
The First Law of Robotics
(a call to arms)

Daniel Weld Oren Etzioni* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195

{weld, etzioni}@cs.washington.edu

Abstract

Even before the advent of Artificial Intelligence, sci-
ence fiction writer Isaac Asimov recognized that an
agent must place the protection of humans from harm

at a higher priority than obeying human orders. In-
spired by Asimov, we pose the following fundamental

questions: (1) How should one formalize the rich, but
informal, notion of “harm”? (2) How can an agent
avoid performing harmful actions, and do so in a com-
putationally tractable manner? (3) How should an
agent resolve conflict between its goals and the need
to avoid harm? (4) When should an agent prevent a
human from harming herself? While we address some
of these questions in technical detail, the primary goal
of this paper is to focus attention on Asimov’s concern:
society will reject autonomous agents unless we have
some credible means of making them safe!

The Three Laws of Robotics:

A robot may not injure a human being, or,
through inaction, allow a human being to come
to harm.

A robot must obey orders given it by human
beings except where such orders would conflict
with the First Law.

A robot must protect its own existence as long

as such protection does not conflict with the
First or Second Law. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Isaac Asimov (Asimov 1942):

-.- - . - Motiyation ~
In 1940, Isaac Asimov stated the First Law of Robotics,
capturing an essential insight: an intelligent agent1

*We thank Steve Hanks, Nick Kushmerick, Neal Lesh, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Kevin Sullivan, and Mike Williamson for helpful discus-

sions. This research was funded in part by the University

of Washington Royalty Research Fund, by Office of Naval

Research Grants 90-J-1904 and 92-J-1946, and by National

Science Foundation Grants IRI-8957302, IRI-9211045, and

IRI-9357772.

‘Since the field of robotics now concerns itself primarily

with kinematics, dynamics, path planning, and low level

control issues, this paper might be better titled “ The First

Law of Agenthood.” However, we keep the reference to

“ Robotics” as a historical tribute to Asimov.

should not slavishly obey human commands - its fore-
most goal should be to avoid harming humans. Con-
sider the following scenarios:

A construction robot is instructed to fill a pothole
in the road. Although the robot repairs the cavity,
it leaves the steam roller, chunks of tar, and an oil
slick in the middle of a busy highway.

A softbot (software robot
4

is instructed to reduce

disk utilization below 90 o. It succeeds, but in-
spection reveals that the agent deleted irreplaceable

I4TEX files without backing them up to tape.

While less dramatic than Asimov’s stories, the sce- _ . __ - _-.
narios illustrate his point: not all ways of satisfying a
human order are equally good; in fact, sometimes it is
better not to satisfy the order at all. As we begin to

deploy agents in environments where they can do some
real damage, the time has come to revisit Asimov’s
Laws. This paper explores the following fundamental
questions:

How should one formalize the notion of

“harm”? We define dont-disturb and restore-

two domain-independent primitives that capture as-

pects of Asimov’s rich but informal notion of harm
within the classical planning framework.

How can an agent avoid performing harm-

ful actions, and do so in a computationally

tractable manner? We leverage and extend the
familiar mechanisms of planning with subgoal inter-
actions (Tate 1977; Chapman 1987; McAllester &
Rosenblitt 1991; Penberthy & Weld 1992) to detect
potential harm in polynomial time. In addition, we
explain how the agent can avoid harm using tactics
such as confrontation and evasion (executing sub-
plans to defuse the threat of harm).

How should an agent resolve conflict between

its goals and the need to avoid harm? We
impose a strict hierarchy where dont-disturb con-
straints override planners goals, but restore con-
straints do not.

When should an agent prevent a human from

harming herself ? At the end of the paper, we
show how our framework could be extended to par-
tially address this question.

1042 Planning and Scheduling

From: AAAI-94 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

The paper’s main contribution is a “call to arms:”
before we release autonomous agents into real-world
environments, we need some credible and computation-
ally tractable means of making them obey Asimov’s
First Law.

