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Abstract 

Even before the advent of Artificial Intelligence, sci- 
ence fiction writer Isaac Asimov recognized that an 
agent must place the protection of humans from harm 

at a higher priority than obeying human orders. In- 
spired by Asimov, we pose the following fundamental 

questions: (1) How should one formalize the rich, but 
informal, notion of “harm”? (2) How can an agent 
avoid performing harmful actions, and do so in a com- 
putationally tractable manner? (3) How should an 
agent resolve conflict between its goals and the need 
to avoid harm? (4) When should an agent prevent a 
human from harming herself? While we address some 
of these questions in technical detail, the primary goal 
of this paper is to focus attention on Asimov’s concern: 
society will reject autonomous agents unless we have 
some credible means of making them safe! 

The Three Laws of Robotics: 

A robot may not injure a human being, or, 
through inaction, allow a human being to come 
to harm. 

A robot must obey orders given it by human 
beings except where such orders would conflict 
with the First Law. 

A robot must protect its own existence as long 

as such protection does not conflict with the 
First or Second Law. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Isaac Asimov (Asimov 1942): 

-.- - . - Motiyation ~ 
In 1940, Isaac Asimov stated the First Law of Robotics, 
capturing an essential insight: an intelligent agent1 
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‘Since the field of robotics now concerns itself primarily 

with kinematics, dynamics, path planning, and low level 

control issues, this paper might be better titled “ The First 

Law of Agenthood.”  However, we keep the reference to 

“ Robotics”  as a historical tribute to Asimov. 

should not slavishly obey human commands - its fore- 
most goal should be to avoid harming humans. Con- 
sider the following scenarios: 

A construction robot is instructed to fill a pothole 
in the road. Although the robot repairs the cavity, 
it leaves the steam roller, chunks of tar, and an oil 
slick in the middle of a busy highway. 

A softbot (software robot 
4 

is instructed to reduce 

disk utilization below 90 o. It succeeds, but in- 
spection reveals that the agent deleted irreplaceable 

I4TEX files without backing them up to tape. 

While less dramatic than Asimov’s stories, the sce- _ . __ - _-. 
narios illustrate his point: not all ways of satisfying a 
human order are equally good; in fact, sometimes it is 
better not to satisfy the order at all. As we begin to 

deploy agents in environments where they can do some 
real damage, the time has come to revisit Asimov’s 
Laws. This paper explores the following fundamental 
questions: 

How should one formalize the notion of 

“harm”? We define dont-disturb and restore- 

two domain-independent primitives that capture as- 

pects of Asimov’s rich but informal notion of harm 
within the classical planning framework. 

How can an agent avoid performing harm- 

ful actions, and do so in a computationally 

tractable manner? We leverage and extend the 
familiar mechanisms of planning with subgoal inter- 
actions (Tate 1977; Chapman 1987; McAllester & 
Rosenblitt 1991; Penberthy & Weld 1992) to detect 
potential harm in polynomial time. In addition, we 
explain how the agent can avoid harm using tactics 
such as confrontation and evasion (executing sub- 
plans to defuse the threat of harm). 

How should an agent resolve conflict between 

its goals and the need to avoid harm? We 
impose a strict hierarchy where dont-disturb con- 
straints override planners goals, but restore con- 
straints do not. 

When should an agent prevent a human from 

harming herself ? At the end of the paper, we 
show how our framework could be extended to par- 
tially address this question. 
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The paper’s main contribution is a “call to arms:” 
before we release autonomous agents into real-world 
environments, we need some credible and computation- 
ally tractable means of making them obey Asimov’s 
First Law. 

Survey of Possible Solutions 
To make intelligent decisions regarding which actions 
are harmful, and under what circumstances, an agent 
might use an explicit model of harm. For example, 
we could provide the agent with a partial order over 
world states (a. e., a utility function). This framework is 
widely adopted and numerous researchers are attempt- 
ing to render it computationally tractable (Russell & 
Wefald 1991; Etzioni 1991; Wellman & Doyle 1992; 
Haddawy & Hanks 1992; Williamson & Hanks 1994), 
but many problems remain to be solved. In many 
cases, the introduction of utility models transforms 
planning into an optimization problem - instead of 
searching for some plan that satisfies the goal, the 
agent is seeking the best such plan. In the worst case, 
the agent may be forced to examine all plans to deter- 
mine which one is best. In contrast, we have explored a 
satisficing approach - our agent will be satisfied with 
any plan that meets its constraints and achieves its 
goals. The expressive power of our constraint language 

is weaker than that of utility functions, but our con- 
straints are easier to incorporate into standard plan- 
ning algorithms. 

