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Abstract

Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All
members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only
arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia
maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced
arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our
analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We
describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory
receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene
families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use
alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate
splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of
any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The
phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular
mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of
the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata.
We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse
into the ancestral arthropod genome, while also displaying many adaptations to its specific life history.
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Introduction

Arthropods are the most species-rich animal phylum on Earth.

Of the four extant classes of arthropods (Insecta, Crustacea,

Myriapoda, and Chelicerata) (Figure 1), only the Myriapoda

(centipedes, millipedes, and their relatives) are currently not

represented by any sequenced genome [1,2]. This absence is

particularly unfortunate, as myriapods have recently been

recognised as the living sister group to the clade that encompasses

all insects and crustaceans [3–6]. Hence, the Myriapoda are

particularly well placed to provide an outgroup for comparison, to

determine ancestral character states and the polarity of evolution-

ary change within insects and crustaceans, which together

represent the most diverse animal clade on Earth.

Although Drosophila melanogaster is the best studied arthropod,

it lacks many genes present in the ancestral bilaterian gene set, and

chromosome rearrangements have disrupted all obvious evidence

of synteny with other phyla [7]. Thus it is not fully representative

of other arthropods. More comprehensive sampling of arthropod

genomes will establish their basic structure, and determine when

unique genomic characteristics of different taxa, such as the

holometabolous insects, appear.

Phylogenetic Position of the Myriapods
Myriapods are today represented by two major lineages—the

herbivorous millipedes (Diplopoda) and the carnivorous centipedes

(Chilopoda), together with two minor clades, the Symphyla, which

look superficially like small white centipedes, and the minute

Pauropoda [8]. All are characterised by a multi-segmented trunk

of rather similar (homonomous) segments, with no differentiation

into thorax or abdomen. All recent studies, molecular and

Centipede Genome
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morphological, support the monophyly of myriapods [3–5,8–10]

suggesting that they share a single common ancestor.

Myriapods, insects, and crustaceans have traditionally been

identified as a clade of mandibulate arthropods, characterised by

head appendages that include antennae and biting jaws [11].

Some molecular datasets have challenged this idea, suggesting

instead that the myriapods are a sister group to the chelicerates

[12,13]. The most comprehensive phylogenomic datasets thus far

reject this, and strongly support the phylogeny that proposes that

the chelicerates are the most basal of the four major extant

arthropod clades, and the mandibulates represent a true mono-

phyletic group [3,5,10,14–17].

Within the mandibulates, myriapods were believed until

recently to share a common origin with insects as terrestrial

arthropods. This view, based on a number of shared characters

including uniramous limbs, air breathing through tracheae, the

lack of a second pair of antennae, and excretion using Malpighian

tubules, was widely supported by morphologically based phylog-

enies [9,18]. However, molecular phylogenies robustly reject the

sister group relationship between insects and myriapods, placing

the origin of myriapods basal to the diversification of crustaceans

[5], and identifying insects as a derived clade within the Crustacea

[19–21]. As crustaceans are overwhelmingly a marine group

today, and were so ancestrally, this implies that myriapods and

insects represent independent invasions of the land (with the

chelicerates representing an additional, unrelated invasion). Their

shared characteristics are striking convergences, not synapomor-

phies.

S. maritima as a Model Myriapod
We chose S. maritima as the species to sequence partly for

pragmatic reasons: geophilomorph centipedes, such as S. mar-
itima, have relatively small genome sizes, certainly compared to

other centipedes [22]. More importantly, it is a species that has

attracted interest for ecological and developmental studies [23–

25], especially the process of segment patterning [26–32]. S.
maritima is a common centipede of north western Europe, found

along the coastline from France to the middle of Norway. It is a

specialist of shingle beaches and rocky shores, occurring around

the high tide mark, and feeding on the abundant crustaceans and

insect larvae associated with the strand line. It is by far the most

abundant centipede in these habitats around the British Isles,

sometimes occurring at densities of thousands per square metre in

suitable locations [25]. Eggs can be harvested from these abundant

populations in large numbers with relatively little effort during the

summer breeding season [27]. They can be reared in the lab from

egg lay to at least the first free-living stage, adolescens I [24,33].

Some aspects of S. maritima biology are not common to all

centipedes. Notable among these is epimorphic development,

wherein the embryos hatch from the egg with the final adult

number of leg-bearing segments. Epimorphic development is

Figure 1. The phylogenetic position of the centipedes (Chilopoda), with respect to other arthropods, according to the currently
best-supported phylogeny. (See text for details). The four traditionally accepted arthropod classes are marked in bold.
doi:10.1371/journal.pbio.1002005.g001

Author Summary

Arthropods are the most abundant animals on earth.
Among them, insects clearly dominate on land, whereas
crustaceans hold the title for the most diverse inverte-
brates in the oceans. Much is known about the biology of
these groups, not least because of genomic studies of the
fruit fly Drosophila, the water flea Daphnia, and other
species used in research. Here we report the first genome
sequence from a species belonging to a lineage that has
previously received very little attention—the myriapods.
Myriapods were among the first arthropods to invade the
land over 400 million years ago, and survive today as the
herbivorous millipedes and venomous centipedes, one of
which—Strigamia maritima—we have sequenced here. We
find that the genome of this centipede retains more
characteristics of the presumed arthropod ancestor than
other sequenced insect genomes. The genome provides
access to many aspects of myriapod biology that have not
been studied before, suggesting, for example, that they
have diversified receptors for smell that are quite different
from those used by insects. In addition, it shows specific
consequences of the largely subterranean life of this
particular species, which seems to have lost the genes for
all known light-sensing molecules, even though it still
avoids light.

Centipede Genome
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found in two centipede orders: geophilomorphs (including S.
maritima) and scolopendromorphs. In contrast, more basal clades

display anamorphic development and add segments post-embry-

onically [34]. These anamorphic clades have relatively few leg-

bearing segments, generally 15, while geophilomorphs have many

more, up to nearly 200 in some species [6]. These unique

characteristics probably arose at least 300 million years ago, as the

earliest fossils of the much larger scolopendromorph centipedes

date to the Upper Carboniferous [35]. These share the same mode

of development as the geophilomorphs, and are their likely sister

group. Geophilomorphs are also adapted to a subsurface life style,

the whole order having lost all trace of eyes [36,37], though

apparently not photosensitivity [38].

We have sequenced the genome of S. maritima as a

representative of the phylogenetically important myriapods. In

contrast to the intensively sampled holometabolous insects, our

analysis of this myriapod genome finds conservative gene sets and

conserved synteny, shedding light on general genomic features of

the arthropods.

Results and Discussion

Genome Assembly, Gene Densities, and Polymorphism
Genomic DNA from multiple individuals of a wild Scottish

population of S. maritima was sequenced and assembled into a

draft genome sequence spanning 176.2 Mb. This assembled

sequence omits many repeat sequences including heterochroma-

tin, which probably accounts for the difference between the

assembly length and the total genome size estimate of 290 Mb. An

analysis of repetitive elements within the assembly is presented in

Text S1.

The assembly incorporates 14,992 automatically generated gene

models, 1,095 of which have been additionally manually

annotated. We re-sequenced four individuals comprising three

females and one male. The frequency of identified polymorphism,

with SNP density of 4.5 variants/kb, is comparable with the five

variants per kb in the Drosophila genetic reference panel [39]. It is

hard to say how typical this is for soil dwelling arthropods, as very

little population data are available for such species.

Phylome Analysis and Phylogenomics
To understand general patterns of gene evolution in S. maritima

we reconstructed the evolutionary histories of all of its genes, i.e.,

the phylome. The resulting gene phylogenies, available through

phylomeDB [40], were analysed to establish orthology and

paralogy relationships with other arthropod genomes [41], transfer

functional knowledge from annotated orthologues, and to detect

and date gene duplication events [42]. Some 32% of S. maritima
genes can be traced back to duplications specific to this myriapod

lineage since its divergence from other arthropod groups included

in the analysis. Functions enriched among these genes include

those related to, among other processes, catabolism of peptido-

glycans, sodium transport, glutamate receptor, and sensory

perception of taste. Related to this latter function, two of the

largest gene expansions specific to the S. maritima lineage detected
in our analysis are the gustatory receptor (GR) and ionotropic

receptor (IR) families encoding putative membrane-associated

gustatory and/or olfactory receptors (see Text S1, and Chemo-

sensory section below).

Sex Chromosomes
No obviously differentiated sex chromosomes are apparent in

the diploid S. maritima karyotype, which comprises one long pair

of metacentric chromosomes, together with seven pairs of much

shorter telocentric chromosomes (P. Woznicki, unpublished data;

J. Green et al., unpublished). Read-depth data from the genome

assembly show that a proportion of the genome is underrepre-

sented compared to the bulk of the data. One obvious reason for

underrepresentation would be sequences derived from sex

chromosomes. To confirm this, the coverage of individual scaffolds

from the assembly was examined in sequence obtained from single

individuals. A distinct fraction of underrepresented scaffolds is

present in DNA derived from a male, but absent in female

sequence (Figure 2), implying an XY sex determination mecha-

nism. Quantitative PCR from three scaffolds in the underrepre-

sented fraction confirmed that they are present at approximately

twice the copy number in females as in males, identifying them as

X chromosome derived (J. Green et al., unpublished). Other

scaffolds of this fraction contain male specific sequences, and

therefore presumably derive from a Y chromosome (J. Green et

al., unpublished) [31]. Combined with the karyotype data, this

finding suggests that S. maritima possesses a weakly differentiated

pair of X and Y chromosomes.

Mitochondrial Genome
From the whole genome assembly, S. maritima scaffold

scf7180001247661 was found to contain a complete copy of the

mitochondrial coding regions, flanked by a TY1/Copia-like

retrotransposon, which all together spanned approximately

20 kb. This is unusually large for a metazoan mitochondrial

genome and, as mis-assembly was suspected, PCR was used to

clone the DNA between the genes at either end of the scaffold.

This enabled us to close the circle of the mitochondrial genome,

correct frameshifts, and confirm an unusual gene arrangement,

resulting in a final circular assembly of 14,983 bp (Table S11). The

gene arrangement in the S. maritima mitochondrial genome is

striking (Figure S6). It diverges dramatically from the basic

arthropod genome arrangement and differs from all other known

centipede mitochondrial gene arrangements [43]. Although small

sections of the S. maritima gene order are conserved with respect

to the arthropod ground pattern found in Limulus polyphemus and
the lithobiomorph centipede Lithobius forficatus (e.g., trnaF-nad5-
H-nad4-nad4L on the minus strand), other sections are completely

rearranged to an extent unusual in arthropods, and metazoans

(ACR and MJT, unpublished). This confounds attempts to use S.
maritima mitochondrial gene order in phylogenetic reconstruc-

tions.

Figure 2. Plot showing that DNA from a male individual
contains a distinct fraction of scaffolds that is underrepresent-
ed (black arrow), and presumably derives from heterogametic
sex chromosomes. No such fraction is present in the sequenced DNA
of two individual females. The data underlying this plot is presented in
File S4.
doi:10.1371/journal.pbio.1002005.g002

Centipede Genome

PLOS Biology | www.plosbiology.org 4 November 2014 | Volume 12 | Issue 11 | e1002005



Conserved Synteny with Other Phyla
With the exception of some conserved local gene clusters, the

location of genes on the chromosomes of Drosophila and other

Diptera retains no obvious trace of the ancestral bilaterian gene

linkage. Other holometabolous insects such as Bombyx mori and
Tribolium castaneum do show significant conservation of large-

scale gene linkage with other phyla, for example, in the chordate

Branchiostoma floridae (amphioxus) and the cnidarian Nematos-
tella vectensis [44,45]. The last common ancestor of these two

lineages pre-dated the ancestor of all bilaterian animals, and yet

the genomes of these species retain detectable conserved synteny:

orthologous genes are found together on the same chromosomes,

or chromosome fragments, far more often than would be expected

by chance.

We find the S. maritima genome also retains significant traces of

the large-scale genome organisation that was present in the

bilaterian ancestor. Although the assignment of scaffolds to

chromosomes is not determined in S. maritima, there are sufficient
gene linkage data within scaffolds to reveal clear retained synteny

between amphioxus and S. maritima (Figure 3), at a higher level

than any of the Insecta or Pancrustacea we have examined.

Of the 62 scaffolds with at least 20 genes from ancestral

bilaterian orthology groups, 37 show enrichment of shared

orthologues with one or (in the case of a single scaffold) two

chordate ancestral linkage groups (ALGs) at a significance

threshold of p,0.0001 (after Bonferroni correction for 1,116

pairwise ALG-scaffold comparisons). Of these scaffolds’ genes that

have predicted human orthologues, 57% are found in a conserved

macro-synteny context. At a more relaxed significance threshold

(p,0.01), 71% of these scaffolds have a significant association with

at least one chordate ALG, and 17 of the 18 chordate ALGs hit at

least one of these scaffolds.

Stronger synteny is also detected for the genome of the nematode

Caenorhabditis elegans with S. maritima than with insects or other

Metazoa. The C. elegans genome is highly rearranged, and shows

low synteny with higher insects, or with chordates [7,46,47]. As

members of the Ecdysozoa, nematodes last shared a common

ancestor with the arthropods more recently than with chordates.

This shared ancestry allows traces of conserved genome organisa-

tion to be detected with slowly rearranging arthropod genomes,

even when it is only weakly apparent with chordates.

By implication, the last common ancestor of the arthropods

retained significant synteny with the last common ancestor of

bilaterians as well as the last common ancestors of other phyla,

such as the Chordata. This conserved synteny is more complete

with this S. maritima genome sequence, due to the relative

scrambling of the genomes of those other arthropods that have

been sequenced previously.

Figure 3. Conserved macro synteny signal between S. maritima and the chordate lancelet B. floridae clustered into ancestral linkage
groups. Each dot represents a pair of genes, one in B. floridae, one in S. maritima, assigned to the same gene family by our orthology analysis. The
ancestral linkage group identifiers refer to groups of scaffolds from the S. maritima (SmALG) or B. floridae (BfALG) assemblies, as detailed in File S2.
The identification of ALGs is described in the SI. Note that two S. maritima scaffolds were divided across ALGs, and so appear multiple times in File S2.
doi:10.1371/journal.pbio.1002005.g003

Centipede Genome
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Homeobox Gene Clusters: Hox, ParaHox, SuperHox, and
Mega-homeobox
The clustering of genes in a genome is often of functional

significance (e.g., reflecting co-regulation), as well as providing

important insights into the origins of particular gene families when

clusters are composed of genes from the same class or family. Gene

clusters can also be a useful proxy for the degree of genome

rearrangement. The homeobox gene super-class is one type of

gene for which clustering has been extensively explored. S.
maritima has 113 homeobox-containing genes, which is slightly

more than seen in other sequenced arthropods such as D.
melanogaster, T. castaneum, and Apis mellifera. This is due to

some lineage-specific duplications in S. maritima as well as the

retention of some homeobox families that have been lost in other

arthropods, including Vax, Dmbx, and Hmbox (see Text S1).

