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Abstract We review current ideas on the origin of galactic and extragalactic magnetic

fields. We begin by summarizing observations of magnetic fields at cosmological redshifts

and on cosmological scales. These observations translate into constraints on the strength and

scale magnetic fields must have during the early stages of galaxy formation in order to seed

the galactic dynamo. We examine mechanisms for the generation of magnetic fields that

operate prior during inflation and during subsequent phase transitions such as electroweak

symmetry breaking and the quark–hadron phase transition. The implications of strong pri-

mordial magnetic fields for the reionization epoch as well as the first generation of stars are

discussed in detail. The exotic, early-Universe mechanisms are contrasted with astrophysi-

cal processes that generate fields after recombination. For example, a Biermann-type battery
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can operate in a proto-galaxy during the early stages of structure formation. Moreover, mag-

netic fields in either an early generation of stars or active galactic nuclei can be dispersed

into the intergalactic medium.

Keywords Magnetic fields · Inflation · Early Universe · Quark–hadron transition

There is much to be learned about cosmic magnetic fields. We have a rather sketchy

information about the field distribution on the largest scales, and the origin of the

magnetic fields remains a mystery.

Alexander Vilenkin 2009

1 Introduction

Magnetic fields are observed in virtually all astrophysical systems, from planets to galaxy

clusters. This fact is not surprising since gravitational collapse and gas dynamics, the key

processes for structure formation, also amplify and maintain magnetic fields. Moreover, the

conditions necessary for a magnetic dynamo, namely differential rotation and turbulence,

exist in galaxies, which are the building blocks for large scale structure. The one notable

example where magnetic fields are searched for but not yet found is in the surface of last

scattering. All this raises an intriguing question: When did the first magnetic fields arise?

Numerous authors have suggested that magnetic fields first appeared in the very early

Universe. (For recent reviews, see Grasso and Rubinstein 2001, Widrow 2002). There is

strong circumstantial evidence that large scale structure formed from the amplification of lin-

ear density perturbations that originated as quantum fluctuations during inflation. It is there-

fore natural to consider whether quantum fluctuations in the electromagnetic field might

similarly give rise to large-scale magnetic fields. Indeed, magnetic fields were almost cer-

tainly generated during inflation, the electroweak phase transition, and the quark–hadron

phase transition but with what strength and on what scale? More to the point, what hap-

pened to these fields as the Universe expanded? Were these early Universe fields the seeds

for the magnetic fields observed in present-day galaxies or clusters? And even if not, did

they leave an observable imprint on the cosmic microwave background?

Exotic early universe mechanisms for field generation stand in contrast with mechanisms

that operate in the post-recombination Universe. There are several ways to generate mag-

netic fields during the epoch of structure formation. At some level, all mechanisms begin

with a battery, a process that treats positive and negative charges differently and thereby

drives currents. A Biermann battery, for example, can (in fact must) operate during the for-

mation of a proto-galaxy. While angular momentum in proto-galaxies is generated by the

tidal torques due to nearby systems, vorticity arises from gasdynamical processes. The same

processes almost certainly drive currents and hence generate fields, albeit of small ampli-

tude.

The Biermann battery also operates in compact objects such as accretion disks and stars.

Since the dynamical timescales for these systems is relatively short, tiny seed fields are

rapidly amplified. The magnetic fields in AGN and/or Pop III stars can be expelled into

the proto-galactic medium to provide another source of seed fields for subsequent dynamo

action.

In this review, we survey ideas on the generation of magnetic fields. Our main focus is on

mechanisms that operate in the early Universe, either during inflation, or during the phase
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transitions that follow. We contrast these mechanisms with ones that operate during the early

stages of structure formation though we leave the details of those ideas for the subsequent

chapter on magnetic fields and the formation of large scale structure. The outline of the

chapter is as follows: In Sect. 2, we summarize observational evidence for magnetic fields

at cosmological redshifts and on supercluster scales and beyond. In Sect. 3, we discuss the

generation of magnetic fields during inflation. We make the case that inflation is an attractive

arena for magnetic-field generation but for the fundamental result that electromagnetic fields

in the standard Maxwell theory and in an expanding, spatially flat, inflating spacetime are

massively diluted by the expansion of the Universe. However, one can obtain astrophysically

interesting fields in spatially curved metrics or with non-standard couplings between gravity

and electromagnetism. Section 4 addresses the question of whether fields can be generated

during a post-inflation phase transition. We will argue that strong fields almost certainly arise

but that their scales are limited by the Hubble radius at these early times. Only through some

dynamical process such as an inverse cascade (which requires appreciable magnetic helicity)

can one obtain astrophysically interesting fields. In Sect. 5 we take, as given, the existence

of strong fields from an early Universe phase transitions and explore their impact on the

post-recombination Universe. In particular, we discuss the implications of strong primordial

fields on the first generation of stars and on the reionization epoch. Finally, in Sect. 6 we

briefly review field-generation mechanisms that operate after recombination. A summary

and some conclusions are presented in Sect. 7.

2 Cosmological Magnetic Fields Observed

The existence of microgauss fields in present-day galaxies and galaxy clusters is well es-

tablished. These fields can be explained by the amplification of small seed fields over the

13.7 Gyr history of the Universe. However, there is mounting evidence that microgauss fields

existed in galaxies when the Universe was a fraction of its present age. Moreover, there are

hints that magnetic fields exist on supercluster scales. Both of these observations present

challenges for the seed field hypothesis. In this section, we summarize observational evi-

dence for magnetic fields at early times and on cosmological scales and briefly discuss the

implications for the seed field hypothesis.

2.1 Galactic Magnetic Fields at Intermediate Redshifts

Microgauss fields are found in present-day galaxies of all types as well as galaxy clus-

ters (see, for example, Kronberg 1994; Widrow 2002; Carilli and Menten 2002; Kulsrud

and Zweibel 2008). Perhaps more significant, at least for our purposes, are observations

of magnetic fields in intermediate and high redshift galaxies. For example, Kronberg et al.

(1992) found evidence for a magnetized galaxy at a redshift of z = 0.395. To be specific,

they mapped the rotation measure (RM) across the absorption-line quasar, PKS 1229-021

(z = 1.038) and determined the residual rotation measure (RRM—defined to be the ob-

served rotation measure minus the Galactic rotation measure). The RRM was then identified

with an intervening galaxy whose magnetic properties were inferred by detailed modelling.

Along similar lines, Bernet et al. (2008) provide a compelling argument for magnetic

fields at z ∼ 1.3. Earlier work by Kronberg (2008) found a correlation between the spread

in the quasar RM distribution and redshift. The naive expectation is that the spread in the

distribution should decrease with redshift. Recall that the polarization angle is proportional

to the square of the wavelength; the proportionality constant is what we define as the RM. As
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Fig. 1 Upper panel: Age of the

Universe as a function of redshift

for the cosmology described in

the text and in Komatsu et al.

(2010). Lower panel:

Amplification factor for a seed

magnetic field assuming

exponential growth with one of

three choices for the growth rate:

Γ = 1.5 Gyr−1, Γ = 2.5 Gyr−1

or Γ = 1.5 Gyr−1

electromagnetic radiation propagates from source to observer, the rotation angle is preserved

by the wavelength increases as (1 + z)−1. Hence, the RM is diluted by a factor (1 + z)−2.

In principle, the change in the RM distribution with redshift could be indicative of a red-

shift dependence in quasar magnetic fields. However, Bernet et al. (2008) sorted the sample

according to the presence of MgII absorption lines and showed that the RM spread for set

of objects with one or more lines was significantly greater than for the objects with no ab-

sorption lines. MgII absorption lines arise as the quasar light passes through the halos of

normal galaxies. The implication is that intervening galaxies produce both large RMs and

MgII absorption lines and hence, the intervening galaxies must have strong magnetic fields.

Simple estimates suggest that the fields are comparable to those in present-day galaxies and

that these galaxies are at a redshift of z ∼ 1.3.

Athreya et al. (1998) studied 15 radio galaxies with redshifts between z ≃ 2 and z ≃ 3.13

and found significant RM’s in almost all of them. Moreover, the RM’s were found to differ

significantly between the two radio lobes, which suggests that they are due to fields intrinsic

to the object rather than due to the Faraday screen of the Galaxy. The RM’s, corrected for

cosmological expansion and with the Galactic contribution removed, typically range from

100–6000 rad m−2, which implies microgauss fields.

Observations of magnetic fields at intermediate redshift imply a shorter time over which

the dynamo can operate. Consider the standard ΛCDM cosmological model with H0 =
70.5 km s−1 Mpc−1, Ωm = 0.272 and ΩΛ = 0.728 where H0 is the Hubble constant, and

Ωm and ΩΛ are the density, in units of the critical density, for matter (both baryons and dark

matter) and dark energy (Komatsu et al. 2010). In Fig. 1, we show the age of the Universe

as a function of redshift for this cosmology. We also show the amplification factor for a seed

magnetic field where we assume exponential growth and one of three choices for the growth

rate, Γ = 1.5 Gyr−1, 2.5 Gyr−1, or 3.5 Gyr−1. We see that a seed field of only 10−21 G

is required to reach microgauss strength assuming Γ ≃ 2.5 Gyr−1. However, for the same

growth rate, a 10−11 G seed field is required to reach microgauss strengths by a redshift

z = 1.3.
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2.2 Magnetic Fields on Supercluster Scales and Beyond

Kim et al. (1989) used the Westerbork Synthesis Radio Telescope to map the Coma cluster

and its environs at 326 MHz. Their results provide what remains the best direct evidence for

magnetic fields on supercluster scales.

Recently, Neronov and Vovk (2010) argued that the deficit of GeV gamma-rays in the

direction of TeV gamma-ray sources yields a lower bound of 3 × 10−16 G on the strength

of intergalactic magnetic fields. The reasoning goes as follows: TeV gamma-rays and pho-

tons from the diffuse extragalactic background light produce e± pairs which, in turn, inverse

Compton scatter off photons from the cosmic microwave background (CMB). The scattered

CMB photons typically have energies in the GeV range. In the absence of appreciable mag-

netic fields, these secondary photons contribute to the overall emission toward the original

TeV source. However, magnetic fields will deflect the intermediate e± pairs. Comparison of

model predictions with the observed spectrum from HESS Cherenkov Telescopes and up-

per limits from the NASA Fermi Gamma-Ray Telescope hint at just such a deficit and lead

Neronov and Vovk (2010) to derive their lower limit on the magnetic fields. It is important

to note that the results of Neronov and Vovk (2010) rely on the assumption that the TeV

sources emit gamma-rays continuously for 105 years, or longer. This point is stressed in

Dermer et al. (2011) who derive a more conservative lower bound of 10−18 G based on the

assumption that the TeV flux remains constant over the 3–4 year period during which the

source has been observed.

