of entanglement [3]. It is worth noting that, in order for
EF to be well-defined, the set F has to contain at least one full-rank state.

2.2 Multi-resource theory

Let us consider the case in which we can identify in the theory a number m > 1 of resources, which can
arise from some conservation laws, or from some constraints. We now introduce a multi-resource theory
with these m resources. The quantum system under investigation is the same as in the previous section,
described by the states in the state-space S (H). For the i-th resource of interest, where i = 1, . . . ,m,
we consider the corresponding single-resource theory Ri, defined by the set of allowed operations Ci
acting on the state-space S (H). We denote the set of free states of this single-resource theory as

3The relative entropy is non-negative for any two inputs, and zero only when the two inputs coincide, but it is not
symmetric, nor does it satisfy the triangular inequality.
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Figure 2: The structure of the sets of free states for two single-resource theories which compose a multi-resource
theory. These sets are invariant under the allowed operations of the resulting multi-resource theory. For theories
with m > 2 resources, the structure of the free sets can be obtained by composing the three fundamental
scenarios presented here. Left. The invariant set F2 is a subset of F1. This multi-resource theory has a set
of free states, which coincides with F2. An example of such a theory is that of coherence [39] and purity [37],
where the invariant sets are incoherent states with respect to a given basis and the maximally-mixed state,
respectively. Centre. The two invariant sets intersect each other. This theory has a set of free states which
coincides with the intersection, F1 ∩ F2. An example of multi-resource theory with this structure concerns
tripartite entanglement for systems A, B, and C. The allowed operations of this theory are defined by the
intersection of the operations associated with the theories of bipartite entanglement for systems AB and C,
systems AC and B, and systems A and BC. Notice that this theory does not coincide with the theory of
tripartite LOCC, since some of the free states are entangled [58]. Right. The two invariant sets are separated.
Consequently, the theory does not have any free states. In this situation, one can find an interconversion
relation between the resources, as shown in Sec. 4.3. An example of a multi-resource theory with this structure
is thermodynamics of closed systems. If the agent does not have perfect control on the reversible operations
they implement, and the closed system is coupled to a sink of energy (an ancillary system which can only
absorb energy), then the allowed operations are given by the intersection between the set of mixtures of unitary
operations, and the set of average-energy-non-increasing maps. In this case, the maximally-mixed state and the
ground state of the Hamiltonian are the two invariant sets of the theory. Notice that the set of energy-preserving
unitary operations, considered in Ref. [35], is a subset of this bigger set.

Fi ⊂ S (H), and we recall that any allowed operation in Ci leaves this set invariant. Therefore, we can
consider the class of allowed operation as a subset of the set of CPTP maps

C̃i = {Ei : B (H)→ B (H) | Ei (Fi) ⊆ Fi} . (10)

We can also extend the resource theory Ri to the case in which we consider more than one copy of the
system, following the same procedure used in the previous section. Then, the class of allowed operations

C(n)
i acting on n copies of the system is a subset of the set of operations which leave F (n)

i ⊂ S (H⊗n)
invariant, see Eq. (3).

Once all the single-resource theories Ri’s are defined, together with their sets of allowed operations,
we can build the multi-resource theory Rmulti for the quantum system described by the Hilbert space
H. The set of allowed operations for this theory is given by the maps contained in the intersection4

between the classes of allowed operations of the m single-resource theories, that is

Cmulti =
m∩
i=1
Ci. (11)

Notice that, alternatively, one can define the set of allowed operations Cmulti as a subset of the bigger set
∩mi=1C̃i, where C̃i is the set of all the CPTP maps for which Fi is invariant, see Eq. (10). When n copies

of the system are considered, the class of allowed operations for the multi-resource theory, C(n)
multi, is

obtained by the intersection between the sets of allowed operations C(n)
i of the different single-resource

theories, that is, C(n)
multi = ∩mi=1C

(n)
i .

We can now consider the invariant sets of this multi-resource theory. Clearly, each set of free states
Fi associated with the single-resource theory Ri is an invariant set for the class of operations Cmulti.
However, it is worth noting that the states contained in the Fi’s might not be free when the multi-
resource theory is considered, where a free state is (as we pointed out in the previous section) a state

4While other multi-resource theory constructions can be imagined, the one we use in this paper provides the certainty
that no resource can be created out of free states.
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that does not contain any resource and can be realised using the allowed operations. Indeed, the states
contained in the set Fi might be resourceful states for the single-resource theory Rj , and therefore
we would not be able to realise such states with the class of operations Cmulti. In Fig. 2 we show the
different configurations for the invariant sets of a multi-resource theory with two resources. While in
the left and central panels the theory has free states, in the right panel no free states can be found, a
noticeable difference from the framework for single-resource theories.

The multi-resource theory Rmulti also inherits the monotones of the single-resource theories that
compose it. This follows trivially from the choice we made in defining the class of allowed operations
Cmulti, see Eq. (11). Furthermore, other monotones, that are only valid for the multi-resource theory,
can be obtained from the ones inherited from the single-resource theories Ri’s. For example, if fi is
a monotone for the single-resource theory Ri, and fj is a monotone for the theory Rj , their linear
combination, where the linear coefficients are positive, is a monotone for the multi-resource theory
Rmulti. Interestingly, in Sec. 4 we will see that a specific linear combination of the monotones of the
different single-resource theories plays an important role in the interconversion of resources.

Examples of multi-resource theories that can be described within our formalism are already present
in the literature. In Ref. [45], for instance, the authors study the problem of state-merging when
the parties can only use local operations and classical communication (LOCC), and they restrict the
local operations to be incoherent operations, that is, operations that cannot create coherence (in a
given basis). This theory coincides with the multi-resource theory obtained from combining two single-
resource theories, the one of entanglement, whose set of allowed operations only contains quantum
channels built out of LOCC, and the one of coherence, whose set of allowed operations only contains
maps which do not create coherence. In this case, the structure of the invariant sets is given by the
central panel of Fig. 2. Another example is the one of Ref. [35], where thermodynamics is obtained
as a multi-resource theory whose class of allowed operations is a subset of the one obtained by taking
the intersection of energy-non-increasing maps (operations which do not increase the average energy of
the quantum system, see Sec. 3.4), and mixtures of unitary operations. In this case the resources are,
respectively, average energy and entropy, and the structure of the invariant sets is given by the right
panel of Fig. 2, where F1 coincides with the ground state of the Hamiltonian (if the Hamiltonian is
non-degenerate), while F2 coincides with the maximally-mixed state. Other examples of multi-resource
theories can be found, and in future work [59] we will present the general properties of multi-resource
theories with different invariant sets structures.

3 Reversible multi-resource theories

In this section we study reversibility in the context of multi-resource theories. We first introduce a
property, which we refer to as the asymptotic equivalence property, for multi-resource theories. We
then show that, when a resource theory satisfies this property, we can (uniquely) quantify the amount of
resources needed to perform an asymptotic state transformation. This allows us to introduce the notion
of batteries, i.e., systems where each individual resource can be stored, and to keep track of the changes
of the resources during a state transformation. Furthermore, we show that a theory which satisfies the
asymptotic equivalence property is also reversible, that is, the amount of resources exchanged with the
batteries during an asymptotic state transformation mapping ρ into σ is equal, with negative sign, to
the amount of resources exchanged when mapping σ into ρ. Finally, we show that, when the invariant
sets of the theory satisfy some general properties, and the theory satisfies asymptotic equivalence, then
the relative entropy distances from the different invariant sets are the unique measures of the resources.
This result is a generalisation of the one obtained in single-resource theories, see Ref. [29, 32, 33].

3.1 Asymptotic equivalence property

Let us consider the multi-resource theory Rmulti introduced in Sec. 2.2. This theory has m resources,
its set of allowed operations Cmulti is defined in Eq. (11), and its invariant sets are the Fi’s, that is,
the sets of free states of the different single-resource theories composing it. The multi-resource theory
Rmulti is reversible if the amount of resources spent to perform an asymptotic state transformation is
equal to the amount of resources gained when the inverse state transformation is performed. In this
way, performing a cyclic state transformation over the system (which recovers its initial state at the
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end of the transformation) never consumes any of the m resources initially present in the system.
For a single-resource theory, the notions of reversibility and state transformation are usually associ-

ated with the rates of conversion. Suppose that we are given n≫ 1 copies of a state ρ ∈ S (H), and we
want to find out the maximum number of copies of the state σ ∈ S (H) that can be obtained by acting
on the system with the allowed operations. If k is the maximum number of copies of σ achievable,
then the rate of conversion is defined as R(ρ → σ) = k

n , see Def. 14 in appendix A. Reversibility is
then defined by asking that, for all ρ, σ ∈ S (H), the rates of conversion associated to the forward and
backward state transformations are such that R(ρ→ σ)R(σ → ρ) = 1, see Def. 15 in the appendix. It
is worth noting that, when considering rates of conversion, one is in general allowed to trace out part
of the system, or to add ancillary systems in a free state. For example, being able to map n copies of
ρ into k copies of σ, with n < k, implies that we have the possibility to add k − n copies in a free
state to the initial n copies of ρ, and to act globally to produce k copies of σ. This is certainly possible
for single-resource theories, where free states always exists, but not always possible for multi-resource
theories, see the invariant set structure of the right panel of Fig. 2.

Due to the possible absence of free states in a generic multi-resource theory, we first need to
introduce the following definition5, which will then allow us to study reversibility.

Definition 1. Consider a multi-resource theory Rmulti. We say that Rmulti satisfies the asymptotic
equivalence property with respect to the set of monotones {fi}mi=1, where each fi is a monotone for the
corresponding single-resource theory Ri whose regularisation is not identically zero, if for all ρ, σ ∈ S (H)
we have that the following two statements are equivalent,

• f∞
i (ρ) = f∞

i (σ) for all i = 1, . . . ,m.

• There exist a sequence of maps
{

Ẽn : S (H⊗n)→ S (H⊗n)
}

n
such that

lim
n→∞

∥

∥Ẽn(ρ⊗n)− σ⊗n
∥

∥

1
= 0, (12)

as well as a sequence of maps performing the reverse process. The maps
{

Ẽn
}

are defined as

Ẽn(·) = TrA

[

En(· ⊗ η(A)
n )

]

, (13)

where A is an ancilla composed by a sub-linear number o(n) of copies of the system, and it is

described by an arbitrary state η
(A)
n ∈ S

(

H⊗o(n)
)

, such that fi(η
(A)
n ) = o(n) for all i = 1, . . . ,m.

The map En ∈ C(n+o(n))
multi is an allowed operation of the multi-resource theory.

Here, f∞
i is the regularisation of the monotone fi, ‖·‖1 is the trace norm, define as ‖O‖1 = Tr

[√
O†O

]

for O ∈ B (H), and we are using the little-o notation, where g(n) = o(n) means limn→∞
g(n)
n = 0.

An example of a multi-resource theory that satisfies the above property is thermodynamics (even
in the case in which multiple conserved quantities are present), as shown in Refs. [35, 36]. In this
example the monotones for which asymptotic equivalence is satisfied are the average energy and the
Von Neumann entropy of the system. Notice that the above property implicitly assumes that the
monotones fi’s can be regularised, that is, that the limit involved in the regularisation is always finite.
Furthermore, in this property we are allowing the agent to act over many copies of the system with
more than just the set of allowed operations; we assume the agent to be able to use a small ancillary
system, sub-linear in the number of copies of the main system. Roughly speaking, the role of this ancilla
is to absorb the fluctuations in the monotones f∞

i ’s during the asymptotic state transformation. It is
important to notice that this ancillary system only contributes to the transformation by exchanging a
sub-linear amount of resources. Thus, its contribution per single copy of the system is negligible when
n≫ 1, which justifies the use of this additional tool.

The asymptotic equivalence property essentially states that the multi-resource theory can reversibly
map between any two states with the same values of the monotones fi’s. In particular, transforming
between such two states comes at no cost, since we can do so by using the allowed operations of the

5Notice that this definition is analogous to the notion of “seed regularisation” in Ref. [23, Sec. 6], although in our
case we are solely focused on reversible transformations and on equalities of monotones.
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theory, Cmulti. It is worth noting that, when the number of considered resources is m = 1, that is, our
theory is a single-resource theory, the notion of asymptotic equivalence given in Def. 1 corresponds to
the one given in terms of rates of conversion, Def. 15. We prove this equivalence in appendix A, see
Thm. 18. The set of monotones in Def. 1 is not a priori unique; however, in the following section we
identify the properties that the monotones need to satisfy for this set to be unique, see Thm. 5. Finally,
notice that the asymptotic equivalence property does not say anything about the state transformations
which involve states with different values of the monotones fi’s. To include these transformations in
the theory, we will have to add a bit more structure to the current framework, by considering some
additional systems that can store a single type of resource each, which we refer to as batteries [60].

3.2 Quantifying resources with batteries

When a multi-resource theory satisfies the asymptotic equivalence property of Def. 1, we have that
states with the same values of a specific set of monotones can be inter-converted between each others.
In this section, we show that these monotones actually quantify the amount of resources contained in
the system. To do so, we need to introduce some additional systems, which can only store a single
kind of resource each, and can be independently addressed by the agent. These additional systems are
referred to as batteries. Let us suppose that the multi-resource theory Rmulti satisfies the asymptotic
equivalence property with respect to the set of monotones {fi}mi=1, and that the quantum system
over which the theory acts is actually divided into m + 1 partitions. The first partition is the main
system S, and the remaining ones are the batteries Bi’s. Then, the Hilbert space under consideration
is H = HS ⊗HB1

⊗ . . .⊗HBm
.

Let us now introduce some properties the monotones need to satisfy in order for the resources to
be quantified in a meaningful way. Since each resource is associated to a different monotone, we can
forbid a battery to store more than one resource by constraining the set of states describing it to those
ones with a fixed value of all but one monotones.

M1 Consider two states ωi, ω
′
i ∈ S (HBi

) describing the battery Bi. Then, the value of the regulari-
sation of any monotone fj (where j 6= i) over these two states is fixed,

f∞
j (ω′

i) = f∞
j (ωi), ∀j 6= i. (14)

In this way, the battery Bi is only able to store and exchange the resource associated with the monotone
fi. It would be natural to extend the condition of Eq. (14) to the monotones themselves, rather than
to use their regularisations. However, this condition is not required for deriving our results, and to use
it in our proofs we would need an additional assumption, namely the additivity of the monotones.

In order to address each battery as an individual system, we ask the value of the monotones over
the global system to be given by the sum of their values over the individual components,

M2 The regularisations of the monotones fi’s can be separated between main system and batteries,

f∞
i (ρ⊗ ω1 ⊗ . . .⊗ ωm) = f∞

i (ρ) + f∞
i (ω1) + . . .+ f∞

i (ωm), (15)

where ρ ∈ S (HS) is the state of the main system, and ωi ∈ S (HBi
) is the state of the battery

Bi.

The above property allows us to separate the contribution given by each subsystem to the amount of
i-th resource present in the global system. It is important to stress that we are here requiring additivity
for the regularisation of the monotones between system and batteries, and between batteries, but we
are not requiring the regularised monotones to be additive in general.

We then ask the monotones to satisfy an additional property, so as to simplify the notation. Namely,
we ask the zero of each monotone fi to coincide with its value over the states in Fi,

M3 For each n ∈ N and i ∈ {1, . . . ,m}, the monotone fi is equal to 0 when computed over the states

of F (n)
i , that is

fi(γi, n) = 0, ∀ γi, n ∈ F (n)
i . (16)
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This property serves as a way to “normalise” the monotone, setting its value to 0 over the states that
were free for the specific single-resource theory the monotone is linked to. Notice that property M3 is
trivially satisfied by any monotone after a translation. The next property requires that tracing out part
of the system does not increase the value of the monotones fi’s,

M4 For all n, k ∈ N where k < n, the monotones fi’s are such that

fi(Trk [ρn]) ≤ fi(ρn), ∀ i ∈ {1, . . . ,m} . (17)

where ρn ∈ S (H⊗n) and Trk [ρn] ∈ S
(

H⊗n−k
)

.

This property implies that the resources contained in a system cannot increase if we discard/forget part
of it.

We require our monotones to satisfy sub-additivity, namely

M5 For all n, k ∈ N, the monotones fi’s are such that

fi(ρn ⊗ ρk) ≤ fi(ρn) + fi(ρk), ∀ i ∈ {1, . . . ,m} . (18)

where ρn ∈ S (H⊗n) and ρk ∈ S
(

H⊗k
)

.

That is, the amount of resources contained in two uncorrelated systems, when measured on the two
systems independently, is bigger or equal to the value measured on the two systems together. This is
the case, for example, of the relative entropy of entanglement [61]. Notice that sub-additivity is here
explicity required since, as we stressed before, property M2 only requires additivity between system and
different batteries, but not between different partitions of the individual system or battery. Another
property we require is for the monotones fi’s to be sub-extensive,

M6 Given any sequence of states {ρn ∈ S (H⊗n)}, the monotones fi’s are such that

fi(ρn) = O(n), ∀ i ∈ {1, . . . ,m} . (19)

where we are using the big-O notation.

This property is satisfied, for example, if the monotones scale extensively, that is, if they scale linearly in
the number of systems considered. In the next section we will encounter a family of monotones which
indeed satisfy this property, namely the relative entropy distance from a given set of free states, when
some fairly generic conditions are satisfied by such set (see Prop. 6). However, it is worth noting that
property M6 is not equivalent to extensivity, since a monotone scaling sub-linearly in the number of
systems would still satisfy it. We demand that our monotones satisfy this property so as to be able to
regularise them (although their regularisation might be identically zero on the whole state space). The
last property we ask concerns a particular kind of continuity the monotones need to satisfy,

M7 The monotones fi’s are asymptotic continuous, that is, for all sequences of states ρn, σn ∈ S (H⊗n)
such that ‖ρn − σn‖1 → 0 for n→∞, where ‖ · ‖1 is the trace norm, we have

|fi (ρn)− fi (σn)|
n

→ 0 for n→∞, ∀ i ∈ {1, . . . ,m} . (20)

This notion of asymptotic continuity coincides with condition (C2) given in Ref. [62].

This property implies that the monotones are physically meaningful, since their values over sequences
of states converge if the sequences of states converge asymptotically. In Thm. 5 we show that, when
the monotones satisfy asymptotic continuity, they are the unique quantifiers of the amount of resources
contained in the main system.

We can now use this formalism to discuss how resources can be quantified in a multi-resource theory,
and consequently how the asymptotic equivalence property implies that the theory is reversible. Let us
consider any two states ρ, σ ∈ S (HS), that do not need to have the same values for the monotones
fi’s. Then, we choose the initial and final states of each battery Bi such that

f∞
i (ρ⊗ ω1 ⊗ . . .⊗ ωm) = f∞

i (σ ⊗ ω′
1 ⊗ . . .⊗ ω′

m) , ∀ i = 1, . . . ,m, (21)
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where ωi, ω
′
i ∈ S (HBi

), for i = 1, . . . ,m. Under these conditions, due to the asymptotic equivalence
property of Rmulti, we have that the two global states can be asymptotically mapped one into the other
in a reversible way, using the allowed operations of the theory, that is

ρ⊗ ω1 ⊗ . . .⊗ ωm asympt←−−→ σ ⊗ ω′
1 ⊗ . . .⊗ ω′

m, (22)

where the symbol
asympt←−−→ means that there exists two allowed operations that maps n ≫ 1 copies of

the state on the lhs into the state of the rhs, and viceversa, while satisfying the condition in the second
statement of Def. 1.

We can now properly define the notion of resources in this framework. The resource associated with
the monotone fi is the one exchanged by the battery Bi during a state transformation.

Definition 2. Consider a multi-resource theory Rmulti with m resources, satisfying the asymptotic
equivalence property with respect to the set of monotones {fi}mi=1. For a state transformation of the
form given in Eq. (22), we define the amount of i-th resource exchanged between the system S and
the battery Bi as

∆Wi := f∞
i (ω′

i)− f∞
i (ωi), (23)

where ωi, ω
′
i ∈ S (HBi

) are, respectively, the initial and final state of the battery Bi.

It is now possible to compute the amount of the i-th resource ∆Wi needed to map the state of the
main system ρ into σ.

Proposition 3. Consider a theory Rmulti with m resources and allowed operations Cmulti, equipped with
batteries B1, . . ., Bm. If the theory satisfies the asymptotic equivalence property with respect to the
set of monotones {fi}mi=1, and these monotones satisfy the properties M1 and M2, then the amount of
i-th resource needed to perform the asymptotic state transformation ρ→ σ is equal to

∆Wi = f∞
i (ρ)− f∞

i (σ). (24)

Proof. Due to asymptotic equivalence, a transformation mapping the global state ρ ⊗ ω1 ⊗ . . . ⊗ ωm
into σ ⊗ ω′

1 ⊗ . . . ⊗ ω′
m exists iff the conditions in Eq. (21) are satisfied. For a given i, using the

property M2 of the monotone fi, we can re-write the condition as

f∞
i (ρ) + f∞

i (ω1) + . . .+ f∞
i (ωm) = f∞

i (σ) + f∞
i (ω′

1) + . . .+ f∞
i (ω′

m) . (25)

Then, we can use the property M1, which guarantees that the only systems for which fi changes are
the main system and the battery Bi. Thus, we find that

f∞
i (ρ) + f∞

i (ωi) = f∞
i (σ) + f∞

i (ω′
i) . (26)

By rearranging the factors in the above equation, and using the definition of ∆Wi given in Eq. (23),
we prove the proposition.

It is now easy to show that, if Rmulti satisfies the asymptotic equivalence property, any state trans-
formation on the main system S is reversible. Indeed, from Eq. (24) it follows that the amount of
resources used to map the state of this system from ρ to σ is equal, but with negative sign, to the
amount of resources used to perform the reverse transformation, from σ to ρ. Therefore, any cyclic
state transformation over the main system leaves the amount of resources contained in the batteries
unchanged.

