6 C. J. Himmelberg

(i) A4, Byze(d)—e(B)y if A,Bel.
Tt then follows from Theorem 2 that X/IT is pseudo-meirizable.
Define s(4) = 5(4)/K, where
n(4) =sup{e| ¢ >0 and N,[A]C It # Adel.

We fivst prove that 5(4d)>0 for all Ael' Let acd and let
e = (1/K)d(a, X— | JI). Olearly ¢ > 0. To show 7(4) > 0, it is sufficient
to show that NJ[A]C |JI, or, equivalently, that d(4,X— (JTI) =«
So let wed, we X— { I, and let ¢ eI be such that ¢(w) = a. Then

Ki(z, u) = d(‘?’(w)ﬂp("/)) = d(“: ‘P(M)) zd(a, X—JIN =K,

80 &{z, ) = ¢, and consequently d(d, X— [JI) > =
Tt is trivial that Nyo[A]C | I for all A ¢ I; thus (i) is true since ¢(4)
§ n{A) for all 4 eI It remains to prove (ii). Let 4, B e I. By the defini-
tion of a.(A.) and e(B), it is sufficient to prove that Kd{4d, B) = n(d)--
—7(B), i.e., that n(B) = n(4)—Kd(4d, B); and to do this it is sufficient
to show that the following implication is true:
d(z, B) < n{Ad)—Kd(4,B) >we | JI.
Suppose d(z, B) < n{d)—Kd(A, B). Then there exists &> 0 such that
d(z,B) < n(4)—Kd(A, B)—e.
Now.le‘a 4 > 0 be arbitrary. Then there exists b ¢ B such that
Az, b) < d(z, B)+ 5,
and by the lerama there exists ¢ ¢ A such that
d(a, b) < Kd(4,B)+4d.
It follows that
Az, 4) < d(z, a) < d(z, B)-+ Ed(4, B)+26 < n(d)—e-1-26 .
Hence d{z, 4) < n(d)—z < n(4) and ze | J I
This concludes the proof of Theorem 5.
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The first order properties of Dedekind finite integers

vy
Erik Ellentuck* (New Brunswick, N. J)

1. Introdaction. It is well known that mathematics is often
simplified by the introduction of ideal elements. In the past it has been
said that even when their existence is entirely fictitious (points at infinity
in geometry, for example), theorems about the original structure which
are proved with their aid may be interpreted as relative consistency
results. More recently, our firm belief in set theory has led us to take
ideal elements which are constructed in set theory as bonafide mathe-
matical objects. In this paper such notions are applied to the Dedekind
finite cardinals 4 (ef. [4]). In theorem 1 we show that just as the finite
cardinals & can be extended to the ring of rational integers &%, A can be
extended to the ring of Dedekind finite integers A*. Of course all of this
is going on in a set theory & which does not include the axiom of choiee.
Next, o series of lemmag shows that every function defined on &* ean be
extended to a function defined on A* Since this extension procedure
depends in an essential way on the methods of [4], we must require that &°
contains the axiorn of choice for sets of finite sefis. This does not force
A* = € as is shown in (4], In order to stundy the first order properties
of A* we define a language L which contains equations between terms,
which are built up by composition of function gymbols, as atomic formula.
I is interpreted in &* by letting the function symbols denote functions
on &, and interpreted in 4* by letting the function symbols denote
extensions to 4* of functions defined on & The bulk of our work is con-
cerned with giving necessary and sufficient conditions that a sentence 2
which holds in & will also hold in A*. Our main sufficiency result is given
by corollary 2, which says in essence that if % is equivalent in &* to a Horn
sentence, then % will also hold in 4* This theorem eagily follows by & rou-
tine tramsexription of [4], theorem 8. The more interesting part of our
paper is concerned with necessity. We use metamathematical tools. In
lemma 3 we show that in the Fraenkel-Mostowski model W (ef. [11]},
A* iy isomorphic fo a direct limif of reduced powers of &. In lemmas 6

+ Research. for this paper was supported in part by Natiopal Science Foundation
contract number GP 5786.


GUEST


3 E. Ellenfuck

and 7 we analyze the first order theory of this direct limit and in lemma 8
we show that it hag the same theory as the system § which is defined to
be a countable direct power of & reduced modulo the cofinite sets. Ience
in I+ the first order theory of A* is the same as that of F. This result
is exploited in corolary 3 to show that there iz an extension of &0 and
a class of sentences for which & necessary condition that U hold in 4*
is that % be equivalent in’ & to a Horn sentence. In theorems 5 and 6
certain results about W+ are actually modeled in. ©° by using a rather

pretty lifting technigue of Kreisel. A section on applications follows.

2. The extension. Let & be a version of class-set theory whose
axioms are (i) A-D of [7] modified so as to allow for the existence of proper
individuals (urelemente), and (i) an additional axiom.

(1) There exists an infinite set K of all wurelemente .

&¢ is obtained from & by adding the axiom of choice for sets of finite
sets, and ©* is obtained from © by adding the full axiom of choice. It
is known that €%, & and &, in that order, are of strictly decreasing
strengths (ef. [11]). Each of the following lemmas, theorems, and corol-
laries, will be labeled as to the theory in which it oeccurs.

Define ordinal numbers by modified [7] in such a way that each
ordinal number is the set of all its predecessors, and denote them by lower
case Greek letters. An ordinal number is findie if both it and each of its
predecessors contains & largest element, Finite ordinals are denoted by
lower case Latin letters, in particular by ‘4, 5’, and ‘%’. o is the smallest
ordinal which is not finite, and as a set, is the set of all finite ordinals.

Define cardinal numbers by the absbractive method of [14] basing
our rank theory on K (ef. [4], p. 228), and denote them by lower case
German letters. Use ‘~ for set theoretic equivalence and [4| for the
cardinal number of the set 4. Let I" be the class of all cardinals. A cardinal
number is finite if it is the cardinal of a finite ordinal. Finite cardinals
are denoted by lower case Tatin letbers, in particular by ‘@, ‘5!, and ‘%,
and identified with finite ordinals in the usual way. Let & be the set of
all finite cardinals. A cardinal x is Dedekind finite if x = x+1. Let 4 he
the elass of all Dedekind finite cardinals. Clearly § C 4, however, the
converse inclusion is not & theorem of & The algebraic theory of A has
recelved an extensive treatment in [4], which will serve as the principal
reference throughout this section.

