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The reactions of 3-phenyl-1-azabicyclo[1.1.0]butane (4) with dimethyl 

dicyanofumarate ((E)-8) and dimethyl dicyanomaleate ((Z)-8), respectively, lead to the same 

mixture of cis- and trans-4-phenyl-1-azabicyclo[2.1.1]hexane 2,3-dicarboxylates (cis- and 

trans-11, Scheme 3). This result of a formal cycloaddition to the central N,C-bond of 4 is 

interpreted by a stepwise reaction mechanism via a relatively stable zwitterionic intermediate 

10, which could be intercepted by morpholine to give a 1:1:1 adduct 12, which undergoes a 

spontaneous elimination  of HCN to yield the fumarate 13 (Scheme 4). 
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1. Introduction. – Strained bicyclo[1.1.0]butane derivatives are attractive compounds for 

theoretical and spectroscopic studies [1]. As soon as the first example had been synthesized 

[2], numerous reports appeared in which differently substituted representatives were 

explored as useful building blocks for the preparation of cyclobutanes and cyclobutenes [3], 

as well as larger bicyclic systems. One of the first observations was the ring enlargement to 

give a bicyclo[2.1.1]hexane via a formal cycloaddition with differently substituted ethenes 

[4]. It turned out that in the case of 3-methylbicyclo[1.1.0]butane carbonitrile (1), the 

reactions with electron-rich olefins, e.g. (cyclopenten-1-yl)-N,N-dimethylamine, led to the 

polycyclic adduct 2 in high yield [4] (Scheme 1). On the other hand, the electron-deficient 

2,2-bis(trifluoromethyl)ethene-1,1-dicarbonitrile (BTF) afforded the cyclobutene derivative 3 

[3]. These reactions are believed to occur stepwise via diradical intermediates. 

 

Scheme 1 

 

In comparison with bicyclo[1.1.0]butanes, the relatively stable 1-aza-analogues1) are 

rarely applied as starting materials for the synthesis of N-heterocycles. The main products 

obtained are azetidines, which are smoothly formed when 1-azabicyclo[1.1.0]butanes are 

treated with electrophilic reagents. For example, 3-phenylazabicyclo[1.1.0]butane (4) adds 

alkyl chloroformates at room temperature in a fast reaction to give 3-chloro-3-

phenylazetidine-1-carboxylates of type 5 [6] (Scheme 2). A recent report described the 

smooth addition of hydrazoic acid across the 1,3-bond to produce 6 [7]. The electrophilic 

                                                           
1)  The first synthesis of 1-azabicyclo[1.1.0]butanes, the parent system, as well as the 3-

methyl and 3-ethyl derivatives, was reported in 1969 [5]. 



 4 

dichlorocarbene reacts with 4 under ring opening to give the 1,1-dichloro-2-azapenta-1,4-

diene 7 [8]2). Similar results were obtained with (chloro)(phenyl)carbene and 3-ethyl-1-

azabicyclo[1.1.0]butane [10].  

 

Scheme 2 

 

To the best of our knowledge, there are no reports on the reaction of 1-

azabicyclo[1.1.0]butanes with alkenes to give cycloadducts or other adducts corresponding 

with the reactions depicted in Scheme 1. The present paper focusses on preliminary results 

obtained from the reactions of 4 with electron-deficient alkenes,  

 

2. Results and Discussion. – In analogy to other bicyclic tertiary amines, 1-

azabicyclo[1.1.0]butanes are expected to be basic3 and nucleophilic substances. For this 

reason, electron-deficient alkenes should readily undergo reactions with 1-

azabicyclo[1.1.0]butanes. The first experiment carried out with 4 and BTF in CH2Cl2 at 0-5° 

showed that an exothermic reaction occurs. The product obtained thereby was a thick, 

colorless oil with all characteristics of a polymeric material. A similar reaction course of the 

reaction was observed in the case of ethenetetracarbonitrile (TCNE). However, when a 

solution of 1 equiv. of 4 in CH2Cl2 was added dropwise to a suspension of 3 equiv. of 

                                                           
2)  All attempts to add the nucleophilic dimethoxycarbene to 4 were in vain and 4 was 

recovered almost quantitatively [9]. 