The above formalism also provides us with a way to quantify the amount of resources contained in
the main system. Indeed, if the system is described by the state ρ ∈ S (HS), the amount of i-th resource
contained in the system is given by the amount of i-th resource exchanged, ∆Wi, while mapping ρ into
a state contained in Fi. Using property M3 and Prop. (24) it follows that

Corollary 4. Consider a theory Rmulti with m resources and allowed operations Cmulti, equipped with
batteries B1, . . ., Bm. If the theory satisfies the asymptotic equivalence property with respect to the set
of monotones {fi}mi=1, and these monotones satisfy the properties M1, M2, and M3, then the amount
of the i-th resource contained in the main system, when described by the state ρ, is given by f∞

i (ρ).
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Figure 3: In the figure we represent the state-space S (H) of a multi-resource theory Rmulti with two resources.
In order for the diagram to be a meaningful representation of this state-space, we need the theory to satisfy the
asymptotic equivalence property of Def. 1 with respect to the monotones f1 and f2. In fact, when the theory
satisfies this property we can divide S (H) into equivalence classes of states with the same value of the regularised
monotones f∞

1 and f∞
2 , which become the abscissa and ordinate of the diagram. The state-space of the theory

is represented by the blue region, and the yellow segments are the invariant sets F1 and F2. These sets are
disjoint, since the two segments do not intercept each other, and the resource theory Rmulti thus corresponds
to the one depicted in the right panel of Fig. 2. Two equivalence classes, respectively associated to the states
ρ and σ, are represented in the diagram. The amount of resources that is exchanged when transforming from
one state to the other, Eq. (24), is given in the diagram by the difference between the coordinates of these two
points. Notice that, for ease of viewing, we have shifted the origin of the axis.

It is worth noting that, in general, one cannot extract all the resources contained in the main
system at once. Indeed, this is only possible when the multi-resource theory contains free states, like
for example in the cases depicted in the left and centre panels of Fig. 2. Furthermore, the process of
resources extraction is in general non-trivial, since property M1 forbids each battery from storing more
than one kind of resource. As a result, it is not possible to simply perform a swap operation which
exchanges the state of the system with one of the batteries, see Sec. 5.2 for an example involving the
theory of local control.

Being able to quantify the amount of resources contained in a given quantum state allows us to
represent the whole state-space of the theory in a resource diagram [23, 35]. In fact, from the definition
of asymptotic equivalence it follows that, if two states contain the same amount of resources, i.e., if
they have the same values of the monotones f∞

i ’s, then we can map between them using the allowed
operations Cmulti. This property implies that we can divide the entire state-space into equivalence classes,
that is, sets of states with same value of the m monotones (where we recall that m is the number
of resources, or batteries, in the theory). Then, we can represent each equivalence class as a point
in a m-dimensional diagram, with coordinates given by the values of the monotones. By considering
all the different equivalence classes, we can finally represent the state-space of the main system in the
diagram, see for example Fig. 3, where the state-space of a two-resource theory is shown.

3.3 Reversibility implies a unique measure for each resource

We now show that, when a multi-resource theory satisfies the asymptotic equivalence property with
respect to a set of monotones {fi}mi=1, and these monotones satisfy the properties M1 – M7, then
there exists a unique quantifier for each resource contained in the main system. In particular, when the
i-th resource is considered, this quantifier coincides with f∞

i , modulo a multiplicative factor which sets
the scale. It is worth noting that such multiplicative factor can be different for each resource. Indeed,
the resources are generally independent of each other, since they are quantified by different measures.
Each measure can have a different unit, which corresponds to an individual rescaling factor applied to
each resource measure independently.

In the previous section, Cor. 4, we showed that a quantifier exists if the monotones satisfy the first
three properties M1, M2, and M3. However, when these monotones are also asymptotic continuous,
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property M7, we can prove that they uniquely quantify the amount of resources contained in the main
system. This means that one cannot find other monotones gi’s that give the same equivalence classes
of the fi’s, but order them in a different way. Asymptotic continuity was used in Ref. [32] to show
that the relative entropy distance from the set of free states of a reversible single-resource theory is the
unique measure of resource. Thus, the following theorem (whose proof can be found in appendix D.1)
can be understood as a generalisation of the above result to multi-resource theories,

Theorem 5. Consider the resource theory Rmulti with m resources, equipped with the batteries Bi’s,
where i = 1, . . . ,m. Suppose the theory satisfies the asymptotic equivalence property with respect to
the set of monotones {fi}mi=1. If these monotones satisfy the properties M1 – M7, then the amount
of i-th resource contained in the main system S is uniquely quantified by the regularisation of the
monotone fi (modulo a multiplicative constant).

In particular, we now consider the case of a multi-resource theory Rmulti that satisfies the asymptotic
equivalence property of Def. 1 with respect to the relative entropy distances from the invariant sets
Fi’s. We refer to the relative entropy distance from the set Fi as EFi

, whose definition can be found
in Eq. (9). Since the multi-resource theory we consider is equipped with batteries, and we want to be
able to measure the amount of resources they contain independently of the other subsystems, we ask
the invariant sets to be of the form

Fi = Fi,S ⊗Fi,B1
⊗ . . .⊗Fi,Bm

, (27)

so that the main system S and the batteries Bi’s all have they own independent invariant sets. We
now show that, under very general assumptions over the properties of the invariant sets, the regularised
relative entropy distances from these sets are the unique quantifiers of the resources, provided that
these quantities are not identically zero over the whole state space6. This result follows from Thm. 5,
and from the fact that these monotones satisfy the properties M1, M2, M3, and M7 listed in the
previous sections. The properties we are interested in for the invariant sets {Fi}mi=1 of the theory are
very general, and they are satisfied in most of the known resource theories, see Refs. [31, 63].

F1 The sets Fi’s are closed sets.

F2 The sets Fi’s are convex sets.

F3 Each set Fi contains at least one full-rank state.

F4 The sets Fi’s are closed under tensor product, that is, F (k)
i ⊗F (n)

i ⊆ F (n+k)
i for all i = 1, . . . ,m.

F5 The sets Fi’s are closed under partial tracing, that is, Trk

[

F (n)
i

]

⊆ F (n−k)
i for all i = 1, . . . ,m.

Let us briefly comment on the above properties. Property F1 requires that any converging sequence in
the set converges to an element in the set. This property is necessary for the continuity of the resource
theory. Property F2, instead, tells us that we are allowed to forget the exact state describing the system,
and therefore we can have mixture of states. Property F3 is necessary for the relative entropy distance
to be physically natural, since the quantity D(ρ ‖σ), see Eq. (8), diverges when supp(ρ) 6⊆ supp(σ).
Finally, property F4 implies that composing two systems that do not contain any amount of i-th resource
is not going to increase that resource, and similarly, property F5 implies that forgetting about part of
a system which does not contain resources will not create resources.

When the invariant sets satisfy the above properties, the relative entropy distances EFi
’s satisfy the

same properties discussed in the previous section,

Proposition 6. Consider a resource theory Rmulti with m resources, equipped with the batteries Bi’s,
where i = 1, . . . ,m. Suppose the class of allowed operations is Cmulti and the invariant sets are {Fi}mi=1.
If the invariant set Fi is of the form of Eq. (27), and it satisfies the properties F1 – F5, then the relative
entropy distances from this set, EFi

, is a regularisable monotone under the class of allowed operations,
and it obeys the properties M1 – M7.

6An example where the regularised relative entropy from an invariant set is identically zero for all states in S (H) is
the resource theory of asymmetry, see Ref. [15].
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This result is known in the literature, see Refs. [63, 64], but we nevertheless provide a proof in
appendix D.2 to make the paper self-contained. By virtue of Thm. 5 it then follows that, if E∞

Fi
has a

positive value over the states that are not in Fi, then it is the unique quantifier of the amount of i-th
resource contained in the system for a multi-resource theory that satisfies the asymptotic equivalence
property with respect to these monotones. Furthermore, the amount of i-th resource used to map the
main system from the state ρ into the state σ is then equal to

∆Wi = E∞
Fi

(ρ)− E∞
Fi

(σ), (28)

for all i = 1, . . . ,m.

3.4 Relaxing the conditions on the monotones

There are situations, when we consider specific resource theories, in which some of the properties of
the set of free states are not satisfied. In particular, we can have that the set of free states does not
contain a full-rank state, that is, property F3 is not satisfied. An example would be the resource theory
of energy-non-increasing maps for a system with Hamiltonian H,

CH = {EH : B (H)→ B (H) | Tr [EH(ρ)H] ≤ Tr [ρH] ∀ρ ∈ S (H)} . (29)

An example of a subset of CH are unitary operations which commute with the Hamiltonian H (as in
the resource theory of Thermal Operations). If the Hamiltonian H has a non-degenerate ground state
|g〉, then it is easy to show that this state is fixed, that is,

EH (|g〉 〈g|) = |g〉 〈g| . (30)

In fact, the operation Eg(·) = TrA
[

S(· ⊗ |g〉 〈g|A)S†
]

, where S is the unitary operation implementing
the swap between the two states, belongs to CH and maps all states into the ground state. Thus, the
set of free states does not contain a full-rank state, which implies that the relative entropy distance from
this set is ill-defined, and it is not asymptotic continuous. Notice that the above argument holds even
in the case of a degenerate ground state, with the difference that the invariant set would be composed
by any state with support on this degenerate subspace.

We can introduce a different monotone for this kind of resource theory, that is, the average of
the observable which is not increased by the allowed operations (modulo a constant factor). For the
example we are considering, this monotone would be

MH(ρ) = Tr [Hρ]− Eg, (31)

where H is the Hamiltonian of the system, and Eg = Tr [H |g〉 〈g|] is the energy of the ground state.
When n copies of the system are considered, we define the total Hamiltonian as Hn =

∑n
i=1 H

(i),
where H(i) is the Hamiltonian acting on the i-th copy. In this case, it is easy to show that this
quantity is equal to 0 when evaluated on the fixed state |g〉 〈g|, property M3, is monotonic under
partial tracing, property M4, is additive (and therefore satisfies sub-additivity, property M5), and it
scales extensively in the number of copies of the system, thus satisfying property M6. Furthermore,
MH(·) is monotonic under the class of operations (by definition of the class itself), and it is asymptotic
continuous, property M7, as shown in Prop. 22 in appendix D.2. If batteries are introduced, we can
define the operator H is such a way that properties M1 and M2 are satisfied, see for example Sec. 5.1.

Thus, if one (or more) of the monotones of the multi-resource theory is of the form given in Eq. (31),
we have that the results of the previous section still apply, particularly Thm. 5. Furthermore, we can
quantify the change in the resource associated with MH during a state transformation ρ → σ with
Eq. (28), where the regularised relative entropy distance E∞

Fi
is replaced with the regularised monotone

M∞
H . As a side remark, we notice that the monotone MH can be obtained as

MH(ρ) = lim
β→∞

1

β
D(ρ ‖ τβ), (32)

where τβ = e−βH/Z is the Gibbs state of the Hamiltonian H, and Z = Tr
[

e−βH
]

is the partition
function of the system.
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4 Bank states, interconversion relations, and the first law

Within certain types of multi-resource theories, it is possible to inter-convert the resources stored in the
batteries, i.e., to exchange one resource for another at a given exchange rate. Examples of resource
interconversion can be found in thermodynamics, where Landauer’s principle [65] tells us that energy
can be exchanged for information, while a Maxwell’s demon can trade information for energy [66].
In these examples, a thermal bath is necessary to perform the interconversion of resources. Indeed,
in the following sections we show that in order to exchange between resources one always needs an
additional system, which we refer to as a bank, that captures the necessary properties of thermal baths
in thermodynamics, and abstracts them so that they can be applied to other resource theories. When
such a system exists, we can pay a given amount of one resource and gain a different amount of another
resource, with an exchange rate that only depends on the state describing the bank, see Thm. 9. Within
the thermodynamic examples we are considering, this corresponds to exchanging one bit of information
for one unit of energy, and vice versa. The exchange rate of these processes is proportional to the
temperature of the thermal bath.

During a resource interconversion the state of the bank should not change its main properties, so
that we can keep using it indefinitely. Furthermore, we should always have to invest one resource in order
to gain the other. For these reasons the bank is taken to be of infinite size, and its state to be passive,
i.e., to always contain the minimum possible values of the resources. In fact, in the thermodynamic
examples we are considering, the thermal bath has infinite size, and its state has maximum entropy
for fixed energy, or equivalently minimum energy for fixed entropy [67]. We additionally show that
the relative entropy distance from the set of bank states plays a fundamental role in quantifying the
exchange rate at which resources are inter-converted, see Cor. 12. For instance, in thermodynamics
this quantity is proportional to the Helmholtz free energy F = E − TS, which links together the two
resources, internal energy E and information, which is proportional to −S. Through this quantity, one
can define the exchange rate between energy and entropy, i.e., the temperature of the thermal bath
T . Finally, we introduce a first-law-like relation for multi-resource theories. The first law consists of
a single relation that regulates the state transformation of a system when the agent has access to a
bank for exchanging the resources. In particular, this relation links the change in the relative entropy
distance from the set of bank states over the main system to the amount of resources exchanged by
the batteries during the transformations, see Cor. 13. In the example we are considering, this relation
coincides with the First Law of thermodynamics, as it connects a change in the Helmholtz free energy
∆F of the system with the energy and information exchanged by the batteries,

∆F = ∆WE + T ∆WI , (33)

where ∆WE is the energy exchanged by the first battery, ∆WI is the information exchanged by the
second battery, and T is the background temperature, describing the state of the bank.

We now briefly discuss about the value that resources have in the different theories of thermo-
dynamics, and the role of the first law in connecting these resources together. Let us first consider
the single-resource theory of thermodynamics, where the system is in contact with an infinite thermal
reservoir [10]. To perform a state transformation we need to provide only one kind of resource, known
as athermality (∆F ), or work. Since the thermal reservoir is present, it is easy to get close to the free
state, i.e. to the thermal state at temperature T , because we can simply thermalise the system with
the allowed operations. However, it is difficult to go in the opposite direction, unless we use part of the
athermality stored in a battery. For this reason, a positive increment in the athermality of the battery
is considered valuable, while a negative change is considered a cost.

Let us now move to the multi-resource theory of thermodynamics, whose allowed operations are
energy-preserving unitary operations [35]. In this case, it is easy to see that negative and positive
contributions of energy and information are equally valuable, since these two quantities are conserved
by the set of allowed operations. As a result, the agent cannot perform state transformations in any
direction without having access to the batteries. If we now allow the agent to use a thermal bath as
a bank, and we keep the system decoupled from it (so that the agent cannot perform operations that
thermalise the system for free), we find that changing a single resource, either energy or information, is
enough to perform a generic state transformation on the system. In fact, we can always inter-convert
one resource for the other with the bank, and then change the state of the system accordingly. Notice
that, however, we still have that negative and positive change in one resource are equally valuable.
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Thus, it seems that the advantage that multi-resource theories provide over single-resource theories
is that they make explicit which resources are used during a state transformation. And the link between
the single resource and the multiple ones is given by the first law. In thermodynamics, for example, we
have that the first law, Eq. (33), indicates that the amount of athermality ∆F needed to transform a
state can be actually divided in two contributions, energy ∆WE and information ∆WI . Notice that all
of these quantities can be understood in terms of the relative entropy distance to an invariant set of
states. Athermality being measured by its relative entropy distance to the thermal state, information
and energy being the relative entropy to the maximally mixed or ground state. As we will see, the
generalised first law given in Eq. (45) also relates the relative entropy to the bank state, to the relative
entropies to the invariant sets of the single resource theories.

4.1 Banks and interconversion of resources

We now introduce the bank system, and show how this additional tool allows us to perform intercon-
version between resources. To simplify the notation, we only focus on a theory with two resources.
However, the results we obtain also apply to theories with more resources, since in that case we can just
select two resources and perform interconversion while keeping the others fixed. Thus, in the following
we consider a resource theory Rmulti with two invariant sets F1 and F2 (each of them associated with
one of the resources), and allowed operations Cmulti. We assume the theory to satisfy the asymptotic
equivalence property of Def. 1 with respect to the relative entropy distances from F1 and F2, and we
ask the two invariant sets to satisfy the properties F1, F2, and F3, while we replace properties F4 and
F5 with the following, more demanding, property

F5b The invariant sets Fi’s are such that F (n)
i = F⊗n

i , for all n ∈ N.

The above properties implies that the relative entropy distances EF1
and EF2

are the unique quantifiers
for the two resources of our theory, as we have seen in Sec. 3.3. From property F5b it follows that these
two monotones are additive, i.e., EFi

(ρ ⊗ σ) = EFi
(ρ) + EFi

(σ) for i = 1, 2, and consequently that
their regularisation E∞

Fi
coincides with EFi

. Furthermore, the properties F2 and F5b together imply
that the invariant sets are composed by a single state, i.e., Fi = {ρi}, where ρi ∈ S (H), for i = 1, 2.
We make use of property F5b in Lem. 23, shown in appendix D.2, which itself is used to prove some
essential properties of the set of bank states, see Def. 7. This property is ultimately used to show that
the exchange rate between resources is given by the relative entropy distance from the set of states
describing the bank, see Cor. 12.

It is important to stress that property F5b is not satisfied by every multi-resource theory. For
example, this property is satisfied by the multi-resource theory of thermodynamics, but it is violated by
other theories, like entanglement theory, where the set of free states is composed of separable states.
We are currently working to weaken this property, following the ideas presented in Ref. [63], by requiring
the invariant sets to be closed under permutations of copies. This less demanding property should allow
us to use the approximate de Finetti’s theorems [68], and to obtain similar conditions to those obtained
with F5b. To study the interconversion of entanglement with some other resource, however, one can
think of restricting the state space of the theory in a way in which the resulting subset of separable
states satisfies property F5b, see the example in Sec. 5.2. Finally, it is worth noting that all the results
we obtain in this section also apply if one of the monotones, or both, is of the form shown in Eq. (31).
Indeed, these monotones satisfy the same properties of the relative entropy distances, with the difference
that the corresponding invariant set can be composed by multiple states, and these states do not need
to have full rank.

Let us now consider an example of resource interconversion which will highlight the properties that
we are searching for in a bank system. Suppose we have a certain amount of euros and pounds in our
wallet, and we want to convert one into the other, for example, from pounds to euros. In order to
convert these two currencies we need to go to the bank, that we would expect to satisfy the following
properties. The first property could be referred to as passivity of the bank, and it is represented by the
fact that if we do not provide some pounds, we cannot receive any euros (and vice versa). Second is the
existence of an exchange rate, that is, the bank will convert the two currency at a certain exchange rate,
and this rate can be different depending on the bank we use. The last property concerns the catalytic
nature of the bank, since we would like a bank not to change the exchange rate between pounds and
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euros as a consequence of our transaction (this last property is approximately satisfied by real banks,
at least for the amount exchanged by average costumers).

The previous example shows that, in order to achieve resource interconversion, we need to introduce
in our framework an additional system, the bank, with some specific properties. Within our formalism,
we consider the same multi-partite system introduced in Sec. 3.2, with the main system S, and two
batteries B1 and B2. The system S is now used as a bank, which has to satisfy the three essential
properties (passivity, existence of a rate, catalytic behaviour) that we have informally described in the
previous paragraph, and that we are going to formalise in the following. First of all, we need the states
describing the bank to be passive, meaning that we should not be able to extract from this system both
resources at the same time, since we always need to pay one resource to gain another one. Thus, the
set of bank states is defined as

Definition 7. Consider a multi-resource theory Rmulti satisfying the asymptotic equivalence property
with respect to the monotones EF1

and EF2
. The set of bank states of the theory is a subset of the

state space S (H) defined as,

Fbank =
{

ρ ∈ S (H) | ∀σ ∈ S (H) , EF1
(σ) > EF1

(ρ) or

EF2
(σ) > EF2

(ρ) or

EF1
(σ) = EF1

(ρ) andEF2
(σ) = EF2

(ρ)
}

. (34)

Within the set Fbank we can find different subsets of bank states with a fixed value of EF1
and EF2

.
We define each of these subsets as

Fbank

(

ĒF1 , ĒF2

)

=
{

ρ ∈ Fbank | EF1(ρ) = ĒF1 and EF2(ρ) = ĒF2

}

. (35)

Notice that Eq. (34) implies that no state can be found with smaller values of both monotones
EFi

’s. In this way, the agent is not able to transform the state of the bank in a way in which both
resources are extracted from it and stored in the batteries. Instead, they always need to trade resources.
The set of bank states Fbank can be visualised in the resource diagram of the theory, see Fig. 4. This
set is represented by a curve on the boundary of the state space, connecting the points associated with
F1 to those associated with F2. In appendix B we show that, under the current assumptions, this
curve is always convex, and in the following we focus our attention to those segments where the curve
is strictly convex.

The subsets Fbank

(

ĒF1
, ĒF2

)

’s represent individual points in the resource diagram describing the
multi-resource theory, and they obey many of the properties satisfied by the invariant sets Fi’s. Indeed,
one can show that

• For all n ∈ N, we have that each subset of bank states is such that

F (n)
bank

(

ĒF1
, ĒF2

)

= F⊗n
bank

(

ĒF1
, ĒF2

)

, (36)

that is, these subsets satisfy property F5b. This equality is proved in Prop. 24 of appendix D.2.

• Every subset Fbank

(

ĒF1 , ĒF2

)

is convex, property F2, as shown in Prop. 25 in appendix D.2.

• Every subset Fbank

(

ĒF1 , ĒF2

)

, and its extensions to the many-copy case, is invariant under
the class of allowed operations Cmulti of the multi-resource theory, as shown in Lem. 26 in
appendix D.2.