The homeobox-containing genes of the Hox gene cluster are

renowned for their role in patterning the anterior-posterior axis of

animal embryos. S. maritima has an intact, well-ordered Hox

cluster containing one orthologue of each of the ten expected

arthropod Hox genes, except for Hox3. There are two potential

Hox3 genes elsewhere in the S. maritima genome [48], but the

true orthology of these genes remains slightly ambiguous; it

remains possible that they are the first example of ecdysozoan

Xlox ParaHox genes (see Text S1). The Hox cluster spans 457 kb

(labial to eve), a span similar to assembled Hox clusters in a range

of other invertebrate groups (crustacean, mollusc, echinoderm,

cephalochordate). This suggests that the contrasting very large

(and frequently broken) Hox clusters of Drosophilids and some

other insects are a derived characteristic. However, the spectrum

of alternatively spliced and polyadenylated transcripts encoded by

the Hox genes of S. maritima is comparable with what is known

from D. melanogaster (details in Text S1). Exceptionally among

protostomes, the S. maritima Hox cluster retains tight linkage to

one orthologue of evx/evenskipped, as it does in some chordates

and cnidarians.

Further instances of homeobox gene clustering and linkage, and

reconstructions of ancestral states, are summarized in Figure 4 and

Table 1 (and see Text S1). The Hox gene cluster is hypothesized

to have evolved within the context of a Mega-homeobox cluster

that existed before the origin of the bilaterians and consisted of an

array of many ANTP-class genes [49–51]. By the time of the last

common ancestor of bilaterians the Hox cluster existed within the

context of a SuperHox cluster, containing the Hox genes

themselves and at least eight further ANTP-class genes [52].

The conservative nature of the S. maritima genome has left several

fragments from the Mega-homeobox and SuperHox clusters still

intact (Figure 4; Table 1). Furthermore, homeobox linkages in S.
maritima raise the possibility that further genes could have been

members of the Mega-homeobox and SuperHox clusters, includ-

ing the ANTP-class gene Vax, as well as the SINE-class gene sine
oculis and the HNF-class gene Hmbox (see Text S1 for further

details).

Chemosensory Gene Families (Gustatory Receptors,
Ionotropic Receptors, Odorant Binding Proteins,
Chemosensory Proteins)
The chemosensory system of arthropods is best known in

insects. During the evolutionary transition from water to terrestrial

environments, insects evolved a new set of genes to detect airborne

molecules (odorants) [53–55]. The independent colonization of

land by insects and myriapods raises two interesting questions: (1)

what are the genes involved in chemosensation in non-insect

arthropods, and (2) what genes are responsible for the detection of

airborne molecules in other terrestrial arthropods? We searched

the S. maritima genome for homologues of the insect chemosen-

sory genes, included in six gene families, three ligand binding

protein families: odorant binding proteins (OBPs) [56,57],

chemosensory proteins (CSPs) [58,59], and CheA/B [60,61];

and three membrane receptor families: GRs [62,63], odorant

receptors (ORs) [64,65], and IRs [66,67].

Of the ligand binding proteins, we found only two genes

belonging to the CSP family, but no representatives of the OBP or

CheA/B families. Among the membrane receptor families, we

identified a number of genes of both the GR and IR families, but

no OR genes. The GR family in S. maritima is represented by 77

genes, 17 of which seem to be pseudogenes, with similar numbers

of genes and pseudogenes being fairly typical features of this gene

family in other arthropods. A phylogenetic tree revealed that none

of the S. maritima GR genes have 1:1 orthology to other

arthropod GRs. Instead, all S. maritima GRs cluster in a single

clade, with six major subclades, representing separate expansions

of the GR repertoire in the centipede lineage (Figure 5A and see

Text S1). The IR family is known to be ancient [67], but S.
maritima has a relative expansion of this family. The search for IRs

led to the annotation of 69 genes, 15 of which belong to the IGluR

subfamily, which is not involved in chemosensation, but is highly

conserved among arthropods and animals in general. Among the

remaining 54 IRs, three are orthologues of conserved IR genes

that have been shown to have an olfactory function in D.
melanogaster. However, 51 of the S. maritima IRs do not have

orthologues either in D. melanogaster or in Ixodes scapularis,
clustering together in a single clade (the expansion clade in

Figure 5B). This finding suggests that most S. maritima IRs, as

observed with GRs, have duplicated from a common ancestral

gene exclusive to the centipede lineage.

The absence of the insect OR family agrees with the prediction

of Robertson and colleagues [54] that this lineage of the insect

chemoreceptor superfamily evolved with terrestriality in insects,

and it is also missing from the water flea Daphnia pulex [53]. The
same appears to be true for the OBPs. We therefore infer that, as

centipedes adapted to terrestriality independently from the

hexapods, they utilized a novel combination of expanded GR

and IR protein families for olfaction, in addition to their more

ancestral roles in gustation.

Light Receptors and Circadian Clock Genes
S. maritima, like all species of the order Geophilomorpha, is

blind [37]. Nevertheless, it avoids open spaces and negative

phototaxis has been demonstrated in other species of Geophilo-

morpha [38,68]. We searched the S. maritima genome for light

receptor genes. Interestingly, we have found no opsin genes, no

homologue of gustatory receptor 28b (GR28b), which is involved

in larval light avoidance behaviour in Drosophila [69], and no

cryptochromes. Thus, none of the known arthropod light receptors

are present. Furthermore, there are no photolyases, which would

repair UV light induced DNA damage. As a consequence, the

critical avoidance of open spaces by S. maritima must either be

mediated by other sensory instances than light perception, or S.
maritima possesses yet unknown light receptor molecules.

The absence of light receptors, particularly cryptochromes, also

raises the issue of the entrainment and composition of a potential

S. maritima circadian clock. Strikingly, we could not identify any

components of the major regulatory feedback loop of the

canonical arthropod circadian clock (including period, cycle, b-
mal/clock, timeless, cryptochromes 1 and 2, jetlag [70]). The only

circadian clock genes found (timeout, vrille, pdp1, clockwork
orange) are generally known to be involved in other physiological
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processes as well [71–73]. The extensive secondary gene loss of

both light receptors and circadian clock genes raises questions

about the actual existence of a circadian clock in S. maritima. One

could hypothesize that a circadian clock may not be required in S.
maritima’s subsurface habitat, although other periodicities, such as

tide cycles, might be important. If S. maritima does have a

circadian clock then it must be operating via a mechanism distinct

from the canonical arthropod system.

Other blind or subterranean animals do maintain a circadian

rhythm, despite complete loss of vision and connection with the

surface (e.g., Spalax) [74–76]. In other cases (e.g., blind cave

crayfish [77]), despite the loss of vision, opsin proteins remain

functional, and are hypothesized to have a role in circadian cycles.

However, both these examples represent species that have become

blind and subterranean relatively recently. To confirm that the loss

of these genes is not general for all centipedes, we performed

BLASTP analyses searching for the set of light sensing and

circadian clock genes that are missing from S. maritima in

RNAseq data from the house centipede Scutigera coleoptrata
(NCBI SRA accession SRR1158078), a species with well-

developed eyes. We find homologs to period, cycle, b-mal/clock,

jetlag, cryptochrome1, cryptochrome 2, (6-4)-photolyase, and

nina-e (rhodopsin 1), suggesting that both light sensing and

circadian clock systems were present in ancestor of myriapods.

Although we have no direct information about photoreceptors or

circadian genes in other geophilomorph species, the fact that all

geophilomorphs are blind suggests that the loss of the related genes

is very ancient, and may date back to the origin of the clade.

Putative Cuticular Proteins
A defining characteristic of arthropods is an exoskeleton with

chitin and cuticular proteins as the primary components. Although

several families of cuticular proteins have been recognized, the

CPR family (Cuticular Proteins with the Rebers and Riddiford

consensus) is by far the largest in every arthropod for which a

complete genome is available, with 32 to .150 members [78].

Figure 4. Homeobox gene clusters. (A) The Hox gene cluster of S. maritima compared to the cluster that can be deduced for the ancestral
arthropod. S. maritima provides the first instance of an arthropod Hox cluster with tight linkage of an Even-skipped (Eve) gene (see text). Hox3 is the
only gene missing from the S. maritima Hox cluster, but may be present elsewhere in the genome on a separate scaffold (see main text and Text S1
for details). The S. maritima cluster is drawn approximately to scale and spans 457 kb from the start codon of labial (lab) to the start codon of Eve-b.
Arrows denote the transcriptional orientation. (B) Remains of clustering and linkage of ANTP class genes in S. maritima. The blue boxes are genes
belonging to the ANTP class. The brown box is a gene belonging to the HNF class. The orange box is a gene belonging to the SINE class. The
intergenic distances are indicated in kb. (C) Clusters of non-ANTP class homeobox genes in S. maritima. The green boxes are genes belonging to the
TALE class. The red boxes are genes belonging to the PRD class. The intergenic distances are indicated in kb, except in the case of Rx-Hbn as these
genes are overlapping but with opposite transcriptional orientations. All scaffold numbers are indicated in brackets.
doi:10.1371/journal.pbio.1002005.g004
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Proteins in the CPR family have a consensus region in arthropods

of about 28 amino acids, first recognized by Rebers and Riddiford

[79], which was subsequently extended to ,64 amino acid

residues and shown to be necessary and sufficient for binding to

chitin [80]. No clear instances of the Rebers and Riddiford (RR)

consensus have been identified outside the arthropods. We

identified 38 members of the CPR family in S. maritima. There
are two main forms of the consensus, designated RR-1 and RR-2,

with the former primarily associated with flexible cuticle, the latter

with rigid cuticle. Interestingly, while chelicerates studied to date

have no members of the RR-1 subfamily (as classified at

CutProtFam-Pred, http://aias.biol.uoa.gr/CutProtFam-Pred/

home.php), seven of the S. maritima CPR proteins clearly belong

to this class. This would be consistent with the origin of the RR1-

coding genes being in the mandibulate ancestor after this lineage

had diverged from the chelicerate lineage. Further data are needed

to verify that the identified proteins are indeed important

constituents of the cuticle.

Neuro-endocrine Hormone Signalling
Cell-to-cell communication in arthropods occurs via a variety of

neurotransmitters and neuro-endocrine hormones, including

biogenic amines, neuropeptides, protein hormones, juvenile

hormone (JH), and ecdysone. These signalling molecules and

their receptors steer central processes such as growth, metamor-

phosis, feeding, reproduction, and behaviour. Most receptors for

biogenic amines, neuropeptides, and protein hormones are G

protein-coupled receptors (GPCRs) [81]. Intracellularly, the G

proteins initiate second messenger cascades [82]. JH and

ecdysone, however, are lipophilic and can diffuse through the cell

membrane to bind with nuclear receptors [83,84]. In addition,

ecdysone can also activate a specific GPCR, and initiate a second

messenger cascade [85]. There is extensive cross-talk between

these extracellular signal molecules.

S. maritima possesses 19 biogenic amine receptors, a number

similar to the 18–22 biogenic amine receptors that have been

identified in other arthropods (Table S19). In S. maritima, there
are four octopamine GPCRs, one octopamine/tyramine, one

tyramine, four dopamine and three serotonin GPCRs, three

GPCRs for acetylcholine, one GPCR for adenosine, and two

orphan biogenic amine receptors. Although this distribution

resembles very much that of Drosophila and other arthropods,

there are some interesting differences with Drosophila, which

expresses two additional b-adrenergic-like octopamine receptors

compared to S. maritima, while S. maritima expresses two putative
b-adrenergic-like octopamine receptors (Sm-OctBetaRHK and

Sm-D1/OctBeta), which are expressed in a number of insect and

tick species, but not in Drosophila (Table S20) [86]. The true

functional identities of all the putative S. maritima biogenic amine

GPCRs awaits their cloning, functional expression, and pharma-

cological characterization in cell lines.

In addition, 36 neuropeptide and protein hormone precursor

genes are present in this centipede. Each neuropeptide precursor

contains one or more (up to seven) immature neuropeptide

sequences (Figure S20). Interestingly, the centipede contains two

CCHamide-1, two eclosion hormone, and two FMRFamide

genes, whereas these genes are only present as single copies in

the genomes of most other arthropods [87]. In concert with the

presence of 36 neuropeptide genes, we found 33 genes for

neuropeptide receptors (31 GPCRs and two guanylcyclase

receptors) (see Table S21). As observed for the neuropeptide

genes, a number of the neuropeptide receptor genes, which are

only found as single copies in most other arthropods, have also

been duplicated. S. maritima has two inotocin GPCR genes, two

SIFamide, two corazonin, two eclosion hormone guanylcyclase

receptor genes, two eclosion triggering hormone GPCR genes,

three sulfakinin GPCR genes, and three LGR-4 (Leu-rich-repeats-

containing-GPCR-4) genes. The latter receptors are orphans

(GPCRs without an identified ligand) and only present as single-

copy genes in most other arthropods [88]. Several of these

duplicated GPCR genes are located in close vicinity to each other

in the genome (Figure S21, suggesting recent duplication events.

Furthermore, duplications of both the eclosion hormone and its

receptor genes and the duplication of the ecdysis triggering

hormone receptor genes suggest that the process of ecdysis

(moulting) has undergone some sort of modification, perhaps

requiring more complex control in the lineage leading to

centipedes.

Table 1. Instances of homeobox gene clustering and linkage.

Gene Cluster Details Conclusion or Hypothesis

Hox Cluster Intact well ordered, but lacking Hox3 (Figure 4A). Two potential
Hox3 genes elsewhere in the genome, but these could also be Xlox

homologues

Has Xlox really been lost from all lineages of the
ecdysozoan super phylum?

NK - Vax linkage Centipede has gene pair remnants from the ancestral NK cluster
slouch and drop, and tinman and bagpipe (now with Vax linkage,
which also seen in mollusc) (Figure 4B)

Vax linkage likely ancestral, Vax a new member of the
ancestral ANTP class mega-homeobox cluster.

IRX/Iroquois Cluster of three Irx genes(Figure 4C) Independent expansion from Drosophila by
duplication of mirror.

Orthopedia, Rax, and Homeobrain Cluster present in S. maritima (Figure 4C) An ancestral cluster also found in insects, cnidarians,
and molluscs.

SuperHox cluster remains Linkage of BtnN and En on Scaffold JH431870. Linkage of
Exex-Nedx-BtnA on scaffold JH431734 (Figure 4B) with Hmbox.

Remnants of the Super-Hox cluster?

ParaHox - NK linkage (Mega-cluster
remains)

Tight linkage of Ems (NK gene) with IndB (ParaHox gene), and
Ind-like (ParaHox like) with scro (NK gene) (Figure 4B)

Possible remnant of ParaHox and NK clusters from
ancestral Mega-Clustera

SINE-ANTP class linkage linkage of sine oculis & Ems Also seen in humans and zebrafish - thus linkage of
SINE and ANTP genes in bilaterian ancestor

Further details are provided in Text S1.
aNote these have become secondarily linked in vertebrates [50].
doi:10.1371/journal.pbio.1002005.t001
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We summarize in Table S22 the neuropeptide/protein

hormone signalling systems that are present or absent in selected

arthropod genome sequences. Each arthropod species, including

S. maritima, has its own characteristic pattern, or ‘‘barcode,’’ of

present/absent neuropeptide signalling systems. However, the

relationship between the specific neuropeptide ‘‘barcode’’ and

physiology remains to be elucidated.

