The First Ring－Enlargement of a 1－Azabicyclo［1．1．0］butane to a 1－ Azabicyclo［2．1．1］hexane－Source link

$\underline{\text { Grzegorz Mlostoń，Heinz Heimgartner }}$
Institutions：University of Zurich
Published on： 01 Mar 2006 －Helvetica Chimica Acta（WILEY－VCH Verlag）
Topics：Cycloaddition，Butane，Stepwise reaction and Morpholine

Related papers：

－Reaction of 1－azabicyclo 〔 1．1．0〕 butanes with 2，3－dicyanofumarates：interception of the intermediate zwitterions with methanol
－A new synthesis of tetra－substituted ethylenes
－Azabicyclobutanes．Solvolytic cleavage of 3－phenyl－1－azabicyclo［1．1．0］butane
－A Convenient Synthesis of（Z）－3－（a－Cyano－a－alkoxycarbonylmethylene）－2－piperazinones and Their Derivatives
－2－azatricyclo［2．2．1．01，6］heptane：Synthesis and conversion to 2－azabicyclo［2．2．1］heptanes

Zurich Open Repository and Archive
University of Zurich
University Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

The first ring-enlargement of a 1-Azabicyclo[1.1.0]butane to a 1-Azabicyclo[2.1.1]hexane

Mlostoń, Grzegorz ; Heimgartner, H

Abstract

The reactions of 3-phenyl-1-azabicyclo[1.1.0]butane (4) with dimethyl dicyanofumarate ((E)-8) and dimethyl dicyanomaleate ($(\mathrm{Z})-8)$ lead to the same mixture of cis- and trans-4-phenyl-1-azabicyclo[2.1.1]hexane 2,3 -dicarboxylates (cis-11 and trans-11, resp.; Scheme 3). This result of a formal cycloaddition to the central C-N bond of 4 is interpreted by a stepwise reaction mechanism via a relatively stable zwitterionic intermediate 10 , which could be intercepted by morpholine to give a $1: 1: 1$ adduct 12 , which undergoes a spontaneous elimination of HCN to yield the fumarate 13 (Scheme 4).

DOI: https://doi.org/10.1002/hlca. 200690044

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-54215
Journal Article
Accepted Version

Originally published at:
Mlostoń, Grzegorz; Heimgartner, H (2006). The first ring-enlargement of a 1-Azabicyclo[1.1.0]butane to a 1-Azabicyclo[2.1.1]hexane. Helvetica Chimica Acta, 89(3):442-449.
DOI: https://doi.org/10.1002/hlca. 200690044

Prof. Dr. H. Heimgartner
Tel. 016354282
Fax 016356836
e-mail: heimgart@oci.unizh.ch

The First Ring-Expansion of a 1-Azabicyclo[1.1.0]butane to a 1Azabicyclo[2.1.1]hexane

by Grzegorz Mlostoń*
University of Lodz, Department of Organic and Applied Chemistry, Narutowicza 68, PL-90-136 Lodz

and Heinz Heimgartner*

Organisch-chemisches Institut der Universität Zürich, Winterthurerstrasse 190,
CH-8057 Zürich

The reactions of 3-phenyl-1-azabicyclo[1.1.0]butane (4) with dimethyl dicyanofumarate $((E)-\mathbf{8})$ and dimethyl dicyanomaleate $((Z)-\mathbf{8})$, respectively, lead to the same mixture of cis- and trans-4-phenyl-1-azabicyclo[2.1.1]hexane 2,3-dicarboxylates (cis- and trans-11, Scheme 3). This result of a formal cycloaddition to the central N,C-bond of $\mathbf{4}$ is interpreted by a stepwise reaction mechanism via a relatively stable zwitterionic intermediate 10, which could be intercepted by morpholine to give a 1:1:1 adduct 12, which undergoes a spontaneous elimination of HCN to yield the fumarate 13 (Scheme 4).