For any class 4 and 0 < % < o let X4 be the class of all functions
whose domain is 1 and whose range is contained in 4. Let T be the elass
of all sets. Blements # « X'V are called k-tuples. Write x; for z(i) and
exhibit them as 2 = <z, ..., 2;>. Denote members of X*I by lower
cage German letters. We extend certain notions componentwise from ¥V
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to X"V and use the same symbol for the extension as for the original
notion. For o e X*V let || = (|uy), ..., lwp_s]d, and for %, 9e X let
¥ < if x; < v, for ¢ < k. Context will always make it clear when a symbol
is to be understood in ity extended sense.

Let &* be the rational integers: positive, negative, and zero. There
is a standard construction by means of which the system <&, 4, -> can
be extended to the ring <&, +, > in sueh a way that each xe§*
can he expressed as a difference = y —z where ¥, 2 € §. This construction
can be carried out using only the following properties of <8, 4, >:

(2) it 18 a commutative cancellation semigroup with zero elemeni wunder
addition, it is a commutalive semigroup with identity element under
multiplication, multiplication s distributive over addition.

We now list the principal steps of this extension, leaving the details to
the reader (cf. [3], p. 147).

{a) Define a relation ~ on X°6 by <&y, 5> ~ Yo, 11> it Te-byy = o+
4y, and prove that it is an equivalence relatiom. Let [z, 2,5 be the
equivalence class determined by (w, 2,>, and let & be the set of all such
equivalence classes.

(b) Define addition and multiplication on & by

(%o, @y Je+ Loy Yids = (Kot Yo, m1+1)s
and
[0, @1)6 - [Yos Yrde = [@oYoT 2191, Zo¥st+ Biihole

and prove that these definitions are unique.

(¢) Show that (&%, -, .> is a ring with [0, 0]z playing the role of
the zero element and [1, 0] playing the role of the identity element.

(d) Show that f: §—8&* given by f(#) == [, 0Jg is an algebraic iso-
morphism into and use a transfer theorem to embed & in &*. Notice that
[, y1s = [, 0le—[y, 0]s = 2—.

S-TuroreM 1. The system {d, -+, > can be extended io a ring in
essentially the same way that the system (&, +, > con be extended to the
ring (&%, 4+, -

Proof. By [4], p. 226 (iil), the system <A, 4, - also satisties (2).
Henoce the same construetion (a)-(d) should extend <A, +, -> to a ring
A%, 4, . The only difficulty is that we cannot provein & that the equiv-
alence classes in (a) are actually sets. () We remedy this situation ‘by

{(*} From n personal communication with J. D. Halpern. See a forthcoming paper
of J. D. Halpern and A. Lévy where it is shown by Cohen’s method that even in set
theories without urelemente, a proper class of Dedekind finite cardinals can be introduced.
Note, however, that (10) and (11) of this paper imply the existence of models (with
urelemente) in which 4 # & but 4 is a setb.
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uging the abstractive method of [14] and defining [x,, %14 for (xy, ¥, ¢ X4
as the set of all those <yy,7.> e X°A of least rank such that {x, x>
s (g, Do (cf. [4], p. 228). The rest of our construction closely parallels
(a)-(d) above. q.e.d.

DermrrioNy 1. Let 4* be obtained from 4 by the construction
outlined in the proof of theorem 1. Elements of A* are called Dedekind
Ffimite integers.

(4%, +, -3 is a commutative ring with 0 as zero element relative
to addition and 1 as identity element relative to mulfiplication. Sub-
traction is defined in the usual way. Since the function f: & —-A* given
by f{(%, #.]5) = [%, %]4 15 an algebraic isomorphism into, we may wse
a firansfer theorem. to embed & in A*. Consequently our sfructures stand
in the following relation: § C 4, § C &, 4 C 4* and & C 4% The usual
clasification of raticnal integers into three types (positive, negative,
and zero) does not carry over to A*, since it is based on the comparability
of any two finite cardinals, which does not carry over to A (even in &),
The elements of A* ean be classified into four types: for %, ¥ ¢ 4, % —3,
is positive if x, > %, zere if 3= %, negative if % < x;, and neutral if %
is incomparable with . Denote members of &* (X*E*) by lower case
Latin lefters, and members of 4* (XkA*) by lower case German letters.

The following discussion is based on the theory &°. Let 0 <k < o
and f: X*E— 8%, Tf 0{i) € & are the Stirling coefficients of f (¢f. [4], p. 231),
let ¢*(4) = max(e(d), 0), ¢~(F) = max(—e(3), 0) and define

(3) P, Xe—-8
t0 be the funetions whose Stirling coefficients are ¢*(i), ¢~ (i), respectively.
Clearly f* and f~ are a pair of k-ary combinatorial functions whose dif-
ference f*(z)—f (@) = flx).

ov-Levwa 1. If f: X¥6& and ¢°, g ave any pair of k-ary com-
binatorial functions whose difference s f, then

Sz —galx) = fA(0)—fa(z)  for every ¥ e X*4.

Proof, Sinee §'(@)+f (z) = gl(m)+f+(w) holds for = eX"E, a corre-
sponding equation (with functions replaced by their extensions to 4)
holds for x e X*A. (cf. [4], theorem 8). g.e.d.

DEFINITION 2. 'We extend every function f: X°6—&* to a funetion
fa: X*4—>A* by tequiring that fix) = f(x)—fa(z) for every xe<X"4,
where 11, f7 extend f*,f as in [4].

For f: X*6* ¢+ define 1 X 6§86 by

(4) fla) = flog—m1, on, oo —Bop_y)  for @ e X0,

icm

First order properties of Dedelind finile integers 11

S -LEmMMA 2. If f: X¥& 8% and £, 9 ¢ X4 are any elements such
that ¥o %1 == Do —D1, wry Ezkmn = Ezker = Yopoa— Dap—1, then fu(x) = Faly) where
[ 18 as in definition 2.

- PTQOE; Sinee ~($0+yk= Zit-Yo A v A Bog—stYak-1 = Tap—1+Yor—a)—
=T @) +7 ") =F (@) +7 *(y) holds for z,y<X™ a corresponding
implication holds for x, n e X4 (of. [4], theorem 8). q.e.d.