The second essential property for a bank is that the exchange rate needs only to depend on which
state of the bank we choose to use. In our framework, it is the choice of the values ĒF1 and ĒF2 ,
defining the subset Fbank

(

ĒF1 , ĒF2

)

, that determines the exchange rate at which the resources are
converted. In order to obtain this exchange rate we introduce the following function, which quantifies
how much the properties of the bank change during a transformation, and generalises the Helmholtz
free energy used in thermodynamics. Given the subset of bank states Fbank

(

ĒF1
, ĒF2

)

, this function
is defined as

f
ĒF1 ,ĒF2

bank (ρ) := αEF1(ρ) + β EF2(ρ)− γ, (37)

where α, β, and γ are non-negative constant factors, which depend on the subset of bank states we
have chosen. In order to define the linear coefficients, we impose the following two properties for this
function,
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Figure 4: The set of bank states introduced in Eq. (34) is represented in the EF1 –EF2 diagram. Only part
of the state-space S (H) is shown, highlighted by the blue gradient region, together with the invariant sets of
the theory F1 and F2, the two yellow segments. The black curve connecting these segments is the set of all
the bank states of the theory Fbank. It is worth noting that this set does not include any states contained in
the invariant sets F1 and F2. Indeed, a bank state needs to have a non-zero value of both resources in order
to allow for general resource interconversion, and the states in F1 and F2 do not contain any amount of their
associated resource. A specific subset of bank states, labelled by Fbank

(

ĒF1 , ĒF2

)

, is shown on the curve,
see Eq. (35). Notice that, graphically, a bank state is one for which there exists no other state in the region
immediately below and left. The red line, which is tangent to the set of bank states and passes through the

point Fbank

(

ĒF1 , ĒF2

)

, is parametrised by f
ĒF1

,ĒF2
bank = 0, see Eq. (37).

B1 The function f
ĒF1 ,ĒF2

bank is equal to zero over the subset Fbank

(

ĒF1
, ĒF2

)

.

B2 The value of this function on the states contained in the subset Fbank

(

ĒF1 , ĒF2

)

is minimum.

Notice that property B1 is there to set the zero of the function, and implies that

γ = α ĒF1 + β ĒF2 . (38)

Property B2, instead, fixes the ratio between the constants α and β. This condition can be visualised
in the resource diagram, and is equivalent to the request that, in such a diagram, the bank monotone
is tangent to the state space, so that

f
ĒF1 ,ĒF2

bank (ρ) ≥ f ĒF1 ,ĒF2

bank (σ), ∀ ρ ∈ S (H) , ∀σ ∈ Fbank

(

ĒF1
, ĒF2

)

. (39)

The above property is always satisfied under our working assumptions, since the curve of bank states
is convex, see Fig. 4. We refer to this function as the bank monotone.

The bank monotone can be easily extended to the state space of n copies of the system. The main
difference is that, when we consider states in S (H⊗n), the coefficient γ is proportional to the number of
copies n, and we write γ = n

(

α ĒF1 + β ĒF2

)

. This follows from property B1, together with the fact

that the subset Fbank

(

ĒF1
, ĒF2

)

satisfies property F5b, see Eq. (36). Since the function in Eq. (37)
is a linear combination of the monotones EF1

and EF2
, it is easy to show (see also appendix D.2) that

it satisfies the properties listed in the following proposition

Proposition 8. Consider a resource theory Rmulti with allowed operations Cmulti, satisfying asymptotic
equivalence with respect to the monotones EF1 and EF2 , i.e. the relative entropy distances from the
invariant sets of the theory. Suppose that these sets satisfy the properties F1, F2, F3, and F5b. Then,

the function f
ĒF1 ,ĒF2

bank introduced in Eq. (37) satisfies the following properties.

B3 The function f
ĒF1 ,ĒF2

bank is additive.

B4 The function f
ĒF1 ,ĒF2

bank is monotonic under partial tracing.
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B5 The function f
ĒF1 ,ĒF2

bank is sub-extensive, i.e., this function scales at most linearly in the number of
systems considered. More precisely, for any sequence of states {ρn ∈ S (H⊗n)}, we have that

f
ĒF1 ,ĒF2

bank (ρn) = O(n).

B6 The function f
ĒF1 ,ĒF2

bank is asymptotic continuous.

B7 The function f
ĒF1 ,ĒF2

bank is monotonic under the set of allowed operations Cmulti, since α and β are
non-negative.

The third and last property we demand from a bank concerns the back-reaction it experiences
during interconversion of resources. We want that, after the transformation, the state of the bank only
changes infinitesimally with respect to the bank monotone associated with it. If this is the case, we
can show that the exchange rate only changes infinitesimally, and therefore we can keep using the bank
to inter-convert between resources at the same exchange rate. More concretely, we now consider a
tripartite system composed by a bank S and and two batteries, B1 and B2. Each of these subsystems
is composed by many copies of the same fundamental system described by H, for which we defined
the notion of bank states. Thus, the bank S is described by HS = H⊗n, with n ∈ N, and its initial
state is given by n copies of the bank state ρ ∈ Fbank

(

ĒF1
, ĒF2

)

. The batteries are described by
HBi

= H⊗mi , mi ∈ N, where i = 1, 2. The states describing the batteries are ω1 ∈ S (HB1), and
ω2 ∈ S (HB2), respectively.

A resource interconversion is an asymptotically reversible transformation

ρ⊗n ⊗ ω1 ⊗ ω2
asympt←−−→ ρ̃⊗n ⊗ ω′

1 ⊗ ω′
2, (40)

where ρ̃ ∈ S (H), ω′
1 ∈ S (HB1), and ω′

2 ∈ S (HB2), satisfying the following property, see also Fig. 5,

X1 The state of the bank changes infinitesimally during the resource interconversion.
If ρ ∈ Fbank

(

ĒF1
, ĒF2

)

⊂ S (H), then the state ρ̃ ∈ S (H) is such that

f
ĒF1 ,ĒF2

bank (ρ̃⊗n) = f
ĒF1 ,ĒF2

bank (ρ⊗n) + δn, (41)

where δn > 0 is such that δn → 0 as n→∞.

It is worth noting that, according to the above definition, the bank is here acting as a catalyst, allowing
for resource interconversion. Catalysts are used in resource theories to allow for state transformations
which are otherwise impossible [37, 54]. These systems are generally described by resourceful states, and
therefore are subject to strict constraints, for example the requirement that their initial state needs to
be perfectly (or approximately) re-obtained at the end of the transformation [69]. These constraints are
required since, otherwise, one might act on the catalyst and extract resources from it, thus trivializing
the theory [70]. It is interesting to notice that our bank is similarly constrained, specifically by Eq. 41.
As we see in the following theorem, this constrain is enough to allow for resource interconversion, but
also to ensure a non-trivial behaviour of the theory (no resource is extracted for free).

We are now ready to introduce the interconversion relation which links the different amounts of
resources exchanged, weighted by the exchange rate given by the bank. The theorem is proved in
appendix D.1.

Theorem 9. Consider a resource theory Rmulti with two resources, equipped with the batteries B1 and
B2. Suppose the theory satisfies asymptotic equivalence with respect to the monotones EF1

and EF2
,

i.e. the relative entropy distances from the invariant sets of the theory, and that these sets satisfy the
properties F1, F2, F3, and F5b. Then, the resource interconversion of Eq. (40), where the bank has to
transform in accord to condition X1, is solely regulated by the following relation,

α∆W1 = −β∆W2 + δn. (42)

Furthermore, when the number of copies of the bank system n is sent to infinity, we have that the
above equation reduces to the following one, which we refer to as the interconversion relation,

∆W1 = −β
α

∆W2, (43)

where the amount of resources exchanged ∆Wi is non-zero.
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Figure 5: The state-space of the theory Rmulti is represented in the EF1 –EF2 diagram. The invariant sets of
the theory, F1 and F2, are represented by the two yellow segments. The set of bank states Fbank lies on the
boundary of the state-space, and is represented by the curve connecting the two invariant sets, see appendix B.
The subset of bank states Fbank

(

ĒF1 , ĒF2

)

, where ρ is contained, is represented by a point in the diagram.
The red line which is tangent to the state-space and passes by the point associated to ρ represents the set

of states with value of the monotone f
ĒF1

,ĒF2
bank equal to 0. The other line is given by all those states with a

value δ > 0 of this monotone. We see that, by mapping ρ into ρ̃, we can extract an amount ∆W1 of the first
resource, while paying an amount ∆W2 of the second resource. Furthermore, one can show that when δ → 0,
these two quantities tend to 0 as δ

1
2 , i.e., with a slower rate. It is then possible to keep the ∆Wi’s finite if we

take n ∝ δ−1 copies of the bank states, see the proof of Thm. 9, in appendix D.1. Thus, in the limit n → ∞,
the overall back-action on bank states associated with the conversion of resources can be made arbitrarily small.

Let us highlight some properties that a bank state needs to satisfy in order to allow for interconversion
of resources from one battery to another, and vice versa. We show that to interconvert between the
resources in both directions we need a bank state containing a non-zero amount of both resources.
First notice that, since both parameters α and β are non-negative, whenever we exchange between
resources, we increase the amount contained in one of the batteries (for example, ∆W1 > 0) while
decreasing the amount contained in the other (∆W2 < 0). However, the change in these two resources
also depends on the transformation of the bank state, see Eq. (24). Therefore, one has to consider the
bank state used for interconversion, and the amount of resources contained in it. When the bank state
ρ is such that EF1(ρ) > 0 and EF2(ρ) > 0, then interconversion can be achieved (in both directions)
between ∆W1 and ∆W2, at the rate specified by Eq. (43). Moreover, as far as the amount of resources
in the bank is non-zero, we can exchange any amount of one resource for the other (since we can take
the number of copies of the bank to be infinite). This is the case of thermodynamics, where thermal
states indeed contain a positive amount of both energy and entropy, the two resources of the theory,
and Eq. (43) gives the conversion rate for Landauer’s erasure.

Finally, let us consider what would happen if we were to allow the states in F1 or F2 (or in their
intersection) to describe the bank. If the bank state were such that EF1

(ρ) > 0 and EF2
(ρ) = 0 (or

vice versa), then we could only exchange in one direction, since we could gain the first resource while
paying the second resource (or vice versa). If the bank state did not contain any amount of resources,
EF1(ρ) = 0 and EF2(ρ) = 0, then we could not perform interconversion at all, because we would have
to reduce the amount of one of them within the bank. However, this would not be possible since the
amount of resource stored in a (bank) state cannot be negative. As a result, the multi-resource theories
in which an interesting interconversion relation can be found are the ones in which the invariant sets
of the theory do not intercept, see the right panel of Fig. 2.

4.2 Bank monotones and the relative entropy distance

We start this section with an example concerning different models to describe thermodynamics, and
the connection between these models. In the last part of Sec. 2.2, we have introduced a multi-resource
theory whose resources are energy and entropy (or, information). For this theory, the bank states are
thermal states at a given temperature T . We can move from this description of thermodynamics to a
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different one, based on a single-resource theory, by enlarging the class of operations in such a way that
the agent can freely add ancillary systems in a thermal state with temperature T . This corresponds to
the physical situation in which the system is put in contact with an infinite thermal bath. The single-
resource theory we obtain is analogous to the one of Thermal Operations [10, 11], and its resource
quantifier is unique. In fact, we can show that the bank monotone of the multi-resource theory and the
resource quantifier of the single resource theory both coincides (modulo a multiplicative factor) with
F − Fβ , where F is the Helmholtz free energy of the state whose resource we are quantifying, and Fβ
is the Helmholtz free energy of the thermal state with temperature T = β−1.

In the following we study the connection between a general multi-resource theory and the single-
resource theory obtained by enlarging the allowed operations with the possibility of adding ancillary
systems described by bank states in Fbank

(

ĒF1
, ĒF2

)

. We find that the bank monotone of Eq. (37),

f
ĒF1 ,ĒF2

bank , coincides with the unique measure of resource for the obtained single-resource theory. As a
result, we find that property X1, which regulates the exchange of resources in the multi-resource theory,
can be understood as the condition that the resource characterising the bank does not increase during
the transformation. Furthermore, we show that, when the subset of bank states Fbank

(

ĒF1 , ĒF2

)

contains a full-rank state, the monotone f
ĒF1 ,ĒF2

bank is proportional to the relative entropy distance from
this subset. Let us now introduce the single-resource theory which can be derived from Rmulti by allowing
the possibility of adding ancillary systems described by specific bank states.

Definition 10. Consider the two-resource theory Rmulti with allowed operations Cmulti and invariant sets
F1 and F2 which satisfy the properties F1, F2, F3, and F5b. Consider the bank set Fbank

(

ĒF1 , ĒF2

)

introduced in Eq. (35). We define the single-resource theory Rsingle as that theory whose class of allowed
operations Csingle is composed by the following three fundamental operations,

1. Add an ancillary system described by n ∈ N copies of a bank state ρP ∈ Fbank

(

ĒF1
, ĒF2

)

.

2. Apply any operation E ∈ Cmulti to system and ancilla.

3. Trace out the ancillary systems.

The most general operation in Csingle which does not change the number of systems between its input
and output is

E (s)(ρ) = TrP (n)

[

E
(

ρ⊗ ρ⊗n
P

)]

, (44)

where we are partial tracing over the degrees of freedom P (n), that is, over the ancillary system initially
in ρ⊗n

P .

The bank monotone associated with the bank set Fbank

(

ĒF1 , ĒF2

)

, see Eq. (37), is the unique
quantifier for the single-resource theory Rsingle. In order to show the uniqueness of this monotone, we
first have to show that the single-resource theory satisfies asymptotic equivalence.

Theorem 11. Consider the two-resource theory Rmulti with allowed operations Cmulti, and invariant sets
F1 and F2 which satisfy the properties F1, F2, F3, and F5b. Suppose the theory satisfies the asymptotic
equivalence property with respect to the monotones EF1 and EF2 . Then, given the subset of bank
states Fbank

(

ĒF1 , ĒF2

)

, the single-resource theory Rsingle with allowed operations Csingle satisfies the

asymptotic equivalence property with respect to f
ĒF1 ,ĒF2

bank .

The proof of this theorem can be found in appendix D.1, and we provide a geometric sketch of it
in Fig. 6. As a side remark, notice that the functions EF1 and EF2 are not monotonic under the set of
allowed operations Csingle. This follows from the fact that we can now replace any state of the system
with a state in Fbank

(

ĒF1
, ĒF2

)

, since we are free to add an ancillary system in such state, and to
perform a swap between main system and ancilla (since this operation belongs to Cmulti). Then, if the
bank state contains a non-zero amount of resources, meaning that ĒFi

> 0 for i = 1, 2, we can always
find a state in S (H) with lower value of either EF1

or EF2
(but not both at the same time), and

therefore the above transformation would increase the value of this monotone.
From the above theorem it follows an interesting link between the bank monotone f

ĒF1 ,ĒF2

bank , defined
in Eq. (37), and the relative entropy distance from the set of bank states Fbank

(

ĒF1
, ĒF2

)

. Indeed,
when this set of states contains at least one full-rank state, we can prove that these two functions
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Figure 6: We sketch a geometric proof of Thm. 11 using the EF1 –EF2 diagram. The blue region is the state-
space S (H), the yellow segments are the invariant sets F1 and F2, and the red lines highlight the states with

same value of monotone f
ĒF1

,ĒF2
bank . Notice that in this figure we are using the fact that, when Fi satisfies

property F5b, the monotone EFi is such that EFi (ρ ⊗ σ) = EFi (ρ) + EFi (σ) for any two states ρ and σ in
S (H), see Lem. 23. To represent the state ρ ⊗ σ in the diagram, we renormalise its values of the EFi ’s by
dividing them by the number of copies considered, in this case by two. Left. We first sketch why the function

f
ĒF1

,ĒF2
bank is monotonic under the set of allowed operations Csingle. Consider a system initially described by the

state ρ, and add to it an ancillary system described by the bank state ρP ∈ Fbank

(

ĒF1 , ĒF2

)

. The global
system is then represented by a point in the middle of the segment connecting ρ and ρP . We can transform the
global state with the help of a sub-linear ancilla and of the operation E ∈ Cmulti, mapping it into the state σ ⊗ ρ̃P

with same value of EF1 and EF2 . If we take ρ̃P to be on the boundary of the state-space, we can easily see

that σ ≡ TrP [E(ρ ⊗ ρP )] always lies below the red line passing through ρ, i.e., its value of f
ĒF1

,ĒF2
bank is smaller

than the one for ρ. Right. We now sketch how to map between states with the same value of the monotone

f
ĒF1

,ĒF2
bank , using the set of operations Csingle. In this case, we compose the main system, initially described by

ρ, with an additional one described by n copies of ρP . We then use an operation E ∈ Cmulti, together with a
sub-linear ancilla, and we ask the final state of the system, σn = TrP (n)

[

E(ρ ⊗ ρ⊗n
P )
]

to have the same value
of EF1 of the target state σ. It is then easy to show that, as n → ∞, the state σn tends to σ, while the n

copies of the final state of the ancilla, ρ̃n, tends to the bank state ρP .

have to coincide, modulo a multiplicative factor. This is a consequence of the fact that Rsingle satisfies
asymptotic equivalence, which implies the uniqueness of the resource measure, and of the fact that both
the bank monotone and the relative entropy distance from the bank set satisfy the same properties, in
particular monotonicity under the operations in Csingle and asymptotic continuity. We can express this
fact in the following corollary, whose proof can be found in appendix D.1.

Corollary 12. Consider the two-resource theory Rmulti with allowed operations Cmulti, and invariant
sets F1 and F2 which satisfy the properties F1, F2, F3, and F5b. Suppose the theory satisfies the
asymptotic equivalence property with respect to the monotones EF1 and EF2 . If the subset of bank

states Fbank

(

ĒF1 , ĒF2

)

contains a full-rank state, then the bank monotone f
ĒF1 ,ĒF2

bank coincides with
the relative entropy distance from this subset of states, modulo a multiplicative constant.

We close the section with the remark that, in the currently known scenarios, the bank subsets always
contain at least a full-rank state, and in fact we find that, for these theories, the above correspondence
between the bank monotone of Eq. (37) and the relative entropy distance is satisfied. An example is
the multi-resource theory of thermodynamics, in which the relative entropy distance from a thermal
state at a given temperature is indeed equal to the linear combination of the average energy and the
entropy of a system. Other examples can be found in Sec. 5.

4.3 First law for multi-resource theories

We can now introduce a general first law for multi-resource theories with disjoint invariant sets, see the
right panel of Fig. 2. In order for this law to be valid, we need access to the batteries, the bank, and
the main system. Within this setting, the first law consists of a single relation which links the different
amount of resources exchanged with the batteries, the ∆Wi’s, with the change in bank monotone over
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the state of the main system. The idea is that, contrary to what seen in Sec. 3.2, a state transformation
over the main system is possible, when a bank is present, if this single relation is satisfied. Indeed, we
do not need to use a fixed amount of each resource, since they are inter-convertible using the bank
system.

In more detail, we consider a theory Rmulti that, for simplicity, has just two resources. The invariant
sets are F1 and F2, they satisfy the properties F1, F2, F3 and F5b, and the theory satisfies the
asymptotic equivalence property with respect to the monotones EF1

and EF2
. The global system is

divided into four partitions, the main system S, the bank P , and the batteries B1 and B2. We assume
the bank to be initially described by a state ρP ∈ Fbank

(

ĒF1 , ĒF2

)

, where this subset contains at least
one full-rank state. The relevant monotone for the interconversion of resources is then the relative
entropy distance from the subset Fbank

(

ĒF1
, ĒF2

)

, as shown in Cor. 12.
Suppose that the main system is initially described by the state ρ ∈ S (HS), and we want to map

it into the state σ ∈ S (HS), with possibly a different value of EF1
and EF2

. If we do not have
access to the bank, then the amount of resources we need to exchange is given by the difference of the
monotones EFi

’s between the initial and final state of the main system, see Eq. (28) in Sec. 3.3. But
since we have access to the battery, we can exchange between the resources, and we are not obliged
any more to provide a fixed amount for each resource. In order to show this, consider the global initial
state ρ ⊗ ρP ⊗ ω1 ⊗ ω2, describing the main system, the bank, and the two batteries B1 and B2.
Then, we (asymptotically) map this global state, using the allowed operations Cmulti, into the final state
σ⊗ ρ̃P ⊗ω′

1⊗ω′
2, where the final state of the bank is ρ̃P , and the batteries B1 and B2 have final state

ω′
1 and ω′

2, respectively. Due to asymptotic equivalence, this state transformation is possible only if the
monotones EFi

’s are preserved. However, the final state of the bank only has to satisfy property X1,
and we have shown in Sec. 4.1 that such constraint still allows us to exchange an arbitrary amount of
resources, see Thm. 9. As a result, there is a single relation that regulates the state transformation
over the main system,

Corollary 13. Consider the two-resource theory Rmulti with allowed operations Cmulti, and invariant sets
F1 and F2 which satisfy the properties F1, F2, F3, and F5b. Suppose the theory satisfies the asymptotic
equivalence property with respect to the monotones EF1

and EF2
, and that the global system is divided

into a main system S, a bank described by the set of states Fbank

(

ĒF1
, ĒF2

)

(which contains at least
one full-rank state), and two batteries B1 and B2. Then, a transformation which maps the state of the
main system from ρ into σ, where these states are completely general, only has to satisfy the following
relation

α∆W1 + β∆W2 = EFbank(ĒF1 ,ĒF2)(ρ)− EFbank(ĒF1 ,ĒF2)(σ), (45)

where each ∆Wi is defined as the difference in the monotone EFi
over the final and initial state of

the battery Bi, see Eq. (23), and EFbank(ĒF1 ,ĒF2) is the relative entropy distance from the set of states

describing the bank.