3)  As far as we know, no physicochemical studies on the basicity of 1-azabicyclo[1.1.0]but-

anes have been reported. 
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dimethyl dicyanofumarate (DCFM, (E)-8) in CH2Cl2, the suspension dissolved slowly and 

complete conversion of 4 was observed after 4 h.  

The 1H-NMR spectrum of the crude mixture revealed the presence of two new 

products with two different signals for MeO in each case. The MeO signals of the major 

product appear at 3.70 and 3.89 ppm and those of the minor one at 3.88 and 4.10 ppm. Based 

on the intensity of these signals, a ratio of ca. 3:1 was established for the two products. The 

analogous experiment with 4 and dimethyl dicyanomaleate (DCMM, (Z)-8), which was very 

soluble in CH2Cl2, led to the same mixture of products. Chromatographic separation on SiO2-

plates gave two fractions as crystalline materials, which, after recrystallization, were 

identified as two isomeric 1:1-adducts on the basis of their elemental analyses and mass 

spectra. The major isomer, with m.p. 165-167°, shows a weak IR absorption for C≡N groups 

at 2241cm-1 and two very strong ester bands at 1777 and 1747cm-1. The corresponding 

signals of the minor product (m.p.138-140°) appear at 2246, 1770 and 1757 cm–1. In the 13C-

NMR spectra, both isomers show signals for two non-equivalent ester-CO groups 

(165.5/162.3 and 164.0/162.6 ppm, resp.) and two non-equivalent C≡N groups 115.3/114.6 

and 115.4/114.2 ppm, resp.). Additional characteristic signals of the major isomer are those 

of two CH2 groups at 66.3 and 62.9 ppm and three signals for quarternary C-atoms at 77.9, 

71.4, and 61.6 ppm. A similar set of signals was found for the minor isomer. Finally, the 

structure of the major product was established by X-ray crystallography (Figure). 

 

 

Figure. ORTEP Plot [11] of the molecular structure of cis-11 (arbitrary numbering of the 

atoms, 50 % probability ellipsoids) 
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The analysis proved the structure of cis-11, i.e. a 4-phenyl-1-azabicyclo[2.2.1]hexane 

with two cis-configured C≡N and CO2Me groups at C(2) and C(3). Consequently, the 

structure of the minor product is attributed as the trans-isomer (trans-11). 

The formation of the two isomers, cis- and trans-11, in the same ratio, irrespective of the use 

of (E)-8 or (Z)-8 as the reagent, can be explained by the two-step mechanism presented in 

Scheme 3. The first step of the reaction is the nucleophilic addition of 4 to the activated C=C 

bond in a Michael fashion. In the formed zwitterion 10, the positive as well as the negative 

charge are ideally stabilized, which results in the prolongation of the lifetime of this species. 

Therefore, 10a derived from (E)-8 and 10b derived from (Z)-8 are able to equilibrate to give 

the same mixture. These zwitterions then undergo a cyclization by formation of a new C,C 

bond to yield the final products 11. This ring closure is slow in comparison with the rotation 

about the C,C-bond in the zwitterions 10. 

 

Scheme 3 

 

The postulated reaction pathway was additionally supported by the interception of 10 

with morpholine. When the reaction of 4 and (E)-8 was performed in the presence of a 5-fold 

excess of morpholine, the formation of a single new product was observed. The compound 

isolated after chromatographic workup showed in the 1H-NMR spectrum, as well as in the IR 

spectrum, the presence of two different MeO2C groups. In addition, a strong C≡N absorption 

appears in the IR spectrum. The 13C-NMR data confirmed the presence of two non-

equivalent ester groups and, unexpectedly, only one signal for C≡N was detected. Based on 
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these data and supported by the MS and elemental analyses, the structure was elucidated as 

13, the 1:1:1 adduct after elimination of HCN (Scheme 4). The proposed interception product 

12 could not be detected as spontaneous elimination of HCN led immediately to the isolated 

azetidine derivative 13.  

 

Scheme 4 

 

In conclusion, the present study showed once more that zwitterions formed by 

nucleophilic addition to the C=C bond of (E)- and (Z)-8 (DCFM and DCMM) are perfectly 

stabilized and their formation determines the pathway of the subsequent reactions. 

