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The Fisher, Neyman-Peerson Theories of Testing 
Hypotheses: One Theory or Two? 

E. l. LEHMANN* 

The Fisher and Neyman-Pearson approaches to testing statistical hypotheses are compared with respect to their attitude_s to t~e 

interpretation of the outcome, to power, to conditioning, and to the use of fixed significance levels. It is argued t.hat desp1te bas1c 

philosophi.cal differences, in their main practical aspects the two theories are co~plementary rather t.han contradictory and t~at a 

unified approach is possible that combines the best features of both .. As applications, the controversies about the Behrens-F1sher 

problem and the comparison of two binomials (2 X 2 tables) are constdered from the present pomt ofv~ew. 
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1. INTRODUCTION 

The formulation and philosophy of hypothesis testing as 

we know it today was largely created in the period 1915-

1933 by three men: R. A. Fisher (1890-1962), J. Neyman 

( 1894-1981), and E. S. Pearson (1895-1980). Since then it 

has expanded into one of the most widely used quantitative 

methodologies, and has found its way into nearly all areas 

of human endeavor. It is a fairly commonly held view that 

the theories due to Fisher on the one hand, and to Neyman 

and Pearson on the other, are quite distinct. This is reflected 

m the fact that separate terms are often used (although 

somewhat inconsistently) to designate the two approaches: 

significance testing for Fisher and hypothesis testing for 

Neyman and Pearson. (Since both are concerned with the 

testing of hypotheses, it is convenient here to tgnore this 

terminological distinction and to use the term "hypothesis 

testing" regardless of whether the testing is carried out in a 

Fisherian or Neyman-Pearsonian mode.) 

There clearly are important differences, both in philosophy 

and in the treatment of specific problems. These were fiercely 

debated by Fisher and Neyman in a way described by Zabell 

( 1992) as "a battle which had a largely destructive effect on 

the statistical profession." I believe that the ferocity of the 

rhetoric has created an exaggerated impression of irrecon

cilability. The purpose of this article is to see whether there 

exists a common ground that permits a resolution of some 

of the principal differenoes and a basis for rational discussion 

of the remaining ones. 

Some of the Fisher-Neyman debate is concerned with is

sues studied in depth by philosophers of science (see, for 

example, Braithwaite 1953; Hacking 1965; Kyburg 1974; 

and Seidenfeld 1979). I am not a philosopher, and this article 

is written from a statistical, not a philosophical, point of 

view. 

Section 2 presents some historical background for the two 

points of view. Section 3 discusses the basic philosophical 

difference between Fisher and Neyman. (Although the main 

substantive papers [NP 1928 and 1933a) were joint by Ney

man and Pearson, their collaboration stopped soon after 
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Neyman left Pearson's Department to set up his own pro

gram in Berkeley. After that, the debate was carried on pri

marily by Fisher and Neyman.) Sections 4, 5, and 6 discuss 

three specific issues on which the two schools differ (fixed 

levels versus p values, power, and conditioning). Section 7 

illustrates the effect of these differences on the treatment of 

two statistical problems, the 2 X 2 table and the Behrens

Fisher problem, that have become focal points of the con

troversy. Finally, Section 8 suggests a unified point of view 

that does not resolve all questions but provides a common 

basis for discussing the remaining issues. 

For the sake of completeness, it should be said that in 

addition to the Fisher and Neyman-Pearson theories there 

exist other philosophies of testing, of which we shall mention 

only two. There is Bayesian hypothesis testing, which, on 

the basis of stronger assumptions, permits assigning proba

bilities to the various hypotheses being considered. All three 

authors were very hostile to this formulation and were in 

fact motivated in their work by a desire to rid hypothesis 

testing of the need to assume a prior distribution over the 

available hypotheses. 

Finally, in certain important situations tests can be ob

tained by an approach also due to Fisher for which he used 

the term fiducial. Most comparisons of Fisher's work on hy

pothesis testing with that of Neyman and Pearson (see, for 

example, Barnett 1982; Carlson 1976; Morrison and Henkel 

1970; Spielman 1974, 1978; Steger 1971) do not include a 

discussion of the fiducial argument, which most statisticians 

have found difficult to follow. Although Fisher himself 

viewed fiducial considerations to be a very important part 

of his statistical thinking, this topic can be split off from 

other aspects of his work, and here I shall consider neither 

the fiducial nor the Bayesian approach any further. 