We refer to Eq. (45) as the first law of multi-resource theories. Indeed, for the resource theory
of thermodynamics, where energy and entropy are the two resources, and the bank is given by an
infinite thermal reservoir with a given temperature T , this equation corresponds to the First Law of
Thermodynamics. In fact, in the thermodynamic scenario we have that ∆W1 = −∆U , where U is
the internal energy of the system, while ∆W2 = ∆S is the change in entropy in the system. The
change in relative entropy distance on the main system is proportional to the change in Helmholtz
free-energy, which in turn is equal to the work extracted from the system, W . The linear coefficients in
the equation can be computed from Eq. (37), knowing that the bank monotone is equal to the relative
entropy distance from the thermal state with temperature T . It is easy to show that α = T−1 and
β = 1 . If we re-arrange the equation, and we define Q = T ∆S as the amount of heat absorbed by
the system, we obtain ∆U = Q−W , that is, the First Law of Thermodynamics.

5 Examples

In this section we present two examples of multi-resource theories where an interconversion relation can
be derived. The first one is thermodynamics for multiple conserved quantities (even non-commuting
ones), while the second one concerns local control under energetic restrictions. In both examples we
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I. Does the theory satisfy
the asymptotic equivalence

property of Def. 1?

Instructions

1. Identify constraints and conservation laws of the theory.

2. Define allowed operations Cmulti and identify invariant sets {Fi}.
3. Use flowchart to identify the properties of monotones and invariant sets.

II. Is the theory asymp-
totically equivalent with
respect to the relative

entropy distances from the
invariant sets, or equiva-
lently to the monotones
introduced in Sec. 3.4?

III. Modify the class
of allowed operations

Cmulti, if possible.

IV. Are the invariant sets
closed (F1) and convex

(F2), and do they contain
a full-rank state (F3)a?
Can we find batteries

where resources are stored
individually (M1) with

respect to these monotones?

V. Can we find candidate
battery subsystems such

that each resource is
stored (M1) and accessed

(M2) individually, and
the resource quantifiers
are non-negative (M3)?

VII. Are the resource
measures monotonic un-
der partial trace (M4),
sub-additive (M5), sub-

extensive (M6), and asymp-
totic continuous (M7)?

VI. Which additional
properties do the invariant

sets satisfy? Are they closed
under tensor product (F4)

and partial trace (F5),
or are they composed

by a single state (F5b)?

The resource theory does
not allow for the use of
batteries, see Sec. 3.2.

The state-space of the
theory can be represented

in a resource diagram,
and the representation
is unique, see Thm. 5.

The state-space of the
theory can be represented

in a resource diagram,
see Fig. 3, but the repre-
sentation is not unique.

VIII. The state-space of the
theory can be represented in
a resource diagram, and the
representation is unique. Are

the invariant sets disjoint,
see right panel of Fig 2?

Resources cannot be exchanged, as the
bank does not contain one or more of them.

It is possible to exchange one resource for another, see
Thm. 9, and the theory admits a first law, see Cor. 13

YES NO

YES

NO

NO

YES

YESNO

YES

NO

F4 ∧ F5

F5b

NO

YES

aFor the monotones introduced in Sec. 3.4, property F3 is not relevant.

Figure 7: How to apply the results of this paper to an arbitrary resource theory.

describe the state-space (and we represent it with a resource diagram), we find the bank states of the
theory, and we derive an interconversion relation for the different resources. Furthermore, in both cases
we find that the bank monotone is proportional to the relative entropy distance from the given set of
bank states, as expected from Cor. 12.

Before we introduce the examples, we provide a flowchart 7 that should help the reader in building
a multi-resource theory. In particular, the flowchart clarifies in which situations each of the results we
obtain hold for a specific theory. This tool should be used as follows,
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• The fundamental constraints and conservation laws of the task under consideration should be
identified, and together with them the resources composing the theory.

• Given the set of resources for the theory, we define the class of allowed operations Cmulti as in
Eq. (11), and we identify the invariant sets of the theory {Fi}mi=1.

• Checking whether asymptotic equivalence holds for the multi-resource theory is the first step of
the flowchart (box I in Fig. 7). To show that the theory satisfies this property, we need to find a
protocol which maps between states with same values of a given set of monotones.

• If the theory satisfies asymptotic equivalence, we can focus on the properties of the monotones
and of the invariant sets. Following the flowchart, we can then easily identify which properties
and features hold for the theory under consideration.

The flowchart here introduced is used in the first example to clarify how to characterise a multi-resource
theory.

5.1 Thermodynamics of multiple-conserved quantities

In this example we consider the resource theory of thermodynamics in the presence of multiple conserved
quantities (even in the case in which these quantities do not commute) [48, 49, 51]. Our system is a
d-level quantum system, and for simplicity, we only consider two conserved quantities A and B. The
allowed operations are Thermal Operations [10, 11], composed by unitary operators which commute
with both A and B. This set of maps can be obtained as a proper subset of the intersection between
the allowed operations of the following single-resource theories,

• The resource theory of the quantity A. The allowed operations are all the average-A-non-
increasing maps, whose invariant set is composed by a single state, FA = {|a0〉 〈a0|}, the
eigenstate of A associated with its minimum eigenvalue a0 (for simplicity, we here assume it
to be non-degenerate). From Sec. 3.4 it follows that this theory has a monotone of the form
MA(ρ) = Tr [Aρ]− a0.

• The resource theory of the quantity B. The allowed operations are all the average-B-non-
increasing maps, whose invariant set is composed by a single state, FB = {|b0〉 〈b0|}, the
eigenstate of B associated with its minimum eigenvalue b0 (for simplicity, we here assume it
to be non-degenerate). From Sec. 3.4 it follows that this theory has a monotone of the form
MB(ρ) = Tr [Bρ]− b0.

• The resource theory of purity, where the allowed operations are all the maps whose fix point is
the maximally-mixed state FS =

{

I

d

}

(unital maps). One monotone of the theory is the relative

entropy distance from I

d , that is, EFS
(ρ) = log d−S(ρ) where S(·) is the von Neumann entropy.

We can now make use of the flowchart to characterise the multi-resource theory. Box I in the
flowchart asks whether or not the considered multi-resource theory satisfies asymptotic equivalence. In
Refs. [35, 36] it has been shown that, indeed, a resource theory of this kind does satisfy the asymptotic
equivalence property of Def. 1 with respect to the monotones MA, MB and EFS

. Furthermore, it is
easy to see that these monotones are either relative entropy distances from the set of invariant states,
or that they are of the form given in Eq. (31). This implies that we can answer positively to box II in
the flowchart.

We now need to consider the properties of the invariant sets of the theory, which in turn determine
the properties of the monotones. It is easy to show that these sets are closed (property F1) and convex
(property F2). Furthermore, FS contains a full-rank state (property F3), that implies asymptotic
continuity of the associated monotone, see Refs. [63, 64]. The fact that the other sets do not contain
a full-rank state is not problematic since we are considering monotones of the form of Eq. (31), that
are nevertheless asymptotic continuous, see Prop. 22. Thus, the invariant sets satisfy all the properties
required in box IV, and we now need to construct batteries able to store the different resources separately
(property M1).

For the first kind of resource, this can be achieved by selecting two pure states with different
average values of A, and same average values of B. The battery BA, storing the first kind of resource,
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is then composed by a certain number of copies of these two states, where the number varies when
we extract/store the resource. A similar construction can be done for the other battery BB . For the
purity battery, we can take a system with degenerate A and B, and take states with a certain number
of copies of a pure state and mixed state. If this construction is possible, then we can answer positively
to box IV in the flowchart.

We can now study the properties of the invariant sets, specifically their closure with respect to
tensor product (property F4) and partial trace (property F5). Since each invariant set is composed by
a single state, we find that both these properties and property F5b are satisfied. Thus, from box VI we
can move to box VIII, and therefore the theory can be studied with a resource diagram, see Fig. 8 and
the representation is unique.

Let us now consider a reversible transformation, described by the following equation

ρ⊗n ⊗ ωA ⊗ ωB ⊗ ωS asympt←−−→ σ⊗n ⊗ ω′
A ⊗ ω′

B ⊗ ω′
S , (46)

where the n copies of ρ and ρ′ describe the main system at the beginning and the end of the trans-
formation, and the states ωi and ω′

i are the initial and final states of the battery Bi, for i = A,B, S.
According to asymptotic equivalence, the transformation is possible if

∆WA = M∞
A (ρ)−M∞

A (σ) = Tr [A (ρ− σ)] , (47)

∆WB = M∞
B (ρ)−M∞

B (σ) = Tr [B (ρ− σ)] , (48)

∆WS = E∞
FS

(ρ)− E∞
FS

(σ) = S(σ)− S(ρ). (49)

To answer the last box of the flowchart, box VIII, we need to focus on the resources contained in
the bank states. Indeed, in order to get an interconversion relation and a first law we need the bank
states to contain a non-zero amount of each resource. This has to be the case for the current resource
theory, since the invariant sets do not intercept each other. Therefore, this theory admits a first law,
as we are going to show. It can be easily shown, using Jaynes principle [67], that the bank states are
of the following form

τβ1,β2
=
e−β1A−β2B

Z
, (50)

where the parameters β1, β2 ∈ [0,∞), and Z = Tr
[

e−β1A−β2B
]

is the partition function of the system.
These states are known in thermodynamics as the grand-canonical ensemble. Each τβ1,β2 is a bank
state with a different value of resource A, resource B, and purity. The value of these three resources
only depends on the parameters β1 and β2. In order to find the interconversion relation we need to
construct the bank monotone

f β̄1,β̄2

bank (ρ) = αβ̄1,β̄2
MA(ρ) + γβ̄1,β̄2

MB(ρ) + δβ̄1,β̄2
EFS

(ρ)− ξβ̄1,β̄2
(51)

which is equal to zero over the bank state τβ̄1,β̄2
. Properties B1 and B2 provide a geometrical way of

building the monotone. If we represent the state space in a three-dimensional diagram (where the axes

are given by MA, MB , and EFS
), then the hyperplane defined by the equation f β̄1,β̄2

bank = 0 is tangent
to the state space and only intercepts it in τβ̄1,β̄2

, see Fig. 8 for an example.

The hyperplane defined by f β̄1,β̄2

bank = 0 is identified by the normal vector

n̂ = r̂1 × r̂2, where r̂i =

(

∂MA(τβ̄1,β̄2
)

∂βi
;
∂MB(τβ̄1,β̄2

)

∂βi
;
∂EFS

(τβ̄1,β̄2
)

∂βi

)T

for i = 1, 2. (52)

The parametric equation of the hyperplane then gives us the expression of the monotone,

f β̄1,β̄2

bank (ρ) = n1

(

MA(ρ)−MA(τβ̄1,β̄2
)
)

+ n2

(

MB(ρ)−MB(τβ̄1,β̄2
)
)

+ n3

(

EFS
(ρ)− EFS

(τβ̄1,β̄2
)
)

,
(53)

where ni is the i-th component of the normal vector n̂. By evaluating the monotones MA, MB , EFS
,

and their derivatives we find that f β̄1,β̄2

bank is equal (modulo a positive multiplicative factor depending on
the parameters β̄1 and β̄2) to the relative entropy distance from τβ̄1,β̄2

,

f β̄1,β̄2

bank (ρ) ∝ Eτβ̄1,β̄2
(ρ) = β̄1 Tr [ρA] + β̄2 Tr [ρB]− S(ρ) + logZ. (54)
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Figure 8: The state space of the multi-resource theory of thermodynamics and conserved angular momenta
(along the x and z axes). On the surface we find the states τβ1,β2 defined in Eq. (50), where β1 and β2 take
values in R. The red surface is the set of bank states, with β1 and β2 are both non-negative, and the green
plane is tangent to the state space in the point associated with τβ̄1,β̄2

. The equation of the plane gives the

monotone f
β̄1,β̄2
bank .

Thus, the bank state τβ̄1,β̄2
allows us to obtain the following interconversion relation between the three

resources,
β̄1 ∆WA + β̄2 ∆WB = ∆WS , (55)

while the state of the bank only changes by an infinitesimal amount in terms of Eτβ̄1,β̄2
.

5.2 Local control theory under energetic restrictions

We now introduce a multi-resource theory describing local control under energetic restrictions. Specif-
ically, we consider the situation in which a quantum system is divided into two well-defined partitions
A and B, and we can only act on the individual partitions with non-entangling operations, which fur-
thermore need to not increase the energy of the overall system. This kind of simultaneous restrictions
on locality and thermodynamics has also been considered in other previous works, see for example
Refs. [71–75]. The multi-resource theory is obtained by considering two single-resource theories, the
one of entanglement and the one of energy. While this is a well-defined multi-resource theory, it is
not straightforward to prove that it is also a reversible theory. Therefore, to provide a first law in this
setting, we have to restrict the state-space to a subset of all bipartite density operators.

5.2.1 Set-up

Let us consider a bipartite system, whose partitions are labelled as A and B, with a non-local Hamilto-
nian HAB (that is, the two partitions interact with each other, and the ground state of the system is
an entangled state). The set of allowed operations of this multi-resource theory is obtained from the
intersection of the allowed operations of the following single-resource theories,

• The resource theory of energy. The allowed operations are all the average-energy-non-increasing
maps, defined in Sec. 3.4. When the Hamiltonian has non-degenerate ground state |g〉, the fixed
state of the maps is FH = |g〉 〈g|. The monotone of this resource theory is MH(ρ) = Tr [Hρ]−Eg,
where Eg is the eigenvalue associated with the ground state |g〉.

• The resource theory of entanglement. The allowed operations are the asymptotically non-
entangling maps [31]. These maps are relevant to us for two reasons. Firstly, all our results
hold in the asymptotic limit, and therefore it is reasonable to consider the set of maps which do
not create entanglement in this limit. Secondly, this is the only set of operations which provides
a reversible theory for entanglement. The monotone is EFsep

(·), where Fsep is the set of separable
states, invariant under the class of operations.

While the current multi-resource theory is well-defined and meaningful, it is not straightforward to prove
whether it is reversible in the sense given in Def. 1. Furthermore, it is known that the relative entropy
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of entanglement, EFsep
, is not additive (or even extensive) for all bipartite density operator. Therefore,

if we want to study interconversion of resources in this setting, we need to consider a subset of the
state-space (as well as of the invariant set Fsep).

In the following we will focus on the simplest example of a multi-resource theory of this kind.
The bipartite system is composed by two qubits, so that its Hilbert space is HAB = C2 ⊗ C2. The
Hamiltonian of the system is

HAB = E0 |Ψsinglet〉 〈Ψsinglet|+ E1 Πtriplet, (56)

where E0 < E1, the ground state is the singlet state,

|Ψsinglet〉 =
1√
2

(|01〉 − |10〉) , (57)

and Πtriplet =
∑3
i=1 |Ψ

(i)
triplet〉 〈Ψ

(i)
triplet| is the projector on the triplet subspace, where

|Ψ(1)
triplet〉 =

1√
2

(|01〉+ |10〉) , (58)

|Ψ(2)
triplet〉 =

1√
2

(|00〉 − |11〉) , (59)

|Ψ(3)
triplet〉 =

1√
2

(|00〉+ |11〉) . (60)

In order to get a reversible multi-resource theory, and therefore to be able to define the interconver-
sion relations, we consider a restricted state-space, given by the following subset of bipartite density
operators,

S1 =

{

ρ ∈ S(HAB) | ρ = p0 |Ψsinglet〉 〈Ψsinglet|+
3
∑

i=1

pi |Ψ(i)
triplet〉 〈Ψ

(i)
triplet| , with p0 ≥

1

2

}

. (61)

There are two additional reasons why we are interested in this set of states. First of all, because the
relative entropy of entanglement EFsep

has an analytical expression for states which are diagonal in
the Bell basis [76–78] (that here coincides with the energy eigenbasis). Secondly, because it is easy
to show, see Eq. (34), that S1 contains the bank states of the theory, that are the interesting ones
when it comes to study interconversion. Finally, it is worth noting that the state-space S1 contains all
the Gibbs states of the non-local Hamiltonian HAB with positive temperatures. Within this restricted
state-space we find the following subset of separable states,

Fcss =

{

ρ =
1

2
|Ψsinglet〉 〈Ψsinglet|+

3
∑

i=1

pi |Ψ(i)
triplet〉 〈Ψ

(i)
triplet|

}

. (62)

It is worth noticing that the above subset Fcss contains all the closest-separable states to the entangled
states in our restricted state-space S1 (see Ref. [78]). As a result, for any state ρ ∈ S1 we have that

EFsep
(ρ) = EFcss

(ρ) = 1− h (〈Ψsinglet| ρ |Ψsinglet〉) , (63)

where h(·) is the binary entropy function. Since our focus is restricted to the sole states in the subset
S1, we will now re-define7 the set of allowed operations of the multi-resource theory as those energy-
non-increasing maps which only preserve the subset of separable states Fcss = Fsep∩S1. We can define
this class of operation as

Cmulti = {E : S(HAB)→ S(HAB) | E(Fcss) ⊆ Fcss and Tr [E(ρ)HAB ] ≤ Tr [ρHAB ] ∀ ρ ∈ S(HAB)} ,
(64)

where each E ∈ Cmulti is a completely positive and trace preserving map.

7The modified set of allowed operations makes it easier for us to find a protocol for inter-converting resources. However,
we do not exclude the possibility of being able to perform interconversion with the original set of allowed operations, that
preserve all separable states. However, finding this protocol might be non-trivial, and could be material of future work.

Accepted in Quantum 2020-04-17, click title to verify. Published under CC-BY 4.0. 29



Figure 9: The state-space of the multi-resource theory of local control under energy restrictions. We consider a
bipartite system composed by two qubits, with a non-local Hamiltonian given in Eq. (56). Left. The state-space
is represented by the blue region S (H), while the green region is the set of all separable states Fsep, and the red
set on its boundary is a subset of separable states Fcss, defined in Eq. (62). The yellow region contains every
state diagonal in the energy eigenbasis (BellâĂŹs basis). In our simplified example, we restrict the state-space
to a portion of the yellow region, that is, to a subset of diagonal states. Specifically, we consider the set S1,
containing any states between the singlet and the separable subset Fcss. Right. The diagram represents the
set of states diagonal in the energy eigenbasis (blue region). On the left part of the diagram we find the curve
associated with the set S1, whose extreme points are the singlet and the invariant set Fcss. On the right hand
side, we have all those diagonal states with p0 < 1

2
. The green line is the set of all separable states Fsep. It

is easy to see that, although the set of diagonal states in the Bell’s basis is convex, its representation in the
diagram has not to be convex, see comments after Lem. 19, in the appendix.

The two batteries we use in the theory store, respectively, energy and entanglement. One can
imagine different kinds of energy batteries. For example, we could have that only Alice (or Bob) has
access to the battery, which would imply that only one of them can change the energy of the non-local
system. However, we prefer to consider a symmetric situation in which both Alice and Bob can interact
with the battery. Moreover, we chose the battery to be non-local, so that they are effectively using
the same battery, and not two local batteries. Thus, the battery BW is composed by m copies of a
two-qubit system with the same Hamiltonian of the main system, that is,

HW = E0 |Ψsinglet〉 〈Ψsinglet|+ E1 Πtriplet. (65)

The state of the battery is

ωW (k) = |Ψsinglet〉 〈Ψsinglet|⊗k ⊗ |Ψ(1)
triplet〉 〈Ψ

(1)
triplet|

⊗m−k
, (66)

where the excited state |Ψ(1)
triplet〉 could be replaced by any other triplet state. Notice that, in order

to store/provide energy, we have to change the number of triplet and singlet states contained in the
battery, and this can be done locally by both Alice and Bob. Moreover, even if we are changing the
energy of the battery, we are not modifying its entanglement, in accord with property M1.

The second battery BE is composed by ℓ copies of a two-qubit system with trivial Hamiltonian
HE ∝ I (so as to be able to exchange entanglement while preserving the energy of the battery). We
choose the state of the battery to be

ωE(h) = |Ψsinglet〉 〈Ψsinglet|⊗h ⊗ σ⊗ℓ−h
mm , (67)

where the state σmm ∈ Fcss, and we take it to be the maximally-mixed state on the subspace spanned

by |Ψsinglet〉 and |Ψ(1)
triplet〉, that is

σmm =
1

2
|Ψsinglet〉 〈Ψsinglet|+

1

2
|Ψ(1)

triplet〉 〈Ψ
(1)
triplet| . (68)

The change in entanglement is measured by the change in the number of singlet states h.
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5.2.2 Reversibility and the interconversion relation

In order for the present multi-resource theory to admit an interconversion relation, we first need to show
that the asymptotic equivalence property of Def. 1 is satisfied. Let us consider the subset of states
Sp0
⊂ S1, where p0 >

1
2 , defined as

Sp0 = {ρ ∈ S1 | 〈Ψsinglet| ρ |Ψsinglet〉 = p0} . (69)

It is easy to show that all the states in this subset have the same value of the energy and entanglement
monotones, which we label M̄H and ĒFcss

respectively. Furthermore, for any two states in this set, we
can find an allowed operation in Cmulti, see Eq. (64), which maps one into the other. Indeed, consider

an ancillary qutrit system described by the state η =
∑3
i=1 qi |θi〉 〈θi|, and the global unitary operation

U acting on main system and ancilla. The unitary operation maps |Ψ(i)
triplet〉 |θj〉 into |Ψ(j)

triplet〉 |θi〉,
for i, j ∈ {1, 2, 3}, and acts trivially on the remaining basis states. Then, the operation Eη(·) =
TrA

[

U (· ⊗ ηA)U†
]

∈ Cmulti maps any state ρ ∈ Sp0
into the state

Eη(ρ) = p0 |Ψsinglet〉 〈Ψsinglet|+ (1− p0)

3
∑

i=1

qi |Ψ(i)
triplet〉 〈Ψ

(i)
triplet| , (70)

where the probability distribution {qi}3
i=1 is defined by η. By choosing different ancillary states η,

we can reach different states in Sp0 , proving in this way that the resource theory satisfies asymptotic
equivalence8.