By using a general, temporal logic such as that of 
(Shoham 1988) or (Davis 1990, Ch. 5) we could spec- 
ify constraints that would ensure the agent would not 
cause harm. Before executing an action, we could ask 
an agent to prove that the action is not harmful. While 
elegant, this approach is computationally intractable 
as well. Another alternative would be to use a planner 
such as ILP (Allen 1991) or ZENO (Penberthy & Weld 

1994) which supports temporally quantified goals. Un- 
fortunately, at present these planners seem too ineffi- 
cient for our needs.2 

Situated action researchers might suggest that non- 
deliberative, reactive agents could be made “safe” by 

carefully engineering their interactions with the envi- 
ronment. Two problems confound this approach: 1) 
the interactions need to be engineered with respect to 
each goal that the agent might perform, and a general 
purpose agent should handle many such goals, and 2) 
if different human users had different notions of harm, 
then the agent would need to be reengineered for each 
user. 

Instead, we aim to make the agent’s reasoning about 
harm more tractable, by resiricting the content and 
form of its theory of injury. We adopt the stan- 

2 We have als o examined previous work on “ plan quality”  

for ideas, but the bulk of that work has focused on the 

problem of leveraging a single action to accomplish multiple 

goals thereby reducing the number of actions in, and the 

cost of, the plan (Pollack 1992; Wilkins 1988). While this 

class of optimizations is critical in domains such as database 

query optimization, logistics planning, and others, it does 

not address our concerns here. 

3Loosely speaking, our approach is reminiscent of clas- 

sical work on knowledge representation, which renders in- 

dard assumptions of classical planning: the agent has 
complete and correct information of the initial state 
of the world, the agent is the sole cause of change, 
and action execution is atomic, indivisible, and results 
in effects which are deterministic and completely pre- 
dictable. (The end of the paper discusses relaxing these 
assumptions.) On a more syntactic level, we make the 
additional assumption that the agent’s world model is 
composed of ground atomic formuli. This sidesteps the 
ramification problem, since domain axioms are banned. 
Instead, we demand that individual action descriptions 
explicitly enumerate changes to every predicate that is 
affected.4 Note, however, that we are not assuming the 

STRIPS representation; Instead we adopt an action lan- 
guage (based on ADL (Pednault 1989)) which includes 
universally quantified and disjunctive preconditions as 
well as conditional effects (Penberthy & Weld 1992). 

Given the above assumptions, the next two sections 
define the primitives dont-disturb and restore, and 

explain how they should be treated by a generative 
planning algorithm. We are not claiming that the ap- 
proach sketched below is the “right” way to design 
agents or to formalize Asimov’s First Law. Rather, 
our formalization is meant to illustrate the kinds of 
technical issues to which Asimov’s Law gives rise and 
how they might be solved. With this in mind, the pa- 
per concludes with a critique of our approach and a 
(long) list of open questions. 

Safety 
Some conditions are so hazardous that our agent 
should never cause them. For example, we might de- 
mand that the agent never delete I4TEX files, or never 
handle a gun. Since these instructions hold for all 
times, we refer to them as dont-disturb constraints, 

and say that an agent is safe when it guarantees to 
abide by them. As in Asimov’s Law, dont-disturb 

constraints override direct human orders. Thus, if we 
ask a softbot to reduce disk utilization and it can only 
do so by deleting valuable I+%TEX files, the agent should 
refuse to satisfy this request. 

We adopt a simple syntax: dont-disturb takes a 

single, function-free, logical sentence as argument. For 
example, one could command the agent avoid deleting 
files that are not backed up on tape with the following 
constraint: 

dont-disturb(written.to.tape(f) V isa(f, file)) 

Free variables, such as f above, are interpreted as 
universally quantified. In general, a sequence of ac- 

tions satisfies dont-disturb(C) if none of the actions 
make C false. Formally, we say that a plan satisfies 
an dont-disturb constraint when every consistent, 

totally-ordered, sequence of plan actions satisfies the 
constraint as defined below. 

ference tractable by formulating restricted representation 

languages (Levesque & Brachman 1985). 