Survey of Possible Solutions
To make intelligent decisions regarding which actions
are harmful, and under what circumstances, an agent
might use an explicit model of harm. For example,
we could provide the agent with a partial order over
world states (a. e., a utility function). This framework is
widely adopted and numerous researchers are attempt-
ing to render it computationally tractable (Russell &
Wefald 1991; Etzioni 1991; Wellman & Doyle 1992;
Haddawy & Hanks 1992; Williamson & Hanks 1994),
but many problems remain to be solved. In many
cases, the introduction of utility models transforms
planning into an optimization problem - instead of
searching for some plan that satisfies the goal, the
agent is seeking the best such plan. In the worst case,
the agent may be forced to examine all plans to deter-
mine which one is best. In contrast, we have explored a
satisficing approach - our agent will be satisfied with
any plan that meets its constraints and achieves its
goals. The expressive power of our constraint language

is weaker than that of utility functions, but our con-
straints are easier to incorporate into standard plan-
ning algorithms.

By using a general, temporal logic such as that of
(Shoham 1988) or (Davis 1990, Ch. 5) we could spec-
ify constraints that would ensure the agent would not
cause harm. Before executing an action, we could ask
an agent to prove that the action is not harmful. While
elegant, this approach is computationally intractable
as well. Another alternative would be to use a planner
such as ILP (Allen 1991) or ZENO (Penberthy & Weld

1994) which supports temporally quantified goals. Un-
fortunately, at present these planners seem too ineffi-
cient for our needs.2

Situated action researchers might suggest that non-
deliberative, reactive agents could be made “safe” by

carefully engineering their interactions with the envi-
ronment. Two problems confound this approach: 1)
the interactions need to be engineered with respect to
each goal that the agent might perform, and a general
purpose agent should handle many such goals, and 2)
if different human users had different notions of harm,
then the agent would need to be reengineered for each
user.

Instead, we aim to make the agent’s reasoning about
harm more tractable, by resiricting the content and
form of its theory of injury. We adopt the stan-

2 We have als o examined previous work on “ plan quality”

for ideas, but the bulk of that work has focused on the

problem of leveraging a single action to accomplish multiple

goals thereby reducing the number of actions in, and the

cost of, the plan (Pollack 1992; Wilkins 1988). While this

class of optimizations is critical in domains such as database

query optimization, logistics planning, and others, it does

not address our concerns here.

3Loosely speaking, our approach is reminiscent of clas-

sical work on knowledge representation, which renders in-

dard assumptions of classical planning: the agent has
complete and correct information of the initial state
of the world, the agent is the sole cause of change,
and action execution is atomic, indivisible, and results
in effects which are deterministic and completely pre-
dictable. (The end of the paper discusses relaxing these
assumptions.) On a more syntactic level, we make the
additional assumption that the agent’s world model is
composed of ground atomic formuli. This sidesteps the
ramification problem, since domain axioms are banned.
Instead, we demand that individual action descriptions
explicitly enumerate changes to every predicate that is
affected.4 Note, however, that we are not assuming the

STRIPS representation; Instead we adopt an action lan-
guage (based on ADL (Pednault 1989)) which includes
universally quantified and disjunctive preconditions as
well as conditional effects (Penberthy & Weld 1992).

Given the above assumptions, the next two sections
define the primitives dont-disturb and restore, and

explain how they should be treated by a generative
planning algorithm. We are not claiming that the ap-
proach sketched below is the “right” way to design
agents or to formalize Asimov’s First Law. Rather,
our formalization is meant to illustrate the kinds of
technical issues to which Asimov’s Law gives rise and
how they might be solved. With this in mind, the pa-
per concludes with a critique of our approach and a
(long) list of open questions.

Safety
Some conditions are so hazardous that our agent
should never cause them. For example, we might de-
mand that the agent never delete I4TEX files, or never
handle a gun. Since these instructions hold for all
times, we refer to them as dont-disturb constraints,

and say that an agent is safe when it guarantees to
abide by them. As in Asimov’s Law, dont-disturb

constraints override direct human orders. Thus, if we
ask a softbot to reduce disk utilization and it can only
do so by deleting valuable I+%TEX files, the agent should
refuse to satisfy this request.

We adopt a simple syntax: dont-disturb takes a

single, function-free, logical sentence as argument. For
example, one could command the agent avoid deleting
files that are not backed up on tape with the following
constraint:

dont-disturb(written.to.tape(f) V isa(f, file))

Free variables, such as f above, are interpreted as
universally quantified. In general, a sequence of ac-

tions satisfies dont-disturb(C) if none of the actions
make C false. Formally, we say that a plan satisfies
an dont-disturb constraint when every consistent,

totally-ordered, sequence of plan actions satisfies the
constraint as defined below.

ference tractable by formulating restricted representation

languages (Levesque & Brachman 1985).