We can now consider the interconversion of energy and entanglement. Together with the two
batteries BW and BE , one for energy and the other for entropy, we need to use a bank system. One
can show that, when diagonal states in the energy eigenbasis are considered, bank states belongs to
the set S1 introduced in the previous section. Thus, we describe the bank system using n ≫ 1 copies
of a state ρin ∈ Sp0 , where p0 >

1
2 (the actual form of the state is not relevant, since we can use

the allowed operation Eη to freely select any state in this set). In order to obtain an interconversion
relation, we need to find an allowed operation in Cmulti, acting on the global state of bank and batteries,
which modifies the state of the batteries (by exchanging resources) while leaving the state of the bank
almost unchanged with respect to the relative entropy distance from Sp0

.
In appendix C we provide a protocol which performs the following resource interconversion using an

allowed operation Cmulti,

ρ⊗n
in ⊗ ωW (k)⊗ ωE(h)

asympt←−−→ ρ⊗n
fin ⊗ ωW (k′)⊗ ωE(h′). (71)

In the above transformation, the initial state of the bank ρin is mapped into a state ρfin ∈ Sp′
0
, where

p′
0 = p0 + O(n−1). The energy battery BW is mapped from the initial state ωW (k), containing k

copies of the ground state of HAB , into the final state ωW (k′) with k′ = k+ ∆k copies of this ground
state, where ∆k > 0 is arbitrary big. Likewise, the entanglement battery BE changes from the initial
state ωE(h), containing h singlets, to the final state ωE(h′) containing h′ = h− log p0

1−p0
∆k singlets.

From the above transformation one is able to derive an interconversion relation between energy and
entanglement,

∆WW = − ∆E

log p0

1−p0

∆WE , (72)

where ∆WW = MH (ωW (k′))−MH (ωW (k)) is the amount of energy exchanged, ∆WE = EFcss
(ωE(h′))−

EFcss
(ωE(h)) is the amount of entanglement exchanged, and ∆E = E1 −E0 is the energy gap of the

Hamiltonian HAB . Additionally, we find that the change in monotone ESp0
between the initial and

final global state of the bank is negligible (for n→∞), in accord with property X1.

6 Conclusions

From multiple constraints to a resource theory. With the present work we set the mathematical
ground for the development of resource theories with multiple resources able to describe new physical

8The operation Eη(·) we introduce is allowed since we restricted the invariant set Fsep to Fcss. Indeed, the above map
would not leave invariant the set of separable states Fsep.
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scenarios. Our construction of multi-resource theories is based on the definition of their class of
allowed operations. First, we pinpoint the resources that compose the theory, and we introduce the
corresponding single-resource theories. Then, we define the set of allowed operations for the multi-
resource theory as the one composed by the maps in the intersection of the different classes of allowed
operations of each single-resource theory, Eq. (11). This construction leaves the theory with multiple
invariant sets, some of which are the sets of free states of the relevant single-resource theories. It is
worth remarking again that, in multi-constraint theories, there is a difference between the set of free
states and the invariant sets (in contrast with the case of single-resource theories), and a multi-resource
theory can have multiple invariant sets and no free states, Fig. 2.

Reversibility. Together with the introduction of a general framework for multi-resource theories,
we have studied the properties of these reversible theories. In particular, to analyse reversibility when
multiple resources are present, we have first introduced the asymptotic equivalence property, see Def. 1.
This property implies that a unique monotone can be used to quantify each resource. Furthermore, in
the case of single-resource theories, it coincides with the usual notion of reversible rates of conversion.
We know of multi-resource theories that satisfy this property, see the two examples provided in Sec. 5.
However, it would be interesting to study which of the other, already existing, multi-resource theories
satisfy the property of Def. 1. Ultimately, one would hope to find some general condition according to
which a multi-resource theory is reversible, similarly to what has been found in Ref. [33].

The role of batteries. A crucial feature of our framework is the presence of batteries, used
to store and quantify the resources exchanged during a state transformation over the main system.
While batteries can be defined for single-resource theories as well, they do not seem to play the same
fundamental role in that case, since one can quantify the amount of resource contained in a system
using the conversion rate, see Def. 14 in appendix A. However, the conversion rate is linked to a change
in the number of copies, for example ρ⊗n → σ⊗k, where it is implicitly assumed that the remaining
|n− k| copies of the system are in a free state. Since the framework allows us to model theories with
no free states, we cannot change the number of systems with the allowed operations, and therefore
we need to use batteries to quantify the amount of resources. We have seen in this paper what are
the main properties for these batteries, primarily property M1, which requires each battery to store one
and only one of the resource. It would be interesting to study these systems more carefully, possibly
linking them to the kind of batteries used for fluctuation theorems [79–82], which are described by
states in a big superposition, so as to always remain uncorrelated from the main system during a
state transformation [70, 83]. A different line of research in this direction could involve the study
of correlated and entangled batteries, already explored in the setting of the single-resource theory of
thermodynamics [71, 84].

Interconversion and further examples. We have studied the interconversion of resources and we
have introduced a first law for multi-resource theories, Eq. (45), valid when the theories are reversible
and the invariant sets are disjoint. We have provided two examples of theories with a first law, one
related to thermodynamics, and the other concerning a theory of local control under energy restriction.
In this latter example, we have studied an extremely simplified case, due to the fact that reversibility
has not been proved in general for this theory. Due to the high importance of both non-locality and
thermodynamics in the field of quantum technology and many-body physics, we believe that a complete
analysis of this multi-resource theory would be useful. Furthermore, it would be interesting to know
which other multi-resource theories allow for an interconversion relation, and whether it is possible to
define interconversion for theories with a different structure of invariant sets, by for instance relaxing
the assumptions made on the bank. For example, one could consider bank states from which both
resources could in principle be extracted, and forbid such extraction by further constraining the class of
allowed operations.

Multiple ways to build a multiple-resource theory. In general, there could be different ways to
intersect constraints in order to obtain the same final resource theory, and some of these constructions
are a better fit for the analysis presented here than others. For example, the resource theory of
thermodynamics equipped with Thermal Operations can be built as the intersection of either (1) the
resource theories of information and energy, as we have done in Sec. 4.2, or (2) the resource theories
of athermality and coherence [85–87]. However, the most convenient setting for the study of this latter
construction is the single-copy regime, since in the many-copy scenario coherence is lost, as this quantity
scales sub-linearly in the number of copies of the system considered.

Beyond the asymptotic limit. The concrete results presented here for reversibility and inter-
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conversion of resources are only valid in the asymptotic limit where many independent and identically
distributed copies of a system are considered. However, the general framework we introduced to de-
scribe resource theories with multiple resources can also be applied to scenarios with a single system.
Understanding how resources can be exchanged in the single-copy regime, and studying the corrections
to the first law in such a regime are worthwhile questions to pursue. We believe that extending the
notion of batteries to the single-shot regime should be the first step toward the definition of a complete
framework for multi-resource theories. However, we anticipate that this will be a highly non-trivial task,
since in the single-copy case a resource is not generally quantified by a single measure, which compli-
cates the definition of batteries, currently given through property M1. These difficulties are exemplified
by the single-shot version of the resource theory of thermodynamics, where the α-Rényi divergences
from the thermal state are all valid resource measures. A possible way forward in this setting might
be the definition of an arbitrary notion of resource, for instance in terms of the number of resourceful
states contained in the battery. Otherwise, the fluctuation relations for arbitrary resources [79] and
their connection to majorization could be useful conecpts for quantifying resources in the single-shot
regime.
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Appendix

A Reversibility and asymptotic equivalence for single-resource theories

In this section we show that, for a single-resource theory, the asymptotic equivalence property of Def. 1
is equivalent to the notion of reversibility given in terms of rates of conversion. Let us first introduce
the concept of rate of conversion for a single-resource theory, see Ref. [32]. The definition of rate we
use coincides with the one used in the literature, with the difference that we are making explicit use of
the partial trace and of the addition of free states. In fact, we prefer not to include these operations
within the set C, as we want the allowed operations to preserve the number of copies of the system
they act over (with the exception of sub-linear ancillae).

Definition 14. Consider a single-resource theory with allowed operations C and free states F , and two
states ρ, σ ∈ S (H). We define the rate of conversion from ρ to σ as

R(ρ→ σ) = sup

{

kn
n
| either lim

n→∞

(

min
Ẽn

∥

∥Trn−kn

[

Ẽn(ρ⊗n)
]

− σ⊗kn
∥

∥

1

)

= 0

or lim
n→∞

(

min
Ẽkn

∥

∥Ẽkn
(ρ⊗n ⊗ γkn−n)− σ⊗kn

∥

∥

1

)

= 0 ,

where γkn−n ∈ F (kn−n)

}

. (73)

where the maps Ẽn have been defined in Eq. (13), and they are of the form Ẽn(·) = TrA

[

En(· ⊗ η(A)
n )

]

,

with En ∈ C(n+o(n)) and η
(A)
n ∈ S

(

H⊗o(n)
)

.

Now that the notion of rate is defined, we introduce the concept of reversible single-resource theory,

Definition 15. A single-resource theory with allowed operations C and free states F is reversible if, given
any non-free states ρ, σ ∈ S (H), the rate of conversion from ρ to σ is such that R(ρ→ σ) ∈ (0,∞),
and R(ρ→ σ)R(σ → ρ) = 1.

The above notion of reversibility is based on the rates of conversion between two resourceful states.
However, it is not clear how to extend Def. 14 to the case of multiple resources, since the set of free
states might be empty for multi-resource theories. For this reason, we have introduced the property of
asymptotic equivalence in Sec. 3.1. This property also apply to the single-resource theory case, when
m = 1.

Now we want to show that Defs. 1 and 15, for a single-resource theory, coincide. First, let us
introduce a function f : S (H⊗n) → R (more formally, a family of functions) with the following
properties,

SM1 For each n ∈ N, the function f is monotonic under the set of allowed operations C(n), that is

f (En (ρn)) ≤ f (ρn) , ∀ ρn ∈ S
(

H⊗n
)

, ∀ En ∈ C(n). (74)

SM2 For each n ∈ N, the function f is equal to 0 for all states γn ∈ F (n), that is

f (γn) = 0, ∀ γn ∈ S
(

H⊗n
)

. (75)

SM3 The function f is asymptotic continuous.

SM4 The function f is monotonic under partial tracing, that is

f (Trk [ρn]) ≤ f (ρn) , ∀n, k ∈ N , k < n , ∀ ρn ∈ S
(

H⊗n
)

. (76)

SM5 For each n, k ∈ N, the function f is sub-additive, that is

f (ρn ⊗ ρk) ≤ f (ρn) + f (ρk) , ∀ ρn ∈ S
(

H⊗n
)

, ∀ ρk ∈ S
(

H⊗k
)

. (77)
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SM6 For any given sequence of states {ρn ∈ S (H⊗n)}, the function f scales sub-extensively, that is,
f (ρn) = O(n).

Notice that property SM6 implies that the function f is regularisable. Furthermore, the value of f is
preserved if we add free states, that is,

f(ρn ⊗ γk) = f(ρn), ∀ ρn ∈ S
(

H⊗n
)

, ∀ γk ∈ F (k), (78)

which follows from properties SM2, SM4, and SM5.
The first lemma we introduce show that the rate of conversion of a reversible single-resource theory

is linked to the function f satisfying the above properties. Notice that this proof is analogous to the
one of Ref. [62], with the difference that we are allowing for the presence of a sub-linear ancilla in the
definition of rate, following the notion of “seed regularisation” introduced in Ref. [23, Sec. 9].

Lemma 16. Consider a reversible resource theory with allowed operations C and free states F , and the
function f satisfying SM1 – SM6. Then, for all non-free states ρ, σ ∈ S (H), we have that

R(ρ→ σ) =
f∞(ρ)

f∞(σ)
(79)

Proof. Let consider ρ and σ such that R(ρ→ σ) ≤ 1 (the proof of the other case is equivalent). Then,
there exists a sequence of operations

{

Ẽn
}

of the form given in Eq. (13) such that

lim
n→∞

∥

∥Trn−kn

[

Ẽn(ρ⊗n)
]

− σ⊗kn
∥

∥

1
= 0 (80)

where limn→∞
kn

n = R(ρ→ σ). If we use the asymptotic continuity of the function f , property SM3,
we obtain

f
(

Trn−kn

[

Ẽn(ρ⊗n)
])

= f
(

σ⊗kn
)

+ o(kn). (81)

Let us now consider the lhs of the above equation. Using the properties of the monotone f , together
with the definition of Ẽn in terms of sub-linear ancillae and allowed operations, we can prove the
following chain of inequalities,

f
(

Trn−kn

[

Ẽn(ρ⊗n)
])

≤ f
(

Ẽn(ρ⊗n)
)

= f
(

TrA

[

En(ρ⊗n ⊗ η(A)
n )

])

≤ f
(

En(ρ⊗n ⊗ η(A)
n )

)

≤ f
(

ρ⊗n ⊗ η(A)
n

)

≤ f
(

ρ⊗n
)

+ f
(

η(A)
n

)

≤ f
(

ρ⊗n
)

+ o(n) (82)

where the first and second inequalities follow from property SM4, the equality follows from the def-
inition of Ẽn, see Eq. (13), the third inequality follows from monotonicity under allowed operations,
property SM1, the forth inequality from sub-additivity, property SM5, and the last one from the fact
that the ancillary system is sub-linear in n together with property SM6. Thus, combining the last two
equations, we get

f
(

ρ⊗n
)

≥ f
(

σ⊗kn
)

+ o(n). (83)

We can now divide the left and right hand side of the above equation by n, obtaining

1

n
f
(

ρ⊗n
)

≥ kn
n

1

kn
f
(

σ⊗kn
)

+ o(1). (84)

By taking the limit of n → ∞, and using the fact that f is regularisable (which follows from prop-
erty SM6) together with the definition of rate, we get

f∞ (ρ) ≥ R(ρ→ σ) f∞ (σ) . (85)

We can also consider the reverse transformation, mapping n copies of the state σ into k′
n copies of ρ.

Using the same steps used above, together with the fact that the monotone f is equal to zero over free
states, property SM2, we can show that

f∞ (σ) ≥ R(σ → ρ) f∞ (ρ) . (86)

If we now use the reversibility property, which implies R(σ → ρ) = 1
R(ρ→σ) , we find that

f∞ (ρ)

f∞ (σ)
≥ R(ρ→ σ) ≥ f∞ (ρ)

f∞ (σ)
(87)

which proves the lemma.
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Furthermore, we introduce a second small lemma, that can be found in Ref. [88, Prop. 13],

Lemma 17. Given a regularisable function f : S (H⊗n)→ R, the regularised version is extensive,

f∞(ρ⊗k) = k f∞(ρ) , ∀ ρ ∈ S (H) , ∀ k ∈ N. (88)

Proof. Consider a function h : R → R, such that limn→∞ h(n) = L < ∞. This is equivalent to say
that

∀ ǫ > 0,∃ c ∈ R : |h(n)− L| < ǫ, ∀n > c. (89)

Let us now consider an invertible function g : R→ R, and consider m ∈ R such that n = g(m). Then,
we can rewrite Eq. (89) as

∀ ǫ > 0,∃ c ∈ R : |h(g(m))− L| < ǫ, ∀ g(m) > c, (90)

and by defining c̃ = g−1(c), we get

∀ ǫ > 0,∃ c̃ ∈ R : |h(g(m))− L| < ǫ, ∀m > c̃. (91)

Therefore, we have limm→∞ h(g(m)) = L.
If we choose h(n) = 1

nf(ρ⊗n), whose limit is L = f∞(ρ), and we use the reversible function
g(m) = k ·m where k ∈ N is fixed, we get

f∞(ρ) = lim
m→∞

1

k ·mf(ρ⊗k·m) =
1

k
lim
m→∞

1

m
f((ρ⊗k)⊗m) =

1

k
f∞(ρ⊗k), (92)

which proves the lemma.

We can now show that a single-resource theory which is reversible also satisfies the asymptotic
equivalence property, and vice versa.

Theorem 18. Consider the resource theory with allowed operations C and free states F . If the theory
is reversible, then it satisfies the asymptotic equivalence property with respect to a function f satisfying
the properties SM1 – SM6, and viceversa.

Proof. (a) Let us first assume that the theory is reversible. Then, if we consider two non-free states
ρ, σ ∈ S (H) such that f∞(ρ) = f∞(σ), and we use Lem. 16, we find that the rate of conversion is
R(ρ → σ) = 1. Then, there exists a sequence of operations

{

Ẽn
}

that approach this limit in one of
two ways. In one case, we have

∥

∥Trn−kn

[

Ẽn(ρ⊗n)
]

− σ⊗kn
∥

∥

1
→ 0. (93)

Notice that, since we have kn

n → 1, it follows that n− kn = o(n). Then, the above equation coincides
with the second part of Def. 1, where we are mapping ρ⊗kn into σ⊗kn , and the sub-linear ancilla

is η
′(A)
n = η

(A)
n ⊗ ρn−kn , where η

(A)
n is completely arbitrary, and come from the definition of Ẽn.

Alternatively, we can have that the sequence of maps is such that

∥

∥Ẽkn
(ρ⊗n ⊗ γkn−n)− σ⊗kn

∥

∥

1
→ 0. (94)

We now use the monotonicity of the trace distance under discarding subsystems to obtain

∥

∥Trkn−n

[

Ẽkn
(ρ⊗n ⊗ γkn−n)

]

− σ⊗n
∥

∥

1
→ 0. (95)

Again, the above equation coincides with the second part of Def. 1, where we are mapping ρ⊗n into

σ⊗n, and the sub-linear ancilla is η
′(A)
n = η

(A)
n ⊗ γkn−n. This proves the validity of one direction of the

asymptotic equivalence property. To prove the other direction (existence of a sequence of maps implies
same value of the monotone on the two states), we can use the fact that, if there exists a sequence
of maps

{

Ẽn
}

sending ρ⊗n into σ⊗n, then the rate of conversion is R(ρ → σ) = 1. Then, with the
help of Lem. 16, which is valid for reversible theories, we obtain that f∞(ρ) = f∞(σ). This proves the
other direction of the asymptotic equivalence property.
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(b) Let now assume that the theory satisfies the asymptotic equivalence property. Consider any two
non-free states ρ, σ ∈ S (H), and suppose that f∞(ρ) ≤ f∞(σ) (in the other case, the proof would
follow analogously to the one we are presenting). Take n, k ∈ N such that n f∞(ρ) = k f∞(σ), and
let us use the extensivity of f∞, Lem. 17. Then, we have f∞(ρ⊗n) = f∞(σ⊗k). Using the property
of the function f shown in Eq. (78), we find that

f∞(ρ⊗n) = f∞(σ⊗k ⊗ γn−k), (96)

where we add the free state γn−k ∈ F (n−k) to the right hand side since n ≥ k. Then, we can use
the asymptotic equivalence property, which implies the existence of a sequence of maps

{

Ẽm·n

}

m
, see

Eq. 13, such that
lim
m→∞

∥

∥Em·n(ρ⊗m·n)− σ⊗m·k ⊗ γ⊗m
n−k

∥

∥

1
= 0. (97)

If we use the monotonicity of the trace distance under partial tracing, we find that

lim
m→∞

∥

∥Trm·(n−k)

[

Em·n(ρ⊗m·n)
]

− σ⊗m·k
∥

∥

1
= 0. (98)

The existence of this sequence of maps implies that the rate of conversion R(ρ→ σ) ≥ k
n . At the same

time, we can use asymptotic equivalence to find a sequence of maps
{

Ẽ ′
m·n

}

m
performing the reverse

process. Using a similar argument to the one presented above, we find that R(σ → ρ) ≥ n
k . As a result,

we find that the product of the forward and reverse rates of conversion is R(ρ → σ)R(σ → ρ) ≥ 1.
However, this product cannot be higher than one, as otherwise we would be able to perform a cyclic
transformation turning free states intro resourceful one, which is forbidden under allowed operations,
see also Ref. [28]. Therefore, we find that R(ρ→ σ)R(σ → ρ) = 1, which closes the proof.

B Convex boundary and bank states

In the following, we consider the case of a two-resource theory Rmulti defined on the Hilbert space H.
The set of allowed operations is Cmulti = C1 ∩ C2, where each Ci is a subset of the set of all CPTP
maps that leave the set of states Fi invariant, i = 1, 2. We ask the resource theory Rmulti to satisfy the
asymptotic equivalence property with respect to the monotones EF1 and EF2 . Furthermore, we assume
that the two invariant sets satisfy the properties F1–F5. Thus, it follows from Thm. 5 and Prop. 6 that
the two monotones E∞

F1
and E∞

F2
uniquely quantify the resources in this theory. As a result, we can

represent the state-space of Rmulti in a two-dimensional diagram, as shown in Fig. 3.
We choose the two invariant sets of the theory to be disjoints, i.e., F1 ∩ F2 = ∅, and we focus on

the set of bank states Fbank ⊂ S (H). Since in this section we are not making any assumption on the
additivity (or extensivity) of the monotones EFi

’s, we have that the set of bank states is here defined
as

Fbank =
{

ρ ∈ S (H) | ∀σ ∈ S (H) , E∞
F1

(σ) > E∞
F1

(ρ) or

E∞
F2

(σ) > E∞
F2

(ρ) or

E∞
F1

(σ) = E∞
F1

(ρ) andE∞
F2

(σ) = E∞
F2

(ρ)
}

. (99)

Notice that this set coincides with the one of Eq. (34) when property F5b is satisfied, and therefore the
results we obtain in this appendix apply to Sec. 4 as well. It is easy to show that E∞

F2
(ρ) > E∞

F2
(F2) =

0 ∀ ρ ∈ F1, and similarly E∞
F1

(ρ) > E∞
F1

(F1) = 0 ∀ ρ ∈ F2. Moreover, inside both invariant sets F1

and F2 we can find a subset of states with minimum value of the monotones E∞
F2

and E∞
F1

, respectively.
We define these sets as

F1,min =

{

σ ∈ F1 |E∞
F2

(σ) = min
ρ∈F1

E∞
F2

(ρ)

}

⊆ F1, (100)

F2,min =

{

σ ∈ F2 |E∞
F1

(σ) = min
ρ∈F2

E∞
F1

(ρ)

}

⊆ F2. (101)

Given these two subsets, we can then define the following real intervals,

I1 =
[

E∞
F1

(F1) = 0 ; E∞
F1

(F2,min)
]

, (102)

I2 =
[

E∞
F2

(F2) = 0 ; E∞
F2

(F1,min)
]

. (103)

In what follows, we make use of the following two properties of the monotones E∞
Fi

’s,
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Figure 10: We represent part of the state-space S (H) in the E∞
F1

–E∞
F2

diagram. In the figure, the green
segment is the invariant set F1, the yellow one is F2, and the black curve connecting these two segments is
γbank, the curve of bank states of the theory, see Eq. (104). On the E∞

F1
-axis we highlight the interval I1

defined in Eq. (102), and similarly for the interval I2 on the E∞
F2

-axis. Furthermore, the action of the function
cbank : I1 → I2, defined in Eq. (105), is shown for the input value ĒF1 .