1. Introduction. - Strained bicyclo[1.1.0]butane derivatives are attractive compounds for theoretical and spectroscopic studies [1]. As soon as the first example had been synthesized [2], numerous reports appeared in which differently substituted representatives were explored as useful building blocks for the preparation of cyclobutanes and cyclobutenes [3], as well as larger bicyclic systems. One of the first observations was the ring enlargement to give a bicyclo[2.1.1]hexane via a formal cycloaddition with differently substituted ethenes [4]. It turned out that in the case of 3-methylbicyclo[1.1.0]butane carbonitrile (1), the reactions with electron-rich olefins, e.g. (cyclopenten-1-yl)- N, N-dimethylamine, led to the polycyclic adduct 2 in high yield [4] (Scheme 1). On the other hand, the electron-deficient 2,2-bis(trifluoromethyl)ethene-1,1-dicarbonitrile (BTF) afforded the cyclobutene derivative 3 [3]. These reactions are believed to occur stepwise via diradical intermediates.

Scheme 1

In comparison with bicyclo[1.1.0]butanes, the relatively stable 1 -aza-analogues ${ }^{1}$) are rarely applied as starting materials for the synthesis of N -heterocycles. The main products obtained are azetidines, which are smoothly formed when 1-azabicyclo[1.1.0]butanes are treated with electrophilic reagents. For example, 3-phenylazabicyclo[1.1.0]butane (4) adds alkyl chloroformates at room temperature in a fast reaction to give 3-chloro-3-phenylazetidine-1-carboxylates of type 5 [6] (Scheme 2). A recent report described the smooth addition of hydrazoic acid across the 1,3-bond to produce 6 [7]. The electrophilic

[^0]dichlorocarbene reacts with 4 under ring opening to give the 1,1-dichloro-2-azapenta-1,4diene $7[8]^{2}$). Similar results were obtained with (chloro)(phenyl)carbene and 3-ethyl-1azabicyclo[1.1.0]butane [10].

Scheme 2

To the best of our knowledge, there are no reports on the reaction of 1azabicyclo[1.1.0]butanes with alkenes to give cycloadducts or other adducts corresponding with the reactions depicted in Scheme 1. The present paper focusses on preliminary results obtained from the reactions of $\mathbf{4}$ with electron-deficient alkenes,
2. Results and Discussion. - In analogy to other bicyclic tertiary amines, 1azabicyclo[1.1.0]butanes are expected to be basic ${ }^{3}$ and nucleophilic substances. For this reason, electron-deficient alkenes should readily undergo reactions with 1azabicyclo[1.1.0]butanes. The first experiment carried out with 4 and BTF in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0-5^{\circ}$ showed that an exothermic reaction occurs. The product obtained thereby was a thick, colorless oil with all characteristics of a polymeric material. A similar reaction course of the reaction was observed in the case of ethenetetracarbonitrile (TCNE). However, when a solution of 1 equiv. of 4 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise to a suspension of 3 equiv. of

[^1]dimethyl dicyanofumarate (DCFM, (E)-8) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the suspension dissolved slowly and complete conversion of 4 was observed after 4 h .