DEFINITION 3. We extend every function f: X*8*— & to a funetion
Fav: XEA* A% by requiring that for every sxe X’“,A*, far(2) =ﬁ,(1))
where 1 is any member of X4 wuch that Xy = Do D1y coey Tp1 = Yopa—
- Dog--1-

On the basis of definitions 1-3 ([4], theorem B), and a great deal of
computation, we have the following lemmas which we state without
proof.

G0-LeMMA 3. (i) If f: X*&*>8* is o constant function, them fos is
also a constant funclion with the same value. (ii) If f: Xrer gt isa ‘projection
onto the ¢ < k component, then fs» 43 also a projection onto the same com-
poment. (ili) If f: X*6*— & is the arithmetioal plus or times function then far
i8 also the plus or times function (as in theorem 1).

&"-Lanena 4. (i) Let f: X685 and for each i< m, f+ X°6—*.
If h=Fo(f’ ..,f"") is the composition, then ha=fi=e(fa, ..., ).
(ii) Let f: X"6* &%, and for each i << n, f's XX If b= Fo (f°, ..., "),
then Toge = fae o (foe, v, Far ).

The purpose of this paper is to discover general transfer principles
which will tell us when a first order property of &* also holds in A*. We
will apply the same techniques to this problem as we did to the preceding
lemmas. Namely, we convert a property ¢ of & to an equivalent property &
of & use [4], theorem 8, to show that P holds in A, and then reconvert %
in 4 to an equivalent p in A* In order to carry out this program if is
necessary to introduce an auxiliary language. This language is described,
in the same metalanguage which is used for the description of the syntax
of @. Let us suppose that & contains: (i) an infinite list of variables x,.
(i) an infinite list of function constants, & , k>0, where under inter-
pretation each ff: X°&* »&* Then we define language L as follows. The
terms of L is the smallest set which: (i) contains each z;, (i) contains for
each 0 < & and terms 7o, ..., Tz the expression f?(ru, cey Tim1). AN alomio
formula of L is an expression 7, = 7, where 7, and v, are terms. The formulas
of I is the closure of its set of atomic formulas under truth table con-
nectives and quantification with regpect to the x;. Let us take A (and),
v (or), and ~ (not) as our complete set of connectives, and define —
{implies) and = (if and only if) in terms of them. Our guantifiers are V
(for all) and & (there exists). A sentence of I is a formuls in which no
variable x; appears freely. We always suppose that our sentences appear
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in premex conjunctive mormal form, that is, as a string of quantifiers
followed by & .conjunction of disjunctions of atomie formula and their
negations. For such a sentence 2, a sentence U’ is called a Horn reduetion
of 9 it U can be obtained from U by striking out in each conjunct, with
ab least two oceurrences of wnnegated atomic formulas, all but one wn-
negated atomie formula. % is & Horn sentence if it coincides with one of
its Horn reductions, and & universal sentence if its prefix consists entirely
of universal quantitiers. Tet Gft(3) be the disjunction of all the (finitely
many) Horn reductions of %. Dencte a restricted quantifier by appending
the symbol for the restriction as & subseript to the quantifier bracket.
Forany sentence U let Ag» be obtained from A by restrieting each guantifier
to &%, and let Wy be obtained from 2 by restricting each quantifier to A*
and replacing each function constant f which appears in A by fae. Thus Wee
and 9+ are both meaningful senfences of .

If 9 is a universal Horn sentence then

S0 - THEOREM

Proof, We introduce still another lzmgmge Let us suppose that &
contains: (i) an 1nfm1te 113’0 of variables ¥; and x;, (ii) an infinite list of
composite constants f 2 T4 which under interpretation are related to
the previons constants Tz ag in (3) and (4). Then we define language I
ag follows. The ferms of L is the smallest set which: (i) contains each i
and 7, (ii} confaing for each 0 < k and terms 7, ..., T2z the expressions
T¥(zgy ., Ter—1) Where « is either + or —, (iii) contains for terms 7,7,
the expression 7,-1-7;. Atomie formulas, formulas, and senfences of L
are defined in exactly the same way that they are defined for L. For
amy sentence U of T Tet U be obtained from % by restricting each quantifier
to & and let Ay be obtained from A by restricting each quantlfler to 4
and replacing each function constant T which appears in U by f z. Thus UAe
and 0, are both meaningful sentences of €. By induction. we define a map
from terms 7 of L Into ordered pairs of terms <z+,z~)> of I as follows.
T 7 is x, then =7 is xf and 77 is x7. TE v 15 {5{7ey -e-, 7ro), then o is T4 (77
Ty, ey Thty Thz) Where « is either 4- or —. By induetion we define a map
from formulas U of I into formulas A of T as follows. If A is Ty =11,
then % is 77 + 70 = 70+ - T W is WA Wy, WV, ~Uy, (Hx)Wy, (V) Y,
then ¥ is ﬁa/\ ﬁl, ﬁovﬁfl, Nﬁn, (®37) ((E[ae;)ﬁ,,, (Vx?)(Vx{)ﬁn, respectively.
This construction should make it clear to the reader that for any sentence A
of L we can prove in &° that

(3) (1) Wee = Ag,  (i1) W =Wy
We complete our proof as follows. By hypothesis, %A is & universal Horn
sentence such that g, By (51} WUer—Ug. But U is also & universal Torn

sentence. Hence by [4], theorem 8, Ag—W,. Finally, by (5il), D))
q.e.d.

2. Wg» implies Wge.

icm°®

First order properties of Dedekind finife integers 13

If 9 is an arbitrary Horn sentence then
&°-CoROILARY 1. Wge implies Wys.

Proof. SBuppose Ag». Since &* is well orderable, we can find Skolem
funetions for the existential quantifiers which appear in We. Choose
constants { which do not already occur in ¥ and identify them with these
Bkolem functions. Let A’ be the sentence obtained from ¥ by deleting
existential quantifiers and replacing existentially quantified variables by
appropriate §'s. Then U is a universal Horn sentence and . By theo-
rem 2, s, from which Ay follows by vestoration of guantifiers. q.e.d.

If A is an arbitrary sentence, then

©0-CoROLLARY 2. Gft(Ws mplies W,

Proof. By hypothesis there is a Horn reduction 9’ of 9 such that %,
By corollary 1, %, from which Uy. follows by predicate caleulus. q.e.d.