Critical discussion of the issues considered in this article 

with references to the extensive literature, in a wider context 

and from viewpoints differing from that presented here, can 

be found in, for example, Oakes ( 1986) and Gigerenzer et 

al. (1989) . 

2. TESTING STATISTICAL HYPOTHESES 

The modern theory of testing hypotheses began with Stu

dent's discovery of the l test in 1908. This was followed by 
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Fisher with a series of papers culminating in his book Sta

tistical Methods for Research Workers (1925), in which he 

created a new paradigm for hypothesis testing. He greatly 

extended the applicability of the t test (to the two-sample 

problem and the testing of regression coefficients) and gen

eralized it to the testing of hypotheses in the analysis of vari

ance. He advocated 5% as the standard level (with I% as a 

more stringent alternative) ; through applying this new 

methodology to a variety of practical examples, he established 

it as a highly popular statistical approach for many fields of 

science. 

A question that Fisher did not raise was the origin of his 

test statistics: Why these rather than some others? This is 

the question that Neyman and Pearson considered and which 

(after some preliminary work in Neyman and Pearson 1928) 

they later answered (Neyman and Pearson 1933a). Their 

solution involved not only the hypothesis but also a class of 

possible alternatives and the probabilities of two kinds of 

error: false rejection (Error I) and false acceptance (Error II). 

The "best" test was one that minimized PA (Error II) subject 

to a bound on PH (Error I), the latter being the significance 

level of the test. They completely solved this problem for the 

case of testing a simple (i.e., single distribution) hypothesis 

against a simple alternative by means of the Neyman

Pearson lemma. For more complex situations, the theory 

required additional concepts, and working out the details of 

this program was an important concern of mathematical 

statistics in the following decades. 

The Neyman-Pearson introduction to the two kinds of 

error contained a brief statement that was to become the 

focus of much later debate. " Without hoping to know 

whether each separate hypothesis is true or false", the authors 

wrote, "we may search for rules to govern our behavior with 

regard to them, in following which we insure that, in the 

long run of experience, we shall not be too often wrong." 

And in this and the following paragraph they refer to a test 

(i.e., a rule to reject or accept the hypothesis) as "a rule of 

behavior". 

3. INDUCTIVE INFERENCE 
VERSUS INDUCTIVE BEHAVIOR 

Fisher considered statistics, the science of uncertain in

ference, able to provide a key to the long-debated problem 

of induction. He started one paper (Fisher 1932, p. 257) with 

the statement "Logicians have long distinguished two modes 

of human reasoning, under the respective names of deductive 

and inductive reasoning. . . . In inductive reasoning we at

tempt to argue from the particular, which is typically a body 

of observational material, to the general, which is typically 

a theory applicable to future experience." He developed his 

ideas in more detail in a later paper (Fisher I935a, p. 39) 

. .. everyone who does habitually attempt the difficult task of 
making sense of figures is, in fact, essaying a logical process of 
the kind we call inductive, in that he is attempting to draw in
ferences from the particular to the general. Such inferences we 
recognize to be uncertain inferences. 

He continued in the next paragraph: 

Although some uncertain inferences can be rigorously expressed 
in terms of mathematical probability, it does not follow that 

mathematical probability is an adequate concept for the rigorous 
expression of uncertain inferences of every kind . . . . The in
ferences of the classical theory of probability are all deductive in 
character. They are statements about the behaviour of individuals, 
or samples, or sequences of samples, drawn from populations 
which are fully known .. .. More generally, however, a math
ematical quantity of a different kind, which I have termed math
ematical likelihood, appears to take its place [i.e., the place of 
probability] as a measure of rational belief when we are reasoning 
from the sample to the population. 

Neyman did not believe in the need for a special inductive 

logic but felt that the usual processes of deductive thinking 

should suffice. More specifically, he had no use for Fisher's 

idea of likelihood. In his discussion of Fisher's 1935 paper 

(Neyman, 1935, p. 74, 75) he expressed the thought that it 

should be possible "to construct a theory of mathematical 

statistics ... based solely upon the theory of probability," 

and went on to suggest that the basis for such a theory can 

be provided by "the conception of frequency of errors in 

judgment." This was the approach that he and Pearson had 

earlier described as "inductive behavior"; in the case of hy

pothesis testing, the behavior consisted of either rejecting the 

hypothesis or (provisionally) accepting it. 