4Although unpalatable, this is standard in the planning

literature. For example, a STRIPS operator that moves block

A from B to C must delete on(A,B) and also add clear(B)

even though clear(z) could be defined as Vy -on(y, 2).

Agents 1043

Definition: Satisfaction of dont-disturb: Let wo
be the logical theory describing the initial state of the

world, let Al, . . . ,A,, be a totally-ordered sequence of

actions that is executable in wo, let wj be the theory

describing the world after executing Aj in wj-1, and

let C be a function-free, logical sentence. W e say that

4 , . . . , A,, satisfies the constraint dont-disturb(C)
if for all j E [l, n], for all sentences C, and for all

substitutions 0,

if wo j= Ct9 then wj + CO (1)

Unlike the behavioral constraints of (Drummond
1989) and others, dont-disturb does not require the
agent to make C true over a particular time interval;
rather, the agent must avoid creating any additional

violations of C. For example, if C specifies that all of
Gore’s files be read protected, then dont-disturb(C)
commands the agent to avoid making any of Gore’s
files readable, but if Gore’s .plan file is already read-
able in the initial state, the agent need not protect
that file. This subtle distinction is critical if we want
to make sure that the behavioral constraints provided
to an agent are mutually consistent. This consistency
problem is undecidable for standard behavioral con-
straints (by reduction of first-order satisfiability) but
is side-stepped by our formulation, because any set of
dont-disturb constraints is mutually consistent. In
particular, dont-disturb(P(z) A -P(X)) is perfectly
legal and demands that the agent not change the truth
value of any instance of P.

Synthesizing Safe Plans
To ensure that an agent, acts safely, its planner must
generate plans that satisfy every dont-disturb con-
straint. This can be accomplished by requiring that
the planner make a simple test before it adds new ac-
tions into the plan. Suppose that the planner is con-
sidering adding the new action A, to achieve the sub-
goal G of action A,. Before it, can do this, it must it-
erate through every constraint dont-disturb(C) and
every effect E of AP, determining the conditions (if

any) under which E violates C, as defined in figure 1.
For example, suppose that an effect asserts + and
the constraint is dont-disturb(P V Q), then the ef-
fect will violate the constraint, if l& is true. Hence,

violation(+, PVQ) = l&. In general, if violation
returns true then the effect necessarily denies the con-
straint, if false is returned, then there is no possible
conflict, otherwise violation calculates a logical ex-
pression specifying when a conflict is unavoidable.5

Before adding AP, the planner iterates through ev-

ery constraint dont-disturb(C) and every effect con-
sequent E of A,, calculating violat ion(E, C). If
violation ever returns something other than False,

51f E contains Yifted variables” (McAllester & Rosen-

blitt 1991) (as opposed to universally quantified variables

which pose no problem) then violation may return an

overly conservative R. Soundness and safety are main-

tained, but completeness could be lost. We believe that

restoring completeness would make violation take expo-

nential time in the worst case.

1044 Planning and Scheduling

violat ion(E, C)

1. Let R := {}

2. For each disjunction Q E C do

3. For each literal e E E do

4. If e unifies with f f D then add

5. Return R
bx I x E (D - if))) to R

Figure 1: violation computes the conditions (repre-
sented in DNF) under which an effect consequent, E
will violate constraint C. Returning R = {} E false

means no violation, returning {. . . {} . . .} means nec-

essary violation. We assume that E is a set of literals
(implicit conjunction) and C is in CNF: i.e., a set 01
sets representing a conjunction of disjunctions.

then the planner must perform one of the following
four repairs:

1. Disavow: Jf E is true in the initial state, then there
is no problem and A, may be added to the plan.

2. Confront: If Ap’s effect is conditional of the form
when S then E then A, may be added to the plan
as long as the planner commits to ensuring that ex-
ecution will not, result, in E. This is achieved by
adding 1s as a new subgoal to be made true at the
time when A, is executed.6

3. Evade: Alternatively, by definition of violation it,
is legal to execute A

will not be true A

as long as R G violat ion(E, C)
a er execution. The planner can

achieve this via goal regression, i.e. by computing
the causation preconditions (Pednault 1988) for 1R
and A,, to be made true at the time when A, is

executed.7

4. Refuse: Otherwise, the planner must, refuse to add
A, and backtrack to find another way to to support

G for A,.