Analogous formations of intermediates have been observed in reactions of (E)- and (Z)-8 

with thiocarbonyl S-methanides [12], as well as with dimethoxycarbene [13]. The presented 

reaction with 1-azabicyclo[2.1.1]butanes opens a new and convenient access to 1-

azabicyclo[2.1.1]hexanes, which are almost unknown. The only report on a synthesis of a 

representative of this class of 1-azabicycles concerned an alumina catalyzed rearrangement 

[14]. 

 

 The authors thank Mrs. Małgorzata Celeda (University of Lodz) for superior 

technical assistance and PD Dr. Anthony Linden (University of Zürich) for the X-ray crystal-

structure determination. G. M. acknowledges financial support by the University of Lodz 

(Grant No. 505/683) and H. H. thanks F. Hoffmann-La Roche AG, Basel, for financial 

support.  
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Experimental Part 

 

1. General. Melting points were determined in capillaries (Melt-Temp. II, Aldrich); 

uncorrected. IR spectra: NEXUS FT-IR spectrophotometer; in KBr. 1H- and 13C-NMR 

spectra: Tesla BS567A (80 and 20 MHz, resp.) or Bruker AC 300 instrument (300 and 75.5 

MHz, resp.), in CDCl3; TMS as an internal standard. The multiplicity of the 13C signals was 

deduced from DEPT spectra. MS: Finnigan MAT-90 or Finnigan SSQ-700 instruments (CI 

(NH3)). 

 

2. Starting Materials. 3-Phenyl-1-azabicyclo[1.1.0]butane (4) was obtained from 3-

phenyl-2H-azirine via addition of a sulfonium ylide according to [15]. Dimethyl 

dicyanofumarate (DCFM, (E)-8) was prepared from commercially available methyl 

cyanoacetate by heating in excess SOCl2 following the protocol in [16]. Dimethyl 

dicyanomaleate (DCMM, (Z)-8) is conveniently available by photolysis of a DCFM solution 

in CH2Cl2 using a high pressure mercury lamp and a pyrex filter [17]. 1,1-Bis 

(trifluoromethyl)ethene-2,2-dicarbonitril (BTF) was prepared following the protocol in [18]. 

Ethenetetracarbonitrile (TCNE) was used as a commercial reagent after purification by 

sublimation in vacuo.  

 

3. Reactions of 4 with electron-deficient ethenes. General Procedure. A soln. of 4 

(131 mg, 1 mmol) in CH2Cl2 (1 ml) was dropped slowly into a stirred and cooled (water/ice 

bath) soln. of the appropriate ethene derivative (1 mmol) in CH2Cl2 (2 ml). The reactions 

with BTF and TCNE occurred exothermally and were complete as soon as the addition was 

finished. In the experiments with DCMF and DCMM, the cooling bath was removed after 1 
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h and stirring was continued for 4 h at r.t. After evaporation of the solvent, oily residues were 

analyzed by means of 1H-NMR spectroscopy. Polymeric products obtained with BTF and 

TCNE were neither purified nor identified. The mixtures obtained from the reactions with 

DCFM and DCMM, respectively, showed identical composition with a ca. 3:1 ratio of two 

new products with characteristic 1H-NMR signals for the MeO groups at 3.89 and 3.70 ppm 

for the major component and 4.08 and 3.90 ppm for the minor one. The crude mixtures were 

preliminarily purified on a short SiO2-column and subsequently separated on prep. TLC 

plates coated with SiO2 by using CHCl3 as the developing solvent. Repeated development 

was needed to isolate two narrowly separated fractions. The less polar fraction consisted of 

the minor product identified as trans-11. Analytically pure samples were obtained by 

recrystallization.  

The reaction with DCMM was performed analogously to the procedure described for 

DCFM and chromatographic workup led to trans- and cis-11 in a ca. 3:1 ratio. 

 

Dimethyl cis-2,3-Dicyano-4-phenyl-1-azabicyclo[2.1.1]hexane-2,3-dicarboxylate (cis-11). 