Both Neyman and Fisher considered the distinction be

tween "inductive behavior" and "inductive inference" to lie 

at the center of their disagreement. In fact, in writing ret

rospectively about the dispute, Neyman (1961, p. 142) said 

that "the subject of the dispute may be symbolized by the 

opposing terms "inductive reasoning" and "inductive be

havior." How strongly Fisher felt about this distinction is 

indicated by his statement in Fisher (1973, p. 7) that "there 

is something horrifying in the ideological movement repre

sented by the doctrine that reasoning, properly speaking, 

cannot be applied to empirical data to lead to inferences 

valid in the real world." 

4. FIXED LEVELS VERSUS p VALUES 

A distinction frequently made between the approaches of 

Fisher and Neyman-Pearson is that in the latter the test is 

carried out at a fixed level, whereas the principal outcome 

of the former is the statement of a p value that may or may 

not be followed by a pronouncement concerning significance 

of the result. 

The history of this distinction is curious. Throughout the 

19th century, testing was carried out rather informally. It 

was roughly equivalent to calculating an (approximate) p 

value and rejecting the hypothesis if this value appeared to 

be sufficiently small. These early approximate methods re

quired only a table of the normal distribution. With the ad

vent of exact small-sample tests, tables of X 2 , 1, F , ... were 

also required. Fisher, in his 1925 book and later, greatly 

reduced the needed tabulations by providing tables not of 

the distributions themselves but of selected quantiles. (For 

an explanation of this very influential decision by Fisher see 

Kendall [ 1963]. On the other hand Cowles and Davis [ 1982] 

argue that conventional levels of three probable errors or 

two standard deviations, both roughly equivalent [in the 

normal case] to 5% were already in place before Fisher.) 

These tables allow the calculation only of ranges for the p 

values; however, they are exactly suited for determining the 
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critical values at which the statistic under consideration be

comes significant at a given level. As Fisher wrote in ex

plaining the use of his X 2 table ( 1946, p. 80): 

In preparing this table we have borne in mind that in practice we 

do not want to know the ex.act value of P for any observed X2 , 

but, in the first place, whether or not the observed value is open 
to suspicion. If Pis between .I and .9, there is certainly no reason 
to suspect the hypothesis tested. If it is below .02, it is strongly 

indicated that the hypothesis fails to account for the whole of the 
facts. We shall not often be astray if we draw a conventional line 

at .05 and consider that higher values of X2 indicate a real dis

crepancy. 

Similarly, he also wrote ( 1935, p. 13) that "it is usual and 

convenient for experimenters to take 5 percent as a standard 

level of significance, in the sense that they are prepared to 

ignore all results which fail to reach this standard . . . " 

Fisher's views and those of some of his contemporaries 

are discussed in more detail by Hall and Selinger (1986) . 

Neyman and Pearson followed Fisher's adoption of a fixed 

level. In fact, Pearson ( 1962, p. 395) acknowledged that they 

were influenced by" [Fisher's) tables of 5 and I% significance 

levels which lent themselves to the idea of choice, in advance 

of experiment, of the risk of the 'first kind of error' which 

the experimenter was prepared to take." He was even more 

outspoken in a letter to Neyman of April 28, 1978 (unpub

lished; in the Neyman collection of the Bancroft Library, 

University of California, Berkeley): "If there had not been 

these % tables available when you and I started work on 

testing statistical hypotheses in 1926, or when you were 

starting to talk on confidence intervals, say in 1928, how 

much more difficult it would have been for us! The concept 

of the control of I st kind of error would not have come so 

readily nor your idea of following a rule of behaviour. . . . 

Anyway, you and I must be grateful for those two tables in 

the 1925 Statistical Methods for Research Workers." (For 

an idea of what the Neyman-Pearson theory might have 

looked like had it been based on p values instead of fixed 

levels, see Schweder 1988.) 

It is interesting to note that unlike Fisher, Neyman and 

Pearson ( 1933a, p. 296) did not recommend a standard level 

but suggested that "how the balance [between the two kinds 

of error] should be struck must be left to the investigator," 

and (1933b, p. 497) "we attempt to adjust the balance be

tween the risks P1 and P11 to meet the type of problem be

fore us." 

It is thus surprising that in SMSI Fisher ( 1973, p. 44-45) 

criticized the NP use of a fixed conventional level. He ob

jected that 

the attempts that have been made to explain the cogency of tests 
of significance in scientific research, by reference to supposed 

frequencies of possible statements, based on them, being right or 
wrong, thus seem to miss the essential nature of such tests. A 

man who ·rejects' a hypothesis provisionally, as a matter of ha
bitua1 practice, when the significance is I% or higher, will certainly 

be mistaken in not more than I% of such decisions . .. . However, 
the calculation is absurdly academic, for in fact no scientific worker 
has a fixed level of significance at which from year to year, and 
in all circumstances, he rejects hypotheses; he rather gives his 

mind to each particular case in the light of his evidence and his 
ideas. 

