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Summary 

A general theory for the calculation of the second order effective elastic 
moduli of porous materials in which the porosity is in the form of isolated 
cavities is presented. The particular case of spherical cavities distributed 
randomly within an isotropic matrix in such a manner that the material is 
macroscopically isotropic is then considered in detail and an expression for 
the first pressure derivative of the effective shear modulus of such a material 
is obtained correct to first order in the porosity. 

1. Introduction 

In a paper by Walton (1973), hereafter referred to as Paper I, the first pressure 
derivative of the effective bulk modulus of a porous material was calculated. The 
particular porous medium considered was that of a homogeneous isotropic matrix 
containing a dilute distribution of spherical cavities, not necessarily of the same size 
but such that the total porosity c (that is, the ratio of cavity volume to total volume) 
is so small that terms of order c2 may be neglected in comparison with unity. Further- 
more, the distribution was assumed to be random and such that the material is 
macroscopically homogeneous and isotropic. The aim of the present paper is to 
extend the method used in Paper I to the calculation of the first pressure derivative 
of the effective shear modulus of such a material. 

2. Second order effective moduli 

The method is based on considerations of the overall constitutive law and, in the 
spirit of Hill (1963), the problem of the calculation of the effective elastic moduli 
of porous materials may be formulated as follows. 

The model to be considered is that of a large volume V of some porous material 
subjected to a uniform strain in its outer boundary. The matrix material is assumed 
both perfectly elastic and homogeneous, although not necessarily isotropic. The 
porosity, on the other hand, is assumed to be in the form of isolated cavities distributed 
throughout the matrix in such a manner that the material is macroscopically homo- 
geneous, although not necessarily isotropic. Finally, there is no restriction at this 
stage on the size of the porosity c. 

With the 9-vectors S and D denoting the nominal stress and displacement gradient 
respectively and with superscripts (m) and (c) referring respectively to the solid matrix 
and the cavities, the constitutive law for the matrix material may be written, correct 
to second order in D(m), 

(1) S(m) = AD(") +BDh) D(d 
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338 K. Walton 

where A(B)  is the second (third) order tensor of the first (second) order elastic moduli. 
A and B are constant throughout the matrix and for the particular case of an 

isotropic material, A is given by 

A =  

0 
where we have adopted the convention 

and u(X) is the displacement of a material particle initially at the point X. 
The tensors A* and B* of effective moduli are defined by the analogous equation 

6 = A*D+B*FF (4) 
where the bar denotes the volume average taken over the whole of the porous material. 
In terms of averages taken over the matrix only and the cavities only, the above 
averages are given by 

- - _ _  
S = (I - C) S‘””, F = (1 - C) D‘”” + cD“). ( 5 )  

Combining equations (4) and ( 5 )  with the average of equation (1) yields the final 

( 6 )  
equation 

Since this equation is valid for arbitrary D, the effective moduli are obtained by 
equating coefficients of F and FF to zero. Thus the problem reduces to the calculation 
of the average cavity displacement gradient D“) and the quantity D(”) D‘”’), both 
correct to second order in F, the average displacement gradient or, equivalently, the 
uniform strain on the outer boundary. 

A* F +B* DF = A @  - cD”) + (I - C) BD(”) ~( “1 .  

__ 

3. The first pressure derivative of the effective shear modulus 

As yet, no restriction has been made on the shape of the cavities, the magnitude 
of the porosity, or on the anisotropy of the matrix material. As in Paper I, it will now 
be assumed that the porosity is in the form of spherical cavities, not necessarily of 
the same size, and moreover, that these are randomly distributed within an isotropic 
matrix in such a manner that the material is macroscopically isotropic. It is further 
assumed that the porosity c is so small that terms of order c2 may be neglected in 
comparison with unity. For convenience, we shall also revert to the more standard 
notation of Sai for the nominal stress tensor and Dim( = dui/aXa) for the displacement 
gradient. 

In Paper I, the quantities D’” and D(”’) D(“) were found for the case when the 
average displacement gradient D is hydrostatic and one of the three second order 
moduli, namely the first pressure derivative of the effective bulk modulus, was obtained. 
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Shear modulus of porous materials 3 39 

In the present work, we again specialize and only average displacement gradients 
satisfying 

- - 
D i j  = D j i ,  D k k  = 0 (7) 

will be considered. By an extension of the method given in Paper I, we shall now 
calculate another second order modulus, namely the first pressure derivative of the 
effective shear modulus. 

Under the above assumptions, equation (6), the general equation for the effective 
moduli, may be written 

2(pO - PO*) Dia (l - c, Baipjyk(Djp Dky)(m) 

= 20 c@6ia + /lo c( Dia+ Dai)(') f B,&jyk Djp D k u  (8) 
where 

Baipjyk Djj3 Dky = ( l O - m O  +*nO)(Dkk)2 sia+$(nO +mO-$nO)[Dk/3 Dk, 

+2Dkk D i a l + ~ ( m O - 3 n O ) [ D k j  Dflk6ia+2Dkk O a i l  

+ (PO + t n o ) [ D i p  D a ,  + Dip Dpa+ D , i  DJ 
+$no D p i  Dmp (9) 

A0, po and lo, m,, no are respectively the Lam6 and Murnaghan constants of the 
matrix material, with an asterisk referring to the effective moduli. Summation over 
repeated suffices is to be understood throughout. 