Along similar lines, Ando and Kusenko (2010) pointed out that the deflection of e±

pairs by an intergalactic magnetic field leads to gamma-ray halos around AGN. Indeed, they

claim to have found evidence for just such halos in the stacked images of AGN from the

Fermi Gamma-ray Telescope and suggested that these halos could be explained by a 10−15

Gauss intergalactic magnetic field. Finally, Takahashi et al. (2011) proposed a means to

infer the existence of cosmic intergalactic magnetic fields via pair echos from gamma-ray

bursts (GRBs). A fraction of the primary gamma-rays from a GRB interact with low-energy

photons of the diffuse intergalactic radiation field and produce secondary electron–positron

pairs. These pairs produce secondary gamma-rays by inverse Compton upscattering cosmic

microwave background (CMB) photons. However, if an intergalactic magnetic field exists,

the electrons and positrons will be deflected before interacting with the CMB photons. Thus,

the secondary photons will be delayed by an amount that depends on the strength of the mag-

netic field. Pair echos may be detectable in experiments such as the Cherenkov Telescope

Array or the Advanced Gamma-ray Imaging System. Takahashi et al. (2011) suggest that

magnetic fields at z ∼ 5–10 with strength B ∼ 10−16–10−15 G would then produce a mea-

surable effect.

3 Magnetic Fields from Inflation

3.1 General Considerations

The hierarchical clustering scenario provides a compelling picture for the formation of large-

scale structure. Linear density perturbations from the early Universe grow via gravitational

instability. Small-scale objects form first and merge to create systems of ever-increasing size.

The spectrum of the primordial density perturbations, as inferred from the CMB anisotropy

spectrum and various statistical measures of large scale structure (e.g., the galaxy two-point

correlation function) is generally thought to be scale-invariant and very close to the form
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Fig. 2 Evolution of the physical

size for the Hubble radius (solid

curve) and two scales, λ1 and λ2
(dashed curves) as a function of

scale factor a. Shown is the point

at which the scale λ1 crosses

outside the Hubble radius during

inflation and back inside the

Hubble radius during the

matter-dominated phase. The

scale factors aRD and aMD

correspond to the start of the

radiation and matter dominated

epochs, respectively. Here, λ1
enters the Hubble volume during

the matter-dominated epoch

while λ2 enters the Hubble

volume during the

radiation-dominated epoch

proposed by Zel’dovich (1970). One of the great successes of inflation is that it leads to

just such a spectrum (Guth and Pi 1982; Hawking 1982; Starobinskii 1982). It is therefore

natural to ask whether a similar mechanism might generate large-scale magnetic fields.

In order to understand the meaning and significance of the results for density perturba-

tions, we must say a few words about horizons in cosmology. The Hubble radius, essentially,

the speed of light divided by the Hubble parameter, sets the maximum scale over which mi-

crophysical processes can operate. In a radiation or matter-dominated Universe, the Hubble

scale is proportional to the causal scale, that is, the distance over which a photon could have

propagated since the Big Bang. The Hubble scale grows linearly with time t in a radiation or

matter-dominated Universe. On the other hand, the physical size of an object associated with

a fixed comoving (or present-day) scale grows as the scale factor a, which is proportional to

t1/2 during the radiation-dominated phase and t2/3 during the matter-dominated phase. Thus,

a physical scale crosses inside the Hubble radius (that is, becomes causally connected) after

the Big Bang, with smaller objects crossing earlier than larger ones. This point is illustrated

in Fig. 2 and explains why it is so difficult to generate large-scale magnetic fields in the

early Universe but after inflation.

During inflation, the Hubble parameter is approximately constant (the spacetime is ap-

proximately de Sitter) and a physical scale that is initially inside the Hubble radius will cross

outside the Hubble radius or Hubble scale, at least until some time later in the history of the

Universe (Fig. 2). We therefore have the potential for microphysical processes to operate

on large scales during inflation with the consequences of these processes becoming evident

much later when the scale re-enters the Hubble radius.

Inflation provides the dynamical means for generating density perturbations: quantum

mechanical fluctuations in the de Sitter phase excite modes on the Hubble scale with an en-

ergy density set by the Hubble parameter. Therefore, to the extent that the Hubble parameter

is constant during inflation, the energy density in modes as they crosses outside the Hubble

radius will be scale-independent.

There is one further and crucial part to the story. During inflation, the energy density of

the Universe is approximately constant. It is, indeed, the constant energy density that drives

the exponential expansion of the de Sitter phase. Naively, we expect the energy density in
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(relativistic) fluctuations to scale as a−4 and to therefore be diluted by an enormous factor.

However, once produced, the fluctuations are stretched to length scales much larger than the

Hubble radius. The energy density, δρ, in these super-horizon-sized modes is not a gauge

invariant quantity in that it depends on ones choice of the surface of simultaneity. However,

the quantity ξ ≡ δρ/(ρ + p) is gauge invariant. Moreover, for super-horizon-sized energy

density fluctuations, ξ = constant. Thus, the ratio, r , of the energy density in the fluctuation

relative to the background density, is the same (up to a constant of order unity) at the time

when the mode re-enters the Hubble radius as when it crossed outside the Hubble radius

during inflation. This behaviour is often referred to as super-adiabatic growth since it implies

that the energy density in the fluctuation grows relative to the energy density in the radiation

field.

The equation of motion for a scalar field, φ, in a curved spacetime is

∇α∇αφ − ξRφ − dV

dφ
= 0, (1)

where R is the Ricci scalar, V is the scalar field potential and ξ is a dimensionless constant.

Super-adiabatic growth occurs for a minimally-coupled scalar field (ξ = 0). On the other

hand, the field evolves adiabatically (energy density scales in the same way as radiation) if

it is conformally coupled (ξ = 1/6).

The equation of motion for energy density perturbations is identical to that for a mini-

mally coupled scalar field if one ignores the scalar potential term. On the other hand, electro-

magnetism is conformally-coupled to gravity (at least in the simplest version of the theory).

The equation of motion for the gauge field therefore resembles (1) with ξ = 1/6. Let us

assume that there are de Sitter-induced quantum fluctuations in the electromagnetic field.

As with other quantum fields, the energy density of these fluctuations at the time when they

are produced, is set by the Hubble parameter. Roughly speaking, ρB ∼ H 4 for modes with

physical wavelength λphys ∼ H−1. Once produced the energy density in these modes scales

as a−4, that is, scales in the same way as radiation. Meanwhile, the total energy density of the

Universe is constant during inflation and scales as a−3 during both the reheating and matter-

dominated phases of the Universe. We therefore find that the relative strength a magnetic

mode at the end of inflation is

ρB

ρt

≃ 10−78

(

M

mP l

)4(
M

1014 GeV

)−8/3(
TRH

1010 GeV

)−4/3(
λ

Mpc

)−4

, (2)

where λ is the comoving scale of the mode and mP l ≃ 1019 GeV is the Planck mass. The

above ratio also depends on the energy scale of our inflation model (M) and on the associated

reheating temperature (TRH ). During reheating ρB ∝ a−4 and ρt ∝ a−3, which means that

ρB/ρt ∝ a−1 ∝ T between the end of inflation and the radiation era. Therefore, recalling

that ρt ≃ M4 throughout the de Sitter phase and ρt ≃ ρRH ≃ T 4
RH by the end of reheating,

expression (2) yields

ρB

ρt

≃ 10−104

(

λ

Mpc

)−4

, (3)

at the beginning of the radiation epoch (when ρt ≃ ργ ). From then on, the high conductivity

of the matter is restored and the magnetic flux is conserved (i.e. B ∝ a−2 and ρB ∝ a−4). As

a result, the dimensionless ratio

r ≡ ρB

ργ

≃ 10−104

(

λ

Mpc

)−4

, (4)
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remains constant until today (recall that ργ ∝ a−4 at all times). This result implies a present-

day field strength no greater than 10−50 G on comoving scales of order 10 kpc, which are

the scales relevant for the galactic dynamo.

We are lead to the conclusion that inflation-produced magnetic fields are astrophysi-

cally uninteresting. However, this ‘negative’ result holds for the standard formulation of

Maxwell’s equations and under the assumption of a spatially-flat FLRW cosmology. In the

next sections, we show that super-adiabatic growth can occur in various “open” cosmologies

and in models where certain additional couplings between electromagnetism and gravity are

included.

3.2 Maxwell’s Equations

The Maxwell field may be invariantly described by the antisymmetric Faraday tensor, Fab .

Relative to an observer moving with 4-velocity ua , we can write Fab = 2u[aEb] + εabcB
c ,

where Ea = Fabu
b and Ba = εabcF

bc/2 respectively represent the electric and magnetic

components of the EM field and εabc is the 3-dimensional Levi–Civita tensor. Maxwell’s

equations split into two pairs of propagation and constraint equations (Tsagas 2005). The

former consists of

Ė〈a〉 = −2

3
ΘEa + (σab + ωab)E

b + εabcA
bBc + curlBa − Ja, (5)

and

Ḃ〈a〉 = −2

3
ΘBa + (σab + ωab)B

b − εabcA
bEc − curlEa, (6)

which may be seen as the 1 + 3 covariant analogues of the Ampère and the Faraday laws

respectively. The constraints, on the other hand, read

DaEa = μ − 2ωaBa and DaBa = 2ωaEa, (7)

providing the 1 + 3 forms of Coulomb’s and Gauss’ laws respectively. In the above Θ ,

σab , ωab and Aa respectively represent the volume expansion, the shear, the vorticity and

the 4-acceleration associated with the observer’s motion.1 In addition, Ja and μ are the 3-

current and the charge densities respectively. We also note that overdots indicate proper-time

derivatives and Da is the 3-dimensional covariant derivative operator. Finally, Ė〈a〉 = ha
bĖb

and curlBa = εabcD
bBc by definition, where the tensor hab projects orthogonal to ua .

These equations, together with the Einstein equations and the Ricci identities, lead to

wave equations for the electric and magnetic fields. For example, linearised on a Friedmann–

Lemaître–Robertson–Walker (FLRW) background, the wave equations of the electric and

the magnetic components of the Maxwell field read (Tsagas 2005)

Ëa − D2Ea = −5HĖa + 1

3
κ(ρ + 3p)Ea − 4H 2Ea − 1

3
REa − J̇a − 3H Ja (8)

1By construction Θ = Daua is the volume scalar, which determines whether we have expansion (Θ > 0),

or contraction (Θ < 0). The shear tensor (σab = D(bua) − (Θ/3)hab) monitors changes in the shape of

the fluid element under constant volume, while the vorticity tensor (ωab = D[bua]) governs the rotational

behaviour of the medium. Finally, the 4-acceleration, Aa = u̇a , reflects the presence of non-gravitational

forces and vanishes when the motion is driven by gravity alone (see Tsagas et al. 2008 for details). Note that

the antisymmetry of the vorticity tensor allows us to define the vorticity vector, by means of ωa = εabcω
bc/2,

which also determines the rotational axis.
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and

B̈a − D2Ba = −5HḂa + 1

3
κ(ρ + 3p)Ba − 4H 2Ba − 1

3
RBa + curl Ja, (9)

respectively. Here, H = ȧ/a = Θ/3 is the background Hubble parameter, R = 6K/a2 is the

Ricci scalar of the spatial sections (with K = 0,±1), κ = 8πG is the gravitational constant

and D2 = DaDa is the 3-D covariant Laplacian. Note the 3-Ricci term, which reflects a

purely relativistic/geometrical coupling between the electromagnetic field and the spacetime

curvature. We will return to this particular interaction to examine the way it can affect the

evolution of cosmological magnetic fields.