The difference between the reporting of a p value or that 

of a statement of acceptance or rejection of the hypothesis 
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was linked by Fisher in Fisher (1973, pp. 79-80), to the 

distinction between drawing conclusions or making deci

sions. 

The conclusions drawn from such tests constitute the steps by 
which the research worker gains a better understanding of his 

experimental material, and of the problems which it presents. 
.. More recently, indeed, a considerable body of doctrine has 

attempted to explain, or rather to reinterpret, these tests on the 
basis of quite a different model, namely as means to making de
cisions in an acceptance procedure. 

Responding to earlier versions of these and related objec

tions by Fisher to the Neyman-Pearson formulation, Pearson 

( 1955, p. 206) admitted that the terms "acceptance" and 

"rejection" were perhaps unfortunately chosen, but of his 

joint work with Neyman he said that "from the start we 

shared Professor Fisher's view that in scientific inquiry, a 

statistical test is 'a means of learning' " and "I would agree 

that some of our wording may have been chosen inade

quately, but I do not think that our position in some respects 

was or is so very different from that which Professor Fisher 

himself has now reached." 

The distinctions under discussion are of course related to 

the argument about "inductive inference" vs. "inductive be

havior," but in this debate Pearson refused to participate. 

He concludes his response to Fisher's 1955 attack with: 

"Professor Fisher's final criticism concerns the use of the 

term 'inductive behavior'; this is Professor Neyman's field 

rather than mine." 

5. POWER 

As was mentioned in Section 2, a central consideration 

of the Neyman-Pearson theory is that one must specify not 

only the hypothesis H but also the alternatives against which 

it is to be tested. In terms of the alternatives, one can then 

define the type II error (false acceptance) and the power of 

the test (the rejection probability as a function of the alter

native) . This idea is now fairly generally accepted for its 

importance in assessing the chance of detecting an effect 

(i.e., a departure from H) when it exists, determining the 

sample size required to raise this chance to an acceptable 

level, and providing a criterion on which to base the choice 

of an appropriate test. 

Fisher never wavered in his strong opposition to these 

ideas. Following are some of his objections: 

I. A type II error consists in falsely accepting H, and 

Fisher (1935b, p. ) emphasized that there is no reason for 

"believing that a hypothesis has been proved to be true merely 

because it is not contradicted by the available facts." This is 

of course correct, but it does not diminish the usefulness of 

power calculations. 

2. A second point Fisher raised is, in modern terminology, 

that the power cannot be calculated because it depends on 

the unknown alternative. For example (Fisher 1955, p. 73), 

he wrote: 

The frequency of the 1st class [type I error] .. . is calculable and 

therefore controllable simply from the specification of the null 

hypothesis. The frequency of the ·2nd kind must depend ... 

greatly on how closely they [rival hypotheses] resemble the null 
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hypothesis. Such errors are therefore incalculable . . . merely 
from the specification of the null hypothesis, and would never 
have came into consideration in the theory only of tests of sig
nificance, had the logic of such tests not been confused with that 
of acceptance procedures. (He discussed the same point in Fisher 
1947,p. l6-17.) 

Fisher was of course aware of the importance of power, 

as is clear from the following remarks (1947, p. 24): "With 

respect to the refinements of technique, we have seen above 

that these contribute nothing to the validity of the experiment 

and of the test of significance by which we determine its 

result. They may, however, be important, and even essential, 

in permitting the phenomenon undertest to manifest itself." 

The section in which this statement appears is tellingly en

titled "Qualitative Methods of Increasing Sensitiveness." 

Fisher accepted the importance of the concept but denied 

the possibility of assessing it quantitatively. 

Later in the same book Fisher made a very similar dis

tinction regarding the choice of test. Under the heading 

"Multiplicity of Tests of the Same Hypothesis," he devoted 

a section (sec. 61) to this topic. Here again, without using 

the term, he referred to alternatives when he wrote (Fisher 

1947, p. 182) that "we may now observe that the same data 

may contradict the hypothesis in any of a number of different 

ways." After illustrating how different tests would be appro

priate for different alternatives, he continued (p. 185): 

The notion that different tests of significance are appropriate to 
test different features of the same null hypothesis presents no 
difficulty to workers engaged in practical experimentation but 
has been the occasion of much theoretical discussion among stat
isticians. The reason for this diversity of view-point is perhaps 
that the experimenter is thinking in terms of observational values, 
and is aware of what observational discrepancy it is which interests 
him, and which he thinks may be statistically significant, before 
he inquires what test of significance, if any, is available appropriate 
to his needs. He is, therefore, not usually concerned with the 
question: To what observational feature should a test of signifi
cance be applied? 