Insect JH is important for growth, moulting, and reproduction

in arthropods [84]. This hormone is a terpenoid (unsaturated

hydrocarbon) that is synthesized from acetyl-CoA by several

enzymatic steps (Figure S22). In several insects the production of

JH is stimulated by the neuropeptide allatotropin, while it is

inhibited by either allotostatin-A, -B, or -C [89,90]. We found that

S. maritima has orthologues of many of the biosynthetic enzymes

needed for JH biosynthesis in insects (Table S23). Also, the JH

binding proteins are encoded in the centipede genome as well as

JH degradation enzymes (Table S24). This implies that the

complete JH system is present in this centipede. Similarly,

neuropeptides that could stimulate or inhibit the synthesis and

release of JH, such as allatotropin and the allatostatins -A, -B, and

-C, are also present in S. maritima (Figure S22, suggesting that the

overall functioning of the JH system in centipedes might be very

similar to that of insects) (Table S23). To date, the existence of JH

signalling systems has been demonstrated in insects, crustaceans,

and recently in spider mites [89,91,92]. Its occurrence in S.
maritima and spider mites (Chelicerata) indicates that JH signalling

has deep evolutionary roots and we suggest that it might have

evolved together with the emergence of the exoskeleton in

arthropods.

Developmental Signalling Systems
Certain signalling systems, including transforming growth factor

(TGF)-beta, Wnt, and fibroblast growth factor (FGF), are used

throughout development across the animal kingdom. Various

lineage-specific modifications of these systems have occurred,

particularly within the arthropods. With regards to TGF-beta

signalling we found single orthologues of all members of the

Activin family, except Alp (Activin-like protein) (see Figure S23;

Text S1). In the BMP-family, the S. maritima genome contains

two divergent BMP sequences, as well as a clear orthologue of

glass-bottom boat (gbb) and two decapentaplegic (dpp) orthologues.
In addition, the S. maritima sequences confirm the ancestral

presence of an anti-dorsalizing morphogenetic protein (ADMP)

and a BMP9/10 orthologue in arthropods, which are both absent

from Drosophila [93]. Most interestingly, the S. maritima genome

includes the antagonistic BMP ligand BMP3 (previously suggested

to be present only in deuterostomes [94]), a potential gremlin/
neuroblastoma suppressor of tumorigenicity, and two nearly

identical bambi genes (absent from Drosophila), and the BMP

inhibitor noggin (present in vertebrates but lost in most

holometabolous insects). The multiple BMP-agonists and -

antagonists indicate that considerable changes have occurred in

the TGF-beta signalling system during arthropod evolution,

particularly in the Holometabola.

Reconstructions of Wnt gene evolutionary history suggest that

the ancestral bilaterian possessed at least 13 distinct Wnt gene

subfamilies [95,96]. This initial number has been secondarily

reduced in many taxa. This trend of secondary gene loss is readily

apparent within the arthropods, with holometabolous insects such

as D. melanogaster retaining only seven Wnt subfamilies [97,98].

In contrast, the Wnt signalling complement in S. maritima
comprises 11 of the 13 Wnt-ligand subfamilies (Figure S24).

Phylogenetic investigation has identified these genes as wnt1,
wnt2, wnt4, wnt5, wnt6, wnt7, wnt9, wnt10, wnt11, wnt16, and
wntA. wnt3 and wnt8 are missing from the S. maritima genome.

While the absence of wnt3 is common to protostomes, wnt8 or

wnt8-like sequences occur in other protostome genomes, including

insects, spiders, and another myriapod, Glomeris marginata [97].

The Wnt genes are known to display a degree of linkage and

clustering in many arthropods. Some conservation of this is also

found in S. maritima, with wnt1, wnt6, and wnt10 adjacent to

each other on the same scaffold, possibly representing part of an

ancient clustering (Table S25) [99].

The primary receptors for Wnt ligands in the canonical Wnt

signalling pathway are the trans-membrane receptors of the

Frizzled family. Five of these have been identified: Frizzled1,
Frizzled4, Frizzled5/8, Frizzled7, and Frizzled10. As is the case

for the wnt genes themselves, this is a larger number than is found

in most arthropods. Other Fz-related genes are also present:

smoothened, involved in Hedgehog signalling, and secreted frizzled
related protein, which has inhibitory roles in Wnt signalling in

other taxa. Putative non-canonical Wnt receptors are also

encoded, including two subfamilies of receptor tyrosine kinase-
like orphan receptor (ror). In addition to ror2, there is a lineage-

specific duplication of ror1, making a total of three ror genes, as
opposed to only one in D. melanogaster. Another Wnt agonist,

the R-spondin orthologue was also found. As part of the Wnt-

binding complex we found one arrow-LRP5/6-like Wnt-core-

ceptor gene in the genome: lrp6. Other LRP-molecules with

potential Wnt-binding activity also exist: LRP1, LRP2, and

LRP4. Because of the absence of an intracellular signalling

domain these could potentially function as Wnt-inhibitors.

Together, the large number of ligand and receptor genes point

towards both the conservation of an ancestral Wnt signalling

system and to a certain degree of unusual complexity in of this

system in S. maritima.
Concerning the FGF pathway, we identified two closely related

FGF receptors. These two S. maritima receptors are likely to stem

from a duplication in the myriapod lineage that was independent

from that which generated the two Drosophila FGFRs, Heartless
and Breathless (Figure S25). The number of FGF ligands found in

the genomes of insects such as D. melanogaster (three fgf genes) or
T. castaneum (four fgf genes) is small when compared to 22 fgf
genes found in the genomes of vertebrates. In the S. maritima
genome, we identified three fgf-genes (Figure S26). One of them

potentially represents an fgf 18/8/24 orthologue to which the fgf8-
like genes of Tribolium and of Drosophila (pyramus and thisbe) are
associated. The second S. maritima fgf groups with the fgf1 genes,

while the third groups with the fgf 16/9/20 clade (the first known

arthropod member of this clade). Low support values for this

grouping raise the possibility that it might actually be an

orthologue of insect branchless genes. Other FGF-pathway genes

present in S. maritima include stumps (Downstream-of-FGF-

signalling [DOF]) and sprouty related.

Figure 5. Expansion of chemosensory receptor families. (A) Phylogenetic relationships among S. maritima (Smar), I. scapularis (Isca), D. pulex
(Dpul), and a few insect GRs that encode for sugar, fructose, and carbon dioxide receptors (Dmel, D. melanogaster, and Amel, A. mellifera). (B)
Phylogenetic relationships among S. maritima, I. scapularis, and a few D. melanogaster IRs and IgluR genes (the suffix at the end of the protein names
indicates: i, incomplete and p, pseudogene).
doi:10.1371/journal.pbio.1002005.g005
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Protein Kinases
Kinases make up about 2% of all proteins in most eukaryotes,

while they phosphorylate over 30% of all proteins and regulate

virtually all biological functions. We identified 393 protein kinases

in the S. maritima genome, representing 2.6% of the proteome.

We classified these into conserved families and subfamilies,

compared the kinome to those of 26 other arthropods and

inferred the evolutionary history of all kinases across the

arthropods (Figure 6). We predict that an early arthropod had at

least 231 distinct kinases and see considerable loss of ancestral

kinases in most extant species. S. maritima has the smallest

number of losses among the arthropods, with only ten kinases lost

relative to the arthropod ancestor. In contrast, the two chelicerates

T. urticae and I. scapularis have lost 63 and 45 kinases,

respectively, and D. melanogaster lost 30, giving S. maritima the

richest repertoire of conserved kinases of any arthropod examined.

All but one of the losses in S. maritima have been lost in other

arthropods, suggesting that these genes may be partially redundant

or particularly prone to loss. The one unique loss is NinaC, which

in Drosophila is required for vision, likely associated with other

vision related gene loss described above. As in many other species,

we also see some novelties and expansions of existing families: the

SRPK kinase family, involved in splicing and RNA regulation, has

expanded to 36 members, and the nuclear VRK family is

expanded to 16. A novel family of receptor guanylate cyclases

(nine genes) and three clusters of unique protein-kinase-like (PKL)

kinases, containing 28 genes in total, are also seen, though their

functions are not known.

Developmental Transcription Factors
DNA binding proteins with the capacity to regulate the

expression of other genes are central players in the control of

development and many other processes. Since one of the original

interests in S. maritima was for its developmental characteristics,

we carried out a survey of developmentally relevant transcription

factors, with an emphasis on transcription factors suspected to be

involved in processes of axial specification, segmentation, meso-

derm formation, and brain development. We identified ortholo-

gues of,80 transcription factors of the Zinc finger and helix-loop-

helix families in addition to the 113 homeobox-containing

transcription factors already discussed (see Text S1). In no case

did we fail to find at least one orthologue of the gene families

expected from our knowledge of Drosophila, though individual

duplications and losses among gene families were not uncommon.

Among the set of pair-rule segmentation genes, for example, S.
maritima has multiple homologues of paired, even-skipped, odd-
skipped, odd-paired, and hairy-like genes, but only a single

orthologue of sloppy-paired and runt-like genes, whereas Dro-
sophila has multiple runt and sloppy-paired genes but only single

orthologues of even-skipped and odd-paired. Where both lineages

have multiple copies, (paired, hairy, odd-skipped), sequence alone

rarely defines one-to-one orthologous relationships, and the

evolutionary history remains unclear [29]. Other notable dupli-

cations include caudal (three genes) and brachyury (two genes). In

a number of cases, transcription factors known to play a role in

vertebrate development, but apparently missing from Drosophila
and other insects, are retained in S. maritima. Examples include

Human, C. elegans, Nematostella

Tetranycus urticae (168)

Ixodes scapularis (186)

Strigamia maritima (222)

Daphnia pulex (203)

Apis mellifera (196)

Drosophila melanogaster (204)

-7 

-20

-38

-25

+1/-9

+3/-24

-6
224

231

+3/-16

-21

217

230
-1

206

+5/-1

Figure 6. Ancestral protein kinases are extensively lost during arthropod evolution. S. maritima is an exception and retains the largest
number of ancestral kinases. Numbers of kinase subfamilies in selected species are shown in parentheses after species names. The gains, losses, and
inferred content of common ancestors are listed on internal branches. Kinases found in at least two species from human, C. elegans and Nematostella
vectenesis were used as an outgroup.
doi:10.1371/journal.pbio.1002005.g006
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the homeobox genes Dmbx and Vax noted above, and the FoxJ1,

FoxJ2, and FoxL1 subfamilies of forkhead/Fox factors.

One of the developmental transcription factors provides an

example where insects use isoforms to generate alternative proteins

that are encoded by paralogous genes in S. maritima. Two

centipede orthologues of the developmental transcription factor

cap‘n’collar encode isoforms that differ at their N-terminal end.

The longer protein, encoded by the gene cnc1, contains sequence
motifs that align to Drosophila cnc isoform C (Figure S27, which is

broadly expressed throughout embryonic development) [100]. S.
maritima cnc1 is similarly expressed ubiquitously, whereas the

other orthologue, cnc2, shows a segment specific pattern of

expression similar to that of the shorter Drosophila cnc isoform B

(VSH and MA, unpublished) [100].

Immune System
Arthropods can mount an innate immune response against

pathogenic bacteria, fungi, viruses, and metazoan parasites. The

nature of the responses to these invaders, such as phagocytosis,

encapsulation, melanisation, or the synthesis of antimicrobial

peptides, is often similar across arthropods [101]. Furthermore,

key aspects of innate immunity are conserved between insects and

mammals, which suggests an ancient origin of these defences.

Previous studies have revealed extensive conservation of key

pathways and gene families across the insects and crustaceans

[102]. Beyond the Pancrustacea the extent of immunity gene

conservation is unclear. Therefore, we searched the S. maritima
genome for homologues of immunity genes characterised in other

arthropods.

We found conservation of most immunity gene families between

insects and S. maritima (Table S30), suggesting that the immune

gene complement known from Drosophila was largely present in

the most recent common ancestor of the myriapods and

pancrustaceans. The humoral immune response of insects

recognises infection using proteins that bind to conserved

molecular patterns on pathogens [103]. Sequence homologues

for the major recognition protein families found in Drosophila,
peptidoglycan recognition proteins (PGRPs), and gram-negative

bacteria-binding proteins (GNBPs), were found with the expected

protein domains. These proteins then activate signalling pathways

[103], and all four major insect immune signalling pathways (Toll,

IMD, JAK/STAT, and JNK) are present in S. maritima, with 1:1

sequence homologues of most pathway members. The cellular

immune response of insects relies on receptors and opsonins

including thioester-containing proteins (TEPs), fibrinogen related

proteins (FREPs), and scavenger receptors [103,104], and these

are also present in S. maritima, often with protein domains in the

same arrangement as Drosophila. We also find sequence homo-

logues for effector gene classes including nitric oxide synthases

(NOS) and prophenoloxidase (PPO). However, we failed to

identify any antimicrobial peptide homologues, possibly as these

genes are often short and highly divergent between species. In

insects, it is common to find that certain immune gene families

have undergone expansions in certain lineages [105]. Again, this is

mirrored in S. maritima, where we found lineage-specific

expansions of the PGRP and Toll-like receptor genes (TLRs)

(Figure 7). Overall, the presence of the main families of immunity

genes suggests that there is also functional conservation of the

immune response.

The innate immune system is thought to rely on a small number

of immune receptors that bind to conserved molecules associated

with pathogens. This view was challenged by the discovery in

Drosophila that the gene Dscam (Down syndrome cell adhesion

molecule), which has the potential to generate over 150,000

different protein isoforms by alternative splicing, functions as an

immune receptor in addition to its roles in nervous system

development [106]. Dscam family members are membrane

receptors composed of several immunoglobulin (Ig) and fibronec-

tin domains (FNIII). In pancrustaceans one member of the Dscam

family has a large number of internal exon duplications and a

sophisticated mechanism of mutually exclusive alternative splicing,

which enables a single Dscam locus to somatically generate

thousands of isoforms, which differ in half of two Ig domains (Ig2

and Ig3) and in another complete Ig domain (Ig7). This creates a

high diversity of adhesion properties, useful for immune responses.

We found that S. maritima has evolved a different strategy to

generate a diversity of Dscam isoforms [107]. The genome

contains 60 to 80 canonical Dscam paralogues and over 20 other

Dscam related incomplete or non-canonical genes (Figure 8). In 40

Dscam genes, the exon coding for Ig7 is duplicated two to five

times (but not the exons coding for Ig2 and Ig3, which are

duplicated in pancrustaceans). Our analysis of transcripts suggests

that many of those duplicated exons might be alternatively spliced

in a mutually exclusive fashion, supporting the hypothesis that the

mechanism of mutually exclusive alternative splicing of Dscam
probably evolved in the common ancestor of both pancrustaceans

and myriapods. According to our phylogenetic analysis, which

included 12 paralogues, the S. maritima Dscams share a common

origin and arose by duplication in the centipede lineage [107]. In

the chelicerate I. scapularis, Dscam has also been duplicated

extensively, both by whole-gene and by domain duplications

[107]. These Dscam homologues however do not have a canonical

domain composition and whether or not alternative splicing is also

present in chelicerates remains unknown. The independent

evolution of Dscam diversification in different arthropod groups

(one locus with dozens of exon duplications in pancrustaceans

versus many gene duplications coupled with a few exon

duplications in S. maritima (Figure 8) suggests that the functional

diversity in adhesion properties was important in the early

evolution of arthropods. Whether all of these genes function in

the immune system or nervous system development remains to be

determined.