3.3 Ohm’s Law in the Expanding Universe

The literature contains various expressions of Ohm’s law, which provides the propagation

equation of the electric 3-current. For a single fluid at the limit of resistive magnetohydro-

dynamics (MHD), Ohm’s law takes the simple form (Greenberg 1971; Jackson 1975)

Ja = σEa, (10)

where σ represents the electric conductivity of the matter (not to be confused with the shear

tensor σab). In highly conducting environments, σ → ∞ and the electric field vanishes. This

is the familiar ideal-MHD approximation where the electric currents keep the magnetic field

frozen-in with the charged fluid. Conversely, when the conductivity is very low, σ → 0.

Then, the 3-currents vanish despite the presence of nonzero electric fields. Here, we will

consider these two limiting cases. For any intermediate case, one needs a model for the

electrical conductivity of the cosmic medium.

3.4 Adiabatic Decay of Magnetic Fields in a Spatially Flat FLRW Cosmology

Consider the case of a poorly conductive environments where there are no 3-currents. The

wave equation (9), then reduces to

B̈a − D2Ba = −5HḂa + 1

3
κ(ρ + 3p)Ba − 4H 2Ba − 1

3
RBa. (11)

To simplify the above, we introduce the rescaled the magnetic field Ba = a2Ba and em-

ploy conformal time, η, where η̇ = 1/a. Then, on using the harmonic splitting Ba =
∑

n B(n)Q(n)
a —so that Da B(n) = 0 = Q̇(n)

a = Da Q(n)
a and D2 Q(n)

a = −(n/a)2 Q(n)
a , expression

(11) takes the compact form

B
′′
(n) + n2

B(n) = −2KB(n), (12)

with the primes denoting conformal-time derivatives, n representing the comoving wavenum-

ber of the mode and K = 0,±1 (Tsagas 2005). Note the magneto-curvature term in the

right-hand side of (12), which shows that the magnetic evolution also depends on the spatial

geometry of the FLRW spacetime.

When the background has Euclidean spatial hypersurfaces, the 3-curvature index is zero

(i.e. K = 0) and expression (12) assumes the Minkowski-like form

B
′′
(n) + n2

B(n) = 0. (13)
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This equation accepts the oscillatory solution B(n) = C1 sin(nη)+C2 cos(nη), which recasts

into

B(n) =
[

C1 sin(nη) + C2 cos(nη)
]

(

a0

a

)2

, (14)

for the actual B-field. In other words, the adiabatic (B(n) ∝ a−2) depletion of the magnetic

component is guaranteed, provided the background spacetime is a spatially flat and the elec-

trical conductivity remains very poor. Applied during inflation, this result leads to (2).

The adiabatic decay-law also holds in highly conductive environments. There, σ → ∞
and, according to Ohm’s law (see (10)) the electric field vanishes in the frame of the fluid.

As a result, Faraday’s law (see (6)) linearises to

Ḃa = −2HBa, (15)

around an FLRW background. The above ensures that Ba ∝ a−2 on all scales, regardless of

the equation of state of the matter and of the background 3-curvature. Applied after inflation

and combined with (3), this result leads directly to (4).

3.5 Superadiabatic Magnetic Amplification in Spatially Open FLRW Models

The “negative” results discussed at the beginning of this section have been largely attributed

to the conformal invariance of Maxwell’s equations and to the conformal flatness of the

Friedmannian spacetimes. The two are thought to guarantee an adiabatic decay-rate for all

large-scale magnetic fields at all times. Equation (14), however, only holds for the spa-

tially flat FLRW cosmology. Although all three FLRW universes are conformally flat, only

the spatially flat model is globally conformal to Minkowski space. For the rest, the con-

formal mappings are local. Put another way, in spatially curved Friedmann universes, the

conformal factor is no longer the cosmological scale factor but has an additional spatial de-

pendence (e.g. see Stefani 1990; Keane and Barrett 2000). This means that the wave equa-

tion of the rescaled magnetic field (Ba = a2Ba) takes the simple Minkowski-like form (13)

only on FLRW backgrounds with zero 3-curvature. In any other case, there is an additional

curvature-related term (see expressions (11) and (12)), which reflects the non-Euclidean

spatial geometry of the host spacetime. As a result, when linearised around an FLRW back-

ground with nonzero spatial curvature, the magnetic wave equation (see (12)) reads

B
′′
(n) +

(

n2 ± 2
)

B(n) = 0, (16)

where the plus and the minus signs refer to spatially closed and open models, respectively.

Recall that in the former case the eigenvalues are discrete (with n2 ≥ 3) and in the latter

continuous (with n2 ≥ 0). As expected, the curvature-related effects fade away as we move

to progressively smaller scales (i.e. for n2 ≫ 2).

Equation (16) shows that on FLRW backgrounds with spherical spatial hypersurfaces, the

B-field still decays adiabatically. The picture changes when the background FLRW model

is open. There, the hyperbolic geometry of the 3-D hypersurfaces alters the nature of the

magnetic wave equation on large enough scales (i.e. when 0 < n2 < 2). These wavelengths

include what we may regard as the largest subcurvature modes (i.e. those with 1 ≤ n2 < 2)

and the supercurvature lengths (having 0 < n2 < 1). Note that eigenvalues with n2 = 1 cor-

respond to the curvature scale with physical wavelength λ = λK = a (e.g. see Lyth and

Woszczyna 1995). Here, we will focus on the largest subcurvature modes.



The First Magnetic Fields 47

We proceed by introducing the scale-parameter k2 = 2−n2, with 0 < k2 < 2. Then, k2 =
1 indicates the curvature scale, the range 0 < k2 < 1 corresponds to the largest subcurvature

modes and their supercurvature counterparts are contained within the 1 < k2 < 2 interval. In

the new notation and with K = −1, (16) recasts into

B
′′
(n) − k2

B(n) = 0, (17)

with the solution given by B(k) = C1 sinh(|k|η) + C2 cosh(|k|η). Written in terms of the

actual magnetic field, the latter takes the form (Tsagas and Kandus 2005; Barrow and Tsagas

2008)

B(k) =
[

C1e|k|(η−η0) + C2e−|k|(η−η0)
]

(

a0

a

)2

. (18)

Magnetic fields that obey the above evolution law can experience superadiabatic amplifica-

tion without modifying conventional electromagnetism and despite the conformal flatness

of the FLRW host. For instance, during the radiation era, the scale factor of an open FLRW

universe evolves as a ∝ sinh(η). Focusing on the curvature length, for simplicity, we may

set |k| = 1 in (18). On that scale, the dominant magnetic mode never decays faster than

B(1) ∝ a−1. The B-field has been superadiabatically amplified.

Analogous amplification also occurs during the dust and the reheating eras (when p = 0

and a = sinh2(η/2)), as well as in open FLRW universes with an inflationary (i.e. p = −ρ)

equation of state. In fact, the superadiabatic amplification of large-scale magnetic fields is

essentially independent of the equation of state of the matter and appears to be a generic

feature of the open Friedmann models (see Barrow and Tsagas 2011 for further discussion

and details). During slow-roll inflation, in particular, the scale factor evolves as (Tsagas et

al. 2008)

a = a0

(

1 − e2η0

1 − e2η

)

eη−η0 , (19)

where η,η0 < 0. Substituting the above into (18), we find that near the curvature scale

(i.e. for |k| → 1) the magnetic evolution is given by

B(1) = C3

(

1 − e2η
)

(

a0

a

)

+ C4e−η

(

a0

a

)2

, (20)

with C3, C4 depending on the initial conditions. This also implies superadiabatic amplifi-

cation for the B-field, since the dominant mode never decays faster than B(1) ∝ a−1. The

adiabatic decay rate is only recovered at the end of inflation, as η → 0.2

The strength of the residual magnetic strength is calculated in a way analogous to that

given in the previous section. This time, however, the B-field has been superadiabatically

amplified throughout the lifetime of the universe. Then, close to the curvature scale, where

B ∝ a−1, we find that

2The magnetogeometrical interaction and the resulting effects are possible because, when applied to spatially

curved FLRW models, inflation does not lead to a globally flat de Sitter space. Although the inflationary

expansion dramatically increases the curvature radius of the universe, it does not change its spatial geometry.

Unless the universe was perfectly flat from the beginning, there is always a scale where the 3-curvature effects

are important. It is on these lengths that primordial B-fields can be superadiabatically amplified.
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r = ρB

ργ

≃ 10−8

(

M

1014 Gev

)4(
λ

Mpc

)−2

≃ 10−8

(

M

1014 GeV

)4(
λH

Mpc

)−2

(1 − Ω), (21)

at present (Barrow and Tsagas 2011). Note that λ → λK = λH /
√

1 − Ω , with λK , λH and Ω

representing the curvature scale the Hubble length and the density parameter of the universe

respectively. According to (21), the higher the scale of inflation, the stronger the ampli-

fication. On the other hand, the larger the curvature scale, namely the higher the number

of e-folds during inflation, the weaker the residual magnetic field (see Barrow and Tsagas

2011 for further discussion). Setting M ∼ 1014 GeV and λH ∼ 103 Mpc in the right-hand

side of (21), we find a current (comoving) magnetic strength of approximately 10−14 Gauss

on scales close to the present curvature length. The latter is approximately 104 Mpc if we

assume that 1 − Ω ∼ 10−2 today (Komatsu et al. 2010). These lengths are far larger than

10 kpc; the minimum magnetic size required for the dynamo to work. Nevertheless, once

the galaxy formation starts, the field lines should break up and reconnect on scales similar

to that of the collapsing protogalactic cloud.

Galactic-scale magnetic fields of strength 10−14 G are stronger than those generated by

many of the other scenarios considered in the literature (see below) and may be strong

enough to seed the galactic dynamo. Recall, however, that inflation was introduced to

avoid various shortcomings of the standard cosmological model including the so-called

flatness problem. Essentially, inflation is meant to inflate away (push to extremely large

scales) any curvature that might exist in the pre-inflationary Universe. Evidently, for su-

peradiabatic growth of magnetic field without explicit conformal symmetry breaking (as

described in the next section) one requires enough inflation to push the curvature scale be-

yond our present Hubble volume, but not too far beyond. To be quantitative, the most recent

analysis by the WMAP group (Komatsu et al. 2010) finds that the effective energy den-

sity parameter for curvature, ΩK ≡ −K/(aH)2 = 1 − ΩΛ − Ωm, is constrained between

−0.0133 < ΩK < 0.0084. Should future measurements find ΩK to be more consistent with

negative curvature, rather than zero or positive curvature, they would lend credence to the

mechanism for magnetic amplification described above.