The idea that there is no need for a theory of test choice, 

because an experienced experimenter knows what is the ap

propriate test, is expressed more strongly in a letter toW. E. 

Hick of October 1951 (Bennett 1990, p. 144), who, in asking 

about "one-tail" vs. "two-tail" in X2 , had referred to his lack 

of knowledge concerning "the theory of critical regions, 

power, etc.": 

I am a little sorry that you have been worrying yourself at all with 
that unnecessarily portentous approach to tests of significance 
represented by the Neyman and Pearson critical regions, etc. In 
fact , I and my pupils throughout the world would never think of 
using them. If I am asked to give an explicit reason for this I 
should say that they approach the problem entirely from the wrong 
end, i.e., not from the point of view of a research worker, with a 
basis of well grounded knowledge on which a very fluctuating 
population of conjectures and incoherent observations is contin
ually under examination. In these circumstances the experimenter 
does know what observation it is that attracts his attention. What 
he needs is a confident answer to the question "ought I to take 

any notice of that?" This question can, of course, and for refine
ment of thought should, be framed as "Is this particular hypothesis 
overthrown, and if so at what level of significance, by this particular 
body of observations?" It can be put in this form unequivocally 
only because the genuine experimenter already has the answers 
to all the questions that the followers of Neyman and Pearson 
attempt, I think vainly, to answer by merely mathematical con
sideration. 

6. CONDITIONAL INFERENCE 

While Fisher's approach to testing included no detailed 

consideration of power, the Neyman-Pearson approach 

failed to pay attention to an important concern raised by 

Fisher. To discuss this issue, we must begin by considering 

briefly the different meanings that Fisher and Neyman attach 

to probability. 

For Neyman, the idea of probability is fairly straightfor

ward: It represents an idealization of long-run frequency in 

a long sequence of repetitions under constant conditions (see, 

for example, Neyman 1952, p. 27 ; 1957, p. 9). Later (Ney

man 1977), he pointed out that by the law oflarge numbers, 

this idea permits an extension: If a sequence of independent 

events is observed, each with probability p of success, then 

the long-run success frequency will be approximately p even 

if the events are not identical. This property adds greatly to 

the appeal and applicability of a frequentist probability. In 

particular, it is the way in which Neyman came to interpret 

the value of a significance level. 

On the other hand, the meaning of probability is a problem 

with which Fisher grappled throughout his life. Not surpris

ingly, his views too underwent some changes. The concept 

at which he eventually arrived is much broader than Ney

man's: "In a statement of probability, the predicand, which 

may be conceived as an object, as an event, or as a propo

sition, is asserted to be one of a set of a number, however 

large, of like entities of which a known proportion, P, have 

some relevant characteristic, not possessed by the remainder. 

It is further asserted that no subset of the entire set, having 

a different proportion, can be recognized" (Fisher 1973, p. 

113) . It is this last requirement, Fisher's version of the "re

quirement of total evidence" (Carnap 1962, sec. 45), which 

is particularly important to the present discussion. 

Example 1 (Cox 1958) . Suppose that we are concerned 

with the probability P(X s; x), where Xis normally distrib

uted as N(p. , I) or N(p., 4), depending on whether the spin 

of a fair coin results in heads (H) or tails (T). Here the set 

of cases in which the coin falls heads is a recognizable subset; 

therefore, Fisher would not admit the statement 

P(X s; x) = - <l>(x- p.) + -<I> --I I (x- p.) 
2 2 2 

(I) 

as legitimate. Instead, he would have required P(X s; x) to 

be evaluated conditionally as 

P(X s xiH) = <l>(x- p.) or 

(
X- p.) 

P(X s; xiT) =<I> - 2- , (2) 

depending on the outcome of the spin. 