The ${ }^{1} \mathrm{H}$-NMR spectrum of the crude mixture revealed the presence of two new products with two different signals for MeO in each case. The MeO signals of the major product appear at 3.70 and 3.89 ppm and those of the minor one at 3.88 and 4.10 ppm . Based on the intensity of these signals, a ratio of $c a .3: 1$ was established for the two products. The analogous experiment with $\mathbf{4}$ and dimethyl dicyanomaleate (DCMM, (Z)-8), which was very soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, led to the same mixture of products. Chromatographic separation on $\mathrm{SiO}_{2^{-}}$ plates gave two fractions as crystalline materials, which, after recrystallization, were identified as two isomeric 1:1-adducts on the basis of their elemental analyses and mass spectra. The major isomer, with m.p. $165-167^{\circ}$, shows a weak IR absorption for $\mathrm{C} \equiv \mathrm{N}$ groups at $2241 \mathrm{~cm}^{-1}$ and two very strong ester bands at 1777 and $1747 \mathrm{~cm}^{-1}$. The corresponding signals of the minor product (m.p.138-140 ${ }^{\circ}$) appear at 2246,1770 and $1757 \mathrm{~cm}^{-1}$. In the ${ }^{13} \mathrm{C}$ NMR spectra, both isomers show signals for two non-equivalent ester-CO groups (165.5/162.3 and $164.0 / 162.6 \mathrm{ppm}$, resp.) and two non-equivalent $\mathrm{C} \equiv \mathrm{N}$ groups 115.3/114.6 and $115.4 / 114.2 \mathrm{ppm}$, resp.). Additional characteristic signals of the major isomer are those of two CH_{2} groups at 66.3 and 62.9 ppm and three signals for quarternary C -atoms at 77.9 , 71.4, and 61.6 ppm . A similar set of signals was found for the minor isomer. Finally, the structure of the major product was established by X-ray crystallography (Figure).

Figure. ORTEP Plot [11] of the molecular structure of cis-11 (arbitrary numbering of the atoms, 50% probability ellipsoids)

The analysis proved the structure of cis-11, i.e. a 4-phenyl-1-azabicyclo[2.2.1]hexane with two cis-configured $\mathrm{C} \equiv \mathrm{N}$ and $\mathrm{CO}_{2} \mathrm{Me}$ groups at $\mathrm{C}(2)$ and $\mathrm{C}(3)$. Consequently, the structure of the minor product is attributed as the trans-isomer (trans-11).

The formation of the two isomers, cis- and trans-11, in the same ratio, irrespective of the use of $(E)-\mathbf{8}$ or $(Z)-\mathbf{8}$ as the reagent, can be explained by the two-step mechanism presented in Scheme 3. The first step of the reaction is the nucleophilic addition of 4 to the activated $\mathrm{C}=\mathrm{C}$ bond in a Michael fashion. In the formed zwitterion 10, the positive as well as the negative charge are ideally stabilized, which results in the prolongation of the lifetime of this species. Therefore, 10a derived from $(E)-\mathbf{8}$ and $\mathbf{1 0 b}$ derived from $(Z)-\mathbf{8}$ are able to equilibrate to give the same mixture. These zwitterions then undergo a cyclization by formation of a new C, C bond to yield the final products $\mathbf{1 1}$. This ring closure is slow in comparison with the rotation about the C,C-bond in the zwitterions $\mathbf{1 0}$.

Scheme 3

The postulated reaction pathway was additionally supported by the interception of $\mathbf{1 0}$ with morpholine. When the reaction of $\mathbf{4}$ and $(E)-\mathbf{8}$ was performed in the presence of a 5 -fold excess of morpholine, the formation of a single new product was observed. The compound isolated after chromatographic workup showed in the ${ }^{1} \mathrm{H}$-NMR spectrum, as well as in the IR spectrum, the presence of two different $\mathrm{MeO}_{2} \mathrm{C}$ groups. In addition, a strong $\mathrm{C} \equiv \mathrm{N}$ absorption appears in the IR spectrum. The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data confirmed the presence of two nonequivalent ester groups and, unexpectedly, only one signal for $\mathrm{C} \equiv \mathrm{N}$ was detected. Based on
these data and supported by the MS and elemental analyses, the structure was elucidated as 13, the 1:1:1 adduct after elimination of HCN (Scheme 4). The proposed interception product $\mathbf{1 2}$ could not be detected as spontaneous elimination of HCN led immediately to the isolated azetidine derivative 13.