3.6 Inflation-Produced Magnetic Fields via Non-conformal Couplings

As pointed out above, the electromagnetic field is conformally coupled to gravity and there-

fore, in a spatially flat, FLRW cosmology, the magnetic fields generated during inflation

decay adiabatically and are therefore of negligible astrophysical importance. Turner and

Widrow (1988) pointed out that by adding additional terms to the Lagrangian such as RA2

and RμνA
μAν one explicitly breaks conformal invariance and can essentially force the mag-

netic field to behave like a minimally-coupled scalar field. These terms also break gauge

invariance and hence induce an effective mass for the photon whose size depends on the

spacetime curvature. In fact, the effective mass-squared for the photon is negative for the

case where the magnetic field behaves as a minimally-coupled scalar field. A negative mass-

squared signals an instability in the semi-classical equations for the field and can be viewed

as the origin of the superadiabaticity. Such terms also lead to potential theoretical diffi-

culties in the particle theory and numerous authors have attempted to find more effective

and more natural ways to break conformal invariance. Indeed, Turner and Widrow (1988),

recognizing the potential for such difficulties, considered terms such as RF 2 which break
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conformal invariance but not gauge invariance. They also briefly considered ϕF F̃ ∼ ϕE · B

terms where ϕ was a pseudo-scalar (i.e., axion-like terms). Ratra (1992) demonstrated that

appreciable magnetic fields couple be produced during inflation if the electromagnetic field

couples to the inflaton field, Φ , through a term of the form eαΦFμνF
μν where α is a con-

stant. In his model, the inflaton potential is also an exponential: V (Φ) ∝ exp (−qΦ). An

attractive feature of this model is that is preserves gauge invariance since the additional term

is constructed from the Maxwell tensor, F , rather than the gauge field, A. Along similar

lines Gasperini et al. (1995) demonstrated that magnetic fields of sufficient strength to seed

the galactic dynamo could be produced in a string-inspired cosmology. In their model, the

electromagnetic field is coupled to the dilaton which, in turn, is coupled to gravity. The dila-

ton is a scalar field that naturally arises in theories with extra dimensions and whose vacuum

expectation value effectively controls Newton’s constant.

The RA2 terms give rise to “ghosts” in the theory which signal an instability of the vac-

uum (Himmetoglu et al. 2009a, 2009b). A theory with ghosts is internally consistent only as

an effective low-energy theory and hence is only valid below some energy scale, Λ. Him-

metoglu et al. (2009b) argue that Λ � MeV but this scale is well below the scales assumed

in models for inflation-produced magnetic fields. Thus, their results call into question the

viability of the mechanism. A detailed and critical analysis of magnetic-field production in

string-inspired models of inflation can be found in Martin and Yokoyama (2008) (see, also,

the review by Subramanian 2010). There, particular attention was paid to a potential back-

reaction problem which arises if the electric fields produced along with the magnetic fields

have an energy density comparable to the background energy density. Similar conclusions

were reached in Demozzi et al. (2009). In models the RA2 terms, the longitudinal degree

of freedom of the A-field becomes dynamical. Demozzi et al. (2009) argued that the energy

density associated with this component grows during inflation and could, in principle, shut

off inflation. Indeed, they found that the magnetic field should not exceed 10−32 G on Mpc-

scales today. Demozzi et al. (2009) also considered backreaction from F 2 terms and found

that interesting magnetic fields required large couplings where perturbation theory could

not be trusted. Durrer et al. (2011) studied field generation from ϕF F̃ terms and found that

while backreaction does not appear to be a problem in this scenario, the fields that arose

were generally too weak to seed a galactic dynamo. In summary, while inflation remains an

attractive arena for the production of seed magnetic fields, there appear to be significant, if

not insurmountable, technical difficulties with the scenario.

4 Magnetic Fields from Early Universe Phase Transitions

The early universe was characterized by a series of phase transitions in which the nature

of particles and fields changed in fundamental ways (see Fig. 3). For example, electroweak

symmetry breaking marked the transition from a high-energy regime in which the W and Z

bosons and the photon were effectively massless and interchangeable to one in which the W

and Z bosons were heavy while the photon remained massless. The transition also marked

the emergence of two distinct forces: electromagnetism and the weak nuclear force. Like-

wise, the Quark–Hadron phase transition marked the transition from the free quark–gluon

phase to one in which quarks were locked into baryons. Both of these transitions had the

potential to generate strong magnetic fields since they involved the release of an enormous

amount of free energy and since they involve charged particles which could, in turn, drive

currents. Indeed, strong magnetic fields are almost certainly generated. The question is one

of physical scale since the Hubble radius was so small at these early times.
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Fig. 3 The cosmological periods. Starting with reheating the quantum chromodynamic quark–gluon–plasma

period lasts until hadron formation. Non-Abelian Weibel instabilities may be responsible for generating seed

magnetic fields during this time, which in the presence of free energy grow from non-Abelian thermal fluctu-

ations. At later times the period of relativistic and classical plasma sets on. Here seed magnetic fields can be

generated from thermal background electrodynamic fluctuations if thermal anisotropies or beams can exist in

this regime

4.1 General Considerations

At any phase in the history of the Universe, the strength of the fields generated by some mi-

crophysical process is limited by equipartition with the background energy density. More-

over, the maximum scale for magnetic fields generated by a microphysical process is set by

the Hubble radius. For a radiation-dominated Universe, the energy density of the Universe

is given by ρ ∝ g∗T
4 where T is the temperature of the thermal bath and g∗ counts the ef-

fective number of relativistic degrees of freedom (see, for example, Kolb and Turner 1990;

Peacock 1999). The Hubble radius is given by LH = c/H where H = a−1da/dt ∝ T 2 is the

Hubble parameter. Numerically, we have

Bmax

(

l = cH−1, T
)

= Bequipartition(T ) ≃ 1018 Gauss

(

T

150 MeV

)2

(22)

for

l ≃ 100 cm

(

150 MeV

T

)2

. (23)

In practice, the strength of fields generated during some early Universe phase transition will

be well below the value set by equipartition and have a length scale significantly smaller

than the Hubble radius. We therefore write B(l, T ) = f Bmax for l = gc/H and f and g are

constants.

Typically, we are interested in fields on scales much larger than the characteristic scales of

the original field. On purely geometric grounds, Hogan (1983) argued that the field strength

on some large scale L due to small-scale cells of size l with field strength B(l) will be

B(L) = B(l)(l/L)3/2. However, Durrer and Caprini (2003) showed that the divergence-free

nature of the magnetic field places a constraint on the statistical properties of the field and

that the most natural choice of scaling is B(L) = B(l)(l/L)5/2. Their derivation assumes a

scale-free energy spectrum for the magnetic field which may not apply for fields produced
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during an early Universe phase transition. Nevertheless, the argument does call into question

Hogan’s result.

In the absence of some dynamical effect, the field strength will be diluted by the expan-

sion as a−2 between the time when it is generated and some later time. Thus, a field B(l, T )

generated prior to recombination will lead to a field at recombination with strength

B(L, Trec) = B(l, T )

(

Trec

T

)2 (

l

L

)β

(24)

where β = 5/2, according to Durrer and Caprini (2003). More generally we have the fol-

lowing scaling:

B(L, T ) ∼ fgβT −βL−β
cm , (25)

where we emphasize that L is the comoving length scale.

4.2 First-Order Phase Transitions

Detailed calculations of magnetic field generation during the electroweak and QCD phase

transitions have been carried out by numerous authors. By and large, these groups assume

that the transitions are first-order, that is characterized by a mixed-phase regime in which

bubbles of the new phase nucleate and expand, eventually filling the volume. The energy

associated with the bubble walls is released as a form of latent heat. Quashnock et al. (1989)

demonstrated that a Biermann battery can operate during the QCD phase transition. The up,

down, and strange quarks (the three lightest quarks) have charges 2/3, −1/3, and −1/3 re-

spectively. If these quarks were equal in mass, the quark–gluon plasma would be electrically

neutral. However, the strange quark is heavier and therefore less abundant. The implication

is that there is a net positive charge in the quark–gluon plasma and a net negative charge in

the lepton sector. Electric currents are therefore generated at the bubble walls that separate

the quark phase from the baryon phase. Quashnock et al. (1989) found that 5 G fields could

be generated on scales of 100 cm at the time of the QCD phase transition. Following the

arguments outlined above, the field strength on galactic scales at the time of recombination

would be (a disappointingly small) ∼10−31 G.

Somewhat larger estimates were obtained by Cheng and Olinto (1994) and Sigl et al.

(1997) who realized that as the hadronic regions grow, baryons would concentrate on the

bubble walls due to a “snowplow” effect. (Sigl et al. 1997 also showed that fluid instabilities

could give rise to strong magnetic fields during the QCD phase transition.) For reasonable

parameters, they obtained fields about seven orders of magnitude larger than those found by

Quashnock et al. (1989).

Magnetic fields can arise during cosmological phase transitions even if they are second

order—that is, phase transitions signaled by the smooth and continuous transition of an order

parameter. Vachaspati (1991), for example, showed that gradients in the Higgs field vacuum

expectation value (the order parameter for the electroweak phase transition) induce magnetic

fields on a scale ∼T −1
EW with strength of order q−1

EWT −2
EW where TEW is the temperature of the

electroweak phase transition and qEW is the Higgs field coupling constant. To estimate the

field on larger scales, Vachaspati (1991) assumed that the Higgs field expectation value

executed a random walk with step size equal to the original coherence length. The field

strengths were small (10−23 G on 100 kpc scales) but not negligible.
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4.3 Inverse Cascade

The discussion above suggests that strong magnetic fields are likely to have been generated

in the early Universe but that their coherence length is so small, the effective large-scale

fields are inconsequential for astrophysics. However, dynamical mechanisms may lead to

an increase in the coherence length of magnetic fields produced at early times. Chief among

these is an inverse cascade of magnetic energy from small to large scales which occurs when

there is substantial magnetic helicity (Frisch et al. 1975). The effect was investigated in the

context of primordial magnetic fields (see, for example, Cornwall 1997; Son 1999; Field and

Carroll 2000; Brandenburg 1996; Banerjee and Jedamzik 2004). As the Universe expands,

magnetic energy shifts to large scales as the field attempts to achieve equilibrium while

conserving magnetic helicity. Under suitable conditions, Field and Carroll (2000) showed

that astrophysically interesting fields with strength 10−10 G 10 kpc scales could be generated

during the electroweak phase transition.

4.4 Plasma Processes Capable of Generating Magnetic Fields

4.4.1 Chromodynamic Magnetic Fields?

The QCD regime lasts from the end of reheating until hadron formation, roughly tns ∼ 10−6 s

after the Big Bang (see Fig. 3). In this regime, matter comprises massive bosons, gluons,

quarks and leptons and forms a hot dense chromoplasma or quark–gluon plasma (QGP).