On the other hand, Neyman would have taken (I) to pro

vide the natural assessment of P( X s; x). Despite this pref

erence, there is nothing in the Neyman-Pearson (frequentist) 

approach to prevent consideration of the conditional prob

abilities (2) . The critical issue from a frequentist viewpoint 

is what to consider as the relevant replications of the exper

iment: a sequence of observations from the same normal 
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distribution or a sequence of coin tosses, each followed by 

an observation from the appropriate normal distribution. 
Consider now the problem of testing H : fJ. = 0 against the 

simple alternative fJ. = I on the basis of a sample X,, ... , 

Xn from the distribution (1). The Neyman-Pearson lemma 

would tell us to reject H when 

~ . _1_ e -k(X;-1)2/ 2 + ~ _ 1_ e - k( X;-1)2/ 8 

2 {2; 2 2& 

K[ i I - ~ x , / 2 I I - Lx2;s] 
~ ---e"' +---e ' 

2{2; 2 2fu , 
(3) 

where K is determined so that the probability of (3) when fJ. 

= 0 is equal to the specified level a . 

On the other hand, a Fisherian approach would adjust the 

test to whether the coin falls H or T and would use the re

jection region 

when the coin falls H (4) 

and 

when the coin falls T, (5) 

where K 1 and K2 are determined so that the null probability 

of both (4) and (5) is equal to a . It is easily seen that these 

two tests are not equivalent. Which one should we prefer? 

Test (3) has the advantage of being more powerful in the 

sense that when the full experiment of spinning a coin and 

then taking n observations on X is repeated many times, and 

when fJ. = I, this test will reject the hypothesis more fre
quently. 

The second test has the advantage that its conditional level 

given the outcome of the spin is a both when the outcome 

is H and when it is T. [The conditional level of the first test 

will be <a for one of the two outcomes and >a for the 

other.] 
Which of these considerations is more important depends 

on the circumstances. Echoing Fisher, we might say that we 

prefer (I) in an acceptance sampling situation where interest 

focuses not on the individual cases but on the long-run fre

quency of errors, but that we would prefer the second test 

in a scientific situation where long-run considerations are 

irrelevant and only the circumstances at hand (i.e., H or T) 

matter. As Fisher put it (1973, p. 101-102), referring to a 

different but similar situation: "It is then obvious at the time 

that the judgment of significance has been decided not by 

the evidence of the sample, but by the throw of a coin. It is 

not obvious how the research worker is to be made to forget 

this circumstance, and it is certain that he ought not to forget 

it, if he is concerned to assess the weight only of objective 
observational facts against the hypothesis in question." 

The present example is of course artificial, but the same 

issue arises whenever there exists an ancillary statistic (see, 

for example, Cox and Hinkley 1974; Lehmann 1986) , and 
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it seems to lie at the heart of the cases in which the two 

theories disagree on specific tests. The two most prominent 

of these cases are discussed in the next section. 

7. TWO EXAMPLES 

For many problems, a pure Fisherian or Neymann

Pearsonian approach will lead to the same test. Suppose in 

particular that the observations X follow a distribution from 

an exponential family with density 

Pe,a(x) = C(O, Cl)eeu<x)+L\.,a,T,(x) 

and consider testing the hypothesis 

H : 8 = 80 

(6) 

(7) 

against the one-sided alternatives 8 > 80 • Then Fisher would 

condition on T= ( T 1 , • • • , Tk)and would in the conditional 

model consider it natural to calculate the p value as the con

ditional probability of U ~ u, where u is the observed value 

of U. At a given level a, the result would be declared sig

nificant if U ~ C(t), where C(t) is determined by 

P(U> C(t)JT= t] =a. (8) 

A Neyman-Pearson viewpoint would lead to the same test 

as being uniformly most powerful among all similar tests. 

But as we have seen in Example I, the two approaches do 

not always lead to the same result. We next consider the two 

examples that have engendered the most controversy. 

Example 2: The 2 X 2 table with one fixed margin. Let 

X, Y be two independent binomial variables with suc

cess probabilities p1 and P2 and corresponding to m and n 
trials. The problem of testing H: p2 = p1 against the al

ternatives p2 > p 1 is of the form given by (6) and (7) with 

8 = log[(P2/Q2)/(p,/q,)J , T = X+ Y and U = Y . Ba
sically, there is therefore no conflict between the two ap

proaches. However, because of the discreteness of the con

ditional distribution of U given t, condition (8) typically 

cannot be satisfied. Fisher's exact test then chooses C(t) to 

be the largest constant for which 

P(U> C(t)jT= t] sa. (9) 

For small values oft, this may lead to conditional levels 

substantially less than a; for small m and n, the same may 

be true for the unconditional level. For this reason, Fisher's 

exact test has been criticized as being too conservative. Many 

alternatives have been proposed for which the unconditional 

level (which is a function of p1 = p2 ) is much closer to a. 