In particular, when i = u, equation (8) reduces to 

+(6mo*-nO* +3ko*+4&)*) D k l  D k l + 3 C k o @ d  

= (I-c)(31O-mO+JnO+ p O ) I k k l l +  (1-c)(3mO-&O+$kO + ~ O ) I k l H  

+ (l -c)($mO - h O  4 PO) IMIk (lo) 
where we have introduced 

and also the bulk modulus ko( = 1, + 3po). 
The evaluation of the coefficients appearing in equation (10) thus requires the 

determination of the three unknown quantities Ikkll ,  IkIk, and and the average 
cavity strain in terms of D. 

Let us consider first the I jpky .  Certain relations may be obtained between these 
quantities in exactly the same way as in Paper I. From the divergence theorem. we 
have 

where T is the traction on a surface and is zero on the surfaces of the cavities. The 
left-hand side of this equation may be written in terms of the I jpkr  since 

Sai = 2O Dkk 6ia + PO(Dia + O a i )  + o(Dia Djp) (13) 
and the right-hand side may be evaluated directly since the traction on the outer 
surface is known in terms of the first order effective moduli and the prescribed 
displacement there (i.e. ui = biz Xa on the outer surface). We thereby obtain 

-c)zkkll+ PO(1 - c ) ( ~ k ~ k l + l k l l k )  = 2 P O *  Dkl Dki* (14) 
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340 K. Walton 

By a second application of the divergences theorem, it can be shown that 

where S,  refers to the surface of the cavities and n is the normal to this surface into 
the solid matrix. In the derivation of equation (15), the condition that ui = DiaXa 
on the outer surface has again been utilized. 

The surface integral can be evaluated in the usual manner (Dewey 1947; Eshelby 
1957), correct to first order in the porosity c, by taking the displacement on the cavity 
to be that which would occur if the cavity were alone in an infinite medium under 
the displacement ui = Dia X ,  at infinity. 

For a cavity of radius a at the origin, to first order in Dia, on R = a, 

u i  = (3 -4x) Di, x, (16) 
and 

where 
x = (3k0 + P O ) / ( ~ ~ O  + 8 ~ 0 1 .  

With these expressions, equation (1 5)  yields 

Equations (14) and (19) are thus two equations connecting the three unknown 
quantities Ikkll ,  and Iklk1. As in Paper I, difficulty is encountered when we attempt 
to find a third equation. There, a third equation was obtained by deriving upper and 
lower bounds for a certain quantity which were equal to one another. However, no 
equivalent method could be found for the present problem. 

To obtain a third equation, we consider, in more detail, why the method of bounds 
in Paper I was successful. From equations (A16) and (A19) of Paper I, we have that 
under a displacement u = EX on the outer boundary, the following equations hold at 
all points within the matrix, 

V.U = ~ E + O ( C )  (20) 
v x u = O(c). (21) 

These may be compared with the corresponding results for a single cavity alone in an 
infinite medium under the condition u = EX at infinity, namely 

v.u = 3 E  (22) 

v x u  = 0. (23) 
Equations (20) and (21) are, thus, two special cases of a genera2 hypothesis that any 
equation for the single cavity model which contains no explicit dependence on position 
will also be true at all points within the matrix of the porous solid but only to zeroth 
order in the porosity c. 

In order to find a third equation we, therefore, seek a position-independent 
equation in the single cavity model. Under the displacement ui = D i a X a  at infinity 
(a, satisfying equations (7)), the dilatation at any point exterior to a spherical cavity 
of radius a at the origin is 
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Shear modulus of porous materials 341 

If, on the other hand, Di, does not satisfy equations (7) but satisfies 

Die = D6, (25) 
then the displacement gradient u t  , at any exterior point is given by 

A combination of the above equations then yields the desired equation, namely 

We propose that this position-independent equation will also be true at each point in 
the solid matrix of the porous material at least to zeroth order of porosity c. To obtain 
the third equation we, in fact, make the slightly stronger assumption 

The integral in the right-hand side of this equation was evaluated in Paper I (equation 
(A 1 8)) and hence 

From equations (14) and (19), the other unknown quantities are then found to be 

i k l k l  = [1+4(1 -6x+ lox2)c] 4 1  (30) 

Ikllk = [1 -9(2+3x- 17x2)c] 4 1  Dk1. (31) 

The first part of the problem has thus been solved. However, in view of the fact 
that equation (28) was an assumption, it is desirable to check that the results obtained 
do not violate any known conditions. As in Paper I, certain inequalities must be 
satisfied. These are 

These are found to be satisfied if the left-hand sides are written in terms of the 
expressions given in equations (29)-(3 1) and the right-hand sides evaluated by trans- 
forming to surface integrals and making the usual approximations of taking the 
displacements on a cavity surface to be that which would occur if the cavity were alone 
in an infinite medium. 

exists. A second one is 
Furthermore, equation (27) is not the 

8Po(3-4X) 
9k0 

Ui,a-U,, i = 

only position-independent equation that 

(33) 

a 
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342 K. Walton 

If this equation is used instead of equation (18) and an analogous assumption made, 
equations (29)-(31) are again obtained. This result suggests that our assumption is 
well founded. 