At the higher temperatures, that is, not too long after reheating, the QGP is asymptot-

ically free and can be considered collisionless. Since many of the particles in the QGP

carry electric charge, under certain conditions, they can generate induced Yang–Mills cur-

rents jμ
a (x) = DμFμν(x), with Yang–Mills field Fμν = Aν,μ −Aμ,ν − ig[Aμ,Aν] expressed

through the non-Abelian gauge field Aa;ν(x). The colour index a corresponds to the N2 − 1

colour channels. These currents couple to the electromagnetic gauge field and consequently

are accompanied by magnetic fields. Several mechanisms associated with the QCD phase

transition were discussed in the previous section. Here we explore whether plasma instabili-

ties in the thermal QGP could possibly lead to appreciable fields. In the context of magnetic

field generation in the early universe and cosmology this possibility has not yet been consid-

ered; it has, however, been investigated in high-energy physics not working in a comoving

system.

The simplest plasma mechanism capable of magnetic field generation is the Weibel (cur-

rent filamentation)3 instability first discovered in classical plasma (Weibel 1959). Its free

energy is provided by a local pressure anisotropy A = P‖/P⊥ − 1 �= 0 in the non-magnetic

plasma. The subscripts ‖,⊥ refer to the two orthogonal directions ‖̂, ⊥̂ of the pressure ten-

sor P = P⊥I + (P‖ − P⊥)‖̂‖̂ whose non-diagonal (dissipative) elements are small (Blaizot

and Iancu 2002). Pressure anisotropy creates microscopic currents and hence microscopic

magnetic fields. Free energy can also be provided by partonic beams passing the QGP. Such

beams, when produced by some independent process naturally introduce a preferred direc-

tion and may cause additional pressure anisotropy by dissipating their momentum in some

(collisionless) way.

Assuming that a cold partonic beam passes the QGP, both analytical theory and numer-

ical simulations (Arnold and Moore 2006a, 2006b; Arnold 2007; Arnold and Moore 2007;

3For a discussion of its physics in classical plasmas see Fried (1959).
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Arnold and Leang 2007; Rebhan et al. 2008; Romatschke and Rebhan 2006; Schenke

et al. 2008; Strickland 2007a, 2007b) prove that the QCD beam-driven Weibel instabil-

ity excites magnetic fields which subsequently scatter and thermalize the beams by mag-

netizing the partons. The linear waves, that is, oscillations of the effective quark phase-

space momentum distribution Φeff(p) as function of the 4-momentum, p ≡ (p0,p), are

solutions of the semi-classical QGP dispersion relation (Pokrovsky and Selikhov 1988;

Mrówczyński 1988, 1993) in Fourier 4-space k = (ω/c,k)

det
[

k2δij − kikj − ω2ǫij (|k|)
]

= 0 (26)

with ǫij the permeability (vi = pi/
√

plpl is the 4-velocity) given as functional of the effec-

tive phase space density Φeff(p), which does not depend any more on the colour index

ǫij (ω,k) = δij + g2

2ω2

∫

d3p

8π3

vi[∂Φeff(p)/∂pl]
ω − k · v + i0

[

(ω − k · v)δlj + klvj
]

. (27)

Instability is found for low frequency (ω ≈ 0) non-oscillatory (filamentation) modes with

wave vectors, k⊥, perpendicular to the parton-beam 4-velocity, U . The implication is that

stationary magnetic fields are generated in this process.

Analytical growth rates of transverse modes, where Im ω > 0, have been obtained for

simple Gaussian and other mock equilibrium particle distributions and nuclear physics

parameters. All calculations performed refer to non-comoving physical systems. Arnold

(2007) has shown that the breakdown of perturbation theory at momenta p ∼ g2T and the

fact that theory becomes non-perturbative at high T implies that it can be treated as if one

had a cold plasma, T = 0, plus weak coupling. Thus, the semi-classical approach describes

long-range properties.4 In the numerical simulations one takes advantage of this fact, lin-

earises around a stationary homogeneous locally colourless state (Blaizot and Iancu 2002),

and considers the evolution of the fluctuation Wμ(v, x) of the distribution function accord-

ing to the non-Abelian Vlasov equation and Yang–Mills current density:

vμDμW ν(v, x) = −vσ F σν(x), j ν(x) = −g2

∫

d3p

8π3

pν

|p|
∂Φeff(p)

∂pσ
W σ (v, x), (28)

where the 4-velocity vν enters the field equations which close the system and describe the

evolution of fields and particles,

vμDμW ν = −g(E + v × B) · ∇pΦeff

DμFμν = −g2(2π)−3
∫

d3pvν(Dν)−1(E + v × B) · ∇pΦeff

}

. (29)

Instability requires anisotropy to lowest order O(1) in p of the effective distribution Φeff(p)

(Arnold and Moore 2006a). The maximum unstable wave vector km and growth rate γm ≡
+(Imω)m of the QCD Weibel mode scale as

k2
m ∼ γ 2

m ∼ m2
∞ ∼ g2

∫

p>

Φeff(p)/|p| (30)

4The scalar potential A0 picks up a Debye screening mass mD and decouples at distances ≫ m−1
D

∼ (gT )−1

leaving the vector potential (transverse chromo-electromagnetic) fields, which is equivalent to classical plas-

mas where at frequencies ω > ωp above the plasma frequency ωp any propagating perturbation is purely

electromagnetic.
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Fig. 4 Numerical simulation results of Weibel fields under Abelian and non-Abelian (QGP) conditions (after

Arnold and Moore 2006a). The Abelian and spatially 1d-cases have a long linear phase of exponential growth.

The corresponding linear phase in the spatially 3d-case is very short (shaded region), followed by a nonlin-

early growing phase which reaches maximum field strength and afterward increases weakly and linearly.

Closer investigation has shown that this further linear growth is caused by cascading to shorter wavelength

(larger k) related to increasing frequencies thereby dispersing the free energy that feeds the nonlinear phase

into a broad spectrum of magnetic oscillations. The blue horizontal line is the nonlinear saturation level of

the low-frequency long-wavelength Weibel magnetic field that persists during the cascade and presumably

survives it

where m∞ ∼ g
√

N>/p> is the “effective mass” scale defined by the spatial beam number

density N> of particles with momentum p> which contribute to the anisotropy, i.e. N> ≡
∫

p>
Φeff(p)d3p/8π3.

Figure 4 plots three simulation results: an Abelian run, a spatially 1d, and a spatially 3d-

non-Abelian run. Shown is the magnetic fluctuation energy density B2/8π as function of

time (all in proper simulation units). The Abelian and the 1d-non-Abelian cases cover just

their linear (exponentially growing) phases. The 3d-non-Abelian case differs from these in

several important respects. Its linear phase is very short, shown as the shaded region. It is

followed by a longer nonlinear growth phase when the magnetic energy density increases at

a slower and time dependent rate until reaching maximum, when it starts decaying. After-

wards it recovers to end up in a further slow but now purely algebraic linear growth.

4.4.1.1 Weibel Saturation Level The nonlinear phase wave-particle interaction terms

come progressively into play when the field energy increases. The subsequent slow lin-

ear growth phase results from the sudden onset of a (turbulent) cascade from ‘long’ to short

wavelengths and higher frequencies. This cascade has been demonstrated in simulations

(Arnold and Moore 2006b; Arnold and Leang 2007). The settings of the simulations are

physical not taking into account any general relativistic effects (which should be weak com-

pared to QCD interactions) nor cosmological expansion. The cascade distributes the energy

that is fed into the longest unstable scales over a broad range of short scales and higher

frequencies ω �= 0, thereby identifying the nonlinear state of the QGP Weibel instability as

short-scale turbulence hosting a mixture of propagating waves. So far it lacks any process

(e.g. an inverse cascade) in which the Weibel fields produce large-scale stationary cosmo-

logical magnetic fields. In the average the energy density in the Weibel ‘long’ wavelength

domains stays at a constant level

E
sat
Weibel � 3m4

∞/g2. (31)
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For the coupling constant one may use (Bethke 2009) the “world-average value” g2 =
4παs(M

2
Z) ≈ 4π × 0.12 = 0.48π , where MZ is the mass of the Z boson, while for m2

∞
additional knowledge is required of the effective parton distribution Φeff, i.e. the state of the

undisturbed distribution including the anisotropy.

Unfortunately, the above formula cannot be used directly to estimate the long-wavelength

Weibel field saturation value in the early universe. If we accept that the saturation level is

robust within few orders of magnitude, then, because m2
∞ ∼ ω2

p/
√

θ , one has as for an

estimate (in physical units)

Bsat ≈ ω2
p

√

2μ0�/c3θ (32)

where ωp is the effective chromo-plasma frequency ω2
p = gT /mDλ2

D which is related

to the Debye mass mD , screening length λD , and θ ∼ tan−1(A−1) is a given effective

anisotropy angle (Arnold and Leang 2007). The definition of θ holds for both, thermal

anisotropies P⊥/P‖ ≡ T⊥/T‖ in the thermal Weibel case, and parton beam anisotropies

where A ∝ T −1
∫

p>
Γ (p)Φeff(p)d3p/8π3 is the ‘equivalent’ thermal anisotropy caused by

the parton beam of Lorentz factor Γ in QGP of isotropic temperature T .

With these numbers one estimates quite a strong (and thus cosmologically unrealistic)

saturation magnetic field

Bsat ≈ 10−19(me/MZ

√
θ)Neff ∼ 2 × 10−25Neff/

√
θ G (33)

a value that depends on the effective parton number density to anisotropy ratio holding for

small finite anisotropies. Taking, say, Neff ∼ 1010 cm−3, it yields a substantial saturated low-

frequency QGP seed magnetic field of the order of Bsat ∼ 10−5/
√

θ µG.

Thus, the Weibel mechanism is doubtlessly capable of generating substantially strong

magnetic fields during the QGP phase. However, these fields have very short correlation

lengths, of the order of the parton skin depth or mean free paths and do probably not con-

tribute to the large-scale field in the cosmological evolution.

4.4.1.2 Thermal Fluctuation Level When the QGP phase lacks any thermal anisotropy

thermal fluctuations still provide seed magnetic fields at the thermal chromo-dynamic mag-

netic fluctuation level far below the magnetic saturation level of the Weibel instability. It

results from the thermal fluctuations in the microscopic chromo-plasma currents. For its es-

timation the unknown effective isotropic equilibrium distribution Φeff(p) and the complex

response function, i.e. the QGP polarisation tensor Πμν , are needed whose determination

requires solution of the equilibrium chromo-Vlasov equation.

For our purposes, a rough estimate of the thermal level can be obtained from the above

simulations taking advantage of the evolution equation of the average magnetic energy den-

sity 〈B2(t)〉 in the ‘zero-frequency’ domain. The thermal level is not subject to the Weibel

mode instability; however the magnetic energy density measured in the Weibel mode at a

certain time t1 in the linear phase has evolved from the background magnetic thermal fluc-

tuation level 〈b2(t = 0)〉 at time t = 0 according to

〈

B2(t1)
〉

≃
〈

b2(t = 0)
〉

exp(2γmt) (34)

From the linear phase in Fig. 4 we find for the numerically determined linear chromo-Weibel

growth rate that γm ≈ 0.28/m∞. This value used in the last equation yields an approximate

(initial) thermal magnetic energy density level of 〈b2〉 ≈ 2.88 × 10−8m4
∞g−2, which corre-

sponds to a thermal magnetic fluctuation level independent of the Weibel mode of average
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Fig. 5 The spectrum S(k) of

magnetic fields in the

pre-recombination era generated

from cosmological density

perturbations (after Ichiki et al.