More polar fraction. Yield: 120 mg (37% after PLC). Colorless crystals. M.p. 165–167° 

(hexane/CH2Cl2). IR (KBr): 2241vw (CN), 1777vs (C=O), 1747vs (C=O), 1450m, 1443m, 

1262vs (C–O), 1095s, 1085m, 1057m, 914m, 902m, 840m, 767m, 723m, 698s. 1H-NMR: 

7.38–7.35(m, 3 arom. H); 7.12–7.08 (m, 2 arom. H); 3.99 (dd, 1J = 9.4, 2J = 9.3, 1 H); 3.84 (s, 

MeO); 3.77 (dd, 1J = 8.0, 2J = 8.4, 2 H); 3.70 (s, MeO); 3.53 (dd, 1J = 8.9, 2J = 9.5, 1 H). 13C-

NMR: 165.5, 162.3, (2s, 2 C=O); 130.7 (s, 1 arom. Cq); 129.4, 129.0, 126.1 (3d, 5 arom. 

CH); 115.3, 114.6 (2s, 2 CN); 77.9 (s, C(2)); 71.4 (s, C(3)); 66.3, 62.9 (2q, 2 MeO); 61.6 (s, 

C(4)); 54.5, 54.4 (2t, 2 CH2). CI-MS: 343 (6, [M+NH4]
+), 326 (100, [M+1]+). Anal. calc. for 

C17H15N3O4 (325.32): C 62.77, H 4.65, N 12.92; found: C 62.61, H 4.68, N 12.83.  
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Dimethyl trans-2,3-Dicyano-4-phenyl-1-azabicyclo[2.1.1]-hexane-2,3-dicarboxylate (trans-

11). Less polar fraction. Yield: 35 mg (10 % after PLC). Colorless crystals. M.p. 138–140° 

(hexane/CH2Cl2). IR: 2246vw (CN), 1770vs (C=O), 1757vs (C=O), 1436m, 1270vs (C–O), 

1096m, 1059m, 750m. 1H-NMR: 7.41–7.33 (m, 3 arom. H); 7.27–7.19 (m, 2 arom. H); 4.08 

(s, MeO); 3.90 (s, MeO); 3.92-3.87 (m, 2 H); 3.79–3.69 (m, 1 H); 3.63–3.46 (m, 1 H). 13C-

NMR: 164.0, 162.6 (2s, 2 C=O); 130.9 (s, 1 arom. Cq); 129.1, 128.8, 127.0 (3d, 5 arom. CH); 

115.4, 114.2 (2s, 2 CN); 78.2 (s, C(2)); 68.9 (s, C(3)); 66.0, 64.7 (2q, 2 MeO); 60.7 (s, C(4)); 

55.0, 54.7 (2t, 2 CH2). CI-MS: 326 (100, [M+1]+). Anal. calc. for C17H15N3O4 (325.32): C 

62.77, H 4.65, N 12.92; found: C 62.74, H 5.10, N 12.38. 

 

4. Reaction of 4 with (E)-8 in the presence of morpholine. To a stirred soln. of DCFM 

((E)-8) (194 mg, 1mmol) and morpholine (435 mg, 5mmol) in CH2Cl2 (1 ml), 4 (131 mg, 1 

mmol) dissolved in CH2Cl2 (1 ml) was added drop-wise at r.t. After 5 h, the mixture was 

evaporated to dryness, and the evaporation was repeated 2× with small portions of toluene (2 

× 5 ml) in order to remove excess morpholine. The residual thick oil was separated on TLC 

plates coated with SiO2 by using CH2Cl2/MeOH (88.5/1.5) as the eluting system. A sole 

fraction with Rf ~ 0.5 was isolated and additionally purified by crystallization.  

 

Dimethyl (E)-{2-[3-(Morpholin-4-yl)-3-phenylazetidin-1-yl]-3-cyano}but-2-enedioate (E-

13). Yield: 340mg (88% after PLC). Colorless crystals. M.p. 156–158° (MeOH). IR: 2206m 

(CN), 1749s (C=O), 1702s (C=O), 1570vs (C=C), 1452s, 1305vs, 1264vs, 1196s, 1150s, 

1133s, 1116s, 769w, 708w. 1H-NMR: 7.44–7.33 (m, 3 arom. H); 7.06–7.03 (m, 2 arom. H); 

4.94, 4.91 (AB, J = 11.6, CH2); 4.43, 4.39 (AB, J = 9.6, CH2); 3.93 (s, MeO); 3.72 (s, MeO); 
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3.73–3.66 (m, 2 CH2O); 2.29–2.24 (m, 2 CH2N). 13C-NMR: 165.1, 161.8 (2 C=O); 158.2 

(C(2)); 134.5 (s, 1 arom. Cq); 128.3, 127.1 (2d, 5 arom. CH); 116.9 (CN); 70.3 (Cq); 66.8 (2 

CH2O); 63.3 (Cq, C(3)); 62.6, 61.8 (2 CH2(azetidine)); 53.7, 52.1 (2 MeO); 46.3, (2 CH2N). 