Scheme 4

In conclusion, the present study showed once more that zwitterions formed by nucleophilic addition to the $\mathrm{C}=\mathrm{C}$ bond of (E) - and $(Z)-\mathbf{8}$ (DCFM and DCMM$)$ are perfectly stabilized and their formation determines the pathway of the subsequent reactions. Analogous formations of intermediates have been observed in reactions of (E) - and (Z)-8 with thiocarbonyl S-methanides [12], as well as with dimethoxycarbene [13]. The presented reaction with 1-azabicyclo[2.1.1]butanes opens a new and convenient access to 1 azabicyclo[2.1.1]hexanes, which are almost unknown. The only report on a synthesis of a representative of this class of 1-azabicycles concerned an alumina catalyzed rearrangement [14].

The authors thank Mrs. Matgorzata Celeda (University of Lodz) for superior technical assistance and PD Dr. Anthony Linden (University of Zürich) for the X-ray crystalstructure determination. G. M. acknowledges financial support by the University of Lodz (Grant No. 505/683) and H. H. thanks F. Hoffmann-La Roche AG, Basel, for financial support.

Experimental Part

1. General. Melting points were determined in capillaries (Melt-Temp. II, Aldrich); uncorrected. IR spectra: NEXUS FT-IR spectrophotometer; in $\mathrm{KBr} .{ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra: Tesla BS567A (80 and 20 MHz , resp.) or Bruker AC 300 instrument (300 and 75.5 MHz , resp.), in CDCl_{3}; TMS as an internal standard. The multiplicity of the ${ }^{13} \mathrm{C}$ signals was deduced from DEPT spectra. MS: Finnigan MAT-90 or Finnigan SSQ-700 instruments (CI $\left.\left(\mathrm{NH}_{3}\right)\right)$.
2. Starting Materials. 3-Phenyl-1-azabicyclo[1.1.0]butane (4) was obtained from 3-phenyl-2H-azirine via addition of a sulfonium ylide according to [15]. Dimethyl dicyanofumarate (DCFM, (E)-8) was prepared from commercially available methyl cyanoacetate by heating in excess SOCl_{2} following the protocol in [16]. Dimethyl dicyanomaleate (DCMM, (Z)-8) is conveniently available by photolysis of a DCFM solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ using a high pressure mercury lamp and a pyrex filter [17]. 1,1-Bis (trifluoromethyl)ethene-2,2-dicarbonitril (BTF) was prepared following the protocol in [18]. Ethenetetracarbonitrile (TCNE) was used as a commercial reagent after purification by sublimation in vacuo.
3. Reactions of $\mathbf{4}$ with electron-deficient ethenes. General Procedure. A soln. of $\mathbf{4}$ ($131 \mathrm{mg}, 1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 ml) was dropped slowly into a stirred and cooled (water/ice bath) soln. of the appropriate ethene derivative (1 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$. The reactions with BTF and TCNE occurred exothermally and were complete as soon as the addition was finished. In the experiments with DCMF and DCMM, the cooling bath was removed after 1
h and stirring was continued for 4 h at r.t. After evaporation of the solvent, oily residues were analyzed by means of ${ }^{1} \mathrm{H}$-NMR spectroscopy. Polymeric products obtained with BTF and TCNE were neither purified nor identified. The mixtures obtained from the reactions with DCFM and DCMM, respectively, showed identical composition with a $c a .3: 1$ ratio of two new products with characteristic ${ }^{1} \mathrm{H}-\mathrm{NMR}$ signals for the MeO groups at 3.89 and 3.70 ppm for the major component and 4.08 and 3.90 ppm for the minor one. The crude mixtures were preliminarily purified on a short SiO_{2}-column and subsequently separated on prep. TLC plates coated with SiO_{2} by using CHCl_{3} as the developing solvent. Repeated development was needed to isolate two narrowly separated fractions. The less polar fraction consisted of the minor product identified as trans-11. Analytically pure samples were obtained by recrystallization.

The reaction with DCMM was performed analogously to the procedure described for DCFM and chromatographic workup led to trans- and cis-11 in a ca. 3:1 ratio.