2006) plotted in units of

magnetic field (G) and shown to

be composed of contributions

from baryon–phonon slip and

anisotropic photon stresses.

Below roughly k < 1/Mpc the

baryon slip dominates the

spectrum while for larger k

(shorter wavelength than roughly

10 Mpc) the anisotropic stresses

contribute most

amplitude
〈

bth
〉

∼ 3.4 × 10−29(Neff/N) G (35)

during the corresponding QCD phase, depending on the ratio of the effective number density

of energetic particles to chromo-plasma density N . This is a low though not unreasonable

upper limit on the thermal fluctuation level of stationary (ω ≈ 0) QGP collective magnetic

seed fields which, however, is probably too low to be of direct astrophysical importance.

4.4.2 Thermal Fluctuations Shortly Before Photon-Matter Decoupling

The previous section dealt with the possible generation of low frequency seed magnetic

fields during the QCD phase of the early universe. A more conventional proposal has been

elaborated recently (Ichiki et al. 2006, 2006) and is proposed to work during the classical

plasma phase before recombination. These authors make the reasonable assumption that

during this epoch the coupling between photons and electrons by Compton scattering is

much stronger than the coupling between photons and ions. Cautious examination of the

particle–photon interaction in a cosmological density fluctuation field indeed shows that

pressure anisotropy and currents are induced. The generalised Ohm’s law that includes the

photon interaction allows for a finite electron current flow because of the differences in the

bulk electron and proton velocities caused. This effect produces the desired magnetic fields.

However, only the second order density perturbations in the Compton scattering terms lead

to fields that survive on a range of spatial scales. The power spectrum S(k) of the fields

in the long wavelength range (see Fig. 5) scales as
√

k3S(k) ∝ k Here the photon-caused

anisotropic stress dominates.

Seed magnetic fields reach values of B ∼ 10−18 G on scales of ∼1 Mpc and B ∼ 10−14 G

on ∼10 kpc scales. After decoupling these fields decay adiabatically with expansion of the

universe. In a standard cosmology they should today be of strength B(t0) ∼ 10−24 G at

1 Mpc and ∼10−20 G at 10 kpc and may have played a role in structure formation after

recombination.

These seed fields are surprisingly strong, however. Recently, Fenu et al. (2011) performed

numerical simulations taking into account all relevant general relativistic effects. Their esti-
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mates based on the WMAP7 parameters suggest that the generation of seed magnetic fields

on cosmological scales is mainly related to Compton drag by photons on baryons whereby

vorticity is exchanged and magnetic fields are generated still after recombination. The power

spectra obtained are ∝ k4 for k ≪ keq and ∝
√

k for k ≫ keq yielding substantially lower

comoving fields B ∼ 10−29 G at 1 Mpc.

5 Magnetic Fields and the Cosmic Microwave Background

The field of cosmology has witnessed a revolution lead, in large part, by detailed mea-

surements of the CMB anisotropy and polarization spectra. Fundamental cosmological pa-

rameters such density parameters of baryons, dark matter, and dark energy and the Hubble

constant are now known to a precision unimaginable just two decades ago.

If magnetic fields were present at the time of matter-radiation decoupling or soon after,

then they would have an effect on the anisotropy and polarization of the CMB (see Subra-

manian 2006; Durrer 2007 for reviews). First, a very large scale (effectively homogeneous)

field would lead to anisotropic expansion and hence to a quadrupole anisotropy in the CMB

(see, for example, Thorne 1967). The degree of isotropy of the CMB was used to place a

limit of several nG on the strength of such a field redshifted to the current epoch (Barrow et

al. 1997). Note, however, that the results of Barrow et al. (1997) assume that magnetic fields

are the only source of large-scale anisotropy. Recently, Adamek et al. (2011) showed that

neutrinos, which free-stream so long as they are relativistic, generate an anisotropic pres-

sure which can counteract the anisotropic pressure generated by a homogeneous magnetic

field. This result depends on the neutrino masses but may damp the effect of very large scale

magnetic fields on the CMB.

Primordial magnetogenesis scenarios on the other hand generally lead to tangled fields,

plausibly Gaussian random, characterized by say a spectrum M(k). This spectrum is nor-

malized by giving the field strength B0, at some fiducial scale, and as measured at the present

epoch, assuming it decreases with expansion as B = B0/a
2(t). Since magnetic and radiation

energy densities both scale with expansion as 1/a4, we can characterize the magnetic field

effect by the ratio B2
0/(8πργ 0) ∼ 10−7B2

−9 where ργ 0 is the present day energy density in

radiation, and B−9 = B0/(10−9 G). Magnetic stresses are therefore small compared to the

radiation pressure for nano Gauss fields.

Nevertheless, the scalar, vector and tensor parts of the perturbed stress tensor associated

with primordial magnetic fields lead to corresponding metric perturbations, including grav-

itational waves. Further the compressible part of the Lorentz force leads to compressible

(scalar) fluid velocity and associated density perturbations, while its vortical part leads to

vortical (vector) fluid velocity perturbation. These magnetically induced metric and velocity

perturbations lead to both large and small angular scale anisotropies in the CMB temperature

and polarization.

The scalar contribution has been the most subtle to calculate, and has only begun to be

understood by several groups (Giovannini and Kunze 2008; Yamazaki et al. 2008; Finelli et

al. 2008; Shaw and Lewis 2010). The anisotropic stress associated with the magnetic field

leads in particular to the possibility of two types of scalar modes, a potentially dominant

mode which arises before neutrino decoupling sourced by the magnetic anisotropic stress.

And a compensated mode which remains after the growing neutrino anisotropic stress has

compensated the magnetic anisotropic stress (cf. Shaw and Lewis 2010; Bonvin and Caprini

2010 for detailed discussion). The magnetically induced compressible fluid perturbations,

also changes to the acoustic peak structure of the angular anisotropy power spectrum (see,
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for example, Adams et al. 1996). However, for nano Gauss fields, the CMB anisotropies

due to the magnetized scalar mode are grossly subdominant to the anisotropies generated by

scalar perturbations of the inflaton.

Potentially more important is the contribution of the Alfvén mode driven by the rota-

tional component of the Lorentz force (Subramanian and Barrow 1998; Mack et al. 2002;

Subramanian et al. 2003; Lewis 2004). Unlike the compressional mode, which gets strongly

damped below the Silk scale, LS due to radiative viscosity (Silk 1968), the Alfvén mode

behaves like an over damped oscillator. This is basically because the phase velocity of

oscillations, in this case the Alfvén velocity, is VA ∼ 3.8 × 10−4cB−9 much smaller than

the relativistic sound speed c/
√

3. Note that for an over damped oscillator there is one

normal mode which is strongly damped and another where the velocity starts from zero

and freezes at the terminal velocity till the damping becomes weak at a latter epoch.

The net result is that the Alfvén mode survives Silk damping down to much smaller

scales; LA ∼ (VA/c)LS ≪ LS , the canonical Silk damping scale (Jedamzik et al. 1998;

Subramanian and Barrow 1998). The resulting baryon velocity leads to a CMB tempera-

ture anisotropy, �T ∼ 5μK(B−9/3)2 for a scale invariant spectrum, peaked below the Silk

damping scale (angular wavenumbers l > 103). This rough estimate has also been borne out

by the detailed calculations of Lewis (2004).

The magnetic anisotropic stress also induces tensor perturbations, resulting in a com-

parable CMB temperature anisotropy, but now peaked on large angular scales of a de-

gree or more (Durrer et al. 2000). Both the vector and tensor perturbations lead to

ten times smaller B-type polarization anisotropy, at respectively small and large angu-

lar scales (Seshadri and Subramanian 2001; Subramanian et al. 2003; Mack et al. 2002;

Lewis 2004). Note that inflationary generated scalar perturbations only produce the E-type

mode. The small angular scale vector contribution in particular can potentially help to isolate

the magnetically induced signals (Subramanian et al. 2003).

A crucial difference between the magnetically induced CMB anisotropy signals com-

pared to those induced by inflationary scalar and tensor perturbations, concerns the statis-

tics associated with the signals. Primordial magnetic fields lead to non-Gaussian statistics

of the CMB anisotropies even at the lowest order, as magnetic stresses and the tempera-

ture anisotropy they induce depend quadratically on the magnetic field. In contrast, CMB

non-Gaussianity due to inflationary scalar perturbations arises only as a higher order ef-

fect. A computation of the non-Gaussianity of the magnetically induced signal has begun

(Seshadri and Subramanian 2009; Caprini et al. 2009; Cai et al. 2010), based on earlier cal-

culations of non-Gaussianity in the magnetic stress energy (Brown and Crittenden 2005).

This new direction of research promises to lead to tighter constraints or a detection of strong

enough primordial magnetic fields.

A primordial magnetic field leads to a number of other effects on the CMB which can

probe its existence: Such a field in the inter galactic medium can cause Faraday rotation

of the polarized component of the CMB, leading to the generation of new B-type signals

from the inflationary E-mode signal (Kosowsky and Loeb 1996). Any large-scale helical

component of the field leads to a parity violation effect, inducing non-zero T-B and E-B

cross-correlations (Kahniashvili and Ratra 2005); such cross-correlations between signals

of even and odd parity are necessarily zero in standard inflationary models. The damping of

primordial fields in the pre-recombination era can lead to spectral distortions of the CMB

(Jedamzik et al. 2000), while their damping in the post-recombination era can change the

ionization and thermal history of the universe and hence the electron scattering optical depth

as a function of redshift (see Sethi and Subramanian 2005; Tashiro and Sugiyama 2006a;

Schleicher et al. 2008, and Sect. 5.3). Future CMB probes like PLANCK can potentially
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detect the modified CMB anisotropy signal from such partial re-ionization. In summary

primordial magnetic fields of a few nG lead to a rich variety of effects on the CMB and thus

are potentially detectable via observation of CMB anisotropies.

6 Implications of Strong Primordial Fields in the Post-recombination Universe

If strong magnetic fields have been produced during phase-transitions in the early universe,

and if these fields had some non-zero helicity, they may have remained strong until recom-

bination and beyond (Christensson et al. 2001; Banerjee and Jedamzik 2004). They could

then affect the thermal and chemical evolution during the dark ages of the Universe, the

formation of the first stars, and the epoch of reionization.

6.1 Implications During the Dark Ages

At high redshift z > 40, the universe is close to homogeneous, and the evolution of the

temperature, T , is governed by the competition of adiabatic cooling, Compton scattering

with the CMB and, in the presence of strong magnetic fields, ambipolar diffusion. It is thus

given as

dT

dz
= 8σT aRT 4

rad

3H(z)(1 + z)mec

xe(T − Trad)

1 + fHe + xe

+ 2T

1 + z
− 2(LAD − Lcool)

3nkBH(z)(1 + z)
, (36)

where LAD is the heating function due to ambipolar diffusion (AD), Lcool the cooling

function (Anninos et al. 1997), σT the Thomson scattering cross section, aR the Stefan–

Boltzmann radiation constant, me the electron mass, c the speed of light, kB Boltzmann’s

constant, n the total number density, xe = ne/nH the electron fraction per hydrogen atom,

Trad the CMB temperature, H(z) is the Hubble factor and fHe is the number ratio of He and

H nuclei.