For example, suppose that the agent is operating

under the written. to. tape constraint mentioned ear-
lier, and is given the goal of reducing disk utilization.
Suppose the agent considers adding a rm paper. tex
action to the plan, which has an effect of the form
+sa(paper.tex, file). Since violat ion returns

lwritten.to.tape(paper.tex), the X-IR action threat-
ens safety. To disarm the threat, the planner must
perform one of the options above. Unfortunately, dis-
avowal (option one) isn’t viable since paper. tex exists

‘Note that 4 is strictly weaker than Pednault’s preser-

vation preconditions (Pednault 1988) for A, and C; it is

more akin to preservation preconditions to a single efiect of

the action.

7 While confrontation and evasion are similar in the sense

that they negate a disjunct (S and R, respectively), they dif-

fer in two ways. First, confrontation’s subgoal 4 is derived

from the antecedent of a conditional effect while evasion’s

1R comes from a disjunctive dont-disturb constraint via

violation. Second, the subgoals are introduced at differ-

ent times. Confrontation demands that -6 be made true

before A, is executed, while evasion requires that -R be

true after execution of Ap.

through A,.

This is why evasion regresses R

in the initial state (i.e., it is of type file). Option two
(confrontation) is also impossible since the threatening
effect is not conditional. Thus the agent must choose
between either refusing to add the action or evading
its undesired consequences by archiving the file.

Anal sis
Two actors determine the performance of a planning fy
system: the time to refine a plan and the number of

plans refined on the path to a solution. The time per
refinement is affected only when new actions are added
to plan: each call to violation takes O(ec) time where
e is the number of consequent literals in the action’s
effects and c is the number of literals in the CNF en-
coding of the constraint. When a threat to safety is

detected, the cost depends on the planner’s response:
disavowal takes time linear in the size of the initial
state, refusal is constant time, confrontation is linear
in the size of S, and the cost of evasion is simply the
time to regress R through AP.

It is more difficult to estimate the effect of
dont-disturb constraints on the number of plans ex-

plored. Refusal reduces the branching factor while the
other options leave it unchanged (but confrontation

and evasion can add new subgoals); In some cases, the
reduced branching factor may speed planning; however,
in other cases, the pruned search space may cause the
planner to search much deeper to find a safe solution
(or even fail to halt). The essence of the task, how-
ever, is unchanged. Safe planning can be formulated
as a standard planning problem.

Tidiness
Sometimes dont-disturb constraints are too strong.

Instead, one would be content if the constraint were
satisfied when the agent finished its plan. We de-
note this weaker restriction with restore; essentially,
it ensures that the agent will clean up after itself
- by hanging up phones, closing drawers, returning
utensils to their place, etc. An agent that is guar-
anteed to respect all restore constraints is said to

be tidy. For instance, to guarantee that the agent

will re-compress all files that have been uncompressed
in the process of achieving its goals, we could say

restore(compressed(f)).
As with dont-disturb constraints, we don’t require

that the agent clean up after other agents - the state
of the world, when the agent is given a command, forms
a reference point. However, what should the agent do
when there is a conflict between restore constraints
and top level goals ? For example, if the only way to
satisfy a user command would leave one file uncom-
pressed, should the agent refuse the user’s command or
assume that it overrides the user’s background desire
for tidiness? We propose the latter - unlike matters
of safety, the agent’s drive for tidiness should be sec-
ondary to direct orders. The following definition makes
these intuitions precise.

Definition: Satisfaction of restore: Building on

the definition ofdont-disturb, zue say that Al,. . . , A,

satisfies the constraint restore(C) with respect to
goal G if for all substitutions 9

if wg /= CO then (wn b CO or G b -CO) (2)

Definition 2 differs from definition 1 in two ways: (1)
restore constraints need only be satisfied in w,, after
the complete plan is executed, and (2) the goal takes
precedence over restore constraints. Our constraints
obey a strict hierarchy: dont-disturb takes priority
over restore. Note that whenever the initial state is
consistent, restore constraints are guaranteed to be

mutually consistent; the rationale is similar to that for
dont-disturb.