We delay specific applications of theorem 2 and its corollaries to
section 4, and instead continue with our theoretical development. Having
discovered a sufficient condition for sentences to extend from & to 4%,
it is natural to ask whether it is necessary as well. Obviously we cannot
expect & converse to corollary 2. For otherwise, by adding the full axiom
of choice to &, we force 4*= & but can certainly find an example of
a sentence U such that W but not St(We. (for example a sentence
agserting the non-existence of zero divisors). Rather, the necessity eon-
ditions we have in mind are of a metamathematical nature. Consequently,
their investigation involves entirely different technigues than those used
in theorem 2. Even so, we do not obtain a complete solution to the
problem. What we do get is a set of sentences and an extension of &P
for whieh 2 eonverse to corollary 2 holds. This extension is found, and
shown to be consistent relative to & by an investigation of Fraenkel-
Mostowski models.

3. The model. It is well known that i & is consistent, then so
is the theory &* which is obtained from & by adding the axiom of choice.
In [11] & model W¥of &° iz constructed which does not satisfy the axiom
of choice. The construction takes place in the theory &*, which we will
take as the theory underlying the following informal discussion.

Let < be a dense linear ordering of K, without first, but with last
element ?, such that for any two finite subsets A and B of K of the same
cardinality, with te 4 ~ B there is a <<-monotone permutation of K
‘which maps 4 onto B. Such orderings readily follow from the axiom of
choice. Let G be the set of all<- monotone permutations of K and let M*
be the set of all finite subsets of K which contain #. Then exactly as in [11]
we build a model 2™ based on the group G¥ and the G -ring M*. A brief
résumé of this construction will be found in [4] or [5]. Let us indicate
notions relativized to W* by appending a superscript *+ to the symbol
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for that notion. For any two elements a,b ¢ K with « <b let (a, D)
={r a<ax<b} and (— oo, a)={ z<a). For any A= {a, ..,
ag_1} € MT with a,<< .. < @tz—1leb K< be the k-tuple with components
K2 = (—oo, ay) and K= (@i, @5a) for ¢ < k—1. Finally let £ = K
== (KR ey | K7 ip>. Tn general 1 will be interesting only when it is
understood as relativized to 98, and in the following discussion we assume
that it is.

In [5] we developed a theory of combinatorial series. A combinatorial
series is a formal expression

%o -1

{(6) Flawgy veey Uppr) = E ¢(fa; vy G} (io) (“'l)

where the u are indeterminates and ¢ is a function with domain X'g
and assuming values which are well ordered cardinals (finite and alephs).
The geries is determined by the function ¢, (6) being simply a suggestive
representation of how combinatorial series are to be manipulated. With (6)
we assoeciate a function fr: ' I in much the same way as we extend
2 combinatorial funetion. The prineipal results of [5] are that the following
assertions hold in & relativized sense for UB¥,

(1) << is @ dense ordering of K, without Ffirst but with last element i, and
M*T = the finite subsets of K which contain 1.

(8) For any cardinal m there is an A € M7 and an |A|-ary combinatorial
series f such that m= fp(fA ).
9) If A< M" ond f, g are a pair of |A|-ary combinatorial series, then
© frlE) = gu(FY) if and only if there is an s € X6 such that f(u+3)
= glu-t8).

Here f(u+s) means the formal composition flue-t-8y; -y Wal—st
Sjaj—1) s defined in [5]. In order to apply (8) and (9) in the present
context we make a number of observations about eombinatorial series,
These are merely stated, but could be easily supplied by any reader
familiar with [4] and [87. First, if f is a combinatorial series whose coef-
ficients c(é) € §, then f can be uniquely associated with a combinatorial
funetion. Tn this case the extension methods of [4] and [5] yield the same
funetion fr: X"F—>F, and the formal composition of series agrees with
the ordinary composition of functions. The last phrase of (9) could then
be replaced by “there is an s ¢ X6 such that f(w) = ¢(s) for all & « X'
with # > 8”. Second, fr(F%) e 4 implies that no e{7) is an aleph. Hence
if in (8) we are only interested in representing m e 4, then the combina-
torial series mentioned in (8) could be replaced by & ecompinasorial fanstion.
Third, 4 ¢ X! in the sense of the model (cf. [4], p. 243) and consequently
the extension fr in (8) may be restricted to f;. Thus, we have in the
sense of W*
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(10) For any cardinal w e A there is am A e MY and an [A]-ary combina-
torial function f such that m = fu(t9).

(11) If A« Jli"' and f, g are o pair of |A|-ary combinatorial Junctions
then fa(E') == ga(f4) if and only f there is an se Xg such tka;
Fla) = g(o) for oll oe X6 with > s,

Next let us see how the set .4 is chosen in (10). If we examine the
proot of [5], theorem 4, we see that A can be any support of some rep-
resentative set in the cardinal m. Hence if we wish to represent twlr)o
cardinals simultaneously, a single 4 will suftice. Now suppose that m e 4*
Ohooselmg ; Tty € A such that m = m, —m, and represent them by m, — b D(fA)'
my = fu(f") (all in the sense of W™) in order to get; mzfﬁ(f‘?)—fq(fﬁ)’
It f = f°~f* iz the difference tunction, then by lemma 1 we have m — A(f‘i .
Hence in W+ Rk

(12) If med*, then there is an A e MY and f: T8 such tha
m = f{f).

Now (11) may be brought in line with (12) b bservi i
% b : 2) by observing that if :
f f(;;;%*rthen JaE') = gs(€%) i and only if fJ“(f“)+gZ(f‘)=f2(f£31
g4 y where the -+ and — is that of (3), and th i
show that 98" satisfies b e appiying (1) o

(18) If Ae " and f, g: XHg>8*, then fa(t) = gu(t%) if and only if
there is an s « X4§ such that fl@) = g(z) for all & e X6 with 5 > s.

Finally in order to guarantee the non-trivialit
ng ‘ y of (12) and (13 -
plicitly state the fact that I satisfies 4 80, e ex

(14) If AeMY then ¥1 e X4,

et GQ(A’T) be the theory which is obtained from &" by adding
o bl.n.a.ry pret?ma.te ‘eonsta.nt <3, and taking (7), (12), (18), and (14) as
a._dd;tmna,l axioms. Since these axioms all hold in M, our informal digeus-
sion. demonstrates.