• Asymptotic continuity, which follows from the assumptions F1–F5 over the sets Fi’s, as shown
in Refs. [33, 89].

• Convexity, which follows from the assumptions F2 and F4 over the sets Fi’s, as shown in Ref. [88],
Prop. 13.

We can now state the following lemma, concerning the value of the monotones E∞
Fi

’s for bank states.

Lemma 19. Consider the multi-resource theory Rmulti with allowed operations Cmulti, and invariant sets
F1 and F2 which satisfy properties F1–F5, and F1 ∩ F2 = ∅. If the theory satisfies the asymptotic
equivalence property with respect to the monotones EF1

and EF2
, then for all bank states ρ ∈ Fbank

we have that E∞
F1

(ρ) ∈ I1 and E∞
F2

(ρ) ∈ I2.

Proof. Suppose, for example, that there exists a bank state ρ ∈ Fbank such that E∞
F1

(ρ) /∈ I1, that is,
∃σ ∈ F2,min such that E∞

F1
(σ) < E∞

F1
(ρ). By definition of F2 we also have that E∞

F2
(σ) ≤ E∞

F2
(ρ).

These two inequalities, however, contradict the fact that ρ is a bank state, see Eq. (99), and conclude
the proof.

It is easy to show that for all ĒF1
∈ I1 there exists (at least) one state ρ ∈ S (H) such that

E∞
F1

(ρ) = ĒF1 , and the same holds for I2. The proof that ∀ ĒF1 ∈ I1, ∃ ρ ∈ S (H) : E∞
F1

(ρ) = ĒF1

follows from two facts: (i) S (H) is a compact and path-connected set, and therefore its image under
the (asymptotic) continuous function E∞

F1
is a compact and path-connected set in R, that is, a closed

and bounded interval I1,S(H), and (ii) I1 ⊆ I1,S(H).
Let us now define, in the E∞

F1
–E∞

F2
diagram, the curve of bank states, which lies on part of the

boundary of the state-space, as per definition in Eq. (99). The curve is defined as

γbank =
{(

E∞
F1

(ρ), E∞
F2

(ρ)
)

| ρ ∈ Fbank

}

, (104)

where Fbank is the set of bank states of the theory. It is easy to see that this curve is completely
contained within the subset of R2 given by I1 × I2. Together with this curve, we can introduce the
real-valued function cbank : I1 → I2, defined as

cbank(EF1
) = if (∃P ∈ γbank such that P [0] = EF1

) return P [1]. (105)

Essentially, this function checks the first element of the tuples in γbank, and returns the second element
of the tuple whose first element is equal to EF1

. Since I1 is a closed interval in R, we have that for
all EF1

∈ I1, the function cbank is well-defined. See Fig. 10 for the representation of the above curve
of bank states in the resource diagram of the theory.
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We will now prove the following two propositions, which assure that the monotone f
ĒF1 ,ĒF2

bank of
Eq. (37) satisfies the property B2. This first proposition essentially tells us that the function cbank is
monotonic decreasing.

Proposition 20. For all PA, PB ∈ γbank, where PA =
(

E
(A)
F1

, E
(A)
F2

)

and PB =
(

E
(B)
F1

, E
(B)
F2

)

, we

have that
E

(A)
F1

< E
(B)
F1
⇔ E

(A)
F2

> E
(B)
F2

. (106)

Proof. We prove the propositions in a single direction, as the other follows in analogue manner. Suppose

that E
(A)
F1

< E
(B)
F1

, and consider the states ρA, ρB ∈ Fbank such that E∞
F1

(ρA) = E
(A)
F1

, and E∞
F1

(ρB) =

E
(B)
F1

. Since ρB belongs to the set of bank states, we have that one of the following conditions, see
Eq. (34), has to be satisfied for all states σ ∈ S (H),

1. E∞
F1

(σ) > E∞
F1

(ρB).

2. E∞
F2

(σ) > E∞
F2

(ρB).

3. E∞
F1

(σ) = E∞
F1

(ρB) and E∞
F2

(σ) = E∞
F2

(ρB).

Let us then take σ = ρA. In this case, options 1 and 3 are not possible, since they contradict the
hypothesis. Therefore, option 2 has to be valid, which implies that E∞

F2
(ρA) > E∞

F2
(ρB). In a similar

manner, if E
(A)
F1

= E
(B)
F1

, the only possible option for ρB would have been E∞
F2

(ρA) = E∞
F2

(ρB), which
concludes the proof.

The second propositions tells us, instead, that the function cbank is convex.

Proposition 21. For all PA, PB ∈ γbank, where PA =
(

E
(A)
F1

, E
(A)
F2

)

and PB =
(

E
(B)
F1

, E
(B)
F2

)

, and for

all λ ∈ [0, 1], there exists a PC ∈ γbank, where PC =
(

E
(C)
F1

, E
(C)
F2

)

, such that

E
(C)
F1

= λE
(A)
F1

+ (1− λ)E
(B)
F1

, (107)

E
(C)
F2
≤ λE(A)

F2
+ (1− λ)E

(B)
F2

(108)

Proof. Let us consider, without losing in generality, that E
(A)
F1

< E
(B)
F1

, and take ρC ∈ Fbank such that

E∞
F1

(ρC) = λE
(A)
F1

+(1−λ)E
(B)
F1

. This state always exists since I1 is a closed interval (and therefore is

path-connected). Let us now define ρA, ρB ∈ Fbank such that E∞
F1

(ρA) = E
(A)
F1

, and E∞
F1

(ρB) = E
(B)
F1

.
By convexity of the regularised relative entropy distance E∞

F1
, it follows that

E∞
F1

(ρC) = λE
(A)
F1

+ (1− λ)E
(B)
F1
≥ E∞

F1
(λ ρA + (1− λ) ρB) . (109)

Then, it is easy to show that

E∞
F2

(ρC) ≤ E∞
F2

(λ ρA + (1− λ) ρB) ≤ λE(A)
F2

+ (1− λ)E
(B)
F2

, (110)

where the first inequality follows from Prop. 20, and the second one from the convexity of E∞
F2

. Since

ρC ∈ Fbank, the point PC =
(

E∞
F1

(ρC), E∞
F2

(ρC)
)

is a point on the curve γbank.

It is easy to see that the above propositions imply that cbank is (strictly) monotonic decreasing, and
convex. Since this function is defined on the closed interval I1 ∈ R, we have that cbank is continuous

(except, maybe, at its endpoints). Therefore, we can always define the monotone f
ĒF1 ,ĒF2

bank of Eq. (37),
and it always satisfies condition B2. Finally, it is worth noticing that all the results apply if one (or
both) the monotones are of the form of Eq. (31), since they satisfy all the necessary properties, in
particular they are linear in both the tensor product and the admixture of states.
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C Energy-entanglement interconversion protocol

In this section we provide a protocol, based on the compression theorems [90] known in quantum
information theory, to perform interconversion of energy and entanglement using two batteries and a
bank, see Sec. 5.2.1 for revising the set-up we use. In our protocol, we assume that the bank is initially
described by n≫ 1 copies of a generic state ρ ∈ Sp0

, where p0 >
1
2 , see Eq. (69), while the batteries

BW and BE are initially in the states ωW (k) and ωE(h), respectively.
Our first step consists in using the allowed operation Eη ∈ Cmulti, see Eq. (70), with η = |θ1〉 〈θ1|,

to map the generic bank state ρ into

ρin = p0 |Ψsinglet〉 〈Ψsinglet|+ (1− p0) |Ψ(1)
triplet〉 〈Ψ

(1)
triplet| . (111)

Thus, the bank system is now described by n copies of the state ρin. Due to the central limit theorem,
we can well approximate the state of the bank with an ensemble of its typical states, and in the following
we will focus on the strongly typical ensemble,

Πst =
1

dst

dst
∑

i=1

πi

(

|Ψsinglet〉 〈Ψsinglet|⊗n p0 ⊗ |Ψ(1)
triplet〉 〈Ψ

(1)
triplet|

⊗n (1−p0)
)

, (112)

where dst ≈ 2nh(p0) is the number of states contained in the strongly typical set, the πi’s are the
elements of the symmetric group acting on n copies of the two-qubit system, and h(·) is the binary
entropy. Then, we can use a unitary operation to re-order the states in Πst so as to obtain

Π′
st = σ⊗nh(p0)

mm ⊗ |Ψsinglet〉 〈Ψsinglet|⊗n(1−h(p0))
, (113)

where σmm is the separable state introduced in Eq. (68). It is easy to see that this transformation,
while leaving the amount of entanglement in the bank constant, EFcss

(ρ⊗n
in ) = EFcss

(Π′
st), might not

preserve the average energy. For this reason, while transforming the bank we also transform the energy
battery, mapping ωW (k) into ωW (k + ∆k) to keep the energy fixed.

We can now exchange some singlets with the entanglement battery. For example, we can perform
a swap between the bank and the battery, moving in this way an integer number r of singlets from the
bank into the battery. This transformation maps the state of the bank into

Π′′
st = σ⊗nh(p0)+r

mm ⊗ |Ψsinglet〉 〈Ψsinglet|⊗n(1−h(p0))−r
, (114)

and transforms the state of the entanglement battery from ωE(h) into ωE(h + r). Furthermore, the
transformation also modify the energy of the bank, so that we need to map the state of the energy
battery from ωW (k + ∆k) to ωW (k + ∆k′). It is then possible to map the state Π′′

st into

Π′′′
st =

1

d′
st

d′
st
∑

i=1

πi

(

|Ψsinglet〉 〈Ψsinglet|⊗n p′
0 ⊗ |Ψ(1)

triplet〉 〈Ψ
(1)
triplet|

⊗n (1−p′
0)
)

, (115)

where p′
0 is chosen in order to satisfy the equality

nh(p0) + r = nh(p′
0), (116)

and d′
st = 2nh(p′

0). The state Π′′′
st is the strongly typical ensemble associated with n copies of the state

ρfin = p′
0 |Ψsinglet〉 〈Ψsinglet|+ (1− p′

0) |Ψ(1)
triplet〉 〈Ψ

(1)
triplet| , (117)

where it is easy to show that the probability of occupation of the singlet is p′
0 ≈ p0 − r

n
1

log
p0

1−p0

for

n ≫ 1. The transformation mapping Π′′
st into Π′′′

st preserves the entanglement of the bank, while
changing its energy. Therefore, while acting on the bank we have to modify the state of the energy
battery as well, from ωW (k + ∆k′) to ωW (k + ∆k′′). In this way, we have modified the bank system
by mapping n copies of ρin into n copies of ρfin, and we kept entanglement and energy fixed on the
global system by modifying the states of the batteries. Notice that the protocol can be extended to the
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typical ensembles by using a sub-linear ancillary system, and by considering corrections to the exchanged
energy and entanglement of order O(

√
n).

During the protocol, the bank has exchanged r singlets with the battery BE , so that the gain in
entanglement for this battery is

∆WE = EFcss
(ωE(h+ r))− EFcss

(ωE(h)) = r. (118)

In order to compute the amount of energy exchanged between the bank and the battery BW , we
consider the difference in average energy between ρ⊗n

in and ρ⊗n
fin . In this way, we find that the amount

of energy exchanged is

∆WW = MH (ωW (k + ∆k′′))−MH (ωW (k)) = − ∆E

log p0

1−p0

r, (119)

that is, energy has been paid in order to gain entanglement during the process. The interconversion
relation between the two resources is given by

∆WW = − ∆E

log p0

1−p0

∆WE , (120)

and we only need to show that the bank state has changed in a negligible way with respect to the
related bank monotone. It is worth noting that, since the current theory satisfies all the properties we
have considered in the main text, the bank monotone coincides, modulo a multiplicative constant, with
the relative entropy distance from the set of states Sp0 initially describing the bank.

Indeed, it is easy to show that the relative entropy distance from this set is given by a linear
combination of the monotones EFcss

and MH . For ρ ∈ S1 we find that

ESp0
(ρ) = inf

σ∈Sp0

D(ρ ‖σ) =
(

EFcss
(ρ)− ĒFcss

)

+
log p0

1−p0

∆E

(

MH(ρ)− M̄H

)

, (121)

where we recall that ĒFcss
= EFcss

(σ) and M̄H = MH(σ), for any state σ ∈ Sp0
. The linear coefficient

in the rhs of Eq. (121) is the (inverse) exchange rate that we find in the interconversion relation,
Eq. (120). If we now consider the initial and final state of the bank, and we study how much the state
is changed by the above protocol with respect to ESp0

, we find that

ESp0
(ρ⊗n

fin )− ESp0
(ρ⊗n

in ) = O(n−1), (122)

so that, when n→∞, we obtain that the state of the bank is only infinitesimally changed, and can be
used again to perform another resource interconversion with the same initial exchange rate.

D Proofs

D.1 Main results

In the first part of this appendix we provide the proofs of the results presented in the main text. We
start with the proof of the following theorem, where it is shown that a multi-resource theory which
satisfies the asymptotic equivalence property of Def. 1 has a unique quantifier for each of the resources
present in the theory. This theorem is introduced in Sec. 3.3.

Theorem 5. Consider the resource theory Rmulti with m resources, equipped with the batteries Bi’s,
where i = 1, . . . ,m. Suppose the theory satisfies the asymptotic equivalence property with respect to
the set of monotones {fi}mi=1. If these monotones satisfy the properties M1 – M7, then the amount
of i-th resource contained in the main system S is uniquely quantified by the regularisation of the
monotone fi (modulo a multiplicative constant).

Proof. Let us prove that f∞
1 uniquely quantifies the amount of 1-st resource contained in the main

system (the proof for the other fi 6=1’s is analogous). We prove the theorem by contradiction. Suppose
that there exists two monotones f1 and g1 satisfying the properties M1 – M7, such that
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1. ∃ ρ ∈ S (HS), where ρ 6∈ F1, for which f∞
1 (ρ) = g∞

1 (ρ) (this is always possible by rescaling the
monotone g).

2. ∃σ ∈ S (HS), where σ 6∈ F1, for which f∞
1 (σ) 6= g∞

1 (σ) (that is, f1 is not unique).

Consider now the values of f∞
1 (ρ) and f∞

1 (σ). If these are equal, it is easy to see, using the asymptotic
equivalence property, that f1 is unique. Suppose instead that they are not equal. Then, there exists
n, k ∈ N9 such that

n f∞
1 (ρ) = k f∞

1 (σ). (123)

Let us consider the system together with the batteries Bi’s, initially in the state ρ⊗n⊗ω1⊗. . .⊗ωm.
Then, we take the states ω′

i ∈ S (HBi
), where i = 1, . . . ,m, such that

f∞
i (ρ⊗n ⊗ ω1 ⊗ . . .⊗ ωm) = f∞

i (γn ⊗ ω′
1 ⊗ . . .⊗ ω′

m) , ∀ i ∈ {1, . . . ,m} , (124)

f∞
j (ωi) = f∞

j (ω′
i) , ∀ i, j ∈ {1, . . . ,m} , i 6= j, (125)

where γn ∈ F (n)
1 . Due to the asymptotic equivalence property, the conditions in Eq. (124) imply that

there exists a sequence of maps
{

ẼN
}

N
of the form of Eq. (13) such that

lim
N→∞

∥

∥

∥
ẼN
(

(

ρ⊗n ⊗ ω1 ⊗ . . .⊗ ωm
)⊗N

)

− (γn ⊗ ω′
1 ⊗ . . .⊗ ω′

m)
⊗N
∥

∥

∥

1
= 0, (126)

as well as another sequence of maps performing the reverse transformation. From the asymptotic
continuity of g1, property M7, it then follows that

g1

(

ẼN
(

(

ρ⊗n ⊗ ω1 ⊗ . . .⊗ ωm
)⊗N

))

= g1

(

(γn ⊗ ω′
1 ⊗ . . .⊗ ω′

m)
⊗N
)

+ o(N). (127)

Let us consider the lhs of the above equation, and recall that the map ẼN is obtained by applying an

allowed operation to N copies of the system together with a sub-linear ancilla η
(A)
N , see Eq. (13). For

simplicity, let us refer to ρ⊗n ⊗ ω1 ⊗ . . .⊗ ωm as Ω in the following chain of inequalities,

g1

(

ẼN
(

Ω⊗N
))

= g1

(

TrA

[

EN
(

Ω⊗N ⊗ η(A)
N

)])

≤ g1

(

EN
(

Ω⊗N ⊗ η(A)
N

))

≤ g1

(

Ω⊗N ⊗ η(A)
N

)

≤ g1

(

Ω⊗N
)

+ g1

(

η
(A)
N

)

≤ g1

(

Ω⊗N
)

+ o(N) (128)

where the first inequality follows from property M4, the second one from the monotonicity of g1 under
allowed operations, the third one from the sub-additivity of g1, property M5, and the last inequality
from property M6 and the fact that the ancilla is sub-linear in N . If we now combine this equation with
the previous one, we divide both sides by N , and we send it to infinity, we obtain that the regularised
version of g1 is such that,

g∞
1

(

ρ⊗n ⊗ ω1 ⊗ . . .⊗ ωm
)

≥ g∞
1 (γn ⊗ ω′

1 ⊗ . . .⊗ ω′
m) . (129)

By using the same argument for the sequence of maps performing the reverse transformation, we find
that the above equation needs to hold as an equality, that is,

g∞
1

(

ρ⊗n ⊗ ω1 ⊗ . . .⊗ ωm
)

= g∞
1 (γn ⊗ ω′

1 ⊗ . . .⊗ ω′
m) . (130)

We can now separate each contribution to g1 thanks to the property M2, use the fact that the batteries
Bi 6=1’s are not changing their value of g1, property M1, and the fact that the final state of the system
does not contain any resource associated with g1, property M3. Then, we find that

n g∞
1 (ρ) = g∞

1 (ω′
1)− g∞

1 (ω1) , (131)

where we have also used Lem. 17. The same result follows for f1, so that we find that

n f∞
1 (ρ) = f∞

1 (ω′
1)− f∞

1 (ω1) . (132)

9Where we assume that all physically meaningful values of the f∞
i ’s are in Q, which we recall is dense in R.
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If we now consider Eqs. (123) and (132), we find that

k f∞
1 (σ) = f∞

1 (ω′
1)− f∞

1 (ω1) . (133)

We can add to the above equation the term f∞
1 (γk), where γk ∈ F (k)

1 , since this term is equal to zero
due to property M3. Then, we find

k f∞
1 (σ) + f∞

1 (ω1) = f∞
1 (γk) + f∞

1 (ω′
1) . (134)

Now, we want to introduce the initial and final states of the batteries Bi 6=1’s, so as to be sure that the
transformation from σ⊗k into γk does not violate the conservation of the other resources. Specifically,
we introduce ωi, ω

′′
i ∈ S (HBi

) for i 6= 1, such that

f∞
i

(

σ⊗k ⊗ ω1 ⊗ ω2 ⊗ . . .⊗ ωm
)

= f∞
i (γk ⊗ ω′

1 ⊗ ω′′
2 ⊗ . . .⊗ ω′′

m) , ∀ i ∈ {2, . . . ,m} , (135)

f∞
1 (ωi) = f∞

1 (ω′′
i ) , ∀ i ∈ {2, . . . ,m} , (136)

f∞
j (ωi) = f∞

j (ω′′
i ) , ∀ i, j ∈ {2, . . . ,m} , i 6= j. (137)

Then, using the constraints of Eq. (136) over the states of the Bi 6=1’s batteries, we can re-write
Eq. (134) as

k f∞
1 (σ)+f∞

1 (ω1)+f∞
1 (ω2)+. . .+f∞

1 (ωm) = f∞
1 (γk)+f∞

1 (ω′
1)+f∞

1 (ω′′
2 )+. . .+f∞

1 (ω′′
m) . (138)

If we now use Lem. 17 and property M1, we find that

f∞
1

(

σ⊗k ⊗ ω1 ⊗ ω2 ⊗ . . .⊗ ωm
)

= f∞
1 (γk ⊗ ω′

1 ⊗ ω′′
2 ⊗ . . .⊗ ω′′

m) (139)

From Eqs. (135) and (139) it follows, using the asymptotic equivalence property, that there exists a
sequence of maps

{

Ẽ ′
N

}

N
such that

lim
N→∞

∥

∥

∥
Ẽ ′
N

(

(

σ⊗k ⊗ ω1 ⊗ ω2 ⊗ . . .⊗ ωm
)⊗N

)

− (γk ⊗ ω′
1 ⊗ ω′′

2 ⊗ . . .⊗ ω′′
m)

⊗N
∥

∥

∥

1
= 0, (140)

as well as a related sequence of maps performing the reverse transformation. Using the properties of
g1, as we did before, we find that

k g∞
1 (σ) = g∞

1 (ω′
1)− g∞

1 (ω1) . (141)

Then, combining Eqs. (131) and (141), we obtain that

n g∞
1 (ρ) = k g∞

1 (σ) . (142)

Finally, using Eq. (123) and the initial assumption on the state ρ, we find that

f∞
1 (σ) = g∞

1 (σ) , (143)

which contradicts our initial assumption. Therefore, f∞
1 uniquely quantify the amount of 1-st resource

contained in the main system.