S
Tit

nthesizin
e most straig %

Tidy Plans
tforward way to synthesize a tidy plan

is to elaborate the agent’s goal with a set of “cleanup”
goals based on its restore constraints and the initial
state. If the agent’s control comes from a subgoal in-
terleaving, partial order planner such as UCPOP (Pen-

berthy & Weld 1992), th en the modification necessary
to ensure tidiness is straightforward. The agent divides
the planning process into two phases: first, it plans to
achieve the top le’vel goal, then it plans to clean up
as much as possible. In the first phase, the planner
doesn’t consider tidiness at all. Once a safe plan is

generated, the agent performs phase two by iterating
through the actions and using the violation function

(figure 1) to test each relevant effect against each con-
straint. For each non-false result, the planner gener-
ates new goals as follows. (1) If the effect is ground
and the corresponding ground instance of the restore
constraint, 0, is not true in the initial state, then no
new goals are necessary. (2) If the effect is ground and
C0 is true in the initial state, then CB is posted as
a new goal. (3) if the effect is universally quantified,
then a conjunction of ground goals (corresponding to

all possible unifications as in case 2) is posted.8 After
these cleanup goals have been posted, the planner at-
tempts to refine the previous solution into one that is
tidy. If the planner ever exhausts the ways of satisfying
a cleanup goal, then instead of quitting altogether it
simply abandons that particular cleanup goal and tries
the next.

Note that in some cases, newly added cleanup ac-
tions could threaten tidiness. For example, cleaning

the countertop might tend to dirty the previously clean
floor. To handle these cases, the planner must continue
to perform the violation test and cleanup-goal gener-
ation process on each action added during phase two.
Subsequent refinements will plan to either sweep the
floor (white knight) or preserve the original cleanliness
by catching the crumbs as they fall from the counter
(confrontation).

Analysis
Unfortunately, this algorithm is not guaranteed to
eliminate mess as specified by constraint 2. For ex-
ample, suppose that a top level goal could be safely
achieved with A, or A, and in phase one, the planner
chose to use A,. If A, violates a restore constraint,
A, does not, and no other actions can cleanup the
mess, then phase two will fail to achieve tidiness. One

8Case 3 is similar to the expansion of a universally quan-

tified goal into the uniuerkZ base (Penberthy & Weld 1992),

but case 3 removes ground literals that aren’t true in the

initial state.

Agents 1045

could fix this problem by making phase two failures
spawn backtracking over phase one decisions, but this
could engender exhaustive search over all possible ways
of satisfying top level goals.

Remarkably, this problem does not arise in the cases
we have investigated. For instance, a software agent

has no difficulty grepping through old mail files for
a particular message and subsequently re-compressing
the appropriate files. There are two reasons why tidi-
ness is often easy to achieve (e.g., in software domains
and kitchens):

Q Most actions are reversible. The compress action
has uncompress as an inverse. Similarly, a short
sequence of actions will clean up most messes in
a kitchen. Many environments have been stabi-
lized (Hammond, Converse, & Grass 1992) (e.g., by
implementing reversible commands or adding dish-
washers) in a way that makes them easy to keep
tidy.

e We conjecture that, for a partial-order planner, most
cleanup goals are trivially serializable (Barrett &

Weld 1993) with respect to each other.g

When these properties are true of restore con-
straints in a domain, our tidiness algorithm does sat-
isfy constraint 2. Trivial serializability ensures that
backtracking over phase one decisions (or previously
achieved cleanup goals) is unnecessary. Tractability is
another issue. Since demanding that plans be tidy is
tantamount to specifying additional (cleanup) goals,
requiring tidiness can clearly slow a planner. Further-
more if a cleanup goal is unachievable, the planner
might not halt. However, as long as the mess-inducing
actions in the world are easily reversible, it is straight
forward to clean up for each one. Hence, trivial serial-
izability assures that the overhead caused by tidiness
is only linear in the number of cleanup goals posted,
that is linear in the length of the plan for the top level
goals.

Remaining Challenges
Some changes cannot be restored, and some resources
are legitimately consumed in the service of a goal. To
make an omelet, you have to break some eggs. The
question is, “How many ?” Since squandering resources
clearly constitutes harm, we could tag a valuable re-
sources with a min-consume constraint and demand
that the agent be thrifty - i.e., that it use as little as

‘Formally, s erializability (Korf 1987) means that there

exists a ordering among the subgoals which allows each to

be solved in turn without backtracking over past progress.