The short-interfering RNA (siRNA) pathway is the primary

defence of insects against RNA viruses, while the piRNA pathway

silences transposable elements in the germ line and micro RNAs

(miRNAs) function in gene regulation [108]. These RNAi

pathways appear to be intact in S. maritima, as we found

homologues of key genes, including Ago1 and Dicer-1 in the

miRNA pathway, Ago2 and Dcr2 in the siRNA pathway, and

Ago3 and piwi in the piRNA pathway (Table S30). We found two

paralogues of Ago2 and three paralogues of piwi, suggesting that

RNAi may be more complex than in D. melanogaster. In other

arthropods, expansion of the piwi family has been linked to neo- or

subfunctionalization of germ line and soma roles, and so it remains

to be seen whether this is also the case for S. maritima.

Selenoproteins
Selenoproteins are peculiar proteins including a selenocysteine

(Sec) residue, a very reactive amino acid typically found in the

catalytic site of redox proteins, which is inserted through the

recoding of a UGA codon [109]. While vertebrates possess 24–38

selenoproteins [110], insects have very few (D. melanogaster has

three) or none at all. Several events of complete selenoproteome

loss have been observed in insects [111]. These were ascribed to

the fundamental differences in the insect antioxidant systems,

which would favour selenoprotein loss or their conversion to

standard proteins (cysteine homologues). The analysis of a
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myriapod selenoproteome is then crucial for a phylogenetic

mapping of such differences.

The S. maritima genome was found to be surprisingly rich in

selenoproteins: we have identified 20 predicted proteins (Table

S26). Downstream of the coding sequence of each selenoprotein

gene, we detected a selenocysteine insertion sequence (SECIS)

element, the stem-loop structure necessary to target the Sec

recoding machinery during selenoprotein translation. The full set

of factors necessary for selenocysteine insertion and production

was also found: tRNA-Sec, SecS, SBP2, eEFsec, pstk, secp43,

SPS2. The centipede selenoproteome is rather similar to that

predicted for the ancestral vertebrate (see [110]). This supports the

idea that selenoprotein losses are specific to insects and can be

ascribed to changes in that lineage, supporting the idea that a

massive selenoproteome reduction occurred specifically in insects.

A notable difference with vertebrates was found for the protein

methionine sulfoxide reductase A (MsrA). This enzyme catalyzes

the reduction of methionine-L-oxide to methionine, repairing

proteins that were inactivated by oxidation. A selenoenzyme from

this family has been previously characterized in the green alga

Chlamydomonas, and selenocysteine containing forms were also

observed in some non-insect arthropods [112]. In contrast, only

cysteine homologues are present in vertebrate and insect genomes.

We found a Sec-containing MsrA in the centipede genome, as well

as in arthropods D. pulex, I. scapularis, and also in the chordate B.
floridae. This, along with phylogenetic reconstruction analysis,

supports the idea that the selenoprotein MsrA was present in their

last common ancestor, and was later converted to a cysteine

homologue independently in insects and vertebrates.

The two major antioxidant selenoprotein families in vertebrates,

glutathione peroxidases (GPx), and thioredoxin reductases (TrxR),

were also found with selenocysteine in the centipede genome. In

contrast, all holometabolous insects possess only cysteine forms,

and consistently, important differences were noted in these and

other enzymes in the glutathione and thioredoxin system (see

[113] for an overview). Thus, on the basis of gene content, we

expect the antioxidant systems of S. maritima to be more similar to

vertebrates and other animals than to holometabolous insects like

D. melanogaster.

DNA Methylation
Invertebrate DNA methylation occurs predominantly on gene

bodies (exons and introns), via addition of a methyl group to a

cytosine residue in a CpG context [114–116]. The exact function

of gene body methylation is currently unknown, though it is

correlated with active transcription in a wide range of species

[116], and has been implicated in alternative splicing [117,118]

and regulation of chromatin organization [118]. Methylated

cytosines are susceptible to deamination, to form a uracil, which

is recognized as a thymine. Thus, over evolutionary time, highly

methylated genes (in germ-line cells) will have comparatively low

CpG content. The ‘‘observed CpG/expected CpG’’ (CpG(o/e))

ratio is an indicator of C-methylation: plots of CpG(o/e) for a gene

set produce a bimodal distribution where a proportion of the genes

have an evolutionary history of methylation [119]. In contrast,

species without methylation systems, such as D. melanogaster, yield
a unimodal distribution [119].

The S. maritima gene body CpG(o/e) plot has a trimodal

distribution, with the majority of genes having a ratio close to 1

(Figure 9; Text S1). Underlying this major peak are two smaller

peaks, one ‘‘low’’ and one ‘‘high’’ centred around ratios of 0.62

and 1.48, respectively. This ‘‘high’’ peak, that contains genes with

higher than expected CpG content, is unusual and is not seen in

this analysis of other arthropods [91,119–121]. Applying the same

analysis to 1,000 bp windows across the entire genome (including

both coding and non-coding regions) reveals a similar peak of high

CpG content (Figure S29). This implies that the peak of ‘‘high’’

CpG content seen in gene bodies is due to unusually high CpG

content in some regions of the genome rather than a specific

feature of those coding regions. The ‘‘low’’ peak, however,

indicates that 9.5% of genes have been methylated in the germ-

line over evolutionary time. The number of genes contained

within the ‘‘low’’ peak in S. maritima is smaller than observed in

insect species with methylation, which can be as high as 40% in

exceptional species such as the pea aphid and the honeybee

[119,120], where the mechanism is likely involved in polyphenism

and caste differences respectively. However, the number of genes

methylated is less in non-social hymenopteran such as Nasonia
vitripennis, in beetles, and in mites [91,121,122]. Consistent with

the low-levels of germ-line methylation detected, the genome

contains a single orthologue of the de novo DNA methylation

enzyme Dnmt3 and four orthologues of the maintenance DNA

methyltransferases Dnmt1(a–d). Two of the Dnmt1 orthologues

have lost amino acids that are required for methyltransferase

activity, but these genes are represented in the transcriptome data,

and are thus unlikely to be pseudogenes. One Dnmt1 gene shows

sex-specific splicing, with a shorter transcript producing a

truncated protein seen in female-derived transcription libraries.

We also find a single orthologue of Tet1, a putative DNA

demethylation enzyme [123,124]. Taken together these data

indicate that S. maritima has an active DNA methylation system,

and that over evolutionary time a small number of genes have

Figure 7. Presence and absence of immunity genes in different arthropods. Counts of immune genes are shown for S. maritima, D. pulex
[131], A. mellifera [86], T. castaneum, Anopheles gambiae, and D. melanogaster [132]. ,, identity of the gene is uncertain; -, not investigated.
doi:10.1371/journal.pbio.1002005.g007

Figure 8. Dscam diversity caused either by gene and/or exon
duplication in different Metazoa. aOnly canonical Dscam para-
logues were considered. bIn D. melanogaster and D. pulex the paralogue
Dscam-L2 has two Ig7 alternative coding exons. cPotential number of
Dscam isoforms, circulating in one individual, produced by mutually
exclusive alternative splicing of duplicated exons.
doi:10.1371/journal.pbio.1002005.g008
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been methylated in the germ-line, resulting in a lower than

expected CpG dinucleotide content.

Non-Protein-Coding RNAs in the S. maritima Genome
We annotated over 900 homologues of known non-coding

RNAs in the S. maritima genome, including over 600 predicted

tRNAs (plus an additional 300 tRNA pseudogenes), 71 copies of

5S rRNA and 12 5.8S rRNAs, 88 copies of RNA components of

the major spliceosome, and three out of the four RNA components

of the minor U12 spliceosome, and 54 microRNA genes. As is

common for whole genome assemblies, we did not identify intact

copies of the 18S or 28S rRNAs. Further details of our

methodology are provided in Text S1.

The predicted tRNA gene set includes all anticodons necessary

to code for the 21 amino acids, including four potential SeC

tRNAs. We identify a massive expansion of the tRNA-Ala-GGC

family, with 322 sequences classified as functional tRNAs by

tRNAscan-SE and an additional 172 classified as pseudogenes.

These appear scattered throughout the scaffolds of the genome

assembly. It is highly likely that the majority of these genes are

pseudogenes, and the expansion may represent co-option of the

tRNA into a transposable element.

Three S. maritima microRNA genes have been reported

previously, and are available in the miRBase database (version

18) [125]. Two of these, mir-282 and mir-965, have homologues

in crustaceans and insects. The third, mir-3930, is specific to

myriapods [15]. In addition, we found 52 homologues of known

microRNAs (Figure S34). These include 28 homologues of the 34

ancient microRNA families found throughout the Bilateria [126].

Four of these families were previously reported to be lost at various

stages during animal evolution and, consistent with this, we failed

to identify them in the S. maritima genome. Surprisingly, we also

could not identify the S. maritima homologue of mir-125, a

member of the ancient mir-100/let-7/mir-125 cluster, which is

found in almost all bilaterians and has a well-established function

in the regulation of development of many species [127–129]. Mir-

100 and let-7 are well-conserved and localized within a 1 kb

region on the same scaffold in S. maritima. Whilst we cannot rule

out the possibility that the missing mir-125 is an artefact of the

draft-quality genome assembly, the size of the scaffold strongly

suggests that it is not present in the mir-100/let-7 cluster. We also

identified 17 homologues of microRNAs common to ecdysozoans,

and nine microRNAs known only from arthropods. Among the

former, there are five homologues of mir-2 localized in close

proximity to each other and downstream of mir-71. This

clustering is conserved across protostomes, and it has previously

been shown that the mir-2 family underwent various expansions

during evolution [130]. Finally, we discovered a homologue of

mir-2788, which was previously only known from insects,

suggesting that this microRNA had an earlier origin.

Conclusions
The sequencing of the centipede genome extends significantly

the diversity of available arthropod genomes, and provides novel

information pertinent to a range of evolutionary questions.

Myriapods show a simple body organization that has remained

relatively unchanged in comparison to their ancestors from the

Silurian or even earlier [6], leading to an expectation of general

conservatism. The myriapods are descendants of an independent

terrestrialisation event from the hexapods and chelicerates,

opening the opportunity for studying convergent evolution in

these taxa. Naturally, S. maritima itself has its own evolutionary

Figure 9. Frequency histogram of CpG(o/e) observed in S. maritima gene bodies. The y-axis depicts the number of genes with the specific
CpG(o/e) values given on the x-axis. The distribution of CpG(o/e) in S. maritima is a trimodal distribution, with a low-CpG(o/e) peak consistent with the
presence of historical DNA methylation in S. maritima and the presence of a high CpG(o/e) peak. The data underlying this plot are available in File S4.
doi:10.1371/journal.pbio.1002005.g009
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history, including both lineage specific features of the geophilo-

morphs and adaptations to their subterranean environment,

allowing us to identify specific genomic signatures of ecological

adaptations. Finally, the phylogenetic position of the myriapods

within the arthropods has been the subject of intense debate for

several years, and the availability of genomic data for a myriapod

should contribute to the future resolution of this debate.

The morphological conservatism of centipedes is mirrored in

many conservative aspects of the S. maritima genome. From the

analyses of the various gene families outlined above it becomes

clear that the S. maritima genome has undergone much less gene

loss and rearrangement than the genomes of other sequenced

arthropods, in particular those of the holometabolous insects such

as D. melanogaster. This prototypical nature of the S. maritima
genome is illustrated by the conservation of synteny relative to the

arthropod and bilaterian ancestors, and the conservation of some

ancient gene linkages and clustering, as seen for numerous

homeobox genes. As such, the S. maritima genome can serve as

a guide to the ancestral state of the arthropod genomes, or as a

reference in the reconstruction of evolutionary events in the

history of arthropod genomes.

The independent terrestrialisation of the myriapods and insects

is evidenced by the use of different evolutionary solutions to similar

problems. Figure 10 summarizes some of the gene gains and losses

observed. We see this most clearly in the independent expansions

of gustatory receptor proteins in myriapods and insects and the

Figure 10. Arthropod phylogenetic tree (with nematode outgroup) showing selected events of gene loss, gene gain, and gene
family expansions. Main taxa are listed on the tips, with representative species for which there is a fully sequenced genome listed below. Major
nodes are also named. Data from the genome of S. maritima allow us to map when in arthropod evolution these events occurred, even when these
events did not occur on the centipede lineage. A plausible node for the occurrence of each event is marked and colour-coded, with the possible
range marked with a thin line of the same colour. The events, listed from left to right are: (1) Dscam alternative splicing as a strategy for increasing
immune diversity is known from D. melanogaster, as well as the crustacean D. pulex, and thus probably evolved in the lineage leading to
pancrustacea, after the split from centipedes. (2) Several wnt genes have been lost in holometabolous insects, leaving only seven of the 13 ancestral
families. This loss occurred gradually over arthropod evolution, but reached its peak at the base of the Holometabola. (3) Selenoproteins are rare in
insects. The presence of a large number of selenoproteins in S. maritima as well as in other non-insect arthropods suggests that the loss of many
selenoproteins occurred at the base of the Insecta. (4) Expansion of chemosensory gene families occurred independently in different arthropod
lineages as they underwent terrestrialisation. The OR family is expanded in insects only. (5) Chemosensory genes of the GR and IR genes have
undergone a lineage specific expansion in the genome of S. maritima. As these are probably also linked with terrestrialisation we suggest that this
expansion happened at the base of the Chilopoda, but it could have also occurred later in the lineage leading to S. maritima. (6) Cuticular proteins of
the RR-1 family are numerous in the S. maritima genome. They are found in other arthropods, but not in chelicerates nor in any non-arthropod
species. This suggests that the RR-1 subfamily evolved at the base of the Mandibulata. (7) The genome of S. maritima has a large complement of wnt
genes, but is missing wnt8. Since this gene is found in the Diplopod G. marginata (a species without a fully sequenced genome), the loss most likely
occurred at the base of the Chilopoda. (8) Unlike the situation in D. melanogaster, immune diversity in the S. maritima genome is achieved through
multiple copies of the Dscam gene. This expansion of the family could have happened at any time after the split between Myriapoda and
Pancrustacea. (9) Both circadian rhythm genes and many light receptors are missing in S. maritima. These losses are most likely due to the
subterranean life style of geophilomorph centipedes and are probably specific to this group. However, we cannot rule out the possibility that they
were lost somewhere in the lineage leading to myriapods. (10) The existence of JH signalling in S. maritima as well as in all other arthropods studied
to date strengthens the idea that this signalling system evolved with the exoskeleton of arthropods, though its origins could be even more ancient
and date back to the origin of moulting at the base of the Ecdysozoa.
doi:10.1371/journal.pbio.1002005.g010
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differential expansions of ionotropic and odorant receptors to deal

with terrestrial chemosensation in the two lineages. Similarly,

though probably not for the same reasons, we see a divergent

solution for the generation of Dscam diversity in the immune

response through the use of paralogues instead of the insect

strategy of alternative splicing. The chelicerates also attained

terrestriality independently. However, our understanding of

chelicerate genomes still lags behind our understanding of insect,

and now myriapod, genomes. Thus, extending this comparison to

chelicerates, intriguing as it may be, will have to await future

analysis of their genomes.