4Although unpalatable, this is standard in the planning 

literature. For example, a STRIPS operator that moves block 

A from B to C must delete on(A,B) and also add clear(B) 

even though clear(z) could be defined as Vy -on(y, 2). 
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Definition: Satisfaction of dont-disturb: Let wo 
be the logical theory describing the initial state of the 

world, let Al, . . . ,A,, be a totally-ordered sequence of 

actions that is executable in wo, let wj be the theory 

describing the world after executing Aj in wj-1, and 

let C be a function-free, logical sentence. W e say that 

4 , . . . , A,, satisfies the constraint dont-disturb(C) 
if for all j E [l, n], for all sentences C, and for all 

substitutions 0, 

if wo j= Ct9 then wj + CO (1) 

Unlike the behavioral constraints of (Drummond 
1989) and others, dont-disturb does not require the 
agent to make C true over a particular time interval; 
rather, the agent must avoid creating any additional 

violations of C. For example, if C specifies that all of 
Gore’s files be read protected, then dont-disturb(C) 
commands the agent to avoid making any of Gore’s 
files readable, but if Gore’s .plan file is already read- 
able in the initial state, the agent need not protect 
that file. This subtle distinction is critical if we want 
to make sure that the behavioral constraints provided 
to an agent are mutually consistent. This consistency 
problem is undecidable for standard behavioral con- 
straints (by reduction of first-order satisfiability) but 
is side-stepped by our formulation, because any set of 
dont-disturb constraints is mutually consistent. In 
particular, dont-disturb(P(z) A -P(X)) is perfectly 
legal and demands that the agent not change the truth 
value of any instance of P. 

Synthesizing Safe Plans 
To ensure that an agent, acts safely, its planner must 
generate plans that satisfy every dont-disturb con- 
straint. This can be accomplished by requiring that 
the planner make a simple test before it adds new ac- 
tions into the plan. Suppose that the planner is con- 
sidering adding the new action A, to achieve the sub- 
goal G of action A,. Before it, can do this, it must it- 
erate through every constraint dont-disturb(C) and 
every effect E of AP, determining the conditions (if 

any) under which E violates C, as defined in figure 1. 
For example, suppose that an effect asserts + and 
the constraint is dont-disturb(P V Q), then the ef- 
fect will violate the constraint, if l& is true. Hence, 

violation(+, PVQ) = l&. In general, if violation 
returns true then the effect necessarily denies the con- 
straint, if false is returned, then there is no possible 
conflict, otherwise violation calculates a logical ex- 
pression specifying when a conflict is unavoidable.5 

Before adding AP, the planner iterates through ev- 

ery constraint dont-disturb(C) and every effect con- 
sequent E of A,, calculating violat ion( E, C). If 
violation ever returns something other than False, 

51f E contains Yifted variables”  (McAllester & Rosen- 

blitt 1991) ( as opposed to universally quantified variables 

which pose no problem) then violation may return an 

overly conservative R. Soundness and safety are main- 

tained, but completeness could be lost. We believe that 

restoring completeness would make violation take expo- 

nential time in the worst case. 
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violat ion( E, C) 

1. Let R := {} 

2. For each disjunction Q E C do 

3. For each literal e E E do 

4. If e unifies with f f D then add 

5. Return R 
bx I x E (D - if))) to R 

Figure 1: violation computes the conditions (repre- 
sented in DNF) under which an effect consequent, E 
will violate constraint C. Returning R = {} E false 

means no violation, returning {. . . {} . . .} means nec- 

essary violation. We assume that E is a set of literals 
(implicit conjunction) and C is in CNF: i.e., a set 01 
sets representing a conjunction of disjunctions. 

then the planner must perform one of the following 
four repairs: 

1. Disavow: Jf E is true in the initial state, then there 
is no problem and A, may be added to the plan. 

2. Confront: If Ap’s effect is conditional of the form 
when S then E then A, may be added to the plan 
as long as the planner commits to ensuring that ex- 
ecution will not, result, in E. This is achieved by 
adding 1s as a new subgoal to be made true at the 
time when A, is executed.6 

3. Evade: Alternatively, by definition of violation it, 
is legal to execute A 

will not be true A 

as long as R G violat ion( E, C) 
a er execution. The planner can 

achieve this via goal regression, i.e. by computing 
the causation preconditions (Pednault 1988) for 1R 
and A,, to be made true at the time when A, is 

executed.7 

4. Refuse: Otherwise, the planner must, refuse to add 
A, and backtrack to find another way to to support 

G for A,. 