Dimethyl cis-2,3-Dicyano-4-phenyl-1-azabicyclo[2.1.1]hexane-2,3-dicarboxylate (cis-11). More polar fraction. Yield: 120 mg (37% after PLC). Colorless crystals. M.p. $165-167^{\circ}$ (hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (KBr): 2241vw (CN), 1777vs (C=O), 1747vs (C=O), 1450m, 1443m, 1262vs (C-O), 1095s, 1085m, 1057m, 914m, 902m, 840m, 767m, 723m, 698s. ${ }^{1} \mathrm{H}-\mathrm{NMR}:$ $7.38-7.35\left(\mathrm{~m}, 3\right.$ arom. H); 7.12-7.08 ($\mathrm{m}, 2$ arom. H); $3.99\left(d d,{ }^{1} J=9.4,{ }^{2} J=9.3,1 \mathrm{H}\right) ; 3.84(s$, $\mathrm{MeO}) ; 3.77\left(d d,{ }^{1} J=8.0,{ }^{2} J=8.4,2 \mathrm{H}\right) ; 3.70(s, \mathrm{MeO}) ; 3.53\left(d d,{ }^{1} J=8.9,{ }^{2} J=9.5,1 \mathrm{H}\right) .{ }^{13} \mathrm{C}-$ NMR: 165.5, 162.3, ($2 s, 2 \mathrm{C}=\mathrm{O}$); 130.7 ($s, 1$ arom. C_{q}); 129.4, 129.0, 126.1 (3d, 5 arom. $\mathrm{CH}) ; 115.3,114.6(2 s, 2 \mathrm{CN}) ; 77.9(s, \mathrm{C}(2)) ; 71.4(s, \mathrm{C}(3)) ; 66.3,62.9(2 q, 2 \mathrm{MeO}) ; 61.6(s$, $\mathrm{C}(4))$; 54.5, $54.4\left(2 t, 2 \mathrm{CH}_{2}\right)$. CI-MS: $343\left(6,\left[M+\mathrm{NH}_{4}\right]^{+}\right), 326\left(100,[M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4}$ (325.32): C 62.77, H 4.65, N 12.92; found: C 62.61, H 4.68, N 12.83.

Dimethyl trans-2,3-Dicyano-4-phenyl-1-azabicyclo[2.1.1]-hexane-2,3-dicarboxylate (trans11). Less polar fraction. Yield: 35 mg (10% after PLC). Colorless crystals. M.p. $138-140^{\circ}$ (hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR: 2246vw (CN), 1770vs $(\mathrm{C}=\mathrm{O}), 1757 \mathrm{vs}(\mathrm{C}=\mathrm{O}), 1436 \mathrm{~m}$, 1270vs $(\mathrm{C}-\mathrm{O})$, 1096m, 1059m, 750m. ${ }^{1} \mathrm{H}$-NMR: 7.41-7.33 ($\mathrm{m}, 3$ arom. H); 7.27-7.19 ($\mathrm{m}, 2$ arom. H); 4.08 $(s, \mathrm{MeO}) ; 3.90(s, \mathrm{MeO}) ; 3.92-3.87(m, 2 \mathrm{H}) ; 3.79-3.69(m, 1 \mathrm{H}) ; 3.63-3.46(m, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR: 164.0, $162.6(2 s, 2 \mathrm{C}=\mathrm{O}) ; 130.9\left(s, 1\right.$ arom. $\left.\mathrm{C}_{\mathrm{q}}\right) ; 129.1,128.8,127.0(3 d, 5$ arom. CH$)$; 115.4, 114.2 ($2 s, 2 \mathrm{CN}$); 78.2 ($\mathrm{s}, \mathrm{C}(2)$); 68.9 ($s, \mathrm{C}(3)$); 66.0, 64.7 ($2 q, 2 \mathrm{MeO}$); 60.7 ($s, \mathrm{C}(4)$); 55.0, $54.7\left(2 t, 2 \mathrm{CH}_{2}\right)$. CI-MS: $326\left(100,[M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4}$ (325.32): C 62.77, H 4.65, N 12.92; found: C 62.74, H 5.10, N 12.38 .
4. Reaction of $\mathbf{4}$ with (E$)-\mathbf{8}$ in the presence of morpholine. To a stirred soln. of DCFM $((E)-\mathbf{8})(194 \mathrm{mg}, 1 \mathrm{mmol})$ and morpholine $(435 \mathrm{mg}, 5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml}), 4(131 \mathrm{mg}, 1$ mmol) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$ was added drop-wise at r.t. After 5 h , the mixture was evaporated to dryness, and the evaporation was repeated $2 \times$ with small portions of toluene (2 $\times 5 \mathrm{ml})$ in order to remove excess morpholine. The residual thick oil was separated on TLC plates coated with SiO_{2} by using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(88.5 / 1.5)$ as the eluting system. A sole fraction with $\mathrm{R}_{\mathrm{f}} \sim 0.5$ was isolated and additionally purified by crystallization.