Lineage specific features of the S. maritima genome include the

apparent loss of all known photoreceptors and a loss of the

canonical circadian clock system based around period and its

associated gene network. The characterization of whether S.
maritima does have a circadian clock, and if it does how this is

controlled, awaits further work, as does the pinpointing of when in

their evolutionary history these systems were lost. The absence of

the microRNA miR-125 is another surprising evolutionary loss.

The extensive rearrangement of the mitochondrial genome is

striking in comparison with the general conservatism seen in other

known arthropod mitochondrial genomes, and especially in

contrast with the conservative nature of S. maritima’s nuclear

genome.

Materials and Methods

The S. maritima raw sequence, and assembled genome sequence

data are available at the NCBI under bioproject PRJNA20501

(http://www.ncbi.nlm.nih.gov/bioproject/PRJNA20501) Assem-

bly ID GCA_000239455.1. The genome was sequenced using

454 sequencing technology, assembled using the celera assembler,

annotated using a combination of the Maker 2.0 pipeline, and

custom perl scripts followed by manual annotation of selected genes.

Text S1 includes detailed methods for these steps, and additionally

for the individuals sequenced, library construction and sequencing

protocols used, repeat analysis, RNA sequencing, phylome db

analysis, specific protocols for manual annotation of gene families,

CpG analysis, and phylome and synteny re-construction.

Supporting Information

Figure S1 Frequency histogram showing the distribu-

tion of gene lengths in the S. maritima genome. Gene

length data used in this plot are available in File S4.

(PDF)

Figure S2 Multi-gene phylogeny for the 18 species

included in the phylogenomics analysis. 1,491 widespread

single-copy sets of orthologue sequences in at least 15 out of the 18

species were concatenated into a single alignment of 842,150

columns. Then, a maximum-likelihood tree was inferred using LG

as evolutionary model by using PhyML.

(PDF)

Figure S3 Multi-gene phylogeny for 12 species included

in the phylogenomics analysis plus five additional
Chelicerata species. 1,491 widespread single-copy sets of

orthologue sequences were concatenated into a single alignment of

829,729 positions. Then, a maximum-likelihood tree was inferred

using LG as the evolutionary model by using PhyML.

(PDF)

Figure S4 Alternative topological placements of S.

maritima relative to the main arthropod groups consid-

ered in the study: Chelicerata and Pancrustacea. Internal

organization of each group was initially collapsed and, therefore,

optimized during maximum-likelihood reconstruction.

(PDF)

Figure S5 Clusters of genes specifically expanded in the

centipede lineage. On the plot, only clusters grouping five or

more protein-coding genes were considered. The data underlying

this plot are available in File S4.

(PDF)

Figure S6 Mitochondrial gene organisation. Shaded

regions represent differences from the ground pattern. Gene

translocations in Myriapoda have been noted in Scutigerella
causeyae (Myriapoda: Symphyla) [49]. The previous example

of the small conserved region trnaF-nad5-H-nad4-nad4L on

the minus strand between Limulus, Lithobius, and Strigamia is

not a conserved feature in all Chilopoda, because Scutigera
colepotrata have an interruption between nad5 and H-nad4

with elements on the minus and plus strands accompanied by a

translocation of nad4L to a position immediately preceding

nad5.

(PDF)

Figure S7 Classification of all S. maritima (Sma)

homeodomains (excluding Pax2/5/8/sv) via phyloge-
netic analysis using T. castaneum (Tca) and B. floridae

(Bfl) homeodomains. This phylogenetic analysis was con-

structed using neighbour-joining with a JTT distance matrix and

1,000 bootstrap replicates. Gene classes are indicated by colours.

The genes coloured in grey are those genes that cannot be

assigned to known classes. Further classification was performed

using additional domains outside the homeodomain and by

performing additional phylogenetic analysis for particular gene

classes using maximum-likelihood and bayesian approaches.

Pax2/5/8/sv is excluded due to the gene possessing only a

partial homeobox.

(PDF)

Figure S8 Phylogenetic analysis of ANTP class homeo-

domains of S. maritima (Sma) using T. castaneum (Tca)

and B. floridae (Bfl) for comparison. These phylogenetic

analyses were constructed using neighbour-joining with a JTT

distance matrix, 1,000 bootstrap replicates (support values in

black). Nodes with support equal to or above 500 in the

maximum-likelihood (LG+G) analysis are in blue and nodes with

posterior probabilities equal to or above 0.5 (LG+G) in the

Bayesian analysis are in red.

(PDF)

Figure S9 Phylogenetic analysis of PRD class homeodo-
mains of S. maritima (Sma) using T. castaneum (Tca)

and B. floridae (Bfl) for comparison. These phylogenetic

analyses were constructed using neighbour-joining with a JTT

distance matrix, 1,000 bootstrap replicates (support values in

black). Nodes with support equal to or above 500 in the

maximum-likelihood (LG+G) analysis are in blue and nodes with

posterior probabilities equal to or above 0.5 (LG+G) in the

Bayesian analysis are in red.

(PDF)

Figure S10 Phylogenetic analysis of HNF class homeo-

domains of S. maritima (Sma) using B. floridae (Bfl),
human (Homo sapiens, Hsa), and sea anemone (N.

vectensis, Nve) for comparison. These phylogenetic analyses

were constructed using neighbour-joining with a JTT distance

matrix, 1,000 bootstrap replicates (support values in black). Nodes

with support equal to or above 500 in the maximum-likelihood
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(LG+G) analysis are in blue and nodes with posterior probabilities

equal to or above 0.5 (LG+G) in the Bayesian analysis are in red.

(PDF)

Figure S11 Phylogenetic analysis of Xlox/Hox3 genes of

S. maritima (Sma) using a selection of Hox1, Hox2,

Hox3, Hox4, and Xlox sequences. This analysis was based
upon the whole coding sequence of the genes, and was constructed

using neighbour-joining with a JTT distance matrix and 1,000

bootstrap replicates. The blue support value (of 333) is the node

that reveals the affinity between the Xlox/Hox3 genes of S.
maritima and Xlox sequences. Ame, A. mellifera; Bfl, B. floridae;
Cte, Capitella teleta; Dme, D. melanogaster; Lgi, Lottia gigantea;
and Tca, T. castaneum.
(PDF)

Figure S12 Multiple alignment of relevant residues of

the Hox1, Hox2, Hox3, Hox4, and Xlox sequences of

different lineages compared to S. maritima Hox3a and
Hox3b sequences. Three paired class genes are included as an

outgroup. The grading of purple colouring of the amino acids

shows the identity level of these sequences. The red rectangles in

the multiple alignment delimit the core of the hexapeptide motif

and the homeodomain. This is the alignment used to construct the

phylogenetic tree in Figure S13. Ame, A. mellifera; Bfl, B. floridae;
Cte, Capitella teleta; Dme, D. melanogaster; Lgi, Lottia gigantea;
and Tca, T. castaneum.
(PDF)

Figure S13 Phylogenetic analysis of S. maritima Xlox/

Hox3 homeodomain and hexapeptide motifs using a

selection of Hox1, Hox2, Hox3, Hox4, and Xlox sequenc-
es. This analysis used a section of the coding sequence including

the hexapeptide and some flanking residues plus the homeodo-

main (alignment in Figure S12). Three paired class genes are

included as an outgroup. This phylogeny was constructed using

neighbour-joining with the JTT distance matrix and 1,000

bootstrap replicates. Maximum likelihood support values are

shown in blue and Bayesian posterior probabilities in red. Ame, A.
mellifera; Bfl, B. floridae; Cte, Capitella teleta; Dme, D.
melanogaster; Lgi, Lottia gigantean; Tca, T. castaneum.
(PDF)

Figure S14 Fisher’s exact test to distinguish whether S.

maritima scaffold 48457 has significant synteny conser-

vation with ParaHox or Hox chromosomes of humans.

No significant Hox or ParaHox association is found.

(PDF)

Figure S15 Phylogenetic analysis of TALE class homeo-
domains of S. maritima (Sma) using T. castaneum (Tca)

and B. floridae (Bfl), including the Iroquois/Irx genes.

These phylogenetic analyses were constructed using neighbour-

joining with a JTT distance matrix, 1,000 bootstrap replicates

(support values in black). Nodes with support equal to or above

500 in the maximum-likelihood (LG+G) analysis are in blue and

nodes with posterior probabilities equal to or above 0.5 (LG+G) in

the Bayesian analysis are in red.

(PDF)

Figure S16 RNA processing in the Hox cluster of S.

maritima. The transcriptome of S. maritima (Sm) eggs (blue),
females (green), and males (red) was mapped to the Hox gene

cluster (top panel; see Figure 4 in the main text) and transcript

models were inferred for each gene within the cluster (shaded area)

taking into account the presence of ORF and polyadenylation

signals (PAS) to support the existence of RNA processing events.

We note the occurrence of more than one mRNA isoform of six S.
maritima Hox genes (i.e., Antp, Ubx, abd-A, lab, Dfd, pb). In all

these six cases alternative polyadenylation (APA) generates

mRNAs bearing distinct 39 UTRs (alternative UTR sizes at the

bottom). Alternative splicing (AS) with concomitant alternative

promoter use (APU) events concern two S. maritima Hox genes

Dfd and ftz (see alternative ORF sizes at the bottom). We also see

that some genes such as S. maritima Ubx display high

heterogeneity in 39UTR sequences within the embryonic tran-

scriptome (‘‘eggs’’ data) suggesting the possibility that S. maritima
Ubx APA might be developmentally controlled and/or display a

tissue-specific pattern (see inset for further details on symbols).

(PDF)

Figure S17 RNA processing in the S. maritima and D.

melanogaster Hox clusters. (A) The incidence of alternatively
processed mRNAs is comparable between S. maritima and D.
melanogaster, in that over 75% of the S. maritima Hox genes

undergo RNA processing of one type or another. Similarly, seven

out of the eight Drosophila Hox genes produce different mRNA

isoforms (FlyBase, http://flybase.org/). (B) Three D. melanogaster
Hox genes undergo AS (blue) and five produce different transcripts

via APA (red, FlyBase http://flybase.org/). In addition five fruit fly

Hox genes form different RNA species by APU (green). (C)

Classification of all alternatively processed mRNA events in the S.
maritima Hox cluster based on the same categorisation as in (B).

Note that patterns of AS and APA affecting S. maritima and D.
melanogaster Hox genes are relatively comparable; in contrast,

APU seems more prevalent in the Drosophila (five out of eight

genes) than in the centipede (two out of nine genes) Hox genes.

(PDF)

Figure S18 Phylogenetic tree of the S. maritima, D.

pulex, I. scapularis, and representative insect GRs, part
one. This is a corrected distance tree and was rooted at the

midpoint in the absence of a clear outgroup, an approach that

clearly indicates the distinctiveness of the centipede GRs. It is a

more detailed version of Figure 5A. The S. maritima, D. pulex, I.
scapularis, and representative insect gene/protein names are

highlighted in red, blue, brown, and green, respectively, as are the

branches leading to them to emphasize gene lineages. Bootstrap

support levels in percentage of 10,000 replications of neighbour-

joining with uncorrected distance is shown above major branches.

Comments on major gene lineages are on the right. Suffixes after

the gene/protein names are: PSE, pseudogene; FIX, sequence

fixed with raw reads; JOI, gene model joined across scaffolds. Note

than in Figure 5A for space reasons the IsGr47 and 59 proteins are

included in the carbon dioxide and sugar receptor groupings,

respectively; however, there is no bootstrap support for these

branches, and no such functional assignment is claimed. Similarly,

it is unlikely that the DpGr57/58 proteins are fructose receptors.

(PDF)

Figure S19 Phylogenetic tree of the S. maritima, D.

pulex, I. scapularis, and representative insect GRs, part
two. This is a corrected distance tree and was rooted at the

midpoint in the absence of a clear outgroup, an approach that

clearly indicates the distinctiveness of the centipede GRs. It is a

more detailed version of Figure 5A. The S. maritima, D. pulex, I.
scapularis, and representative insect gene/protein names are

highlighted in red, blue, brown, and green, respectively, as are the

branches leading to them to emphasize gene lineages. Bootstrap

support levels in percentage of 10,000 replications of neighbour-

joining with uncorrected distance is shown above major branches.

Comments on major gene lineages are on the right. Suffixes after

the gene/protein names are: PSE, pseudogene; FIX, sequence
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fixed with raw reads; JOI, gene model joined across scaffolds. Note

than in Figure 5A for space reasons the IsGr47 and 59 proteins are

included in the carbon dioxide and sugar receptor groupings,

respectively; however, there is no bootstrap support for these

branches, and no such functional assignment is claimed. Similarly,

it is unlikely that the DpGr57/58 proteins are fructose receptors.

(PDF)

Figure S20 Neuropeptide precursor sequences identi-
fied in the S. maritima genome. The putative signal peptides
(predicted by SignalP) are underlined, the putative active

neuropeptides or protein hormones (based on similarity to

neuropeptides or protein hormones identified in other inverte-

brates) are marked in yellow. Green indicates putative basic

cleavage sites flanking the putative neuropeptides. Glycines used

for amidation are shown in blue, cysteines proposed to form

cysteine bridges are shown in red. Dots indicate missing N- or C-

termini.

(DOCX)

Figure S21 Examples of tandem duplications of neuro-
peptide receptor genes. Structure of the two inotocin receptor

genes found head-to-head on opposite strands of scaffold

JH431865 (A). Structure of the two SIFamide receptor genes

found tail-to-head on the same strand of scaffold JH432116 (B).

(PDF)

Figure S22 Schematic diagram showing sesquiterpe-
noids/juvenoids synthesis (upper) and degradation
(lower) pathways in arthropods. Molecules/hormones in

synthesis are shown in bold, enzymes are shown in italics, and

species/clades are shown in bold italics.

(PDF)

Figure S23 Phylogenetic analysis of the TGFb ligands in
arthropods. See Text S1 for details. Abbreviations: Ag, Anopheles
gambiae; Am, A. mellifera; Ap, Acyrthosiphon pisum; Ca, Clogmia
albipunctata; Dm, Drosophila melanogaster; Dp, D. pulex; Is, I.
scapularis; Lg, Lottia gigantea Ma, Megaselia abdita; Nv, Nasonia
vitripennis; Ph, Pediculus humanus; Tc, T. castaneum;.
(EPS)

Figure S24 Range of Wnt genes present in S. maritima.
Wnt genes present and number of Wnt subfamilies absent in S.
maritima in comparison with other arthropods and three non-

arthropod outgroups.

(TIF)

Figure S25 Phylogeny of FGFR genes indicating that
FGFR genes duplicated independently in S. maritima

and D. melanogaster. See text for details. Alignment was

performed using Clustal-Omega (http://www.ebi.ac.uk/Tools/

services/web). The evolutionary history was inferred using the

neighbour-joining method with bootstrapping to determine node

support values (10,000 replicates). The evolutionary distances were

computed using the Poisson correction method. Evolutionary

analyses were conducted in MEGA5.