Upton (1982) lists 22; for other surveys, see Yates (1984) 

and Agresti (1992). 

The issues are similar to those encountered in Example 

I. If conditioning is considered appropriate (and in the pres

ent case it typically is), and if control of type I error at level 

a is considered essential, then the only sensible test available 

is of the form U > C(t), where C(t) is the largest value 
satisfying (9) . If, on the other hand, only the unconditional 

performance is considered relevant, then we may allow the 

conditional level of the region U > C( t) to exceed a for some 

values oft in such a way that the unconditional level (which 

is the expected value of the conditional level) gets closer to 
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a while remaining ,;a for all values of p2 = p1 • This is es

sentially what the alternatives to Fisher's exact tests try to 

achieve. (The same issues arise also when analyzing 2 X 2 

tables in which none of the margins are fixed.) 

Example 3: Behrens-Fisher problem. Here we are deal

ing with independent samples X 1 , ••• , Xm and Y1 , ••• , Y. 

from normal distributions N(~. u 2 ) and N( 11. r 2 ) and we 

wish to test the hypothesis H: 11 = ~- Against the two-sided 

alternatives 11 "fo t there is general agreement that the rejection 

region should be of the form 

(10) 

where S~ and S:\- are the usual estimators of u 2 and r 2 . 

Suppose that we consider it appropriate, as Fisher does, 

to carry out the analysis conditionally on the value of 

S~ 1 S:\-. If the conditional distribution of the left side of(IO) 

given S~ 1 S:\- = c were independent of the parameters and 

hence known, there would be no problem. Everyone would 

<wree to calc.ulatey J;O 1hat the cnnd.i.tinnal Ji'v.el.i~a..fur i'.&:b 

c. which would then also result in an unconditional level 

identically equal to a. Unfortunately, the conditional dis

tribution depends on the unknown variances. Two principal 

ways out of this difficulty have been proposed. 

I. From a Neyman-Pearson point of view, the attempt 

has been to construct a function g for which the probability 

of (I 0) is =a under H for all u and r (it actually depends 

only on the ratio 8 = r 2 1 cr 2 ). After much effort in this di

rection, it became clear that an acceptable function g satis

fying this condition does not exist. But Welch and Aspin 

have produced tests whose level differs from a so little over 

the entire range of 8 that, for all practical purposes, they can 

be viewed as solutions to the problem. (For a discussion and 

references see, for example, Stuart and Ord 1991, sec. 20.33.) 

2. These tests are unacceptable to Fisher, however, be

cause they admit recognizable subsets. In particular, Fisher 

( 1956) produced an example for which the conditional level 

given S~ 1 S:\- = I is always >a + c for some positive c. 

Fisher's own solution to the problem is the so-called Behrens

Fisher test, which he derived by means of a fiducial argument. 

Although it does not follow from this derivation, numerical 

evidence (Robinson 1976) strongly suggests that this test is 

conservative; that is, its unconditional level is always <a. 
But a proof of this fact for all m , n, and 8 is not yet available. 

Let us call a set C in the sample space for which there 

exists c > 0 such that 

PH[rejectingl X E C] >a+ c for all distributions in H , 

a liberally biased relevant subset. (The corresponding concept 

for confidence intervals is called negatively biased.) Robinson 

( 1976) showed that no such subsets exist for the Behrens

Fisher test. (Because of this test's conservative nature, this 

is perhaps not too surprising.) He proposed calling a test 

conservative if its unconditional level is always ,;a and if it 

does not admit a liberally biased relevant subset, and ex-

pressed the hope that "perhaps the Behrens-Fisher test is 

optimal in some sense among the class of procedures which 

are conservative" (Robinson 1976, p. 970). This conjecture 

seems to have been disproved by Linssen ( 1991). 

8. ONE THEORY OR TWO? 

From the preceding sections it is clear that considerable 

differences exist between the viewpoints of Fisher and 

Neyman-Pearson. Are these sufficiently contradictory to 

preclude a unified theory that would combine the best fea

tures of both? 