Trivial serializability means that every subgoal ordering al-

lows monotonic progress (Barrett 8z Weld 1993). While

goal ordering is often important among the top level goals,

we observe that cleanup goals are usually trivially serial-

izable once the block of top level goals has been solved.

For example, the goal of printing a file and the constraint

of restoring files to their compressed state are serializable.

And the serialization ordering places the printing goal first

and the cleanup goal last. As long as the planner considers

the goals in this order, it is guaranteed to find the obvious

uncompress-print-compress plan.

possible when achieving its goals. Unfortunately, sat-
isfying constraints of this form may require that the
agent examine every plan to achieve the goal in order
to find the thriftiest one. We plan to seek insights
into this problem in the extensive work on resource
management in planning (Dean, Firby, & Miller 1988;
Fox & Smith 1984; Wilkins 1988).

So far the discussion has focused on preventing an

agent from actively harming a human, but as Asimov
noted - inaction can be just as dangerous. We say

that an agent is vigilant when it prevents a human
from harming herself. Primitive forms of vigilance are
already present in many computer systems, as the “Do
you really want to delete all your files?” message at-
tests.

Alternatively, one could extend dont-disturb and
restore primitives with an additional argument that
specifies the class of agents being restricted. By writ-
ing self as the first argument, one encodes the no-
tions of agent safety and tidiness, and by writing Sam

as the argument, the agent will clean up after, and at-
tempt to prevent safety violations by Sam. Finally, by
providing everyone as the first argument, one could
demand that the agent attempt to clean up after all
other agents and attempt to prevent all safety viola
tions. For more refined behavior, other classes (besides
self and everyone) could be defined.

Our suggestion is problematic for several reasons.
(1) Since the agent has no representation of the goals
that other users are trying to accomplish, it might try
to enforce a generalized restore constraint with tidy-
ing actions that directly conflict with desired goals. In
addition, there is the question of when the agent should
consider the human “finished” - without an adequate
method, the agent could tidy up while the human is
still actively working. (2) More generally, the human
interface issues are complex - we conjecture that users
would find vigilance extremely annoying. (3) Given a
complex world where the agent does not have complete
information, any any attempt to formalize the second
half of Asimov’s First Law is fraught with difficulties.
The agent might reject direct requests to perform use-

ful work in favor of spending all of its time sensing to
see if some dangerous activity might be happening that
it might be able to prevent.

Conclusion
This paper explores the fundamental question origi-

nally posed by Asimov: how do we stop our artifacts
from causing us harm in the process of obeying our or-
ders? This question becomes increasingly pressing as
we develop more powerful, complex, and autonomous
artifacts such as robots and softbots (Etzioni, Lesh,
& Segal 1993; Etzioni 1993). Since the positronic
brain envisioned by Asimov is not yet within our
grasp, we adopt the familiar classical planning frame-
work. To facilitate progress, we focused on two well-
defined primitives that capture aspects of the problem:
dont-disturb and restore. We showed that the well-
understood, and computational tractable, mechanism
of threat detection can be extended to avoid harm.

Other researchers have considered related questions.
A precursor of dont-disturb is discussed in the work

1046 Planning and Scheduling

of Wilensky and more extensively by Luria (Luria
1988) under the heading of “goal conflict.” Similarly, a
precursor of restore is mentioned briefly in Hammond
et. al’s analysis of “stabilization” under the heading
of “clean up plans” (Hammond, Converse, & Grass
1992). Our advances include precise and unified se-
mantics for the notions, a mechanism for incorporat-
ing dont-disturb and restore into standard planning
algorithms, and an analysis of the computational com-
plexity of enforcing safety and tidiness.

Even so, our work raises more questions than it an-
swers. Are constraints like dont-disturb and restore
the “right” way to represent harm to an agent? How

does agent safety relate to the more general software
safety (Leveson 1986)? Can we handle tradeoffs short
of using expensive decision theoretic techniques? What
guarantees can one provide on resource usage? Most
importantly, how do we weaken the assumptions of a
static world and complete information?

References

Allen, J. 1991. Planning as temporal reasoning. In
Proceedings of the Second International Conference

on Principles of Knowledge Representation and Rea-

soning, 3-14.

Asimov, I. 1942. Runaround. Astounding Science

Fiction.