For example, suppose that the agent is operating 

under the written. to. tape constraint mentioned ear- 
lier, and is given the goal of reducing disk utilization. 
Suppose the agent considers adding a rm paper. tex 
action to the plan, which has an effect of the form 
+sa(paper.tex, file). Since violat ion returns 

lwritten.to.tape(paper.tex), the X-IR action threat- 
ens safety. To disarm the threat, the planner must 
perform one of the options above. Unfortunately, dis- 
avowal (option one) isn’t viable since paper. tex exists 

‘Note that 4 is strictly weaker than Pednault’s preser- 

vation preconditions (Pednault 1988) for A, and C; it is 

more akin to preservation preconditions to a single efiect of 

the action. 

7 While confrontation and evasion are similar in the sense 

that they negate a disjunct (S and R, respectively), they dif- 

fer in two ways. First, confrontation’s subgoal 4 is derived 

from the antecedent of a conditional effect while evasion’s 

1R comes from a disjunctive dont-disturb constraint via 

violation. Second, the subgoals are introduced at differ- 

ent times. Confrontation demands that -6 be made true 

before A, is executed, while evasion requires that -R be 

true after execution of Ap. 

through A,. 

This is why evasion regresses R 



in the initial state (i.e., it is of type file). Option two 
(confrontation) is also impossible since the threatening 
effect is not conditional. Thus the agent must choose 
between either refusing to add the action or evading 
its undesired consequences by archiving the file. 

Anal sis 
Two actors determine the performance of a planning fy 
system: the time to refine a plan and the number of 

plans refined on the path to a solution. The time per 
refinement is affected only when new actions are added 
to plan: each call to violation takes O(ec) time where 
e is the number of consequent literals in the action’s 
effects and c is the number of literals in the CNF en- 
coding of the constraint. When a threat to safety is 

detected, the cost depends on the planner’s response: 
disavowal takes time linear in the size of the initial 
state, refusal is constant time, confrontation is linear 
in the size of S, and the cost of evasion is simply the 
time to regress R through AP. 

It is more difficult to estimate the effect of 
dont-disturb constraints on the number of plans ex- 

plored. Refusal reduces the branching factor while the 
other options leave it unchanged (but confrontation 

and evasion can add new subgoals); In some cases, the 
reduced branching factor may speed planning; however, 
in other cases, the pruned search space may cause the 
planner to search much deeper to find a safe solution 
(or even fail to halt). The essence of the task, how- 
ever, is unchanged. Safe planning can be formulated 
as a standard planning problem. 

Tidiness 
Sometimes dont-disturb constraints are too strong. 

Instead, one would be content if the constraint were 
satisfied when the agent finished its plan. We de- 
note this weaker restriction with restore; essentially, 
it ensures that the agent will clean up after itself 
- by hanging up phones, closing drawers, returning 
utensils to their place, etc. An agent that is guar- 
anteed to respect all restore constraints is said to 

be tidy. For instance, to guarantee that the agent 

will re-compress all files that have been uncompressed 
in the process of achieving its goals, we could say 

restore(compressed(f)). 
As with dont-disturb constraints, we don’t require 

that the agent clean up after other agents - the state 
of the world, when the agent is given a command, forms 
a reference point. However, what should the agent do 
when there is a conflict between restore constraints 
and top level goals ? For example, if the only way to 
satisfy a user command would leave one file uncom- 
pressed, should the agent refuse the user’s command or 
assume that it overrides the user’s background desire 
for tidiness? We propose the latter - unlike matters 
of safety, the agent’s drive for tidiness should be sec- 
ondary to direct orders. The following definition makes 
these intuitions precise. 

Definition: Satisfaction of restore: Building on 

the definition ofdont-disturb, zue say that Al,. . . , A, 

satisfies the constraint restore(C) with respect to 
goal G if for all substitutions 9 

if wg /= CO then (wn b CO or G b -CO) (2) 

Definition 2 differs from definition 1 in two ways: (1) 
restore constraints need only be satisfied in w,, after 
the complete plan is executed, and (2) the goal takes 
precedence over restore constraints. Our constraints 
obey a strict hierarchy: dont-disturb takes priority 
over restore. Note that whenever the initial state is 
consistent, restore constraints are guaranteed to be 

mutually consistent; the rationale is similar to that for 
dont-disturb. 