Dimethyl (E)-\{2-[3-(Morpholin-4-yl)-3-phenylazetidin-1-yl]-3-cyano\}but-2-enedioate (E13). Yield: 340 mg (88% after PLC). Colorless crystals. M.p. $156-158^{\circ}$ (MeOH). IR: $2206 m$ (CN), 1749s (C=O), 1702s (C=O), 1570vs ($\mathrm{C}=\mathrm{C}$), 1452s, 1305vs, 1264vs, 1196s, 1150s, $1133 s, 1116 s, 769 w, 708 w .{ }^{1} \mathrm{H}-\mathrm{NMR}: 7.44-7.33$ ($m, 3$ arom. H); 7.06-7.03 ($m, 2$ arom. H); 4.94, $4.91\left(A B, J=11.6, \mathrm{CH}_{2}\right) ; 4.43,4.39\left(A B, J=9.6, \mathrm{CH}_{2}\right) ; 3.93(s, \mathrm{MeO}) ; 3.72(s, \mathrm{MeO})$;
3.73-3.66 ($m, 2 \mathrm{CH}_{2} \mathrm{O}$); 2.29-2.24 ($\mathrm{m}, 2 \mathrm{CH}_{2} \mathrm{~N}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}: 165.1,161.8(2 \mathrm{C}=\mathrm{O}) ; 158.2$ $(\mathrm{C}(2)) ; 134.5\left(s, 1\right.$ arom. $\left.\mathrm{C}_{\mathrm{q}}\right) ; 128.3$, $127.1(2 d, 5$ arom. CH$) ; 116.9(\mathrm{CN}) ; 70.3\left(\mathrm{C}_{\mathrm{q}}\right) ; 66.8(2$ $\left.\mathrm{CH}_{2} \mathrm{O}\right) ; 63.3\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}(3)\right)$; 62.6, $61.8\left(2 \mathrm{CH}_{2}(\right.$ azetidine $\left.)\right) ; 53.7$, $52.1(2 \mathrm{MeO}) ; 46.3,\left(2 \mathrm{CH}_{2} \mathrm{~N}\right)$. CI-MS: 386 (100, $[\mathrm{M}+1]^{+}$), 189 (9). Anal. calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5}$ (385.41): C 62.33, H 6.01, N 10.90; found: C62.21, H 5.94, N 10.84 .
5. X-Ray Crystal-Structure Determination of cis-11 (Table and Fig.) ${ }^{4}$). All measurements were performed on a Nonius KappaCCD area-detector diffractometer [19] using graphite-monochromated $\operatorname{Mo} K_{\alpha}$ radiation ($\lambda 0.71073 \AA$) and an Oxford Cryosystems Cryostream 700 cooler. The data collection and refinement parameters are given in the Table, and views of the molecules are shown in the Figure. Data reduction was performed with HKL Denzo and Scalepack [20]. The intensities were corrected for Lorentz and polarization effects, but not for absorption. The structure was solved by direct methods using SIR92 [21], which revealed the positions of all non-H-atoms. The non-H-atoms were refined anisotropically. All of the H -atoms were placed in geometrically calculated positions and refined using a riding model where each H -atom was assigned a fixed isotropic displacement parameter with a value equal to $1.2 U_{\mathrm{eq}}$ of its parent C -atom ($1.5 U_{\mathrm{eq}}$ for the Me groups). The refinement of the structure was carried out on F^{2} using full-matrix least-squares procedures, which minimized the function $\Sigma w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}$. A correction for secondary extinction was not applied. Five reflections, whose intensities were considered to be extreme outliers, were omitted from the final refinement. Neutral atom scattering factors for non-H-atoms were