Barrett, A., and Weld, D. 1993. Characterizing sub-
goal interactions for planning. In Proc. 13th Int. Joint

Conf on A.I., 1388-1393.

Chapman, D. 1987. Planning for conjunctive goals.
Artificial Intelligence 32(3):333-377.

Davis, E. 1990. Representations of Commonsense

Knowledge. San Mateo, CA: Morgan Kaufmann Pub-
lishers, Inc.

Dean, T., Firby, J., and Miller, D. 1988. Hierar-
chical planning involving deadlines, travel times, and
resources. Computational Intelligence 4(4):381-398.

Drummond, M. 1989. Situated control rules. In
Proceedings of the First International Conference on

Knowledge Representation and Reasoning.

Etzioni, O., Lesh, N., and Segal, R. 1993. Building
softbots for UNIX (preliminary report). Technical Re-
port 93-09-01, University of Washington. Available
via anonymous FTP from pub/etzioni/softbots/
at es. Washington. edu.

Etzioni, 0. 1991. Embedding decision-analytic con-
trol in a learning architecture. Artificial Intelligence

49(l-3):129-160.

Etzioni, 0. 1993. Intelligence without robots (a re-
ply to brooks). AI Magazine 14(4). Available via
anonymous FTP from pub/etzioni/sof tbots/ at
cs.washington.edu.

Fox, M., and Smith, S. 1984. ISIS - a knowldges-
based system for factory scheduling. Expert Systems

l(1):25-49.

Haddawy, P., and Hanks, S. 1992. Representations for
Decision-Theoretic Planning: Utility Functions for
Dealine Goals. In Proc., 3rd Int. Conf. on Principles

of Knowledge Representation and Reasoning.

Hammond, K., Converse, T., and Grass, J. 1992. The
stabilization of environments. Artificial Intelligence.

To appear.

Korf, R. 1987. Planning as search: A quantitative
approach. Artificial Intelligence 33(1):65-88.

Leveson, N. G. 1986. Software safety: Why, what,
and how. ACM Computing Surveys 18(2):125-163.

Levesque, H., and Brachman, R. 1985. A fundamental
tradeoff in knowledge representation. In Brachman,
R., and Levesque, H., eds., Readings in Knowledge

Representation. San Mateo, CA: Morgan Kaufmann.

42-70.

Luria, M. 1988. Knowledge Intensive Planning. Ph.D.

Dissertation, UC Berkeley. Available as technical re-
port UCB/CSD 88/433.

McAllester, D., and Rosenblitt, D. 1991. Systematic
nonlinear planning. In Proc. 9th Nut. Conf. on A.I.,

634-639.

Pednault , E. 1988. Synthesizing plans that con-
tain actions with context-dependent effects. Compu-

tational Intelligence 4(4):356-372.

Pednault, E. 1989. ADL: Exploring the middle

ground between STRIPS and the situation calculus.
In Proc. 1st Int. Conf. on Principles of Knowledge

Representation and Reasoning, 324-332.

Penberthy, J., and Weld, D. 1992. UCPOP: A sound,
complete, partial order planner for ADL. In Proc.

3rd Int. Conf. on Principles of Knowledge Represen-

tation and Reasoning, 103-114. Available via FTP
from pub/ai/ at cs . Washington. edu.

Penberthy, J., and Weld, D. 1994. Temporal planning
with continuous change. In Proc. 12th Nat. Conf. on
A.I.

Pollack, M. 1992. The uses of plans. Artificial Intel-

ligence 57(1).

Russell, S., and Wefald, E. 1991. Do the Right Thing.

Cambridge, MA: MIT Press.

Shoham, Y. 1988. Reasoning about Change: Time

and Causation from the Standpoint of Artificial In-

telligence. Cambridge, MA: MIT Press.

Tate, A. 1977. Generating project networks. In Proc.

5th Int. Joint Conf. on A.I., 888-893.

Wellman, M., and Doyle, J. 1992. Modular utility rep-
resentation for decision theoretic planning. In Proc.

1st Int. Conf. on A.I. Planning Systems, 236-242.

Wilkins, D. E. 1988. Practical Planning. San Mateo,
CA: Morgan Kaufmann.

Williamson, M., and Hanks, S. 1994. Optimal plan-
ning with a goal-directed utility model. In Proc. 2nd

Int. Conf. on A.I. Planning Systems.

Agents 1047