S 
Tit 

nthesizin 
e most straig % 

Tidy Plans 
tforward way to synthesize a tidy plan 

is to elaborate the agent’s goal with a set of “cleanup” 
goals based on its restore constraints and the initial 
state. If the agent’s control comes from a subgoal in- 
terleaving, partial order planner such as UCPOP (Pen- 

berthy & Weld 1992), th en the modification necessary 
to ensure tidiness is straightforward. The agent divides 
the planning process into two phases: first, it plans to 
achieve the top le’vel goal, then it plans to clean up 
as much as possible. In the first phase, the planner 
doesn’t consider tidiness at all. Once a safe plan is 

generated, the agent performs phase two by iterating 
through the actions and using the violation function 

(figure 1) to test each relevant effect against each con- 
straint. For each non-false result, the planner gener- 
ates new goals as follows. (1) If the effect is ground 
and the corresponding ground instance of the restore 
constraint, 0, is not true in the initial state, then no 
new goals are necessary. (2) If the effect is ground and 
C0 is true in the initial state, then CB is posted as 
a new goal. (3) if the effect is universally quantified, 
then a conjunction of ground goals (corresponding to 

all possible unifications as in case 2) is posted.8 After 
these cleanup goals have been posted, the planner at- 
tempts to refine the previous solution into one that is 
tidy. If the planner ever exhausts the ways of satisfying 
a cleanup goal, then instead of quitting altogether it 
simply abandons that particular cleanup goal and tries 
the next. 

Note that in some cases, newly added cleanup ac- 
tions could threaten tidiness. For example, cleaning 

the countertop might tend to dirty the previously clean 
floor. To handle these cases, the planner must continue 
to perform the violation test and cleanup-goal gener- 
ation process on each action added during phase two. 
Subsequent refinements will plan to either sweep the 
floor (white knight) or preserve the original cleanliness 
by catching the crumbs as they fall from the counter 
(confrontation). 

Analysis 
Unfortunately, this algorithm is not guaranteed to 
eliminate mess as specified by constraint 2. For ex- 
ample, suppose that a top level goal could be safely 
achieved with A, or A, and in phase one, the planner 
chose to use A,. If A, violates a restore constraint, 
A, does not, and no other actions can cleanup the 
mess, then phase two will fail to achieve tidiness. One 

8Case 3 is similar to the expansion of a universally quan- 

tified goal into the uniuerkZ base (Penberthy & Weld 1992), 

but case 3 removes ground literals that aren’t true in the 

initial state. 
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could fix this problem by making phase two failures 
spawn backtracking over phase one decisions, but this 
could engender exhaustive search over all possible ways 
of satisfying top level goals. 

Remarkably, this problem does not arise in the cases 
we have investigated. For instance, a software agent 

has no difficulty grepping through old mail files for 
a particular message and subsequently re-compressing 
the appropriate files. There are two reasons why tidi- 
ness is often easy to achieve (e.g., in software domains 
and kitchens): 

Q Most actions are reversible. The compress action 
has uncompress as an inverse. Similarly, a short 
sequence of actions will clean up most messes in 
a kitchen. Many environments have been stabi- 
lized (Hammond, Converse, & Grass 1992) (e.g., by 
implementing reversible commands or adding dish- 
washers) in a way that makes them easy to keep 
tidy. 

e We conjecture that, for a partial-order planner, most 
cleanup goals are trivially serializable (Barrett & 

Weld 1993) with respect to each other.g 

When these properties are true of restore con- 
straints in a domain, our tidiness algorithm does sat- 
isfy constraint 2. Trivial serializability ensures that 
backtracking over phase one decisions (or previously 
achieved cleanup goals) is unnecessary. Tractability is 
another issue. Since demanding that plans be tidy is 
tantamount to specifying additional (cleanup) goals, 
requiring tidiness can clearly slow a planner. Further- 
more if a cleanup goal is unachievable, the planner 
might not halt. However, as long as the mess-inducing 
actions in the world are easily reversible, it is straight 
forward to clean up for each one. Hence, trivial serial- 
izability assures that the overhead caused by tidiness 
is only linear in the number of cleanup goals posted, 
that is linear in the length of the plan for the top level 
goals. 

Remaining Challenges 
Some changes cannot be restored, and some resources 
are legitimately consumed in the service of a goal. To 
make an omelet, you have to break some eggs. The 
question is, “How many ?” Since squandering resources 
clearly constitutes harm, we could tag a valuable re- 
sources with a min-consume constraint and demand 
that the agent be thrifty - i.e., that it use as little as 

‘Formally, s erializability (Korf 1987) means that there 

exists a ordering among the subgoals which allows each to 

be solved in turn without backtracking over past progress. 