(EPS)

Figure S26 Phylogeny including the three FGF genes of
S. maritima. See text for details. Alignment was performed

using Clustal-Omega (http://www.ebi.ac.uk/Tools/services/

web). The evolutionary history was inferred using the neighbour-

joining method with bootstrapping to determine node support

values (10,000 replicates). The evolutionary distances were

computed using the Poisson correction method. Evolutionary

analyses were conducted in MEGA5.

(EPS)

Figure S27 Cap ‘n’ collar (cnc) genes. (A) The two genes are

located on different scaffolds. Cnc1 is a long transcript consisting

of 11 exons. Cnc2 is shorter (eight exons), the three exons at the 39

end of the gene that encode the C-terminal region of the protein

including the conserved domain (B) show a similar structure. (B) S.
maritima Cnc protein structure. Both proteins contain the bZip

domain in a similar position at the C-terminus. Cnc1 encodes a

long protein (925 amino acids). Bits of the N-terminal region (blue

lines) align with D. melanogaster Cnc isoform C and T. castaneum
Cnc variant A. (C) Cnc protein sequence alignment, only showing

the aligning bits in the N-terminal region. Blue lines show short

stretches of sequence that form a consensus motif. These motifs are

not present in the proteins encoded by Sm-cnc2, Dm-cnc isoforms

A and B, and T. castaneum cnc variant B.
(JPG)

Figure S28 Frequency histograms of observed versus

expected dinucleotide content in S. maritima gene

bodies. (A–P) The y-axis depicts the number of genes with the

specific dinucleotide[o/e] values given on the x-axis. The

distribution of all dinucleotide pairs, with the exception of CpG,

is best described as a unimodal distribution. The distribution of

CpG dinucleotides is best described as a trimodal distribution,

with ‘‘high’’ and ‘‘low’’ CpG[o/e] classes. The data underlying this

figure are available in File S5.

(TIF)

Figure S29 Frequency histogram of CpG[o/e] observed

in 1,000 bp windows of the S. maritima genome. The y-

axis depicts the number of genes with the specific CpG[o/e] values

given on the x-axis. The distribution of CpG[o/e] in S. maritima
genome is a bimodal distribution, with a high CpG[o/e] peak

observed similar to that observed in the gene bodies (Figure 9).

The data underlying this figure are available in File S6.

(TIF)

Figure S30 Contrasting patterns of DNAmethylation, as

measured by over- and underrepresentation of CpG

dinucleotides in coding regions (CpG(o/e)), within ar-

thropod species. In all graphs the y-axis depicts the number of

genes with the specific CpG(o/e) values given on the x-axis. (A) D.
melanogaster coding regions show a unimodal peak reflective of

the lack of DNA methylation in this species. (B) A. mellifera shows

a bimodal peak consisting of genes with a lower than expected

CpG(o/e) (green distribution) and a higher than expected CpG(o/e)

(blue distribution). The presence of a bimodal distribution in this

species is consistent with depletion of CpG dinculeotides in the

coding regions of genes over evolutionary time as a result of DNA

methylation. (C) A single unimodal peak is also observed for

Tetranychus urticae, a species that has very low levels of DNA

methylation. (D) The S. maritima distribution is best explained as a

mixture of three distinct distributions that we have deemed ‘‘low’’

(green distribution), ‘‘medium’’ (blue distribution), and ‘‘high’’

(grey distribution). The genes within the low distribution likely

contain genes that are historically methylated, whilst the ‘‘high’’

distribution can be explained by regions of the genome that are

comparatively CpG-rich (as determined by the analysis of the S.
maritima genome, Figure S29). The data underlying this figure are

available in File S7.

(PDF)

Figure S31 Chromosomal organisation of histone gene

clusters in S. maritima. In insects such as Drosophila [115]

and the pea aphid [109] histone encoding genes are present in

quintet clusters, each cluster containing one gene from each of the

five classes of histone. Only one such cluster could be identified in
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S. maritima (A). The other four clusters identified in the S.
maritima genome (B–D) all consist of two to three copies of a

histone encoding gene of a single class. It is possible that these have

arisen as a result of recent gene duplication.

(EPS)

Figure S32 S. maritima vasa DEAD-box helicase germ-
line gene phylogeny. Maximum likelihood tree of vasa/PL10
family genes. One gene is a likely vasa orthologue (SMAR015390),

one groups with the PL10 family (SMAR005518), and the

majority group in an apparently distinct DEAD-box-containing

clade. Bootstrap values for 2,000 replicates are shown at each

node. Accession numbers for protein sequences are as follows: Apis
Belle (XP_391829.3), Apis Vasa (NP_001035345.1), Danio PL10

(NP_571016.2), Danio Vasa (AAI29276.1), Drosophila Belle

(NP_536783.1), Drosophila Vasa (NP_723899.1), Gryllus Vasa

(BAG65665.1), Mus Mvh (NP_001139357.1), Mus PL10

(NP_149068.1), Nasonia Belle (XP_001605842.1), Nasonia Vasa

(XP_001603956.2), Nematostella PL10 (XP_001627306.1), Nema-
tostella Vasa 1 (XP_001628238.1), Nematostella Vasa 2

(XP_001639051.1), Oncopeltus Vasa (AGJ83330.1), Parhyale
Vasa (ABX76969.1), Tribolium Belle (NP_001153721.1), Tribo-
lium Vasa (NP_001034520.2), Xenopus PL10 (NP_001080283.1),

Xenopus VLG1 (NP_001081728.1).

(EPS)

Figure S33 Phylogenomic inventory of meiotic genes in
arthropods. Red genes are specific to meiosis in model species in

which functional data are available. ‘‘+’’ and ‘‘2’’ indicate the

presence and absence of orthologues, respectively. Numbers

indicate copy number of duplicated genes.

(PDF)

Figure S34 Patterns of microRNA gain and loss across
the animal kingdom with the inclusion of S. maritima.
The number of microRNAs that were gained or lost at each node

are shown in green and red, respectively, and names are listed

below each taxon. MicroRNAs that are found in the S.maritima
genome are in bold, and families for which more than one

homologue is found are marked with an asterisk. The tree depicts

the Mandibulata hypothesis rather than the Myriochelata, as in

[124].

(EPS)

Table S1 Detailed overview for the repetitive elements
in S. maritima. For each group the number of elements

(putative families), the number of their fragments or copies in the

genome, the cumulative length, the proportion of the assembly,

and some features are shown. This includes elements containing

nested inserts of other elements (n), elements that appear to be

complete (i.e., all typical structural and coding parts present, even

if containing stop codons or frameshifts), elements with a RT or

Tase domain detected (n), elements that potentially could be active

as they contain an intact ORF with all the typical domains even

though they could lack other structural features like terminal

repeats, and elements that contain an intact ORF for the RT

domain or parts of the Tase domain and could thus be partly

active. The elements that could not be categorized or contained

features of protein coding regions are shown at the bottom,

whereby they probably do not belong to the transposable

elements.

(XLSX)

Table S2 Set of species used in the comparative
genomics analyses related to the S. maritima genome.
Columns include, in this order, scientific names, the species code

according to UNIPROT, the number of the longest unique

transcript used in the analyses, the data source, and the date in

which data were retrieved.

(DOCX)

Table S3 Orthologues detected between a given species

and S. maritima. First column indicates how many trees have

been used to detect such orthologues. Columns ‘‘uniq’’ refers to

the number of orthologues detected for each pair of species after

removing redundancy. In one-to-many and many-to-many

orthology relationships it is possible to count a given protein

more than once. Regarding the ratios values, ‘‘all’’ column refers

to the orthology ratio computed using all orthologue pairs

meanwhile ‘‘uniq’’ refers to the ratio computed using ‘‘uniq’’

columns.

(DOCX)

Table S4 Orthology ratios for a given species related to

S. maritima. This table is similar to Table S3, but in this case

orthology relationships with ten or more proteins for any of the

species are discarded in order to avoid biases introduced by

species-specific gene family expansions.

(DOCX)

Table S5 Newly added Chelicerata species used to

increase the taxon sampling for the species phylogeny.

First column indicates the scientific species name, the second one

indicates which strategy has been used to identify single copy

protein-coding genes. Third column shows how many single-copy

genes have been identified in each species from the initial set of

1,491 used to reconstruct the species phylogeny. Last two columns

show the data source and the date on which data were retrieved.

(DOCX)

Table S6 Results after applying the different statistical

tests implemented in CONSEL for the alternative

placement of S. maritima relative to Pancrustacea and

Chelicerata groups of species (as shown in Figure S4) in

the context of the 18 species used for the phylogenomics

analyses. The ‘‘item’’ column relates to Figure S4 as follows: (1)

topology arrangement corresponding to Figure S4 left-hand panel,

in which S. maritima was grouped with Chelicerata species. (2)

Topology arrangement corresponding to Figure S4 central panel,

in which S. maritima branches off before the split of Pancrustacea

and Chelicerata. (3) Topology arrangement corresponding to

Figure S4 right-hand panel, in which S. maritima was grouped

with Pancrustacea species.

(DOCX)

Table S7 Results after applying the different statistical

tests implemented in CONSEL for the alternative

placement of S. maritima relative to the two arthropod

groups, Pancrustacea and Chelicerata (as shown in

Figure S4), with the inclusion of extra chelicerates.

Taxon sampling for the Chelicerata was increased after including

sequences from five additional species. In order to reduce any

potential bias introduced by distant and/or fast-evolving out-

groups, six out-group species from the initial set were removed.

The ‘‘item’’ column relates to Figure S4 as follows: (1) topology

arrangement corresponding to Figure S4 left-hand panel, in which

S. maritima was grouped with Chelicerata species. (2) Topology

arrangement corresponding to Figure S4 central panel, in which

S. maritima branches off before the split of Pancrustacea and

Chelicerata. (3) Topology arrangement corresponding to Figure

S4 right-hand panel, in which S. maritima was grouped with

Pancrustacea species.

(DOCX)
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Table S8 Enriched functional GO Terms for the ten
largest clusters of duplicated S. maritima protein-
coding genes specifically expanded in the centipede
lineage, as compared with the whole genome.
(DOCX)

Table S9 Statistics regarding the duplications of centi-
pede genes relative to seven specific ages detected using
all available trees on the phylome.
(DOCX)

Table S10 Enriched functional GO terms for proteins
duplicated at the different relative ages shown in Table
S9. Columns show relative age, gene ontology namespace, the

GO term id, and its name, respectively.

(DOCX)

Table S11 Overview of S. maritima mitochondrial
genome.
(DOCX)

Table S12 Species used in the synteny analyses and the
sources of their sequence data.
(DOCX)

Table S13 Block-synteny summary statistics for pairs
of species. Hs, Homo sapiens; Bf, B. floridae; Sm, S. maritima;
Lg, Lottia gigantea; Ct, Capitella teleta; Nv, N. vectensis; Ta,

Trichoplax adhaerens; Ag, Anopheles gambiae; Bm, B. mori.
(DOCX)

Table S14 Summary of numbers of homeobox genes per
class of Strigamia, Branchiostoma, and Tribolium.
(DOCX)

Table S15 Names and identification numbers of all S.
maritima homeobox genes along with their orthologues
from the beetle, T. castaneum, and amphioxus, B.

floridae.
(XLS)

Table S16 One-to-one S. maritima to human ortholo-
gues starting from genes on S. maritima scaffold 48457,
which contains SmaHox3a. The third column is the

chromosomal location of the human orthologue. Human Hox

chromosomes are 2, 7, 12, and 17 and the ParaHox chromosomes

are 4, 5, 13, and X.

(DOCX)

Table S17 Evolutionary conservation of RNA processing
modes in the S. maritima and D. melanogaster Hox
clusters. Type of RNA processing event concerning each one of

the S. maritima (left) and D. melanogaster (right) Hox genes. We

note that orthologous genes in both species undergo similar types

of RNA processing: the three posterior-most Hox genes: Ubx, abd-
a, and Abd-b display a specific type of APA (tandem APA) in both

S. maritima and D. melanogaster (conserved patterns highlighted

by red asterisks) providing an example of what might be a feature

present in the ancestral Hox cluster to insects and myriapods.

Nonetheless, for most other Hox genes, RNA processing patterns

differ markedly between S. maritima and D. melanogaster,
indicating that the conserved incidence of alternative RNA

processing across arthropods can only be proposed for the

posterior-most Hox genes.

(PDF)

Table S18 Details of SmGr family genes and proteins.
Columns are: Gene, the gene and protein name we are assigning

(suffixes are PSE, pseudogene; FIX, assembly was repaired; JOI,

gene model spans scaffolds); OGS, the official gene number in the

13,233 proteins (prefix is Smar_temp_); Scaffold, the genome

assembly scaffold ID, prefix is scf718000 (amongst 14,739 scaffolds

in assembly Smar05272011); Coordinates, the nucleotide range

from the first position of the start codon to the last position of the

stop codon in the scaffold; Strand – + is forward and 2 is reverse;

introns, number of introns; ESTs, presence of an EST contig with

appropriate splicing in one of the three transcriptome assemblies (F,

female; M, male; E, eggs); AAs, number of encoded amino acids in

the protein; comments, comments on the OGS gene model, repairs

to the genome assembly, and pseudogene status (numbers in

parentheses are the number of obvious pseudogenizing mutations).

(DOC)

Table S19 Total numbers of biogenic amine receptors
in different species.

(DOCX)

Table S20 A comparison between the D. melanogaster

and S. maritima biogenic amine receptors. The ortholo-

gues are given next to each other. When there is no orthologue, a

dash (–) is written instead.

(XLSX)

Table S21 Genes encoding neuropeptide precursors

and neuropeptide receptors annotated in S. maritima.
Abbreviations: ACP, adipokinetic hormone/corazonin-related

neuropeptide; AKH, adipokinetic hormone; ADF, antidiuretic

factor; AST, allatostatin; CCAP, crustacean cardio-active pep-

tides; DH (Calc.-like), calcitonin-like diuretic hormone; DH (CRF-

like), corticotropin releasing factor-like diuretic hormone; EH,

eclosion hormone; ETH, ecdysis triggering hormone; GPA2,

glycoprotein hormone A2; GPB5, glycoprotein hormone B5; ILP,

insulin-like peptide; ITP, ion transport peptide; NPF, neuropep-

tide F; NPLP, neuropeptide-like precursor; PDF, pigment

dispersing factor; PTTH, prothoracicotropic hormone; sNPF,

short neuropeptide F.

(EPS)

Table S22 Presence or absence of neuropeptide signal-
ing systems in arthropods. The centipede S. maritima
contains two CCHamide-1, two eclosion hormone and two

FMRFamide genes (2 p). In some cases neuropeptide precursors

could not be identified, but the corresponding receptor genes are

present (R). We assume that this is due to sequencing gaps. For

abbreviations see Table S21.

(DOC)

Table S23 Genes commonly implicated in arthropod
juvenoids biosynthesis (green) and degradation (blue),

and their potential regulators (purple) [98–101]. Common

abbreviations, and presence in the centipede S. maritima.
(DOCX)

Table S24 List of genes commonly implicated as

potential regulators of arthropod juvenoids biosynthesis
(purple) [98–101]. Common abbreviations, and presence in the

centipede S. maritima.
(DOCX)

Table S25 Wnt genes in the genome of S. maritima.