AD occurs due to the friction between ionized and neutral species, as only the former are

directly coupled to the magnetic field. Primordial gas consists of several neutral and ionized

species, and for an appropriate description of this process, we thus adopt the multi-fluid

approach of Pinto et al. (2008), defining the AD heating rate as

LAD = ηAD

4π

∣

∣(∇ × B) × B/B
∣

∣

2
, (37)

where ηAD is given as

η−1
AD =

∑

n

η−1
AD,n. (38)

In this expression, the sum includes all neutral species n, and ηAD,n denotes the AD resis-

tivity of the neutral species n. We note that the AD resistivities themselves are a function of

magnetic field strength, temperature and chemical composition.

In the primordial IGM, the dominant contributions to the total resistivity are the resis-

tivities of atomic hydrogen and helium due to collisions with protons. These are calculated

based on the momentum transfer coefficients of Pinto and Galli (2008). As the power spec-

trum of the magnetic field is unknown, we estimate the expression in (37) based on the coher-

ence length LB , given as the characteristic scale for Alfvén damping (Jedamzik et al. 1998;
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Subramanian 1998; Seshadri and Subramanian 2001). Contributions from decaying MHD

turbulence may also be considered, but are negligible compared to the AD heating (Sethi

and Subramanian 2005).

The additional heat input provided by AD affects the evolution of the ionized fraction of

hydrogen, xp, which is given as

dxp

dz
= [xexpnH αH − βH (1 − xp)e−hpνH,2s/kT ]

H(z)(1 + z)[1 + KH (ΛH + βH )nH (1 − xp)]

×
[

1 + KH ΛH nH (1 − xp)
]

− kionnHxp

H(z)(1 + z)
. (39)

Here, nH is the number density of hydrogen atoms and ions, hp Planck’s constant, kion

is the collisional ionization rate coefficient (Abel et al. 1997). Further details of notation,

as well as the parametrized case B recombination coefficient for atomic hydrogen αH , are

given by Seager et al. (1999). The chemical evolution of the primordial gas is solved with a

system of rate equations for the chemical species H−, H+
2 , H2, HeH+, D, D+, D−, HD+and

HD based on the primordial rate coefficients tabulated by Schleicher et al. (2008). For the

mutual neutralization rate of H− and H+, we use the more recent result of Stenrup et al.

(2009). The evolution of the magnetic energy density EB = B2/8π is given as

dEB

dt
= 4

3

∂ρ

∂t

EB

ρ
− LAD. (40)

The first term describes the evolution of the magnetic field in a homogeneous universe in

the absence of specific magnetic energy generation or dissipation mechanisms. The second

term accounts for corrections due to energy dissipation via AD.

The dynamical implications of magnetic fields can be assessed from the magnetic Jeans

mass, the critical mass scale for gravitational forces to overcome magnetic pressure. In the

cosmological context, the magnetic Jeans mass is given as (Subramanian 1998; Sethi and

Subramanian 2005)

MB
J ∼ 1010M⊙

(

B0

3 nG

)3

. (41)

We note that this equation is derived in the cosmological context and is only valid on cos-

mological scales. A more general expression for the magnetic Jeans length is given below.

Due to ambipolar diffusion, strong magnetic fields also affect the gas temperature and

thus the thermal Jeans mass, i.e. the critical mass scale required to overcome gas pressure.

It is defined as

MJ =
(

4πρ

3

)−1/2(
5kBT

2μGmP

)3/2

(42)

with Boltzmann’s constant kB , the mean molecular weight μ and the proton mass mp .

To describe virialization in the first minihalos, we employ the spherical collapse model

of Peebles (1993) for pressureless dark matter until an overdensity of ∼200 is reached.

Equating cosmic time with the timescale from the spherical collapse model allows one to

calculate the overdensity ρ/ρb as a function of time or redshift. In this model, we further

assume that the formation of the protocloud will reduce the coherence length of the magnetic

field to the size of the cloud.

The evolution of the magnetic field strength, the IGM temperature and the chemical

abundances of different species have been calculated by Schleicher et al. (2009b) using an
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Fig. 6 The evolution of the

comoving magnetic field strength

due to AD as a function of

redshift for different initial

comoving field strengths, from

the homogeneous medium at

z = 1300 to virialization at

z = 20

Fig. 7 The gas temperature

evolution in the IGM as a

function of redshift for different

comoving field strengths, from

the homogeneous medium at

z = 1300 to virialization at

z = 20. For the case with

B0 = 0.01 nG, we find no

difference in the thermal

evolution compared to the

zero-field case

Fig. 8 The evolution of

ionization degree, H2 and HD

abundances as a function of

redshift for different comoving

field strengths, from the

homogeneous medium at

z = 1300 to virialization at

z = 20. For the case with

B0 = 0.01 nG, we find no

difference in the chemical

evolution compared to the

zero-field case

extension of the recombination code RECFAST (Seager et al. 1999). The results are shown

in Figs. 6, 7 and 8. As shown in Fig. 6, ambipolar diffusion primarily affects magnetic fields

with initial comoving field strengths of 0.2 nG or less. For stronger fields, the dissipation

of only a small fraction of their energy increases the temperature and the ionization fraction
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of the IGM to such an extent that AD becomes less effective. For comoving field strengths

up to ∼0.1 nG, the additional heat from ambipolar diffusion is rather modest and the gas

in the IGM cools below the CMB temperature due to adiabatic expansion. However, it can

increase significantly for stronger fields and reaches ∼104 K for a comoving field strength

of 1 nG, where Lyman α cooling and collisional ionization become efficient and prevent a

further increase in temperature. The increased temperature enhances the ionization fraction

and leads to larger molecule abundances at the onset of star formation.

6.2 Implications for the Formation of the First Stars

We now explore in more detail the consequences of magnetic fields for the formation of

the first stars, during the protostellar collapse phase. For this purpose, a model describing

the chemical and thermal evolution during free-fall collapse was developed by Glover and

Savin (2009) and extended by Schleicher et al. (2009b) for the effects of magnetic fields.

Particularly important with respect to this application is the fact that it correctly models the

evolution of the ionization degree and the transition at densities of ∼108 cm−3 where Li+

becomes the main charge carrier. Based on the Larson–Penston type self-similar solution

(Larson 1969; Penston 1969; Yahil 1983), we evaluate how the collapse timescale is affected

by the thermodynamics of the gas.

During protostellar collapse, magnetic fields are typically found to scale as a power-

law with density ρ. Assuming ideal MHD with flux freezing and spherical symmetry, one

expects a scaling with ρ2/3 in the case of weak fields. Deviations from spherical symmetry

such as expected for dynamically important fields give rise to shallower scalings, e.g. B ∝
ρ0.6 (Banerjee et al. 2004; Banerjee and Pudritz 2006), B ∝ ρ1/2 (Hennebelle and Fromang

2008; Hennebelle and Teyssier 2008). Based on numerical simulations of Machida et al.

(2006), we find an empirical power-law relation B ∝ ρα where

α = 0.57

(

MJ

MB
J

)0.0116

. (43)

In a collapsing cloud, the more general expression for the magnetic Jeans mass,

MB
J = Φ

2π
√

G
, (44)

is adopted. In this prescription, Φ = πr2B denotes the magnetic flux, G the gravitational

constant, r an appropriate length scale. The calculation of the magnetic Jeans mass thus re-

quires an assumption regarding the size of the dense region. Numerical hydrodynamics sim-

ulations show that they are usually comparable to the thermal Jeans length (Abel et al. 2002;

Bromm and Larson 2004). This is also suggested by analytical models for gravitational

collapse (Larson 1969; Penston 1969; Yahil 1983).To account for magnetic energy dissi-

pation via AD, we calculate the AD heating rate from (37) and correct the magnetic field

strength accordingly. We note that due to the large range of densities during protostellar

collapse, additional processes need to be taken into account to calculate the AD resistivity

correctly. In particular, at a density of ∼109 cm−3, the three-body H2 formation rates start to

increase the H2 abundance significantly, such that the gas is fully molecular at densities of

∼1011 cm−3. As a further complication, the proton abundance drops considerably at densi-

ties of ∼108 cm−3, such that Li+ becomes the main charge carrier (Maki and Hajime 2004;

Glover and Savin 2009). These effects are incorporated in our multi-fluid approach.
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Table 1 The physical field

strength B at beginning of

collapse as a function of the

comoving field strength B0 used

to initialize the IGM calculation

at z = 1300

B0 [nG] B [nG]

1 4.8 × 103

0.3 6.3 × 102

0.1 1.3 × 102

0.01 1.0 × 101

Fig. 9 The gas temperature as a

function of density for different

comoving field strengths. For

B0 = 0.01 nG, the thermal

evolution corresponds to the

zero-field case

Fig. 10 Thermal (thin lines) and

magnetic (thick lines) Jeans mass

as a function of density for

different comoving field

strengths. For B0 = 0.01 nG, the

thermal evolution and thus the

thermal Jeans mass corresponds

to the zero-field case

As an initial condition for these model calculations, we use the physical field strength

and the chemical abundances obtained from the spherical collapse model in Sect. 6.1. The

relation between co-moving and physical field strength at the beginning of this calculation

is thus given in Table 1.

Figure 9 shows the calculated temperature evolution as a function of density for different

comoving field strengths. For comoving fields of 0.01 nG or less, there is virtually no differ-

ence in the temperature evolution from the zero-field case. For comoving fields of ∼0.1 nG,

cooling wins over the additional heat input in the early phase of collapse, and the temperature

decreases slightly below the zero-field value at densities of 103 cm−3. At higher densities,

the additional heat input dominates over cooling and the temperature steadily increases. At
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densities of ∼109 cm−3, the abundance of protons drops considerably and increases the AD

resistivity defined in (38) and the heating rate until Li+ becomes the main charge carrier.

In particular for comoving fields larger than ∼0.1 nG, this transition is reflected by a small

bump in the temperature evolution due to the increased heating rate in this density range.

Apart from the transition where Li+ becomes the dominant charge carrier, the magnetic

field strength usually increases more rapidly than ρ0.5, and weak fields increase more rapidly

than strong fields. This is what one naively expects from (43), and it is not significantly

affected by magnetic energy dissipation. Another important point is that comoving fields of

only 10−5 nG are amplified to values of ∼1 nG at a density of 103 cm−3. Such fields are

required to drive protostellar outflows that can magnetize the IGM (Machida et al. 2006).

Figure 10 shows the evolution of the thermal and magnetic Jeans mass during collapse.

The thermal Jeans masses are quite different initially, but as the temperatures reach the

same order of magnitude during collapse, the same holds for the thermal Jeans mass. The

thermal Jeans mass in this late phase has only a weak dependence on the field strength. As

expected, the magnetic Jeans masses are much more sensitive to the magnetic field strength,

and initially differ by about two orders of magnitude for one order of magnitude difference

in the field strength. For comoving fields of ∼1 nG, the magnetic Jeans mass dominates over

the thermal one and thus determines the mass scale of the protocloud. For ∼0.3 nG, both

masses are roughly comparable, while for weaker fields the thermal Jeans mass dominates.