METATHEOREM 3. If & ds consistent, then so is @A),

. Our next job is to try and simplify the tangle of representations
given by (12) and (13). It turns out that the structure of A* in SY4%)
can best be described in terms of a direct Limit of reduced powers. Although
ab first glance the construction appears to be unmotivated, it quickly
pecomes .a.ppa:rent that we are defining an algebraic system which is
isomorphie to A* as given by (12) and (13). Take & and (7) as the theory
underlying the following discussion.

For Ae M let P4 = (f: f: X458 and lot ¥4 be the set of
a,L.I B _C_XMIS such that for some element s ¢ XMS, # ¢ B for every z ¢ X4/g
with # > s. Members of ¥ are called cofinite sels (generalizing the
usual one-dimensional nomenclature), and a property which holds for
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all elements of some ReF Ml s gaid to eventually hold. s a fllljlex; &f'
subsets of X6 and therefore we may form th%jeduced polvz?r PAF
whose members are the equivalence classes ¥ .for fe P In order
to keep these powers distinect far diﬁerﬁi]!lt A with the same |4l p;t
§4 = (7!, Ay and let g4 e (f4 fe P }: In lgﬁnera.l we /wﬂl use the
letters ‘@, ‘y', and ‘¢’ to denote elemints in P LI x;c—-*\mo,;..,.:uh_o
e X let ot = Ry ey 2y e X9 FunctlonsA [ X78*—8 Wl]lg. B:ai
extended to functions foa: X040 in the following way. If @ ¢ X°P
puk gt = fﬁ‘A(mA) where 4 1is
(15) Y =f ooy e Bum)
Tt is not difficult to show that y* is independent of the representative »
L which jugtifies the definition of fg4. .
" mL;ZhA, 13 e A" with 4 CB. It A= {a(0), .., a(|4| 1)} with a(0)
< 2 a(lA| 1), B={(0), .., B(iB|]—1)} with 50} .5 b{IB|-1),
define a function uwji by al{i)= b(uﬁ(-i)) for each ¢ < |4[. #i: !A|»|LI|€
and gives us the index, in the ordering for B, of any element in_ A, With uy
we associate a function o x4 in the following way. If
x={ Xy veey ¥B}1 ) eX‘BlI’, let Hi(x) = <byg, iy Diuj—1» Where for each
j<ldi—1, and 2 standing for summation

(16) gy = w40+ Dz @ < (O}
mosn = w41 — B ) 14 )z wll(f) < i < wd(H1)
T has been defined in such a way that we have the important

(17 H3%) =t

i - 14|
With H we define a function ik P ¥ 1y requiring that for f < P, .

#5(f) is that function g PY suoh that
(18) g(z) = f(HE(w) for

Tt is not difficult to see that if f, 7 e P! determine the same equivalence
olags 7' = g%, then af(f), #fi(g) determine the same ecquivalence eclass
in P, Consequently we may think of 7% 94 4% as given by

we P,

re X .

(19) oty = (la)®  tor
Examination of (19) leads us to conclude that 75 i3 & one-one mapping
of 94 mto ¢7. Now suppose that f: T*8* & and = e X*PI. Then the
chain of equalities
ﬁg(fgi(mﬁi, vy -’E‘;i-i_l)) = nﬁ((f o (@oy wres -Tlu—l))i)
— (F = (5 ooy 1)) = (£ o (ehla), -, ()]}

,—_—,fﬂ.g((yzﬁ(mu))ﬂ, vy (“ﬁ(fl‘k—ﬂ)B) =ng(ﬂg(m€t)s ey “ﬁ(mﬁ“l))

icm
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demonstrates that =5 is actually an algebraic embedding of 74 into 4%
with respect o extensions of functions f.

Now let PM = { ) {74: A e M*). Define an equivalence relation ~
on P by putting «* ~ y* if and only if there is & ¢ ¢ M with 4 w B C ¢
such that nﬁ(m’l) = az%(y”’ ), and let [#7] be the equivalence class determﬁl_ed
by ', Finally let 5= {[#]: # « P&\, The reader will rvecognize T as
a diveet limit of the systems 5 with respect to M+ directed by inclusion.
Tunctions f: X"8*—&* will be extended to funetions fex: X"% g% in
the following way. If y « X*7%, then for some A ¢ M and o ¢ X594 we
have 3y = {[ay], ..., [rp1]» = [2]. If thiy is the case define

(20} Jorly) = [fpal2)] -

Sinee 3 is an emhedding, the expression on the right in (20} is independent
of the particular 4 used to represent y. Hence fyx is well defined by (20).
For xeT? let 7a(w) = [x]. Again by the properties of »% the fumetion
@a: 0% iy an algebraic embedding. This eompletes the construction
of our fundamental algebraic object TF.

Tet f (= ff, k> 0) be a double sequence of functions snch that

(21) f: Xrer g

and let fa¢, fyx denote the corresponding sequences of fﬁ*:fﬁrx, re-
spectively. If we think of {4*, fp) and &%, Jex> 8y algebraic systems,
then we have

Si(A%)-LeMuMa 5. A%, fae) 45 isomorphic to <T%, [ .

Proof. Define a function 8: 7%~ A* by

6([e"]) = a,(¥')  for

We justify (22) as follows. If y ¢ P! iz another element such that
rt = g/‘i, then as functions » and y are eventually equal, snd eonsequently
by (13), md(f“) = yd(fd). Now suppose that e PPl js another element
such that [«¢4] = [yF]. Without loss of generality we may suppose that
ACB and y= sfi(x). This means that y(i)= m(Hjj(i)) for ie X%,
Since composition generally eommutes with extension, (17) implies that
Yalt?y = w,(HHE)) = 2,(F"). Thus 0 is well defined. Conversely, in order
to show that 0 is one-one, suppose that . {F") = y,(F%}. As before we may
assume that 4 C B. Then o, () = as(HA(F") = (ai()}.(£%). But by (13)
this implies that rcff(m) and y are eventually equal. Hence [z?]= [yB].
Tt follows from (12) that 6 is onfo A%, Tf g: X"8* 6% and gex ([24]) = [y,
then g (a9, ..., 2F7) is eventually equal to y. Hence by (13) and lemma 4,
Yar(aa(®), oy @i TE) = ya(14), and by (22), g (0((e]) = 0([y"]). qe.d.