[^2]taken from [22a], and the scattering factors for H -atoms were taken from [23]. Anomalous dispersion effects were included in F_{c} [24]; the values for f^{\prime} and $f^{\prime \prime}$ were those of [22b]. The values of the mass attenuation coefficients are those of [22c]. All calculations were performed using the SHELXL97 [25] program.

Table. Crystallographic Data for Compound cis-11

REFERENCES

[1] N. J. Saettle, O. Wiest, J. Org. Chem. 2003, 68, 4549 and refs. cited therein.
[2] K. B. Wiberg, R. P Ciula, J. Am. Chem. Soc. 1959, 81, 5261.
[3] E. P. Blanchard, Jr., A. Cairncross, J. Am. Chem. Soc. 1966, 88, 487.
[4] A. Cairncross, E. P. Blanchard, Jr., J. Am. Chem. Soc. 1966, 88, 496.
[5] W. Funke, Angew. Chem. 1969, 81, 35.
[6] R. Bartnik, S. Leśniak, G. Mlostoń, J. Romański, Pol. J. Chem. 1994, 68, 1347.
[7] G. Mlostoń, M. Celeda, Helv. Chim. Acta 2005, 88, 1658.
[8] G. Mlostoń, A. Galindo, R. Bartnik, A. P. Marchand, D. Rajagopal, J. Heterocycl. Chem. 1996, 33, 93.
[9] G. Mlostoń, M. Celeda, unpublished results.
[10] R. A. Moss, L. Maksimovic, A. P. Marchand, K.C.V. Ramanaiah, Tetrahedron Lett. 1996, $37,5849$.
[11] C. K. Johnson, 'ORTEP II, Report ORNL-5138', Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1976.
[12] G. Mlostoń, R. Huisgen, H. Giera, Tetrahedron 2002, 58, 4185; R. Huisgen, G. Mlostoń, H. Giera, E. Langhals, Tetrahedron 2002, 58, 507.
[13] H. Zhou, G. Mlostoń, J. Warkentin, Org. Lett. 2005, 7, 487.
[14] J. W. Dawies, J. R. Malpass, M. P. Walker, J. Chem. Soc., Chem. Commun. 1985, 686.
[15] A. G. Hortmann, D. A. Robertson, J. Am. Chem. Soc. 1972, 94, 2758.
[16] C. J. Ireland, J. S. Pizey, J. Chem. Soc., Chem. Commun. 1972, 4.
[17] R. Huisgen, X. Li, H. Giera, E. Langhals, Helv. Chim. Acta 2001, 84, 981.
[18] W. J. Midleton, J. Org. Chem. 1965, 30, 1402.
[19] R. Hooft, KappaCCD Collect Software, Nonius BV, Delft, The Netherlands, 1999.
[20] Z. Otwinowski, W. Minor, in 'Methods in Enzymology', Vol. 276, 'Macromolecular Crystallography', Part A, Eds. C. W. Carter Jr., R. M. Sweet, Academic Press, New York, 1997, p. 307.
[21] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, SIR92, J. Appl. Crystallogr. 1994, 27, 435.
[22] a) E. N. Maslen, A. G. Fox, M. A. O'Keefe, in 'International Tables for Crystallography', Ed. A. J. C. Wilson, Kluwer Academic Publishers, Dordrecht, 1992 Vol. C, Table 6.1.1.1, p. 477; b) D. C. Creagh, W. J. McAuley, in 'International Tables for Crystallography', Ed. A. J. C. Wilson, Kluwer Academic Publishers, Dordrecht, 1992 Vol. C, Table 4.2.6.8, p. 219; c) D. C. Creagh, J. H. Hubbell, in 'International Tables for Crystallography', Ed. A. J. C. Wilson, Kluwer Academic Publishers, Dordrecht, 1992 Vol. C, Table 4.2.4.3, p. 200.
[23] R. F. Stewart, E. R. Davidson, W. T. Simpson, J. Chem. Phys. 1965, 42, 3175.
[24] J. A. Ibers, W. C. Hamilton, Acta Crystallogr. 1964, 17, 781.
[25] G. M. Sheldrick, SHELXL97, Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1997.