SMAR, the gene identification number, and scaffold, the scaffold

identification number. Wnt 1, 6, and 10 are clustered together on

the same scaffold (yellow highlighting), which is likely a remnant of

the ancestral wnt gene cluster (see text for details).

(PDF)

Table S26 Selenoproteins in the S. maritima genome.

(DOCX)
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Table S27 Histone encoding loci of S. maritima.

(DOCX)

Table S28 Number of loci within the genomes of

arthropod species encoding the five classes of histones.

Orthologues for A. aegypti, D. pulex, T. urticae, and I. scapularis
were obtained by BLAST analysis. Orthologues for A. mellifera
and A. pisum were obtained from published literature [108,109].

(DOCX)

Table S29 Germ line and RNAi genes annotated in the

S. maritima genome. The name of the Drosophila orthologue

is shown unless indicated with ‘‘(Mo),’’ for mouse.

(DOCX)

Table S30 Details of the manually annotated genes of S.

maritima.

(XLSX)

File S1 One2One_GOTerms_GenomeIDs for Orthol-

ogy-based functional annotation.

(XLSX)

File S2 Strigamia_pals for Figure 3.

(XLSX)

File S3 Gustatory receptor sequences.

(XLSX)

File S4 Raw data for Figure 2, Figure 9, Figure S1, and

Figure S5.

(XLSX)

File S5 Raw data for Figure S28.

(XLSX)

File S6 Raw data for Figure S29.

(XLSX)

File S7 Raw data for Figure S30.

(XLSX)

Text S1 Supporting Methods Text.

(DOCX)

Acknowledgments

We thank Paul Kersey, Monica Munoz-Torres, and Jamie Walters for

sharing their experience of community annotation projects; Rolf Sommer

and Werner Mayer for assistance with the identification of S. maritima
associated nematode sequences; Nipam Patel and all authors of the

NHGRI Ecdysozoan Sequencing Proposal who initiated this project; P.

Woznicki and F. Marec for sharing data on the karyotype of S. maritime;
Geordie and Irene at BlarMhor for shelter and sustenance during the field

collection of centipedes.

Author Contributions

The author(s) have made the following declarations about their

contributions: Conceived and designed the experiments: MA SR.

Performed the experiments: CB SES SNJ NS LLP SP XZ SG KPB SLL

IN YW VK GO RM CP LF DS DNN PA MC LJ CM TM MJ RT CLK

MH MJ FO YH JQ SR KCW HJ DSTH DL DK DMM MA RAG.

Analyzed the data: HJ SR KCW DSTH DL CB TG SCG NHP PH JL

MTO NZ JCJB DSTH DL DEKF OMR VSH KWS AS ZA RS JEG PP

CRA WA LH CE PKD EJD LDP DE DB PDE CGE TEJ CJPG FH

JHLH NJK FMJ WJP GM GE MM RG ACR MJT FL HER MR SGJ

MN JR ASG FCA HMR ES FBK SH TSK TN AVH KTR MVDZ CR

JPH JHW AMS EAGH JMW WJG ADC. Contributed reagents/

materials/analysis tools: RAG MA DMM CB DSTH DL MTO NZ JCJB

DSTH DL TG SCG NHP PH JL DK. Wrote the paper: ADC DEKF RS

MA SR. Project management and senior authors: ADC DEKF RS MA

SR. Sequencing PI: RAG. Centipede PI: MA. Specimen identification and

preparation: CB. Sequencing operations manager: DMM. Sequencing

project management: SES SNJ. Library: NS L-LP SP XZ SG KPB SLL IN

YW. 454 sequencing: VK GO RM CP LF DS DNN PA MC LJ CM TM

MJ RT CLK MH. Illumina sequencing: MJ FO YH. Assembly: JQ SR

KCW. Automated annotation: HJ SR KCW DSTH DL. Submissions:

DK. PhyloDB: TG SC-G. Chromosomal synteny conservation: NHP PH

JL. Manual annotation: organization: MT-O NZ JCJB DSTH DL.

Homeobox genes: DEKF OMR VSH KWS AS ZA. FGF signaling: RS.

Sex chromosomes: JEG. Hox mRNA: PP CRA. wnt signaling: WA LH RS

CE. Conserved gene clusters and methylation: PKD EJD. Dscam: LDP DE

DB. Biogenic amine receptors: PDE. Germline genes: CGE TEJ.

Neuropeptides and receptors: CJPG FH. Juvenile hormone systems: JHLH

NJK. Immunity: FMJ WJP. Kinome: GM GE. Selenoproteins: MM RG.

Mitochondria: ACR MJT FL HER. MiRNAs: MR SG-J MN. Chemo-

sensory genes: JR AS-G FCA HMR. Repetitive elements: ES FBK SH.

Light perception and circadian clock: TSK TN AVH KT-R. Innexins and

TGF beta: MVDZ CR JPH. Cuticular proteins: JHW. Meiosis genes: AMS

EAG-H JMW. Developmental transcription factors: WJG ADC VH JEG

CB ZA.

References

1. Arthropod Genomes Consortium (2014) List of sequenced arthropod genomes.

Available: http://arthropodgenomes.org/wiki/Sequenced_genomes.

2. Bracken-Grissom H, Collins AG, Collins T, Crandall K, Distel D, et al. (2014)

The Global Invertebrate Genomics Alliance (GIGA): developing community

resources to study diverse invertebrate genomes. J Hered 105: 1–18.

3. Edgecombe GD (2011) Phylogenetic relationships of Myriapoda. Minelli A,

editor. The Myriapoda. Leiden: Brill. pp. 1–20.

4. Giribet G, Edgecombe GD, Wheeler WC (2001) Arthropod phylogeny based

on eight molecular loci and morphology. Nature: 157–160.

5. Rota-Stabelli O, Telford MJ (2008) A multi criterion approach for the selection

of optimal outgroups in phylogeny: recovering some support for Mandibulata

over Myriochelata using mitogenomics. Mol Phylogenet Evol 48: 103–111.

6. Edgecombe GD, Giribet G (2007) Evolutionary biology of centipedes

(Myriapoda; Chilopoda). Ann Rev Entomol 52: 151–170.

7. Simakov O, Marletaz F, Cho SJ, Edsinger-Gonzales E, Havlak P, et al. (2013)

Insights into bilaterian evolution from three spiralian genomes. Nature 493:

526–531.

8. Edgecombe GD (2004) Morphological data, extant Myriapoda, and the

myriapod stem-group. Contrib Zool 73: 207–252.

9. Bitsch C, Bitsch J (2004) Phylogenetic relationships of basal hexapods among

the mandibulate arthropods: a cladistic analysis based on comparative

morphological characters. Zool Scr 33: 511–550.

10. Rota-Stabelli O, Daley AC, Pisani D (2013) Molecular timetrees reveal a

Cambrian colonization of land and a new scenario for ecdysozoan evolution.

Curr Biol 23: 392–398.

11. Scholtz G, Edgecombe GD (2006) The evolution of arthropod heads:

reconciling morphological, developmental and palaeontological evidence.

Dev Genes Evol 216: 395–415.

12. Mallatt JM, Garey JR, Shultz JW (2004) Ecdysozoan phylogeny and Bayesian

inference: first use of nearly complete 28S and 18S rRNA gene sequences to

classify the arthropods and their kin. Mol Phylogenet Evol 31: 178–191.

13. Pisani D, Poling LL, Lyons-Weiler M, Hedges SB (2004) The colonization of

land by animals: molecular phylogeny and divergence times among arthropods.

BMC Biol 2: 1.

14. Bourlat SJ, Nielsen C, Economou AD, Telford MJ (2008) Testing the new

animal phylogeny: a phylum level molecular analysis of the animal kingdom.

Mol Phylogenet Evol 49: 23–31.

15. Rota-Stabelli O, Campbell L, Brinkmann H, Edgecombe GD, Longhorn SJ, et

al. (2011) A congruent solution to arthropod phylogeny: phylogenomics,

microRNAs and morphology support monophyletic Mandibulata. Proc Roy

Soc B 278: 298–306.

16. Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, et al. (2010) Arthropod

relationships revealed by phylogenomic analysis of nuclear protein-coding

sequences. Nature 463: 1079–1083.

17. Rehm P, Meusemann K, Borner J, Misof B, Burmester T (2014) Phylogenetic

position of Myriapoda revealed by 454 transcriptome sequencing. Mol

Phylogenet Evol.

18. Kraus O, Kraus M (1994) Phylogenetic system of the Tracheata (Mandibulata):

on ‘‘Myriapoda’’:Insecta interrelationships, phylogenetic age and primary

ecological niches. Verh Naturwiss Ver Hambg 34: 5–31.

Centipede Genome

PLOS Biology | www.plosbiology.org 22 November 2014 | Volume 12 | Issue 11 | e1002005

http://arthropodgenomes.org/wiki/Sequenced_genomes


19. Cook CE, Smith ML, Telford MJ, Bastianello A, Akam M (2001) Hox genes
and the phylogeny of the arthropods. Curr Biol 11: 759–763.

20. Cook CE, Yue Q, Akam M (2005) Mitochondrial genomes suggest that
hexapods and crustaceans are mutually paraphyletic. Proc Biol Sci 272: 1295–
1304.

21. Regier JC, Shultz JW, Kambic RE (2005) Pancrustacean phylogeny: hexapods
are terrestrial crustaceans and maxillopods are not monophyletic. Proc Biol Sci
272: 395–401.

22. Gregory TR (2014) Animal Genome Size Database. Available: http://www.
genomesize.com.

23. Arthur W, Chipman AD (2005) The centipede Strigamia maritima: what it can
tell us about the development and evolution of segmentation. Bioessays 27:
653–660.

24. Brena C, Akam M (2012) The embryonic development of the centipede
Strigamia maritima. Dev Biol 363: 290–307.

25. Lewis JGE (1961) The life history and ecology of the littoral centipede
Strigamia ( = Scolioplanes) maritima (Leach). Proc Zool Soc Lond 137: 221–
248.

26. Chipman AD, Akam M (2008) The segmentation cascade in the centipede
Strigamia maritima: involvement of the Notch pathway and pair-rule gene
homologues. Dev Biol 319: 160–169.

27. Chipman AD, Arthur W, Akam M (2004) Early development and segment
formation in the centipede Strigamia maritima (Geophilomorpha). Evol Dev 6:
78–89.

28. Chipman AD, Arthur W, Akam M (2004) A double segment periodicity
underlies segment generation in centipede development. Curr Biol 14: 1250–
1255.

29. Green J, Akam M (2013) Evolution of the pair rule gene network: Insights from
a centipede. Dev Biol 382: 235–245.

30. Kettle C, Johnstone J, Jowett T, Arthur H, Arthur W (2003) The pattern of
segment formation, as revealed by engrailed expression, in a centipede with a
variable number of segments. Evol Dev 5: 198–207.

31. Brena C, Green J, Akam M (2013) Early embryonic determination of the
sexual dimorphism in segment number in geophilomorph centipedes. Evodevo
4: 22.

32. Brena C, Akam M (2013) An analysis of segmentation dynamics throughout
embryogenesis in the centipede Strigamia maritima. BMC Biology 11: 112.

33. Vedel V, Apostolou Z, Arthur W, Akam M, Brena C (2010) An early
temperature-sensitive period for the plasticity of segment number in the
centipede Strigamia maritima. Evol Dev 12: 347–352.

34. Giribet G, Carranza S, Riutort M, Baguña J, Ribera C (1999) Internal
phylogeny of the Chilopoda (Myriapoda, Arthropoda) using complete 18S
rDNA and partial 28S rDNA sequences. Phil Trans Roy Soc Lond B 354:
215–222.

35. Mundel P (1979) The centipedes (Chilopoda) of the Mazon Creek. Nitecki MH,
editor. Mazon Creek fossils. New York: Academic Press. pp. 361–378.

36. Minelli A (2011) Chilopoda – general morphology. Minelli A, editor. The
Myriapoda. Leiden: Brill. pp. 43–66.

37. Müller CHG, Sombke A, Hilken G, Rosenberg J (2011) Chilopoda – sense
organs. Minelli A, editor. The Myriapoda. Leiden: Brill. pp. 235–278.

38. Plateau F (1886) Recherches sur la perception de la lumière par les Myriapodes
aveugles J Anat Physiol 22: 431–457.

39. Mackay TFC, Richards S, Stone EA, Barbadilla A, Ayroles JF, et al. (2012)
The Drosophila melanogaster genetic reference panel. Nature 482: 173–178.

40. Huerta-Cepas J, Capella-Gutierrez S, Pryszcz LP, Denisov I, Kormes D, et al.
(2011) PhylomeDB v3.0: an expanding repository of genome-wide collections of
trees, alignments and phylogeny-based orthology and paralogy predictions.
Nuc Acid Res 39: D556–D560.

41. Gabaldón T (2008) Large-scale assignment of orthology: back to phylogenetics?
Genome Biol 9: 235.

42. Huerta-Cepas J, Gabaldón T (2011) Assigning duplication events to relative
temporal scales in genome-wide studies. Bioinformatics 27: 38–45.

43. Negrisolo E, Minelli A, Valle G (2004) The mitochondrial genome of the house
centipede Scutigera and the monophyly versus paraphyly of myriapods. Mol
Biol Evol 21: 770–780.

44. Putnam NH, Butts T, Ferrier DEK, Furlong RF, Hellsten U, et al. (2008) The
amphioxus genome and the evolution of the chordate karyotype. Nature 453:
1064–1071.

45. Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, et al. (2007) Sea
anemone genome reveals ancestral eumetazoan gene repertoire and genomic
organization. Science 317: 86–94.

46. Zdobnov EM, von Mering C, Letunic I, Bork P (2005) Consistency of genome-
based methods in measuring metazoan evolution. FEBS lett 579: 3355–3361.

47. Denoeud F, Henriet S, Mungpakdee S, Aury J-M, Da Silva C, et al. (2010)
Plasticity of animal genome architecture unmasked by rapid evolution of a
pelagic tunicate. Science 330: 1381–1385.

48. Panfilio KA, Akam M (2007) A comparison of Hox3 and Zen protein coding
sequences in taxa that span the Hox3/zen divergence. Dev Genes Evol 217:
323–329.

49. Garcia-Fernandez J (2005) The genesis and evolution of homeobox gene
clusters. Nat Rev Genet 6: 881–892.

50. Hui JHL, McDougall C, Monteiro AS, Holland PWH, Arendt D, et al. (2012)
Extensive chordate and annelid macrosynteny reveals ancestral homeobox
gene oganization. Mol Biol Evol 29: 157–165.

51. Pollard SL, Holland PWH (2000) Evidence for 14 homeobox gene clusters in
human genome ancestry. Curr Biol 10: 1059–1062.

52. Butts T, Holland PWH, Ferrier DE (2008) The Urbilaterian Super-Hox
cluster. Trends Genet 24: 259–262.

53. Penalva-Arana DC, Lynch M, Robertson HM (2009) The chemoreceptor
genes of the waterflea Daphnia pulex: many Grs but no Ors. BMC Evol Biol 9:
79.