By lemma 5, first order properties of A* in S){(4*) are equivalent
to first order properties of % Gonsequeng,@;mextend our ingerpretations
Fundamenta Mathematicae, T. LXIII 2

(22) xe P
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of sentences of language L to include the relativizations g, Age in
the obvious way. We would like to do some model theory in SN A*).
Let L be a formalization of L in & sueh that every formula U of I has
2 name "9 in L. Since all of our structures are sets in @}(4%), it is possible
to give a definition of satisfaction for them. For any set A let X4 be
the set of w-tuples (@, #,..> each m; e A, such that for some 5, all
entries #z, k > are equal to one another. If f is as in (21) (and fized in
the following discussion), « € X 4% and 9 is a formula in L, let us define
a notion A* = A (w) which will infuitively mean that o satisties % in the
systemh (A*, fs=>. Formally we require that it U is a formula of I, and @
asgerts that fﬁ“= f{-‘ and z;=2; for every ff and x; which oceurs in %,
then we can prove in &yA4*) that

(23} @ implies (Wae if ond only if 4*1="Aw)) .

Define notions 94| and #°}- which satisfy (23) in an analogous
faghion. Then we have

&A% -Timvma 6. If A, Be M with A C B, then my is an clementary
embedding of <54, fpa> into (8%, fo). (Note that (7) is the only property
beyond © that we use.)

Proof. We divide our proof into three parts.

Part (). =¢84 8,0, ~,) (where 8% is the power set
of X"¢ and -1 iz the relative complement) it a Boolean algebra which
contains 5 as a proper filter. Hence the quotient G4 = 8§45 e (TIA ‘,
®,u,~, T i also » Boolean algebra which we readily see i atomless,
For @ ¢ 84 let [z} be the element of 7! to which » belongs. Algebras 8”
and B7 are defined in a similar fashion. Now H%: X x4 Hence
we may define a map IZ: 841 8% given by I5(z) = Hé{w) for w ¢ g4
{(where ‘<’ means inverse). IZ is & Boolean homomorphism for which it
is easy to see that if we ;S’Ml, ze 4 it and only if Iﬁ(m) <« 75 Con-
sequently IS induces a Boolean isomorphism 15 4l LpE given by
IE(Tx]) = [I5(2)] for @ e S, Note that the isomorphism is merely into.
Let N be a language suitable for the elementary theory of Boolean algebras
which contains symbols for the Boolean opexations as well as symbols v,
o serve as variahles. For z e X1 and @ in IV define a notion G4 |= @ ()
which intuitively means that # satisties @ in . By a straight elimination
of quanfifiers it can be shown (without ehoice, cf. [181) that every atomless
Boolean algebra is an elementary exfension of each of its atomless Boolean
subalgebras. Consequently IZisan elementary embedding of €4 into G*.

Part (i) If e X9PH put ot = G, a8, ..> and (i) = (i),
#l8), ..> for e X6 Also, it B iy any formula of L, define J(B, z)
= [i e T &%= Blo(1)}. By a slight modification of [6], theorem 3.1
we can associate with every formula % of L & sequence <P, By, ..) Bn-1p

icm°®
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where @ is & formula of IV with at most the free variubles v, ..., vg 1,
where By, ..., Byy are formulas of L containing no free variables whieh
do not appear in 9, and such that for every i e X Pk

(24) =Wty if and only if B = DT (By, )], oy W (Buor, )]

Part (iii). If 5 ¢ XOP put ali(®) = <rbilm), 2b(z), .0 and 25
== LTy )y mal®y ),y oo Then part (if) gives

(25) 87 b= Ul )} if andd only if 1 B{[T(By, (0], .., [T(Bums, 2w},
Next we claim that for any formula B of L and r e X pH
(26) (7B, 2) = [7(B, =) -

For ic HA(J(B, ) if and only it Hat)eJ(B,#) if and only if
& |- %(m(Hﬁ(i)} it and ouly if & |- B((xE(«)} (5)) it and only i ieJ (B,
a5(«)). Then {26) follows by taking quotients. Gur lemma follows from (24},
(25) and (26) and the fact that I5 is an elementary embedding. q.e.d.

Gl A¥)-Leva 7. If A e MY, then =y is an elementary embedding of
(G4, foa> tnto (I%, fox>. (Note that (7) is the only property beyond &
that we use.)

Proof. Since each = is an elementary embedding, the result follows
by [10], theorem 4.1. g.e.d.

If ¢ is the terminal element in the ordering -2, then {8} e M* and 7%
is simply the redneed power of unary functions modulo the cofinite
sets, indexed by t Let 7 be the isomorphic system obtained from $%
by deleting the index i.

SN A*)-Tmara 8. The systems (A%, fues and (&, fay are elementarily
equivalent.

Proof. The result follows by lemmas 3, 6, and 7. q.e.d.

For any sentence U of langnage L

SN 4*)-TEROREM 4. g if and only iof Wy.

Proof. The result follows by (23) and lemma 8. q.e.d.

Let A be a prenex conjunctive normal form sentence of L, Remember
that A was called universal if its prefix consisted only of universal quan-
tifiers. Call A a positive sentence if it only containg unnegated atomic
formula and call A a disjunctive sentence if its matrix consists of a single-
conjunct. Finally call % a Bing sentence if it i either universal, positive,
or disjunctive.

If A is a Bing sentence, then

BN A*)- COROLLARY 3. Wy implies STH(Wpgs.

Proof. In [1] it is shown that every arithmetical class (in the sense
of Tarski) which is determined by a Bing sentence but by no Horn sentenece

bid
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is not closed under direet products. An easy transcription of that proof
shows that if % is a Bing sentence and ¥g, then A must be equivalent to
one of its Horn reductions, in &%, ie.,, Sft(A)s-. Hence our corollary
follows by theorem 4. g.e.d.

This is the converse to corollary 2 that was mentioned at the end
of the last section. Its hypothesis is sharp, for in the next section we will
give an example of a non-Bing sentence U such that in SN(A*) we have U-
and ~&ft(We+. Consequently theorem 4 is by far the better result.