Table. Crystallographic Data for Compound cis-11

Crystallized from	hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
Empirical formula	$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4}$
Formula weight	325.32
Crystal color, habit	colorless, prism
Crystal dimensions [mm]	$0.18 \times 0.20 \times 0.30$
Temperature [K]	160(1)
Crystal system	triclinic
Space group	$P^{-}, 1$
Z	2
Reflections for cell determination	4543
2θ range for cell determination [$\left.{ }^{\circ}\right]$	4-60
Unit cell parameters a [\AA]	8.3240(2)
b [\AA]	8.9030(2)
$c[\AA]$	12.3691(3)
$\alpha\left[{ }^{\circ}\right]$	100.752(1)
$\beta\left[{ }^{\circ}\right]$	94.808(1)
$\gamma\left[{ }^{\circ}\right]$	116.114(1)
$V\left[\AA^{3}\right]$	794.20(3)
$D_{x}\left[\mathrm{~g} \mathrm{~cm}^{-3}\right]$	1.360
$\mu\left(\operatorname{Mo} K_{\alpha}\right)\left[\mathrm{mm}^{-1}\right]$	0.0990
Scan type	ϕ and ω
$2 \theta(\max)\left[^{\circ}\right]$	60
Total reflections measured	21407
Symmetry independent reflections	4602
Reflections with $I>2 \sigma(I)$	3979
Reflections used in refinement	4597
Parameters refined	219
Final $R(F)$ [$I>2 \sigma(I)$ reflections]	0.0416
$w R\left(F^{2}\right)$ (all data)	0.1116
Weighting parameters $[a ; b]^{\text {a }}$)	0.0507; 0.2124
Goodness of fit	1.038
Final $\Delta_{\text {max }} / \sigma$	0.001
$\Delta \rho(\max ; \min)\left[\mathrm{e} \AA^{-3}\right]$	0.33;-0.18

$\left.{ }^{\text {a }}\right) w^{-1}=\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(a P)^{2}+b P$ where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$

Legends

Figure. ORTEP Plot [11] of the molecular structure of cis-11 (arbitrary numbering of the atoms, 50% probability ellipsoids)

[^0]: ${ }^{1}$) The first synthesis of 1-azabicyclo[1.1.0]butanes, the parent system, as well as the 3methyl and 3-ethyl derivatives, was reported in 1969 [5].

[^1]: ${ }^{2}$) All attempts to add the nucleophilic dimethoxycarbene to $\mathbf{4}$ were in vain and $\mathbf{4}$ was recovered almost quantitatively [9].
 ${ }^{3}$) As far as we know, no physicochemical studies on the basicity of 1-azabicyclo[1.1.0]butanes have been reported.

[^2]: ${ }^{4}$) CCDC-287053 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via httm://www.ccdc.cam.ac.uk/data_request.cif.