We now consider the second part of the problem, namely, the calculation of 
D!$. As before, we shall approximate this by considering the single cavity model. 
Since this quantity is required correct to second order in &I, we expand u in the form 

where u"-l is of nth order in D k l .  

terms of a surface integral over the cavity surfaces. That is 

__ 

u = uo+ul+ ... (34) 

Although the displacement is not defined within a cavity, @i may be defined in 

(3 5)  
1 

Dpd = - 1 UknkdS. 
SC 

v c  

The problem to be solved is thus the calculation of the displacements uo and u1 on 
R = a, the cavity surface, due to a displacement ui = DiR X, at infinity. 

From the equation of equilibrium and the boundary conditions, uo is found to be 
of the form 

and hence uo is known on R = a. 
Also, in R > a, the governing equation for u1 is 

(&I + PO) ulk, k i  + P O  u l i ,  kk + Fiu, R = 

Fia = Bui/ljyk .b/l U k o ,  y 

where 

together with the boundary conditions 

(37) 

(38) 

In theory, this system could be solved for u', but since u1 is required only on 
R = a, we are able to avoid this very lengthy calculation by the use of Betti's reciprocal 
theorem, which may be written 

T".u1 d S  = 1 T'.vdS+ 1 vi F,,.dV (40) 
S S R > a  

for any function v satisfying, in R > a, 

(&+Po)u~, , i+Poui ,kk = 0 (41) 
and where T' and T" denote the tractions corresponding to u1 and v, respectively. 
S represents the total surface; that is, both the surface R = a and the surface at 
infinity. 

In particular, for v = B X / R 3 ,  which satisfies equation (41), equation (32) yields, 
after much algebra, 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/36/2/337/618204 by U

.S. D
epartm

ent of Justice user on 16 August 2022



Shear modulus of porous materials 343 

where 

Q = 3(6mo-no + 3ko + 4Po) + 12~(1-3x)(& +2mo +no) 

+ 4(11- 1 1 ~  - 56x2)(p0 +&) + 2(4 - 7 ~ -  8 x 2 ) ( ~ 0  ++no) (43) 
and hence, summing over all cavities and combining with equations (8) and (29)-(31), 
we finally obtain 

(6mo* -no* + 3ko* 4/fo*)- ( 6 ~ 0  -no + 3ko + 4Po) 

= C (?( 1 - 32)’ (610 - 2mo + no + 2po) +3(3 - 24X + 40~’)(6rno -no -t 6k0 + 4p0) 

-43(21+24~- 136x2)(6mo-no+4~o)- - 3 k o Q ) .  (44) 
4p0 

Equation (44) is an equation for a certain combination of the effective moduli. 
To relate this quantity to the first pressure derivative of the shear modulus, we consider 
the equation for the shear modulus p ( p )  as a function of hydrostatic pressure p ,  which 
may be obtained from the expressions given by Hughes & Kelly (1953) for the wave 
speeds as functions of pressure, namely 

Thus the first pressure derivative of the effective shear modulus is given by 

Lip* - (6mo* -no* + 6ko* + 2~0’)  __--  - 
dP 6ko * 

= - dP - - c ( ( I +  2) (6mo-n0+3k0+4~o)+2po 
dP 6ko 

+?(I - 3~)’(610 - 2 ~ 0  +no + 2 ~ 0 )  +3(3 -2411 + 40x2)(6m0 -no + 6ko +4,Uo) 

- * ( 2 1 + 2 4 ~ - 1 3 6 ~ 2 ) ( 6 ~ o - n o + 4 ~ o ) -  ___ 3kOe) (46) 
 PO 

where use has been made of the expressions for the first order effective moduli 

k o * = k o  ( f - ( l + ~ ) c ]  I 
(47) 

which were obtained first by Dewey (1947). 
Equation (46) is our h a 1  result. Also of interest is the possibility of extending 

the present method to the calculation of the remaining second order modulus and to 
the case of non-spherical cavities. These problems will again reduce to that of 
evaluating the volume integrals IjSky and calculating the average cavity strain 0;;). 
Provided the first order solution for the single cavity model is known at all exterior 
points, Betti’s reciprocal theorem may again be used to find In this, we are restric- 
ted to simple cavity shapes. The major problem is then the calculation of the IjSkr. 
As always, certain relations, corresponding to equations (14) and (19), may be 
obtained but these will be insufficient for a complete solution. However, it is to be 
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344 K. Waiton 

expected that sufficient equations can be obtained if assumptions, analogous to 
equation (28), based on a comparison with the case of a single cavity, are made. 

We conclude by stating that it is probable that if the case of a single cavity in an 
infinite medium under a general strain at infinity can be solved to first order, then the 
second order moduli of a material containing cavities of this shape can also be 
calculated. 
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