CI-MS: 386 (100, [M+1]+), 189 (9). Anal. calcd. for C20H23N3O5 (385.41): C 62.33, H 6.01, 

N 10.90; found: C62.21, H 5.94, N 10.84. 

 

5. X-Ray Crystal-Structure Determination of cis-11 (Table and Fig.)4). All 

measurements were performed on a Nonius KappaCCD area-detector diffractometer [19] 

using graphite-monochromated MoKα radiation (λ 0.71073 Å) and an Oxford Cryosystems 

Cryostream 700 cooler. The data collection and refinement parameters are given in the 

Table, and views of the molecules are shown in the Figure. Data reduction was performed 

with HKL Denzo and Scalepack [20]. The intensities were corrected for Lorentz and 

polarization effects, but not for absorption. The structure was solved by direct methods using 

SIR92 [21], which revealed the positions of all non-H-atoms. The non-H-atoms were refined 

anisotropically. All of the H-atoms were placed in geometrically calculated positions and 

refined using a riding model where each H-atom was assigned a fixed isotropic displacement 

parameter with a value equal to 1.2Ueq of its parent C-atom (1.5Ueq for the Me groups). The 

refinement of the structure was carried out on F2 using full-matrix least-squares procedures, 

which minimized the function Σw(Fo
2 – Fc

2)2. A correction for secondary extinction was not 

applied. Five reflections, whose intensities were considered to be extreme outliers, were 

omitted from the final refinement. Neutral atom scattering factors for non-H-atoms were 

                                                           

4) CCDC-287053 contains the supplementary crystallographic data for this paper. These data 

can be obtained free of charge from the Cambridge Crystallographic Data Centre via 

httm://www.ccdc.cam.ac.uk/data_request.cif. 
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taken from [22a], and the scattering factors for H-atoms were taken from [23]. Anomalous 

dispersion effects were included in Fc [24]; the values for f ' and f " were those of [22b]. The 

values of the mass attenuation coefficients are those of [22c]. All calculations were 

performed using the SHELXL97 [25] program. 

 

Table. Crystallographic Data for Compound cis-11  
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Table.  Crystallographic Data for Compound cis-11 

__________________________________________________________________________________ 

Crystallized from hexane/CH2Cl2  

Empirical formula C17H15N3O4  

Formula weight 325.32  

Crystal color, habit colorless, prism  

Crystal dimensions [mm] 0.18 × 0.20 × 0.30  

Temperature [K] 160(1)  

Crystal system triclinic  

Space group P
_
,1 

Z 2 

Reflections for cell determination 4543  

2θ range for cell determination [°] 4–60  

Unit cell parameters a [Å] 8.3240(2)  

 b [Å] 8.9030(2)  

 c [Å] 12.3691(3)  

 α [°] 100.752(1)  

 β [°] 94.808(1)  

 γ [°] 116.114(1)  

 V [Å3] 794.20(3)  

Dx [g cm-3] 1.360  

µ(MoKα) [mm-1] 0.0990   

Scan type φ and ω   

2θ(max) [°] 60  

Total reflections measured 21407  

Symmetry independent reflections 4602  

Reflections with I>2σ(I) 3979  

Reflections used in refinement 4597  

Parameters refined 219  

Final R(F)  [I>2σ (I) reflections] 0.0416   

 wR(F2)  (all data) 0.1116   

Weighting parameters [a; b]a) 0.0507; 0.2124  

Goodness of fit 1.038  

Final ∆max/σ 0.001  

∆ρ (max; min) [e Å-3] 0.33; -0.18  
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a) w-1 = σ 2(Fo2) + (aP)2 + bP  where P = (Fo2 + 2Fc2)/3 
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Legends 

 

Figure. ORTEP Plot [11] of the molecular structure of cis-11 (arbitrary numbering of 

the atoms, 50% probability ellipsoids) 

 

 