We conelude this section by applying an ingemious lifting method
(of Kreisel, and appearing in [10], p. 235 to our problem. A funetion
f: X*6* &% is called absolutely definable if it is definable, and its definition
is absolute (cf. [7], p. 42) with Tespect to the model ¢ of [7] and the
model W of [11]. Clearly sueh functions are constructible. Let ‘- denote
proveability. Then we have

METATHEOREM 5. If W is a sentence of language L which is provided
with an interpretation by specifying defimite absolutely definable functions
Jor the function constants which appear in U, then S° |- U dmplies S -Ag.

Proof. We divide our proof into two parts.

Part (i). et f= (fy, ..., fui> be a sequence of absolutely definable
tunetions such that fr X™&*-»&* for some k;. Let Z be an arithmetical
langnage which contains constants for plus, times, and for the funetions
which appear in f. g: §—8* i3 arvithmetical in f if there is a formula &
of Z with exactly two free variables such that glw) =y i and ouly if
8 =d(¢x, y>) for every w6 and ye&* It is well kmown from the
literature that there is a hyperarithmetical predicate H such that
& [=0(¢m, yy) if and only if H{f,"®",u,y). Since f is constructible,
the latter formula (for fixed f) is absolute with respect to L (cf. [16]), and
trivially with respect to W™, Consequently it iy clear that the set of all
funetions g: &§—&* which ave arithmetic in the functions of f is an absolutely
definable (set). Let F, be the quasi-rednced power consisting of all such
functions g, reduced modulo the cofinite subsets of & Let f% denote the
sequence of extensions to ¥, of functions in f. By the preceding remarks
the system <7,, fs.> 1s absolute with respect to the models £ and ﬂB"“,
and by [12], p. 114, or [63, (7, fﬂ‘a,\ is elementarily equivalent to y fp

Part (ii). Suppose S°|- . where J of part (i) is the list of abso-
Tutely definable funetions denoted by the function constants of A, In &0
build a model £ by the method of [7] which eontains no wrelemente.
L satisfies the axiom of choice. Then build a model 9 in € by the method
of [11] where urelemente are introduced as the sets A= o—{k}, k>0,
and @ iy introduced as the set Ay = w—{0}. The integers are not absolute

y with respees to this construction, however those of Wy and L are isomorphie
and consequently may be identified. Wi satisfies the axioms of S,

icm°®
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moreover, it satisfies these axioms in the strong sense that their relativiza-
tions to MW are actually theorems of G°. For any model 4 and set theoretic
sentence ¢, let Mel(p, A6) be the relativization of ¢ to 4. Then by theo-
rem & and by part (i) we have the following sequence of implications:

' UAs  implies & |- Rel(Upe, W) implies  &° |- Rel(Ug, WF)
implies &° [~ Rel(Wy,, W) implies &' |- Rel(Uy,, L) implies & - g,
implies & Ug. q.e.d.

MurAcoROLLARY 4. Jf U is a4 Bing sentence, interpreted as in theorem 5,
then & | Wy implies S |- SF(Wgs .

MErATHEOREM 6. If U is o sentence of language T which is provided
with an interpretation by specifying definite absolutely definable funetions
for the function consiants which appear in U, then & |— Wyr implies S — Wge.

Proof. We use a simpler version of the lifting method that was
used in the proof of theorem 5. In &Y build a model £ by the method
of [7]. In £ we have A4* = &*, consequently:

& |- Uy implies &° |- Rel(Ass, £) implies & |- Rel(Wee, £) impliesSo - Ag. .

The last implication follows from the absoluteness of the functions in 9.
q.e.d.

For theorems 5 and 6 to be non-trivial we must show that some
interesting class of functions is absolutely definable. In [16] it is shown
that every 33 w I7; funetion (functions whose diagram can be expressed
in either two function quantifier form) is absolute with respect to £. It
is immediate that such functions are also absolute with respect to IB™.
Hence we may wse J3w [f functions in theorems 5 and 6 ingtead of
absolutely definable ones. Incidentally, it has recently been shown in
[17] that under the hypothesis of a Ramsey cardinal, there exist
non-constructible 4; sets. Tt would be interesting fo know whether versions
of theorems 5 and 6 hold in the Aj case. Certainly, theorem 6 looks ag
though it ought to hold under muech less restrictive hypotheses.

Actnally our applications do not require the full force of the last
two theorems. Sinee we are interested in non-proveability, it is not
necessary to get sentences to he theorems of &°. Various consistent ex-
tengions of S° will do. We state a single instance of such a theorem. Note
that the word ‘definable’ appears below (ef. ‘absolutely definable’ in the
hypothesis of theorem 3).

MeraruworeM 7. If U is ¢ sentence of language L which is provided
with an interpretation by specifying definite definable funmclions for the
Function constants which appear in U, then, S consistent and &° — ~ Ug,
mply non G° — W,
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Proof. For otherwise G" has a congistent extension &1(4*) in which
we can prove & statement contradicting the cotresponding statement
given by theorem 4. g.e.d.

METACOROLLARY 5. If U iz a Bing sentence, interpreted os in theorem T,
then, & consistent and & |- ~GSTt(Wee, imply non & [

Murarasorey 8. If 9 is a sentence, interpreted as in theovem T,
then & consistent and &° |- ~ Wge, tmply non &° |—‘2I_,14

4. Applications. In this section it will be convenient to have
a method by which relations E C X"&* can be extended to relations
B C X*A*, A function r: X*e*> {0, 1} is called the characteristic function
of Rif we R if and only if x(r)= 0 for every 2 ¢ X*6*. Then we have

DerinrrioNy 4: We extend every relation R C X¥* to a relation
Ru C XPA* Dby puiting Be = {z e X*A% rp{x) = 0} where r is the
characteristic function of E.

Acecording to this definition, statements x e Es» can be replaced by
equalities r4+(x} = 0, and the 0 can be replaced by fu-(x) where fis a fune-
tion which is identically zero. Consequently statements mvolvmg relafions
can be transeribed into language L. Let us enla.rge L to a language LE
which containg an additional list of constants Y, 0 <k, where under
interpretation each RE C X6+, Define the va.rmus notlons of LR exactly
as for I except that we include expressmnsiR (Toy -y Th—1) where Toy eeey TH-1
are terms of I, as additional atomic formula. Interplet RE(z,, ...,-z:k_l)
t0 mean {zg, ..., Tp—1> € %* 50 a5 to avoid an € in LR. Define Wg> and W«
for LR exactly as for I except in the latter case add the clause ‘and re-
placing each relation constant R which appears in % by Ra’. According
to the remarks following definition 4 all results of the preceding two
sections apply to LR as well as to I.