In the next theorem, first stated in Sec. 4.1, we show that in the presence of a bank two resources
can always be exchanged one for the other, while the state of the bank is only infinitesimally modified
by the resource interconversion.

Theorem 9. Consider a resource theory Rmulti with two resources, equipped with the batteries B1 and
B2. Suppose the theory satisfies asymptotic equivalence with respect to the monotones EF1

and EF2
,

i.e. the relative entropy distances from the invariant sets of the theory, and that these sets satisfy the
properties F1, F2, F3, and F5b. Then, the resource interconversion of Eq. (40), where the bank has to
transform in accord to condition X1, is solely regulated by the following relation,

α∆W1 = −β∆W2 + δn. (42)

Furthermore, when the number of copies of the bank system n is sent to infinity, we have that the
above equation reduces to the following one, which we refer to as the interconversion relation,

∆W1 = −β
α

∆W2, (43)

where the amount of resources exchanged ∆Wi is non-zero.
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Proof. Let us consider the resource interconversion of Eq. (40), where a global operation is performed
over bank and batteries, and the sole constraint over the bank system is given by condition X1. As we
discussed in Sec. 3.2, in order for the transformation to happen, the conditions of Eq. (21) need to be
satisfied for both monotones EF1 and EF2 , which in particular implies that the amount of resources
exchanged with the batteries is

∆Wi = n (EFi
(ρ)− EFi

(ρ̃)) , i = 1, 2, (144)

where we have used property F5b. Furthermore, since f
ĒF1 ,ĒF2

bank is monotonic under the set of allowed
operations, property B7, we find that

f
ĒF1 ,ĒF2

bank (ρ⊗n ⊗ ω1 ⊗ ω2) = f
ĒF1 ,ĒF2

bank (ρ̃⊗n ⊗ ω′
1 ⊗ ω′

2). (145)

Then, since the global system is given by many copies of H, and since the bank monotone is additive,
property B3, we can separate the contribution given by bank and batteries. Furthermore, from the
definition of bank monotone, Eq. (37), and the main property of the batteries, condition M1, it follows
that

α
(

EF1(ρ⊗n) + EF1(ω1)
)

+β
(

EF2(ρ⊗n) + EF2(ω2)
)

= α
(

EF1(ρ̃⊗n) + EF1(ω′
1)
)

+β
(

EF2(ρ̃⊗n) + EF2(ω′
2)
)

.
(146)

Now, if we re-order the terms in the above equation, and we use Eq. (37) again, we obtain

f
ĒF1 ,ĒF2

bank (ρ⊗n)− f ĒF1 ,ĒF2

bank (ρ̃⊗n) = α (EF1(ω′
1)− EF1(ω1)) + β (EF2(ω′

2)− EF2(ω2)) . (147)

If we use property X1 together with the definitions of ∆W1 and ∆W2 given in Eq. (23), we get that

α∆W1 = −β∆W2 + δn, (148)

where δn → 0 as n tends to infinity. However, we are still left to show that, when n→∞, the amount
of resources exchanged by the batteries remains finite.

Let us first recall that the way in which the monotone f
ĒF1 ,ĒF2

bank is built implies that this monotone
is tangent to the state-space, see property B2 and Fig. 5. As a result, we have that the curve of bank
states, see Eq. (104) in appendix B, can be approximate, in the neighbourhood of Fbank

(

ĒF1
, ĒF2

)

,
by a line. This implies that, if we take the state ρ̃ in the set of bank states Fbank, such that

EF1
(ρ̃) = EF1

(ρ)− ǫ, (149)

where we recall ρ ∈ Fbank

(

ĒF1 , ĒF2

)

, and ǫ≪ 1, we find that the value of the monotone EF2 for this
state is

EF1
(ρ̃) = EF2

(ρ) +
α

β
ǫ+O(ǫ2). (150)

Then, it is easy to see that, if we map ρ into ρ̃ during the resource interconversion, we obtain the
following

∆W1 = n ǫ , ∆W2 = −n α
β
ǫ+O(n ǫ2) , δn = O(n ǫ2), (151)

where the first two equations follow from Eq. (144), while the last one is given by Eq. (41). Thus, if
we take ǫ ∝ 1

n , and we send n to infinity, we get that the amount of resources ∆Wi exchanged during
the transformations are finite and their value is arbitrary, while the change in the bank monotone over
the bank system δn is infinitesimal.

The next theorem can be found in Sec. 4.2. The theorem states that, given a multi-resource theory
with a non-empty set of bank states, we can always build a single-resource theory out of it, by extending
the class of allowed operations with the possibility of adding ancillary systems described by the bank
states, see Def. 10. In particular, we show that if the multi-resource theory satisfies the asymptotic
equivalence property, so does the single-resource theory with respect to the bank monotone of Eq. (37).
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Theorem 11. Consider the two-resource theory Rmulti with allowed operations Cmulti, and invariant sets
F1 and F2 which satisfy the properties F1, F2, F3, and F5b. Suppose the theory satisfies the asymptotic
equivalence property with respect to the monotones EF1 and EF2 . Then, given the subset of bank
states Fbank

(

ĒF1 , ĒF2

)

, the single-resource theory Rsingle with allowed operations Csingle satisfies the

asymptotic equivalence property with respect to f
ĒF1 ,ĒF2

bank .

Proof. (a) We start the proof by showing that, for the single resource theory Rsingle, the second
statement in Def. 1 implies the first one. In other words, we want to show that for any two states
ρ, σ ∈ S (H) which can be asymptotically mapped into one another with the allowed operations Csingle,
the value of the bank monotone on the two states is the same. Suppose there exists a sequence of

operations
{

Ẽ(s)
N

}

N
such that limN→∞

∥

∥

∥
Ẽ(s)
N (ρ⊗N )− σ⊗N

∥

∥

∥

1
= 0, where these maps are of the form

Ẽ(s)
N (·) = TrA

[

E(s)
N (· ⊗ η(A)

N )
]

, (152)

with η
(A)
N ∈ S

(

H⊗o(N)
)

an arbitrary state of a sub-linear ancilla, and E(s)
N an allowed operation for

Rsingle. Likewise, suppose there is a sequence of maps that perform the reverse transformation. If we
use the asymptotic continuity of the bank monotone, property B6, it follows that

f
ĒF1 ,ĒF2

bank

(

Ẽ(s)
N (ρ⊗N )

)

= f
ĒF1 ,ĒF2

bank

(

σ⊗N
)

+ o(N). (153)

Then, by using the properties B1 – B7 of the bank monotone, we can prove the following chain of
inequalities for the lhs of the above equation

f
ĒF1 ,ĒF2

bank

(

Ẽ(s)
N (ρ⊗N )

)

= f
ĒF1 ,ĒF2

bank

(

TrA

[

E(s)
N (ρ⊗N ⊗ η(A)

N )
])

≤ f ĒF1 ,ĒF2

bank

(

E(s)
N (ρ⊗N ⊗ η(A)

N )
)

≤ f ĒF1 ,ĒF2

bank

(

ρ⊗N ⊗ η(A)
N

)

= f
ĒF1 ,ĒF2

bank

(

ρ⊗N
)

+ f
ĒF1 ,ĒF2

bank

(

η
(A)
N

)

≤ f ĒF1 ,ĒF2

bank

(

ρ⊗N
)

+ o(N) (154)

where the first inequality follows from monotonicity under partial trace, property B4, the second one from
monotonicity under the allowed operations Csingle (that we still need to show), the equality follows from
additivity, property B3, and the last inequality from the sub-extensivity of the monotone, property B5.
If we use the same argument for the sequence of maps performing the reverse transformation, and
we regularise the monotones by dividing the equations by the number of copies N , and sending N to
infinity, we find that

f
ĒF1 ,ĒF2

bank (ρ) = f
ĒF1 ,ĒF2

bank (σ) , (155)

which proves the asymptotic equivalence property in one direction.
We still need to show that the bank monotone is monotonic under the allowed operations Csingle of

the single-resource theory. Recall that the most general of these operations, Eq. (44), is given by

E(s)(ρ) = TrP (n)

[

E(ρ⊗ ρ⊗n
P )
]

, (156)

where E ∈ Cmulti, and we add n ∈ N copies of the bank state ρP ∈ Fbank

(

ĒF1 , ĒF2

)

. Then, using
the properties of the bank monotone, we can show that

f
ĒF1 ,ĒF2

bank

(

E(s)(ρ)
)

= f
ĒF1 ,ĒF2

bank

(

TrP (n)

[

E(ρ⊗ ρ⊗n
P )
])

≤ f ĒF1 ,ĒF2

bank

(

E(ρ⊗ ρ⊗n
P )
)

≤ f ĒF1 ,ĒF2

bank

(

ρ⊗ ρ⊗n
P

)

= f
ĒF1 ,ĒF2

bank (ρ) + f
ĒF1 ,ĒF2

bank

(

ρ⊗n
P

)

= f
ĒF1 ,ĒF2

bank (ρ) , (157)

where the first inequality follows from property B4, the second one from the monotonicity under the
allowed operations Cmulti, property B7, and the last two equalities from additivity, property B3, and
the fact that the bank monotone is equal to zero over the bank states, property B1, respectively.

(b) We now want to prove the other direction of the asymptotic equivalence property for the
resource theory Rsingle, i.e., that the first statement in Def. 1 implies the second one. In other words,
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we want to show that for all states ρ, σ ∈ S (H) such that f
ĒF1 ,ĒF2

bank (ρ) = f
ĒF1 ,ĒF2

bank (σ), there exists a

sequence of operations
{

Ẽ(s)
N

}

N
of the form given in Eq. (152), mapping N copies of ρ into N copies

of σ, where N → ∞. Before proving this part of the theorem, we recall that, given the bank state
ρP ∈ Fbank

(

ĒF1
, ĒF2

)

, all other bank states ρ̃P ∈ Fbank are such that, if EF1
(ρ̃P ) = EF1

(ρP ) + δ
with δ ≪ 1, then

EF2
(ρ̃P ) = EF2

(ρP )− α

β
δ +O(δ2), (158)

which follows from the fact that f
ĒF1 ,ĒF2

bank = 0 parametrises the line which is tangent to the state space
and passes through the point

(

ĒF1 , ĒF2

)

, see appendix B.

Given the two states ρ, σ ∈ S (H) with same value of the monotone f
ĒF1 ,ĒF2

bank , let us introduce the
sequences of states {σn ∈ S (H)}n and {ρ̃P,n ∈ Fbank}n such that, for n ∈ N big enough, we have

EF1(σn) = EF1(σ) (159)

EF1
(ρ⊗ ρ⊗n

P ) = EF1
(σn ⊗ (ρ̃P,n)⊗n), (160)

EF2
(ρ⊗ ρ⊗n

P ) = EF2
(σn ⊗ (ρ̃P,n)⊗n), (161)

where ρP ∈ Fbank

(

ĒF1 , ĒF2

)

. From the above equations, and from the additivity of EF1 , which
follows from property F5b, we obtain that

EF1
(ρ̃P,n) = EF1

(ρP ) +
1

n
(EF1

(ρ)− EF1
(σ)) . (162)

Notice that, for n→∞, we have that 1
n (EF1(ρ)− EF1(σ))→ 0, and therefore, for n sufficiently big,

it follows from Eq. (158) that

EF2
(ρ̃P,n) = EF2

(ρP )− α

β

1

n
(EF1

(ρ)− EF1
(σ)) +O(n−2). (163)

If we now combine Eq. (161) and (163) together, we use the additivity of EF2
, and we use the fact

that ρ and σ have the same value of the bank monotone, we obtain the following

EF2
(σn) = EF2

(σ) +O(n−1). (164)

Let us now focus on the operations mapping ρ into σ. We do this in two steps. First, we use the
fact that the theory Rmulti satisfies asymptotic equivalence, and we consider the Eqs. (160) and (161).
These equations imply that, for all n ∈ N, there exists of a sequence of maps

{

ẼN,n
}

N
such that

lim
N→∞

∥

∥

∥
ẼN,n

(

(

ρ⊗ ρ⊗n
P

)⊗N
)

−
(

σn ⊗ (ρ̃P,n)⊗n
)⊗N

∥

∥

∥

1
= 0. (165)

As per definition of asymptotic equivalence, the maps ẼN,n : S
(

H⊗N(n+1)
)

→ S
(

H⊗N(n+1)
)

are of
the form

ẼN,n(·) = TrA

[

EN,n
(

· ⊗ η(A)
N

)]

(166)

where the map EN,n is an allowed operation of Rmulti acting on system and ancilla, and the state of

the ancilla is η
(A)
N ∈ S

(

(

H⊗n+1
)⊗f(N)

)

, where f(N) = o(N). Notice that, in particular, we can take

n to be a monotonic function of N , n = g(N), such that limN→∞ g(N) =∞ and f(N)g(N) = o(N).
For example, if f(N) ∝ N1/2, we can chose g(N) ∝ N1/4, so that their product is N3/4 = o(N).

We can now define the sequence of maps
{

Ẽ(s)
N

}

N
acting on S

(

H⊗N
)

. These maps are defined as

Ẽ(s)
N (ρ⊗N ) = TrP

[

ẼN,g(N)

(

ρ⊗N ⊗ ρ⊗Ng(N)
P

)]

, (167)

where we are tracing out the part of the system which was initially in the state ρ
⊗Ng(N)
P . It is interesting

to notice that this system is super-linear in the number of copies N of ρ, a condition that seems to be
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necessary to achieve the conversion, see Ref. [10] for an example in thermodynamics. We can re-write
these maps as

Ẽ(s)
N (ρ⊗N ) = TrA

[

E(s)
N

(

ρ⊗N ⊗ η(A)
N

)]

, (168)

where we recall that the ancillary system still lives on a sub-linear number of copies of H, due to our

choice of the function g(N), and the operation E(s)
N is an allowed operations for the theory Rsingle –

compare it with Eq. (44) – defined as

E(s)
N (·) = TrP

[

EN,g(N)

(

· ⊗ ρ⊗Ng(N)
P

)]

. (169)

If we now use Eq. (165) together with the monotonicity of the trace distance under partial tracing, we
find that

lim
N→∞

∥

∥

∥
Ẽ(s)
N (ρ⊗N )−

(

σg(N)

)⊗N
∥

∥

∥

1
= 0. (170)

To conclude the proof, we notice that the sequence of states
{

σg(N)

}

N
does not need to converge

to σ with respect to the trace distance. However, if we consider the regularisation of the EFi
’s on

these states, we find that

lim
N→∞

1

N
EFi

(σ⊗N
g(N)) = EFi

(σ), i = 1, 2, (171)

which follows from Eqs. (159) and (164). Then, we can use the asymptotic equivalence of Rmulti, which
tells us that there exists a second sequence of allowed operations, and a sub-linear ancilla, such that
we can asymptotically transform the state of the system into σ. This concludes the proof.

The following corollary is stated in Sec. 4.2, and it shows that the bank monotone introduced in
Eq. (37) coincides with the relative entropy distance from the set of bank states Fbank

(

ĒF1
, ĒF2

)

.

Corollary 12. Consider the two-resource theory Rmulti with allowed operations Cmulti, and invariant
sets F1 and F2 which satisfy the properties F1, F2, F3, and F5b. Suppose the theory satisfies the
asymptotic equivalence property with respect to the monotones EF1

and EF2
. If the subset of bank

states Fbank

(

ĒF1
, ĒF2

)

contains a full-rank state, then the bank monotone f
ĒF1 ,ĒF2

bank coincides with
the relative entropy distance from this subset of states, modulo a multiplicative constant.

Proof. We first notice that Thm. 11 promises us that, under the current assumptions over the theory
Rmulti, we can construct a single-resource theory Rsingle with allowed operations Csingle as in Def. 10,

which satisfies asymptotic equivalence with respect to the bank monotone f
ĒF1 ,ĒF2

bank . Furthermore,
since this monotone satisfies the properties SM1 – SM6 listed in appendix A, we can use Thm. 18 in
the same appendix to prove that this single resource theory is reversible. If we then use the results of
Ref. [32], we obtain that this monotone is the unique measure of resource for the theory Rsingle.

What we need to show in this proof is that, actually, both the bank monotone defined in Eq. (37)
and the relative entropy distance from the set of bank states Fbank

(

ĒF1 , ĒF2

)

satisfy the properties
from SM1 to SM6, and therefore by uniqueness these two functions need to coincide (modulo a mul-
tiplicative constant). That the bank monotone satisfies these properties is easy to show. Indeed, its
monotonicity under the class of operations Csingle, property SM1, is proved in part (a) of Thm. 11.
Furthermore, all other properties directly follow from property B1 and the ones listed in Prop. 8.

Showing that the relative entropy distance from the set of states Fbank

(

ĒF1 , ĒF2

)

satisfies the
same properties is not difficult either. First, we recall that the invariant sets of the theory, F1 and F2,
satisfy the properties F1, F2, F3 and F5b by hypothesis. This in turn implies that the subset of bank
states under consideration satisfies properties F1, F2 and F5b, as it follows from the Props. 25 and
24 in appendix D.2. That the subset Fbank

(

ĒF1
, ĒF2

)

contains a full-rank state, property F3, is an
hypothesis of this corollary.

With the help of the above properties we can show that the relative entropy distance from Fbank

(

ĒF1 , ĒF2

)

satisfies the same properties of the bank monotone. That this relative entropy is monotonic under the
set of operations Csingle, property SM1, is shown in Prop. 27. Furthermore, property SM2 follows from
the definition of relative entropy distance, see Eq. (9), while property SM3 follows from the fact that
Fbank

(

ĒF1
, ĒF2

)

satisfies the properties F1, F2, and F3. The properties SM4 and SM5 follow from
the additivity of the set of bank states, property F5b. Finally, the fact that the monotone scales sub-
extensively, property SM6, is a consequences of the additivity of the set of bank states, as well as of
the fact that a full-rank state is contained in this set, properties F5b and F3, respectively.
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D.2 Technical results

In this section we provide some minor results that are used to prove some of the main theorems in the
paper. In particular, the next proposition is used in Sec. 3.3, together with Thm. 5, to show that a multi-
resource theory satisfying asymptotic equivalence with respect to the relative entropy distances from
its invariant sets has unique resource quantifiers. This proposition is already known in the literature,
see the references inside the proof.

Proposition 6. Consider a resource theory Rmulti with m resources, equipped with the batteries Bi’s,
where i = 1, . . . ,m. Suppose the class of allowed operations is Cmulti and the invariant sets are {Fi}mi=1.
If the invariant set Fi is of the form of Eq. (27), and it satisfies the properties F1 – F5, then the relative
entropy distances from this set, EFi

, is a regularisable monotone under the class of allowed operations,
and it obeys the properties M1 – M7.

Proof. Let us first show that the relative entropy distance EFi
is a monotone for the multi-resource

theory Rmulti, and that its regularisation is well-defined. These are necessary assumptions we have made
in Def. 1. The fact that EFi

is monotonic under the class of allowed operations Cmulti, and that in
particular it is monotonic under the allowed operations in Ci, follows from the argument provided in
the last paragraph of Sec. 2.1, and from the fact that Cmulti is obtained from the intersection of all the
other classes of allowed operations, see Eq. (11). Furthermore, that the regularisation of EFi

exists
follows from the properties F3 and F4. In fact, for all ρ ∈ S (H), we have that

1

n
EFi

(ρ⊗n) =
1

n
inf

γn∈F(n)
D(ρ⊗n ‖ γn) ≤ 1

n
inf
γ∈F

D(ρ⊗n ‖ γ⊗n) = inf
γ∈F

D(ρ ‖ γ) ≤ D(ρ ‖ γfull-rank)

(172)
where the first inequality follows from the fact that the invariant sets are closed under tensor product,
property F4, and the second inequality from the fact that they contain at least one full-rank state
γfull-rank, property F3. Since the rhs of Eq. (172) is finite, and independent of n, we have that the
regularisation of the EFi

’s is well-defined.
In order for the monotone to satisfy the property M1, we can simply choose the states of the

battery Bi to have a fixed value of the monotones EFj 6=i
, for all j ∈ {1, . . . ,m}. Property M2,

instead, follows from the fact that we want the batteries to be independent from each other, so
as to address them individually. As a result, we choose the global invariant sets to be of the form
Fi = Fi,S ⊗ Fi,B1

⊗ . . . ⊗ Fi,Bm
, where i = 1, . . . ,m, the main system is S, and the Bi’s refer

to the batteries. This implies that the relative entropy distances from these sets are additive over

system and batteries. However, it is still possible for F⊗n
i to be a proper subset of F (n)

i , since on the
main systems or batteries we do not ask any additivity property. The validity of property M3 for EFi

follows straightforwardly from the definition of relative entropy distance, see Eq. (9). That EFi
satisfies

property M4 follows from property F5, since for all ρn ∈ S (H⊗n) we have that

EFi
(Trk [ρn]) = inf

γn−k∈F
(n−k)
i

D(Trk [ρn] ‖ γn−k) ≤ inf
γn∈F

(n)
i

D(Trk [ρn] ‖Trk [γn])

≤ inf
γn∈F

(n)
i

D(ρn ‖ γn) = EFi
(ρn), (173)

where the first inequality follows from property F5, and the second one from the monotonicity of the
relative entropy under CPTP maps. The monotones EFi

’s are also sub-additive, property M5, since for
any two states ρn ∈ S (H⊗n) and ρk ∈ S

(

H⊗k
)

we have that

EFi
(ρn ⊗ ρk) = inf

γn+k∈F
(n+k)
i

D(ρn ⊗ ρk ‖ γn+k) ≤ inf
γn∈F

(n)
i

,γk∈F
(k)
i

D(ρn ⊗ ρk ‖ γn ⊗ γk)

= inf
γn∈F

(n)
i

D(ρn ‖ γn) + inf
γk∈F

(k)
i

D(ρk ‖ γk) = EFi
(ρn) + EFi

(ρk), (174)

where the inequality follows from property F4 of the set Fi. Property M6 for the relative entropy
distance EFi

follows from similar considerations to the one presented in Eq. (172). In fact, we have
that for all ρn ∈ S (H⊗n),

EFi
(ρn) = inf

γn∈F
(n)
i

D(ρn ‖ γn) ≤ D(ρn ‖ γ⊗n
full-rank) = −S(ρn)− Tr

[

ρn log γ⊗n
full-rank

]

≤ −Tr
[

ρn log γ⊗n
full-rank

]

≤ n log λ−1
min, (175)
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where the first inequality follows from the fact that Fi contains a full-rank state, property F3, the
second one from the fact that the von Neumann entropy is non-negative, and the last one from the
fact that the optimal case is obtained when ρn is given by n copies of the pure state associated with
the minimum eigenvalue λmin of the full-rank state γfull-rank. Finally, in Ref. [64], Lem. 1, it was shown
that the relative entropy distance from a set F satisfying properties F1, F2, and F3 is asymptotic
continuous. In the proof, it was required the set F to contain the maximally-mixed state. However, as
it was noticed in Ref. [63], Lem. C.3, one simply needs F to contain a full-rank state. Thus, under the
above properties on the free set, we have that EFi

satisfies the property M7.