The magnetic Jeans mass shows features both due to magnetic energy dissipation, but also

due to a change in the thermal Jeans mass, which sets the typical length scale and thus the

magnetic flux in the case that MJ > MB
J .

The uncertainties in these models have been explored further by Schleicher et al. (2009b),

and an independent calculation including stronger magnetic fields has been provided by

Sethi et al. (2010). We also note that the consequences of initially weak magnetic fields for

primordial star formation are explored in more detail in the next chapter.

6.3 Implications for Reionization

Strong magnetic fields may influence the epoch of reionization in various ways. As dis-

cussed above, they may affect the formation of the first stars and change their mass scale,

and thus their feedback effects concerning cosmic reionization and metal enrichment. They

may further give rise to fluctuations in the large-scale density field and potentially enhance

high-redshift structure formation (Kim et al. 1996; Sethi and Subramanian 2005; Tashiro

and Sugiyama 2006a). On the other hand, the increased thermal and magnetic pressure may

indeed suppress star formation in small halos and thus delay reionization (Schleicher et al.

2008; Rodrigues et al. 2010). In both cases, unique signatures of the magnetic field may

become imprinted in the 21 cm signature of reionization, which may help to constrain or de-

tect such magnetic fields with LOFAR,5 EDGES6 or SKA7 (Tashiro and Sugiyama 2006b;

Schleicher et al. 2009a). Upcoming observations of these facilities may thus provide a

unique opportunity to probe high-redshift magnetic fields in more detail.

5LOFAR homepage: http://www.lofar.org/.

6EDGES homepage: http://www.haystack.mit.edu/ast/arrays/Edges/.

7SKA homepage: http://www.skatelescope.org/.

http://www.lofar.org/
http://www.haystack.mit.edu/ast/arrays/Edges/
http://www.skatelescope.org/
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7 Seed Fields in the Post-recombination Universe

We have seen that magnetic fields arise naturally during inflation and during phase transi-

tions after inflation but before recombination. However, the effective field strength on galac-

tic scales may be exceedingly small. Indeed, the seed fields for the galactic dynamo may

well arise from astrophysical processes rather than exotic early-Universe ones. In this sec-

tion, we review three processes that can generate magnetic field in the post-recombination

Universe.

7.1 Biermann Battery

In the hierarchical clustering scenario, proto-galaxies acquire angular momentum from tidal

torques produced by neighboring systems (Hoyle 1949; Peebles 1969; White 1984). How-

ever, these purely gravitational forces cannot generate vorticity (the gravitational force can

be written as the gradient of a potential whose curl is identically zero) and therefore the exis-

tence of vorticity must arise from gasdynamical processes such as those that occur in shocks.

More specifically, vorticity is generated whenever one has crossed pressure and density gra-

dients. In an ionized plasma, this situation drives currents which, in turn, generate magnetic

field. This mechanism, known as the Biermann battery and originally studied in the context

of stars (Biermann 1950) was considered in the cosmological context by Pudritz and Silk

(1989), Kulsrud et al. (1997), Davies and Widrow (2000), and Xu et al. (2008).

In magnetohydrodynamics, the time dependence of the magnetic field can be written as:

∂B

∂t
= ∇ × (v × B) + c2

4πσ
∇2B, (45)

where σ is the conductivity, which is assumed to be constant in space. The Biermann effect

leads to an additional source term for ∂B/∂t of the form

mec

e

∇pe × ∇ρe

ρ2
e

, (46)

where pe and ρe are the electron pressure and density.

The equation for the vorticity, ω, has a similar source term:

∂ω

∂t
= ∇ × (v × ω) + ∇p × ∇ρ

ρ2
, (47)

where, here, p and ρ refer to the whole fluid. The implication is that when vorticity is

generated, so it magnetic field. A simple order of magnitude estimate yields

BBiermann ≃ mpc

e
ω ≃ 3 × 10−21

(

ω

km s−1 kpc−1

)

Gauss. (48)

We note that the vorticity in the solar neighborhood is of order 30 km s−1 kpc−1 so for

galactic-scale fields, we may expect seed fields of order 10−19 G from the Biermann mech-

anism.

The Biermann effect is expected to arise in a wide range of astrophysical settings. Lazar-

ian (1992) showed that a Biermann-type effect operates in the interstellar medium, which is,

in general, non-uniform, multiphase, and clumpy. Of particular interest is the epoch of reion-

ization, which occurs at a redshift z ∼ 10. During this epoch, photons from descrete sources
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such as QSOs and first-generation stars, reionize the intergalactic medium. Reionization be-

gins when ionization fronts propagate away from these sources. Since the pressure and den-

sity (or temperature) gradients in these fronts are, in general, misaligned, one can expect the

Biermann mechanism to operate and generate seed magnetic fields (Subramanian et al. 1994;

Gnedin et al. 2000).

Any force that acts differently on electrons and protons will drive currents and hence gen-

erate magnetic fields. The Biermann battery is but one example. Radiation pressure, which

will also be important during reionization, acts more strongly on electrons than protons and

will therefore drive electric currents (Langer et al. 2003; Ando et al. 2010).

7.2 First-Generation Stars

The first generation of stars provides another potential source of seed fields for the galactic

dynamo. Even if stars are born without magnetic fields, a Biermann battery will generate

weak fields which can then be rapidly amplified by a stellar dynamo. If the star subsequently

explodes or loses a significant amount of mass through stellar winds, the fields will find their

way into the interstellar medium and spread throughout the (proto) galaxy. Simple estimates

by Syrovatskii (1970) illustrate the viability of the mechanism. There have been some 108

supernovae over the lifetime of the galaxy, each of which spreads material through a (10 pc)3

volume. Using values for the field strength typical of the Crab nebula, one therefore expects

the galaxy to be filled by 10 pc regions with field strengths ∼3 µG. Assuming the same L−β

scaling discussed above, one finds a field strength of 10−13 G on 10 kpc scales (assuming

β = 5/2 as in Durrer and Caprini 2003), a value significantly larger than the ones obtained

by more exotic early Universe mechanisms.

The strong amplification of seed magnetic fields during primordial star formation has

been suggested in a number of works. Analytical estimates by Pudritz and Silk (1989), Tan

and Blackman (2004), and Silk and Langer (2006) suggest that large-scale dynamos as well

as the magneto-rotational instability could significantly amplify weak magnetic seed fields

until saturation. Even before, during the protostellar collapse phase, the small-scale dynamo

leads to an exponential growth of the magnetic fields, as found in both semi-analytic and

numerical studies (Schleicher 2010; Sur et al. 2010).

7.3 Active Galactic Nuclei

Strong magnetic fields almost certainly arise in active galactic nucleii (AGN). These fields

will find their way into the intergalactic medium via jets thereby providing a potential source

of magnetic field for normal galaxies (Hoyle 1969; Rees 1987, 1994; Daly and Loeb 1990).

The potential field strengths due to this mechanism may be estimated as follows: The rota-

tional energy associated with the central compact (mass M) object which powers the AGN

can be parametrized as f Mc2 where f < 1. If we assume equipartition between rotational

and magnetic energy within a central volume Vc , we find

Bc =
(

8πf Mc2

Vc

)1/2

. (49)

If this field then expands adiabatically to fill a “galactic” volume Vg one finds Bg =
Bc(Vc/Vg)

2/3. Hoyle (1969) considered values M = 109 M⊙, f = 0.1, Vg ≃ (100 kpc)3

and found Bc ≃ 109 G and Bg ≃ 10−5 G.
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8 Conclusions

The origin of the seed magnetic fields necessary to prime the galactic dynamo remains

a mystery and one that has become more, rather than less, perplexing over the years as

observations have pushed the epoch of microgauss galactic fields back to a time when the

Universe was a third its present age. Numerous authors have explored the possible that the

galactic fields observed today and at intermediate redshift have their origin in the very early

Universe.

The impetus for the study of early Universe magnetic fields came from the successful

marriage of ideas from particle physics and cosmology that occurred during the latter half

of the last century. It is a remarkable prediction of modern cosmology that the particles and

fields of the present-day Universe emerged during phase transitions a fraction of a second

after the Big Bang. The electromagnetic and weak interactions became distinct during the

electroweak phase transitions at t ≃ 10−12 s while baryons replaced the quark–gluon plasma

at t ≃ 10−6 s. Perhaps more fantastical is the notion that galaxies, clusters, and superclusters

arose from quantum-produced density perturbations that originated during inflation at even

earlier times. This idea is supported by strong circumstantial from the CMB anisotropy

spectrum, so much so, that it is now part of the standard lore of modern cosmology.

Both inflation and early Universe phase transitions have many of the ingredients neces-

sary for the creation of magnetic fields. If our understanding of inflation-produced density

perturbations is correct, the similar quantum fluctuations in the electromagnetic field will

lead to fields on the scales of galaxies and beyond. As well, electromagnetic currents, and

hence fields, will almost certainly be driven during both the electroweak and quark–hadron

phase transitions.

Early Universe schemes for magnetic field generation, however, face serious challenges.

In the standard electromagnetic theory, and in a flat or closed FLRW cosmology, inflation-

produced fields at diluted by the expansion to utterly negligible levels. One may address

this issue by considering fields in an open Universe and “just-so” inflation scenario, that is,

a scenario with just enough e-folds of inflation to solve the flatness problem. Alternatively,

one may incorporate additional couplings of the field to gravity into the theory though many

terms lead to unwanted consequences which render the theory unphysical. Observations and

advances in theoretical physics may settle the issue. For example, if future determinations

find that the Universe has a slight negative curvature (density parameter for matter and dark

energy slightly less than one), it would give some credence to the idea of superadiabatic field

amplification in an open Universe. On the other hand, string theory may point us to couplings

between gravity and electromagnetism that naturally generate fields during inflation.

The main difficulty with fields generated from phase transitions after inflation arises from

the small Hubble scale in the very early Universe. Strong fields are almost certainly produced

by one of a number of mechanism. But the coherence length is so small, the effective field

strength on galactic scales is likely to be well-below the level of interest for astrophysics.

An inverse cascade may help; if the field has a net helicity, the magnetic field energy will be

efficiently transferred from small to large scales. But even if fields are uninteresting for the

galactic dynamo, they may have an effect on processes in the post-recombination Universe

such as reionization and the formation of the first generation of stars.

Where, if not the early Universe, did the seed fields for the galactic dynamo arise? Astro-

physics provides a number of promising alternatives. Galactic disks have angular momentum

and vorticity. While the former is generated by the gravitational interaction between neigh-

boring protogalaxies, the latter comes form gasdynamical effects which necessarily generate
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magnetic fields via the Biermann battery. As well, magnetic fields, rapidly created and am-

plified inside some early generation of stars or in active galactic nucleii, can be dispersed

throughout the intergalactic medium.
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