Trivial serializability means that every subgoal ordering al- 

lows monotonic progress (Barrett 8z Weld 1993). While 

goal ordering is often important among the top level goals, 

we observe that cleanup goals are usually trivially serial- 

izable once the block of top level goals has been solved. 

For example, the goal of printing a file and the constraint 

of restoring files to their compressed state are serializable. 

And the serialization ordering places the printing goal first 

and the cleanup goal last. As long as the planner considers 

the goals in this order, it is guaranteed to find the obvious 

uncompress-print-compress plan. 

possible when achieving its goals. Unfortunately, sat- 
isfying constraints of this form may require that the 
agent examine every plan to achieve the goal in order 
to find the thriftiest one. We plan to seek insights 
into this problem in the extensive work on resource 
management in planning (Dean, Firby, & Miller 1988; 
Fox & Smith 1984; Wilkins 1988). 

So far the discussion has focused on preventing an 

agent from actively harming a human, but as Asimov 
noted -  inaction can be just as dangerous. We say 

that an agent is vigilant when it prevents a human 
from harming herself. Primitive forms of vigilance are 
already present in many computer systems, as the “Do 
you really want to delete all your files?” message at- 
tests. 

Alternatively, one could extend dont-disturb and 
restore primitives with an additional argument that 
specifies the class of agents being restricted. By writ- 
ing self as the first argument, one encodes the no- 
tions of agent safety and tidiness, and by writing Sam 

as the argument, the agent will clean up after, and at- 
tempt to prevent safety violations by Sam. Finally, by 
providing everyone as the first argument, one could 
demand that the agent attempt to clean up after all 
other agents and attempt to prevent all safety viola 
tions. For more refined behavior, other classes (besides 
self and everyone) could be defined. 

Our suggestion is problematic for several reasons. 
(1) Since the agent has no representation of the goals 
that other users are trying to accomplish, it might try 
to enforce a generalized restore constraint with tidy- 
ing actions that directly conflict with desired goals. In 
addition, there is the question of when the agent should 
consider the human “finished” - without an adequate 
method, the agent could tidy up while the human is 
still actively working. (2) More generally, the human 
interface issues are complex - we conjecture that users 
would find vigilance extremely annoying. (3) Given a 
complex world where the agent does not have complete 
information, any any attempt to formalize the second 
half of Asimov’s First Law is fraught with difficulties. 
The agent might reject direct requests to perform use- 

ful work in favor of spending all of its time sensing to 
see if some dangerous activity might be happening that 
it might be able to prevent. 

Conclusion 
This paper explores the fundamental question origi- 

nally posed by Asimov: how do we stop our artifacts 
from causing us harm in the process of obeying our or- 
ders? This question becomes increasingly pressing as 
we develop more powerful, complex, and autonomous 
artifacts such as robots and softbots (Etzioni, Lesh, 
& Segal 1993; Etzioni 1993). Since the positronic 
brain envisioned by Asimov is not yet within our 
grasp, we adopt the familiar classical planning frame- 
work. To facilitate progress, we focused on two well- 
defined primitives that capture aspects of the problem: 
dont-disturb and restore. We showed that the well- 
understood, and computational tractable, mechanism 
of threat detection can be extended to avoid harm. 

Other researchers have considered related questions. 
A precursor of dont-disturb is discussed in the work 
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of Wilensky and more extensively by Luria (Luria 
1988) under the heading of “goal conflict.” Similarly, a 
precursor of restore is mentioned briefly in Hammond 
et. al’s analysis of “stabilization” under the heading 
of “clean up plans” (Hammond, Converse, & Grass 
1992). Our advances include precise and unified se- 
mantics for the notions, a mechanism for incorporat- 
ing dont-disturb and restore into standard planning 
algorithms, and an analysis of the computational com- 
plexity of enforcing safety and tidiness. 

Even so, our work raises more questions than it an- 
swers. Are constraints like dont-disturb and restore 
the “right” way to represent harm to an agent? How 

does agent safety relate to the more general software 
safety (Leveson 1986)? Can we handle tradeoffs short 
of using expensive decision theoretic techniques? What 
guarantees can one provide on resource usage? Most 
importantly, how do we weaken the assumptions of a 
static world and complete information? 
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