We are going to diseuss 4* in an extremely informal way, using @
as our underlying theory. LE will Dbe used in a heuristic rather than
2 formal sense. Mosgt of this material has already appeared in {3], section 3
for the analogons A* hence our presentafion will take a brief form.

The fact that a function f: X'§*—&* iy one-one can he expressed by
a Horn sentence. Hence f» is one-one as well. The fact that f maps ento &
can also be expressed by a Horn sentence. Hence, in this case, f.» maps
onto A* Let F= {{xz,y> e X¥Te*: fim) = 4} De the k-+1-ary relation
which diagrams f. Statements saying that F diagrams some function
can be expressed as Horn sentences in LR. Hence Fu+ is the diagram of
a function. Another Horn sentence says that I diagrams f. Hence Fyue
is the diagram of fs». This method of extending functions by their dia-
grams suggests a way of extending funetions whose domain is a proper
subset of X*6*, Let A C X"'S*, B C &% and f a function mapping 4 onto B.
If F diagrams f, then by Horn sentences, Fy diagrams a funetion
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mapping 4, onto By, Call this funetion f,.. By our previous remarks,
if A = X &* then this new f,+ is identical with the one given in definition 3.

We would like to characterize certain algebraic objeets in A*. An
idempotent is an element x e A* such that #® = 3. Since 2 = z if and
only if # € {0, 1} for @ ¢ &%, a corresponding result holds in 4* i.e., {0, 1}4¢
is the set of idempotents of 4*. {0,1} is a Boolean algebra in & under
the operations zAy =ay, #Vy=as+y—oy, and 1o =1—gz. Sinece the
axioms of a Boolean algebra with respect to these operations can be
expressed by identities, {0,1}, is also a Boolean algebra with respect
to the extensions of A, v, and 71 to 4% By lemmas 3 and 4 these ex-
tensions read in A* exacily as they do in &% except that the ring operations
in &* must be replaced by their exftensions to A* Yet Bg, Hye be the
Boolean algebra of idempotents in &%, A* respectively.

A nilpotent is an element x e 4* such that for some integer =, " = 0.
Now "= 0 implies z = 0 for # ¢ £* and therefore a corresponding result
holds in 4%, i.e., 0 is the only nilpotent in A*. If the axiom of choice (in
the form of Zorn’s lemma) were available we could then show that {0}
is the intersection of the minimal prime ideals in A% Since it is not, we
must do some extra work to obtain the result. A ring R is said to have
enough idempotents if there is a function e: E-»E such that foralle, y ¢ B
we have

(27)  e(0)=0, elzy)=el@)ely), ele(@)=e(x), and elx)zr==a

It iz easy to show from these conditions that e(z)® = e(s), that if
22 = @, then ¢(z) = z, and that the function e is unique. By [15], eorol-
lary 2.3 the function e gives & one-one correspondence between the minimal
prime ideals of R and the prime ideals in the Boolean algebra of idem-
potents of R. This follows without the axiom of choice. We apply these
results to A* by defining a funection e: &* —8&* with ¢(0) = 0 and e(z} = 1
for z # 0. e clearly satisfies (27) and since identities extend from &* to A*,
the function e, will also satisfy (27). Thus A* has enough idempotents.
It iz shown in [8] that 3" satlsﬁes the prime ideal theorem. If we are
willing to enlarge S3(4*) 50 as to inelude this fact then Bs contains at
least one prime ideal. Simple algebra then shows that for every x e Bu.,
% # 0, there Is & prime ideal in %, which excludes ¥ Thus the inter-
section of all prime ideals in B. is {0}. Application of the funetion e
shows that 4* contains a minimal prime ideal and that the intersection
of the minimal prime ideals in 4* is {0}. Consequently 4* is a subdirect
produet of integral domaing, In [12] it is shown that A*(A) modulo & mini-
mal prime ideal is 2 model of all the true (in language L) statements of
the arithmetic of &*. Sinee the only fact used to obtain this result is an
isolic version of our corollary 2, a similar result holds for A* in the theory &°.
Combining this with our previous result we see that 4* iz a subdirect
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product of (non-standard) models of the arithmetic of & in the theory
consisting of SI(A4*)+ {prime ideal theorem).

A unit is an element x ¢ A* such that for some y e 4%, xy = 1. Since
2y = 1 implies #* = 1 for all #, ¥ € §*, a similar result holds in 4*. Thus
the units of 4* are simply the elements whose square is 1. Now o= 1
it and ouly if @ e{l, —1} for z e &*. Hence a eorresponding result holds
in 4% ie., {1, 1}, is the set of all units of A*.

A prime is an element x e 4%, x £ 0, and % not a unit such that for
every v, 3 e 4* x = p3 implies that either p is & unit or 3 is a unit. A divisor
of zero i an element x e A* such that for some ye 4% 1 £ 0 we have
) =0.

S3(A*) - Lmnaea 9. (i) 4* containg non-zero divisors of zero. (ii) 4™ con-
lains mo primes. (i) Haye is an alomless Boolean algebra, (iv) A" contwins
now-trivial square roois of wnity.

Proof. Use theorem 4 and the fact that each of these statements
holds in 9. g.e.d.

As a eonsequence of this lemma we can show that there exists & sen-
tence N of L provided with an interpretation by specifying definite definable
fanctions for the function constants which appear in 9 such that

©}(A*) - THEOREM 9. Ugw and ~SFt(Wer.

Proof. Let % be a sentence of L which says that the Boolean algebra
of idempotents is either atomless or contains exactly two elements. The
Boolean operations are cerfainly definable. By the previous lemma ..
In order to show ~Gjt(:A)g we use an idea of [2]. If Wi for some orn
reduction %A’ of A then by [9] A" would also hold in the direct product X&*
Consequently % would hold in X°6* as well. But the Boolean algebra
of idempotents in X”8* contains exactly four elements. Thus every Horn
reduction fails in §*. q.e.d.

This shows that corollaries 3, 4, and 5 will fail if we leave out the
hypothesis that our sentences are Bing,
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