54. Robertson HM, Warr CG, Carlson JR (2003) Molecular evolution of the insect
chemoreceptor gene superfamily in Drosophila melanogaster. P Natl Acad
Sci U S A 100: 14537–14542.

55. Vieira FG, Rozas J (2011) Comparative genomics of the odorant-binding and
chemosensory protein gene families across the Arthropoda: Origin and
rvolutionary history of the chemosensory system. Genome Biol Evol 3: 476–
490.

56. Pelosi P (1994) Odorant-binding proteins. Crit Rev Biochem Mol 29: 199–228.

57. Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth
antennae. Nature 293: 161–163.

58. Angeli S, Ceron F, Scaloni A, Monti M, Monteforti G, et al. (1999)
Purification, structural characterization, cloning and immunocytochemical
localization of chemoreception proteins from Schistocerca gregaria. Eur J Bio-
chem 262: 745–754.

59. Pelosi P, Zhou JJ, Ban LP, Calvello M (2006) Soluble proteins in insect
chemical communication. Cell Mol Life Sci 63: 1658–1676.

60. Starostina E, Xu AG, Lin HP, Pikielny CW (2009) A Drosophila protein family
implicated in pheromone perception is related to Tay-Sachs GM2-activator
protein. J Biol Chem 284: 585–594.

61. Xu A, Park SK, D’Mello S, Kim E, Wang Q, et al. (2002) Novel genes
expressed in subsets of chemosensory sensilla on the front legs of male
Drosophila melanogaster. Cell Tissue Res 307: 381–392.

62. Clyne PJ, Warr CG, Carlson JR (2000) Candidate taste receptors in
Drosophila. Science 287: 1830–1834.

63. Scott K, Brady R, Cravchik A, Morozov P, Rzhetsky A, et al. (2001) A
chemosensory gene family encoding candidate gustatory and olfactory
receptors in Drosophila. Cell 104: 661–673.

64. Clyne PJ, Warr CG, Freeman MR, Lessing D, Kim JH, et al. (1999) A novel
family of divergent seven-transmembrane proteins: candidate odorant receptors
in Drosophila. Neuron 22: 327–338.

65. Gao Q, Chess A (1999) Identification of candidate Drosophila olfactory
receptors from genomic DNA sequence. Genomics 60: 31–39.

66. Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB (2009) Variant ionotropic
glutamate receptors as chemosensory receptors in Drosophila. Cell 136: 149–
162.

67. Croset V, Rytz R, Cummins SF, Budd A, Brawand D, et al. (2010) Ancient
protostome origin of chemosensory ionotropic glutamate receptors and the
evolution of insect taste and olfaction. PLoS Genet 6: e1001064.

68. Weil E (1958) Zur Biologie der einheimischen Geophiliden. Z Angew Entomol
42: 173–209.

69. Xiang Y, Yuan QA, Vogt N, Looger LL, Jan LY, et al. (2010) Light-avoidance-
mediating photoreceptors tile the Drosophila larval body wall. Nature 468:
921–926.

70. Zhan S, Merlin C, Boore JL, Reppert SM (2011) The monarch butterfly
genome yields insights into long-distance migration. Cell 147: 1171–1185.

71. Benna C, Bonaccorsi S, Wulbeck C, Helfrich-Forster C, Gatti M, et al. (2010)
Drosophila timeless2 Is required for chromosome stability and circadian
photoreception. Curr Biol 20: 346–352.

72. George H, Terracol R (1997) The vrille gene of Drosophila is a maternal
enhancer of decapentaplegic and encodes a new member of the bZIP family of
transcription factors. Genetics 146: 1345–1363.

73. Reddy KL, Rovani MK, Wohlwill A, Katzen A, Storti RV (2006) The
Drosophila Par domain protein I gene, Pdp1, is a regulator of larval growth,
mitosis and endoreplication. Dev Biol 289: 100–114.

74. Avivi A, Albrecht U, Oster H, Joel A, Beiles A, et al. (2001) Biological clock in
total darkness: The Clock/MOP3 circadian system of the blind subterranean
mole rat. Proc Natl Acad Sci U S A 98: 13751–13756.

75. Avivi A, Oster H, Joel A, Beiles A, Albrecht U, et al. (2004) Circadian genes in
a blind subterranean mammal III: molecular cloning and circadian regulation
of cryptochrome genes in the blind subterranean mole rat, Spalax ehrenbergi
superspecies. J Biol Rhyth 19: 22–34.

76. Goldman BD, Goldman SL, Riccio AP, Terkel J (1997) Circadian patterns of
locomotor activity and body temperature in blind mole-rats, Spalax ehrenbergi.
J Biol Rhyth 12: 348–361.

77. Crandall KA, Hillis DM (1997) Rhodopsin evolution in the dark. Nature 387:
667–668.

78. Willis JH (2010) Structural cuticular proteins from arthropods: annotation,
nomenclature, and sequence characteristics in the genomics era. Insect
Biochem Molec Biol 40: 189–204.

79. Rebers JE, Riddiford LM (1988) Structure and expression of a Manduca sexta
larval cuticle gene homologous to Drosophila cuticle genes. J Mol Biol 203:
411–423.

80. Rebers JE, Willis JH (2001) A conserved domain in arthropod cuticular
proteins binds chitin. Insect Biochem Molec Biol 31: 1083–1093.

81. Fredriksson R, Schioth HB (2005) The repertoire of G-protein-coupled
receptors in fully sequenced genomes. Mol Pharmacol 67: 1414–1425.

Centipede Genome

PLOS Biology | www.plosbiology.org 23 November 2014 | Volume 12 | Issue 11 | e1002005

http://www.genomesize.com
http://www.genomesize.com


82. Ritter SL, Hall RA (2009) Fine-tuning of GPCR activity by receptor-
interacting proteins. Nat Rev Mol Cell Bio 10: 819–830.

83. Hill RJ, Billas IML, Bonneton F, Graham LD, Lawrence MC (2013) Ecdysone
Receptors: from the Ashburner model to structural biology. Annu Rev
Entomol 58: 251–271.

84. Jindra M, Palli SR, Riddiford LM (2013) The juvenile hormone signaling
pathway in insect development. Annu Rev Entomol 58: 181–204.

85. Srivastava DP, Yu EJ, Kennedy K, Chatwin H, Reale V, et al. (2005) Rapid,
nongenomic responses to ecdysteroids and catecholamines mediated by a novel
Drosophila G-protein-coupled receptor. J Neurosci 25: 6145–6155.

86. Evans PD, Maqueira B (2005) Insect octopamine receptors: a new classification
scheme based on studies of cloned Drosophila G-protein coupled receptors.
Invert Neurosci 5: 111–118.

87. Hauser F, Neupert S, Williamson M, Predel R, Tanaka Y, et al. (2010)
Genomics and peptidomics of neuropeptides and protein hormones present in
the parasitic wasp Nasonia vitripennis. J Proteome Res 9: 5296–5310.

88. Hauser F, Cazzamali G, Williamson M, Park Y, Li B, et al. (2008) A genome-
wide inventory of neurohormone GPCRs in the red flour beetle Tribolium
castaneum. Front Neuroendocrin 29: 142–165.

89. Stay B, Tobe SS (2007) The role of allatostatins in juvenile hormone synthesis
in insects and crustaceans. Annu Rev Entomol 52: 277–299.

90. Weaver RJ, Audsley N (2009) Neuropeptide regulators of juvenile hormone
synthesis: structures, functions, distribution, and unanswered questions. Trends
Comp Endocrinol Neuro 1163: 316–329.

91. Grbic M, Van Leeuwen T, Clark RM, Rombauts S, Rouze P, et al. (2011) The
genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature
479: 487–492.

92. Hui JHL, Hayward A, Bendena WG, Takahashi T, Tobe SS (2010) Evolution
and functional divergence of enzymes involved in sesquiterpenoid hormone
biosynthesis in crustaceans and insects. Peptides 31: 451–455.

93. Van der Zee M, da Fonseca RN, Roth S (2008) TGF beta signaling in
Tribolium: vertebrate-like components in a beetle. Dev Genes Evol 218: 203–
213.

94. Lowery JW, LaVigne AW, Kokabu S, Rosen V (2013) Comparative genomics
identifies the mouse Bmp3 promoter and an upstream evolutionary conserved
region (ECR) in mammals. PLoS ONE 8: e57840.

95. Cho SJ, Valles Y, Giani VC, Seaver EC, Weisblat DA (2010) Evolutionary
dynamics of the wnt gene family: a lophotrochozoan perspective. Mol Biol Evol
27: 1645–1658.

96. Prud’homme B, Lartillot N, Balavoine G, Adoutte A, Vervoort M (2002)
Phylogenetic analysis of the Wnt gene family: insights from lophotrochozoan
members. Curr Biol 12: 1395–1400.

97. Janssen R, Le Gouar M, Pechmann M, Poulin F, Bolognesi R, et al. (2010)
Conservation, loss, and redeployment of Wnt ligands in protostomes:
implications for understanding the evolution of segment formation. Bmc
Evolutionary Biology 10: 374.

98. Murat S, Hopfen C, McGregor AP (2010) The function and evolution of Wnt
genes in arthropods. Arthropod Struct Dev 39: 446–452.

99. Nusse R (2001) An ancient cluster of Wnt paralogues. Trends Genet 17: 443–
443.

100. McGinnis N, Ragnhildstveit E, Veraksa A, McGinnis W (1998) A cap ‘n’ collar
protein isoform contains a selective Hox repressor function. Development 125:
4553–4564.

101. Iwanaga S, Lee BL (2005) Recent advances in the innate immunity of
invertebrate animals. J Biochem Mol Biol 38: 128–150.

102. Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RAB (1999) Phylogenetic
perspectives in innate immunity. Science 284: 1313–1318.

103. Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster.
Annu Rev Immunol 25: 697–743.

104. Dong YM, Dimopoulos G (2009) Anopheles fibrinogen-related proteins provide
expanded pattern recognition capacity against bacteria and malaria parasites.
J Biol Chem 284: 9835–9844.

105. Waterhouse RM, Kriventseva EV, Meister S, Xi ZY, Alvarez KS, et al. (2007)
Evolutionary dynamics of immune-related genes and pathways in disease-
vector mosquitoes. Science 316: 1738–1743.

106. Watson FL, Puttmann-Holgado R, Thomas F, Lamar DL, Hughes M, et al.
(2005) Extensive diversity of Ig-superfamily proteins in the immune system of
insects. Science 309: 1874–1878.

107. Brites D, Brena C, Ebert D, Du Pasquier L (2013) More than one way to
produce protein diversity: duplication and limited alternative splicing of an
adhesion molecule gene in basal arthropods. Evolution 67: 2999–3011.

108. Obbard DJ, Gordon KHJ, Buck AH, Jiggins FM (2009) The evolution of RNAi
as a defence against viruses and transposable elements. Philos Trans Roy Soc B
364: 99–115.

109. Squires JE, Berry MJ (2008) Eukaryotic selenoprotein synthesis: mechanistic
insight incorporating new factors and new functions for old factors. IUBMB
Life 60: 232–235.

110. Mariotti M, Ridge PG, Zhang Y, Lobanov AV, Pringle TH, et al. (2012)
Composition and evolution of the vertebrate and mammalian selenoproteomes.
PLoS ONE 7: e33066.

111. Chapple CE, Guigo R (2008) Relaxation of selective constraints causes
independent selenoprotein etinction in insect genomes. PLoS ONE 3: e2968.

112. Kim HY, Fomenko DE, Yoon YE, Gladyshev VN (2006) Catalytic advantages
provided by selenocysteine in methionine-S-sulfoxide reductases. Biochemistry
45: 13697–13704.

113. Corona M, Robinson GE (2006) Genes of the antioxidant system of the honey
bee: annotation and phylogeny. Insect Mol Biol 15: 687–701.

114. Feng S, Cokus SJ, Zhang X, Chen PY, Bostick M, et al. (2010) Conservation
and divergence of methylation patterning in plants and animals. Proc Natl
Acad Sci U S A 107: 8689–8694.

115. Suzuki MM, Kerr AR, De Sousa D, Bird A (2007) CpG methylation is targeted
to transcription units in an invertebrate genome. Genome Res 17: 625–631.

116. Zemach A, McDaniel IE, Silva P, Zilberman D (2010) Genome-wide
evolutionary analysis of eukaryotic DNA methylation. Science 328: 916–919.

117. Foret S, Kucharski R, Pellegrini M, Feng S, Jacobsen SE, et al. (2012) DNA
methylation dynamics, metabolic fluxes, gene splicing, and alternative
phenotypes in honey bees. Proc Natl Acad Sci U S A 109: 4968–4973.

118. Laurent L, Wong E, Li G, Huynh T, Tsirigos A, et al. (2010) Dynamic changes
in the human methylome during differentiation. Genome Res 20: 320–331.

119. Elango N, Hunt BG, Goodisman MA, Yi SV (2009) DNA methylation is
widespread and associated with differential gene expression in castes of the
honeybee, Apis mellifera. Proc Natl Acad Sci U S A 106: 11206–11211.

120. Hunt BG, Brisson JA, Yi SV, Goodisman MAD (2010) Functional conservation
of DNA methylation in the pea aphid and the honeybee. Genome Biol Evol 2:
719–728.

121. Park J, Peng ZG, Zeng J, Elango N, Park T, et al. (2011) Comparative analyses
of DNA methylation and sequence evolution using Nasonia genomes. Mol Biol
Evol 28: 3345–3354.

122. Richards S, Gibbs RA, Weinstock GM, Brown SJ, Denell R, et al. (2008) The
genome of the model beetle and pest Tribolium castaneum. Nature 452: 949–
955.

123. Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcy-
tosine is present in Purkinje neurons and the brain. Science 324: 929–930.

124. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, et al. (2009)
Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian
DNA by MLL partner TET1. Science 324: 930–935.

125. Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA
annotation and deep-sequencing data. Nuc Acid Res 39: D152–D157.

126. Wheeler BM, Heimberg AM, Moy VN, Sperling EA, Holstein TW, et al.
(2009) The deep evolution of metazoan microRNAs. Evol Dev 11: 50–68.

127. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, et al. (2000)
The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis
elegans. Nature 403: 901–906.

128. Christodoulou F, Raible F, Tomer R, Simakov O, Trachana K, et al. (2010)
Ancient animal microRNAs and the evolution of tissue identity. Nature 463:
1084–1088.

129. Caygill EE, Johnston LA (2008) Temporal regulation of metamorphic processes
in Drosophila by the let-7 and miR-125 heterochronic microRNAs. Curr Biol
18: 943–950.

130. Marco A, Hui JHL, Ronshaugen M, Griffiths-Jones S (2010) Functional shifts
in insect microRNA evolution. Genome Biol Evol 2: 686–696.

131. McTaggart SJ, Conlon C, Colbourne JK, Blaxter ML, Little TJ (2009) The
components of the Daphnia pulex immune system as revealed by complete
genome sequencing. BMC Genomics 10.

132. Dasmahapatra KK, Walters JR, Briscoe AD, Davey JW, Whibley A, et al.
(2012) Butterfly genome reveals promiscuous exchange of mimicry adaptations
among species. Nature 487: 94–98.

Centipede Genome

PLOS Biology | www.plosbiology.org 24 November 2014 | Volume 12 | Issue 11 | e1002005