The next proposition collects the properties of the bank monotone defined in Eq. (37).

Proposition 8. Consider a resource theory Rmulti with allowed operations Cmulti, satisfying asymptotic
equivalence with respect to the monotones EF1 and EF2 , i.e. the relative entropy distances from the
invariant sets of the theory. Suppose that these sets satisfy the properties F1, F2, F3, and F5b. Then,

the function f
ĒF1 ,ĒF2

bank introduced in Eq. (37) satisfies the following properties.

B3 The function f
ĒF1 ,ĒF2

bank is additive.

B4 The function f
ĒF1 ,ĒF2

bank is monotonic under partial tracing.

B5 The function f
ĒF1 ,ĒF2

bank is sub-extensive, i.e., this function scales at most linearly in the number of
systems considered. More precisely, for any sequence of states {ρn ∈ S (H⊗n)}, we have that

f
ĒF1 ,ĒF2

bank (ρn) = O(n).

B6 The function f
ĒF1 ,ĒF2

bank is asymptotic continuous.

B7 The function f
ĒF1 ,ĒF2

bank is monotonic under the set of allowed operations Cmulti, since α and β are
non-negative.

Proof. Most of the properties listed above follows straightforwardly from the ones of the invariant sets
Fi’s. Here, we only focus on property B4, stating that

f
ĒF1 ,ĒF2

bank (Trk [ρn]) ≤ f ĒF1 ,ĒF2

bank (ρn), ∀n, k ∈ N , k < n , ∀ ρn ∈ S
(

H⊗n
)

. (176)

In order to prove the above property, we make use of Lem. 23 and of the definition of bank monotone,
see Eq. (37). First, let us divide the n copies of the system into two sets, so that H⊗n = H⊗k⊗H⊗n−k,
and in the following equation we refer to S1 as the system described by the first k copies, and to S2

as the system described by the last n − k copies. In particular, ρS1
= Trn−k [ρn] ∈ S

(

H⊗k
)

, and

ρS2 = Trk [ρn] ∈ S
(

H⊗n−k
)

. Then, we have the following chain of inequalities

f
ĒF1 ,ĒF2

bank (ρn) = α
(

EF1
(ρn)− n ĒF1

)

+ β
(

EF2
(ρn)− n ĒF2

)

≥ α
(

EF1(ρS1) + EF1(ρS2)− n ĒF1

)

+ β
(

EF2(ρS1) + EF2(ρS2)− n ĒF2

)

= α
(

EF1(ρS1)− k ĒF1

)

+ β
(

EF2(ρS1)− k ĒF2

)

+ α
(

EF1
(ρS2

)− (n− k)ĒF1

)

+ β
(

EF2
(ρS2

)− (n− k)ĒF2

)

= f
ĒF1 ,ĒF2

bank (ρS1
) + f

ĒF1 ,ĒF2

bank (ρS2) ≥ f ĒF1 ,ĒF2

bank (ρS2
) = f

ĒF1 ,ĒF2

bank (Trk [ρn]), (177)

where the first inequality follows from Lem. 23, and the second one from the fact that the bank
monotone is non-negative, which itself follows from properties B1 and B2.

The following proposition is used in Sec. 3.4 to show that single-resource theories whose class of
allowed operations does not increase the average value of a given observable admit a monotone that is
asymptotic continuous, see property M7.

Proposition 22. Consider an Hilbert space H with dimension d, an Hermitian operator A ∈ B (H),
and the function MA : S (H)→ R defined as

MA(ρ) = Tr [Aρ]− a0, (178)
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where ρ ∈ S (H) is an element of the state-space, and a0 is the minimum eigenvalue of A. When
n copies of the Hilbert space are considered, Hn = ⊗ni=1H(i), the above operator is extended as
An =

∑n
i=1 A

(i), where A(i) ∈ B (H) acts on the i-th copy of the Hilbert space. Then, the function
MA is asymptotic continuous.

Proof. Consider two states ρn, σn ∈ S(H⊗n), such that ‖ρn − σn‖1 → 0 for n→∞. We are interested
in the difference between the value of the function MA evaluated on ρn and σn. By definition,

|MA(ρn)−MA(σn)| = |Tr [(ρn − σn)An]| . (179)

Now, we can diagonalise the operator ρn − σn =
∑

λ λ |ψλ〉 〈ψλ|. Then, we find

|Tr [(ρn − σn)An]| =
∣

∣

∣

∣

∣

∑

λ

λ 〈λ|An |λ〉
∣

∣

∣

∣

∣

≤
∑

λ

|λ| |〈λ|An |λ〉| ≤
∑

λ

|λ| ‖An‖∞ , (180)

where we are using the operator norm ‖O‖∞ = sup|ψ〉∈H
‖O|ψ〉‖
‖|ψ〉‖ , and the last inequality straightfor-

wardly follows from the definition of operator norm. Then, due to the way in which we have defined
An, it is easy to show that ‖An‖∞ = n ‖A‖∞, and therefore

∑

λ

|λ| ‖An‖∞ = n ‖A‖∞

∑

λ

|λ| = n ‖A‖∞ ‖ρn − σn‖1 . (181)

Finally, notice that dimHn = dn, where d is fixed by the initial choice of H. Then, we have,

|MA(ρn)−MA(σn)| ≤ n log d ‖A‖∞ ‖ρn − σn‖1 . (182)

If we now divide by n both side of the inequality, we get that

|MA(ρn)−MA(σn)|
n

≤ log d ‖A‖∞ ‖ρn − σn‖1 , (183)

and if we send n→∞, we obtain that 1
n |MA(ρn)−MA(σn)| → 0, which proves the theorem.

The following lemma states that, when the sets Fi’s are such that F (n)
i = F⊗n

i for all n ∈ N,
property F5b, the relative entropy distances from these sets are super-additive. This lemma is used in
Prop. 24 and Thm. 11.

Lemma 23. Consider a state ρS1,S2 ∈ S
(

H⊗2
)

, and suppose that the sets F1 and F2 satisfy prop-

erty F5b, that is, F (n)
i = F⊗n

i for all n ∈ N, i = 1, 2. Then, the relative entropy distances from these
sets, EF1

and EF2
, are such that

EFi
(ρS1,S2

) ≥ EFi
(ρS1

) + EFi
(ρS2

) , i = 1, 2, (184)

where ρS1
= TrS2

[ρS1,S2
], and similarly ρS2

= TrS1
[ρS1,S2

]. Furthermore, the above inequality is
saturated if and only if ρS1,S2

= ρS1
⊗ ρS2

. The result extends trivially to the case in which n > 2
copies of the system are considered.

Proof. Let us consider the monotone EF1 , as the following argument can be equally applied to EF2 .
By definition of relative entropy distance, we have that

EF1(ρS1,S2) = inf
σS1,S2 ∈F

(2)
1

D(ρS1,S2‖σS1,S2) = −S(ρS1,S2) + inf
σS1,S2 ∈F

(2)
1

(−Tr [ρS1,S2 log σS1,S2 ]) ,

(185)
where S(ρS1,S2

) = −Tr [ρS1,S2
log ρS1,S2

] is the Von Neumann entropy of the state ρS1,S2
. From the

sub-additivity of the Von Neumann entropy, we have that

− S(ρS1,S2
) ≥ −S(ρS1

)− S(ρS2
), (186)
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while from the property F5b it follows that

inf
σS1,S2 ∈F

(2)
1

(−Tr [ρS1,S2
log σS1,S2

]) = inf
σS1 ,σS2 ∈F1

(−Tr [ρS1,S2
log σS1

⊗ σS2
])

= inf
σS1 ,σS2 ∈F1

(−Tr [ρS1
log σS1

]− Tr [ρS2
log σS2

])

= inf
σS1 ∈F1

(−Tr [ρS1 log σS1 ]) + inf
σS2 ∈F1

(−Tr [ρS2 log σS2 ]) .

(187)

From Eqs. (185), (186), and (187) it follows that

EF1(ρS1,S2) ≥ inf
σS1 ∈F1

(−S(ρS1)− Tr [ρS1 log σS1 ]) + inf
σS2 ∈F1

(−S(ρS2)− Tr [ρS2 log σS2 ])

= EF1
(ρS1

) + EF1
(ρS2

). (188)

The following proposition is used in Sec. 4.1, in Prop. 27, and in Cor. 12. The proposition states
that, when the curve of bank states is strictly convex, and we consider n copies of a bank system, the

set of bank states F (n)
bank is given by the tensor product of n copies of states that are in the set Fbank,

each of them with the same value of monotones EF1
and EF2

.

Proposition 24. Suppose the sets F1 and F2 satisfy property F5b, that is, F (n)
i = F⊗n

i for all n ∈ N,
i = 1, 2, and the set of bank states Fbank is represented by a strictly convex curve in the resource
diagram. Consider the set of bank states Fbank

(

ĒF1 , ĒF2

)

defined in Eq. (35), where EF1 and EF2

are the relative entropy distances from the sets F1 and F2, respectively. Then, when n ∈ N copies of
the bank system are considered, we find that the set of bank states coincides with

F (n)
bank =

{

ρ1 ⊗ . . .⊗ ρn ∈ S
(

H⊗n
)

| ∃ ĒF1 , ĒF2 such that ρ1, . . . , ρn ∈ Fbank

(

ĒF1 , ĒF2

)}

. (189)

Furthermore, we have that for all subset of bank state Fbank

(

ĒF1
, ĒF2

)

⊂ S (H), the corresponding
bank subset in S (H⊗n) is such that

F (n)
bank

(

ĒF1
, ĒF2

)

= F⊗n
bank

(

ĒF1
, ĒF2

)

. (190)

Proof. We prove the theorem for n = 2, as the argument extends trivially for n > 2. Consider a state
σS1,S2 ∈ S

(

H⊗2
)

. From Lem. 23, it follows that

EFi
(σS1,S2) ≥ EFi

(σS1) + EFi
(σS2) , i = 1, 2, (191)

where σS1 = TrS2 [σS1,S2 ], σS2 = TrS1 [σS1,S2 ], and the inequality is saturated iff σS1,S2 = σS1 ⊗ σS2 .
Now, for both the states σS1

, σS2
∈ S (H), select the bank states ρP1

, ρP2
∈ Fbank such that

EFi
(σSj

) ≥ EFi
(ρPj

) , i, j = 1, 2. (192)

Recall now that, in the EF1
–EF2

diagram, the curve of bank state is convex (see Prop. 21), and
therefore given ρP1

, ρP2
∈ Fbank, we can find another ρP3

∈ Fbank such that

1

2
EFi

(ρP1) +
1

2
EFi

(ρP2) ≥ EFi
(ρP3) , i = 1, 2, (193)

where the inequality (when the curve is strictly convex) is saturated iff ρP1 , ρP2 , and ρP3 all belong
to the same subset Fbank

(

ĒF1 , ĒF2

)

. By combining Eqs. (191), (192), and (193), together with
property F5b of the sets F1 and F2 (that implies the additivity of the corresponding relative entropy
distances), we find that for all σS1,S2

∈ S
(

H⊗2
)

, it exists a ρP3
∈ Fbank such that

EFi
(σS1,S2

) ≥ EFi
(ρ⊗2
P3

) , i = 1, 2 (194)

where the inequality is saturated iff σS1,S2
= σS1

⊗ σS2
, and both σS1

and σS2
belong to the same

subset Fbank

(

ĒF1 , ĒF2

)

. Due to the definition of bank states given in Eq. (34), the thesis of this
proposition follows.
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The next proposition shows that, when the invariant sets F1 and F2 are convex sets, the set of bank
states Fbank

(

ĒF1
, ĒF2

)

, defined in Eq. (35), is convex as well. This proposition is used in Sec. 4.1, as
well as in Thm. 12.

Proposition 25. Suppose that F1 and F2 are convex sets, property F2, and consider the relative
entropy distances from these two sets, EF1

and EF2
. Then, the set of bank states Fbank

(

ĒF1
, ĒF2

)

is convex, as well as its extension to the n-copy case, F (n)
bank

(

ĒF1 , ĒF2

)

, defined in Eq. (190).

Proof. Let us consider two states ρ1, ρ2 ∈ Fbank

(

ĒF1
, ĒF2

)

. For these two states, there exists
σ1, σ2 ∈ F1 such that

EF1
(ρ1) = D(ρ1 ‖σ1) = ĒF1

, (195a)

EF1
(ρ2) = D(ρ2 ‖σ2) = ĒF1

. (195b)

Then, for all λ ∈ [0, 1], we have

EF1

(

λ ρ1 + (1− λ) ρ2

)

= inf
σ∈F1

D(λ ρ1 + (1− λ) ρ2 ‖σ)

≤ D(λ ρ1 + (1− λ) ρ2 ‖λσ1 + (1− λ)σ2)

≤ λD(ρ1 ‖σ1) + (1− λ)D(ρ2 ‖σ2) = ĒF1
, (196)

where the first inequality follows from the fact that F1 is convex, property F2, and the second inequality
from the joint convexity of the relative entropy. In the same way, it follows that

EF2

(

λ ρ1 + (1− λ) ρ2

)

≤ ĒF2
. (197)

Since ρ1, ρ2 ∈ Fbank

(

ĒF1
, ĒF2

)

, they satisfy the properties of Eq. (34), and therefore it has to be
that, for all λ ∈ [0, 1],

EF1

(

λ ρ1 + (1− λ) ρ2

)

= ĒF1
and EF2

(

λ ρ1 + (1− λ) ρ2

)

= ĒF2
. (198)

Thus, we have that λ ρ1 + (1 − λ) ρ2 ∈ Fbank

(

ĒF1
, ĒF2

)

. This result can be extended to the case

of n ∈ N copies of the system, where the bank set F (n)
bank

(

ĒF1
, ĒF2

)

is defined as in Eq. (190). In
this case, the proof is analogous to the one considered above, with the exception that in the rhs of
Eqs. (195), and of the following ones, we add the multiplicative factor n.

The next lemma is used in Prop. 27. The lemma states that, given the class of operations Cmulti

for which F1 and F2 are invariant sets, the set of bank states Fbank, defined in Eq. (34), is invariant
as well.

Lemma 26. Consider a resource theory Rmulti with allowed operations Cmulti, and two invariant sets
F1 and F2. Consider the subset of bank states Fbank

(

ĒF1
, ĒF2

)

as defined in Eq. (35). Then, for all

E ∈ Cmulti, we have that Fbank

(

ĒF1
, ĒF2

)

is an invariant set, that is

E (ρ) ∈ Fbank

(

ĒF1
, ĒF2

)

, ∀ ρ ∈ Fbank

(

ĒF1
, ĒF2

)

(199)

Analogously, the set of bank states describing n copies of the bank system is invariant under the class

of allowed operations C(n)
multi.

Proof. Let us consider ρ ∈ Fbank

(

ĒF1
, ĒF2

)

, as well as the state E(ρ) obtained by applying the map
E ∈ Cmulti to the bank state. Due to the monotonicity of EF1

and EF2
, we have that EF1

(E(ρ)) ≤
EF1 (ρ), and EF2 (E(ρ)) ≤ EF2 (ρ). Recall now that ρ is a bank state, which implies that ∀σ ∈ S (H),
one (or more) of the following options holds

1. EF1
(σ) > EF1

(ρ).

2. EF2
(σ) > EF2

(ρ).

3. EF1(σ) = EF1(ρ) and EF2(σ) = EF2(ρ).
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However, the monotonicity conditions given by EF1
and EF2

implies that E(ρ) violates options 1
and 2, so that option 3 is the only possible one. But this implies that EF1

(E(ρ)) = EF1
(ρ) and

EF2(E(ρ)) = EF2(ρ), meaning that E(ρ) ∈ Fbank

(

ĒF1 , ĒF2

)

. The same argument applies to the set

F (n)
bank, when n copies of the system are considered. Indeed, this case is analogous to the one considered

above, with the sole difference that now the state ρ ∈ F (n)
bank, the state σ ∈ S (H⊗n), and the operations

we use are in the class C(n)
multi defined in Sec. 2.2.

The last proposition of this section shows that the relative entropy distance from the set Fbank

(

ĒF1
, ĒF2

)

is monotonic under the class of operations Csingle, introduced in Def. 10. This proposition is used in
Cor. 12.

Proposition 27. Consider a multi-resource theory Rmulti with two resources, whose allowed operations
Cmulti leave the sets F1 and F2 invariant. Suppose these invariant sets satisfy the properties F1, F2,
F3, and F5b. Then, the relative entropy distance from the subset of bank states Fbank

(

ĒF1
, ĒF2

)

is
monotonic under both the class of operations Cmulti and the class Csingle introduced in Def. 10.

Proof. 1. Here we show monotonicity of the relative entropy distance with respect to the addition of
an ancillary system described by n ∈ N copies of a bank states. Consider the state ρ ∈ S (H), and the
bank state ρP ∈ Fbank

(

ĒF1
, ĒF2

)

. Then, we have

EFbank(ĒF1 ,ĒF2)(ρ⊗ ρ⊗n
P ) = inf

σ,σP1 ,...,σPn ∈Fbank(ĒF1 ,ĒF2)
D(ρ⊗ ρ⊗n

P ‖σ ⊗ σP1
⊗ . . .⊗ σPn

)

= inf
σ∈Fbank(ĒF1 ,ĒF2)

D(ρ ‖σ) +

n
∑

i=1

inf
σPi

∈Fbank(ĒF1 ,ĒF2)
D(ρP ‖σPi

)

= inf
σ∈Fbank(ĒF1 ,ĒF2)

D(ρ ‖σ) = EFbank(ĒF1 ,ĒF2)(ρ), (200)

where the first equality follows from Prop. 24, and the last one from the fact that ρP ∈ Fbank

(

ĒF1
, ĒF2

)

.
2. Now we show monotonicity of the relative entropy distance with respect to the allowed operations

Cmulit. Let us consider a state ρ ∈ S (H), together with an operation E ∈ Cmulti. Then, we have that

EFbank(ĒF1 ,ĒF2)
(

E(ρ)
)

= inf
σ∈Fbank(ĒF1 ,ĒF2)

D(E(ρ) ‖σ) ≤ inf
σ∈Fbank(ĒF1 ,ĒF2)

D(E(ρ) ‖ E(σ))

≤ inf
σ∈Fbank(ĒF1 ,ĒF2)

D(ρ ‖σ) = EFbank(ĒF1 ,ĒF2)(ρ), (201)

where the first inequality follows from Lem. 26, and the second one from the monotonicity of the relative
entropy under CPTP maps. This result trivially extends to the case in which we have multiple copies of

the system, since in Lem. 26 we have shown that F (n)
bank is invariant under the allowed operations C(n)

multi

for all n ∈ N.
3. We show the monotonicity of the relative entropy with respect to partial tracing when the ancillary

system is composed by just one copy. However, the result straightforwardly extends to the case in which
the ancillary system is composed by n ∈ N copies. Let us consider the state ρS1,S2

∈ S
(

H⊗2
)

. Then,
we have that

EFbank(ĒF1 ,ĒF2)(TrS2
[ρS1,S2

]) = inf
σS1 ∈Fbank(ĒF1 ,ĒF2)

D(TrS2
[ρS1,S2

] ‖σS1
)

= inf
σS1 ,σS2 ∈Fbank(ĒF1 ,ĒF2)

D(TrS2 [ρS1,S2 ] ‖TrS2 [σS1 ⊗ σS2 ])

≤ inf
σS1 ,σS2 ∈Fbank(ĒF1 ,ĒF2)

D(ρS1,S2 ‖σS1 ⊗ σS2)

= EFbank(ĒF1 ,ĒF2)(ρS1,S2), (202)

where the second equality follows from Prop. 24, while the inequality follows from the monotonicity of
the relative entropy distance under CPTP maps.
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