A first difference, discussed in Section 4, concerns the re

porting of the conclusions of the analysis. Should this consist 

merely of a statement of significance or nonsignificance at 

a given level, or should a p value be reported? The original 

reason for fixed, standardized levels-unavailability of more 

detailed tables-no longer applies, and in any case reporting 

the p value provides more information. On the other hand, 

definite decisions or conclusions are often required. Addi

tionally, in view of the enormously widespread use of testing 

at many different levels of sophistication, some statisticians 

(and journal editors) see an advantage in standardization; 

fortunately, tli.is is a case where you can have your cake and 

eat it too. One should routinely report the p value and, where 

desired, combine this with a statement on significance at any 

stated level. (This was in fact common practice throughout 

the 19th Century and is the procedure frequently used by 

Fisher.) Two other principal differences, considered in Sec

tions 5 and 6, are the omissions of power (by Fisher) and of 

conditioning (by Neyman-Pearson). It seems clear that a 

unified approach needs to incorporate both of these ideas. 

For some problems this will cause no difficulty, because 

both approaches will lead to the same test, as illustrated at 

the beginning of Section 7. But the principles of conditioning 

on the one hand and of maximizing the unconditional power 

on the other may be in conflict, as is seen from Examples 

1-3. This conflict disappears when it is realized that in such 

cases priority must be given to deciding on the appropriate 

frame of reference; that is, the real or hypothetical sequence 

of events that determine the meaning of any probability 

statement. Only after this has been settled do probabilistic 

concepts such as level and power acquire meaning, and it is 

only then that the problem of maximizing power comes into 

play. 

This leaves the combined theory with its most difficult 

issue: What is the relevant frame of reference? It seems clear 

that even in the simplest situations (such as Ex. I), no uni

versal answer is possible. In any specific case, the solution 

will depend on contextual considerations that cannot easily 

be captured by a general theory. 

That conflicting considerations argue for different solu

tions in specific cases is not an indictment of a theory, pro

vided that the theory furnishes a basis for discussing the is

sues. Although Neyman and Pearson never seem to have 

raised the problem of just what constitutes a replication of 

an experiment, this question is as important for a frequentist 

as it is for an adherent of Fisherian probability. This was 

recognized, for example, by Bartlett (1984, p. 453), who 
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stated "I regard the 'frequence requirement of repeated sam
pling' as including conditional inferences." A common basis 
for the discussion of various conditioning concepts, such as 
ancillaries and relevant subsets, thus exists. The proper choice 
of framework is a problem needing further study. 

We conclude by considering some more detailed issues 
and by reviewing Examples 2 and 3 from the present point 
of view. 

I. Both Neyman-Pearson and Fisher would give at most 
lukewarm support to standard significance levels such as 5% 
or I%. Fisher, although originally recommending the use of 
such levels, later strongly attacked any standard choice. 
Neyman-Pearson, in their original formulation of 1933, rec
ommended a balance between the two kinds of error (i.e., 
between level and power). For a disucssion of how to achieve 
such a balance, see, for example, Sanathanan (1974). Both 
level and power should of course be considered conditionally 
whenever conditioning is deemed appropriate. Unfortu
nately, this is not possible at the planning stage. 

2. A second point on which there appears to be no conflict 
between the two approaches is "truth in advertising." Even 
if a particular nominal level a, say 5%, is the target, when it 
cannot be achieved because of discreteness the test should 
not just be described as conservative or liberal relative to the 
nominal level; instead, the actual (conditional or uncondi
tional) level should be stated. If this level is not known be
cause it depends on unknown parameters, at least its range 
should be given and, if possible, also an estimated value. 

3. In both the 2 X 2 example and the Behrens-Fisher 
problems, the conflict between the solutions proposed by the 
two schools is often discussed as that of a desire for a similar 
test (i.e., one for which the unconditional level is =a) versus 
a suitable conditional test. The issue becomes clearer if one 
asks for the reason that Neyman-Pearson proposed the con
dition of similarity. The explanation begins with the case of 
a simple hypothesis where these authors take it for granted 
that in order to maximize the power, one would want the 
attained level to be equal to rather than less than a. For a 
composite hypothesis H, they therefore stated that the level 
should equal a for each of the simple hypotheses making up 
H . The requirement for similarity thus has its origin in the 
desire to maximize power, the issue discussed in Section 5. 

In the light of (I) and (2), a unified theory less concerned 
with standard nominal levels might jettison not only the 
demand for similarity but also that of conservatism relative 
to a nominal level. 

When similarity cannot be achieved and conservation is 
not required, various compromise solutions may be available. 
Thus in the 2 X 2 case of Example 2, one could, for example, 
select for each t the conditional level closest to a. If this 
seems too permissive, then the rule could be modified by 
adding a cap on the conditional level beyond which one 
would not go. Tests with a variable conditional level that 
will sometimes be <a and sometimes >a have been discussed 
by Barnard (1989) under the name "flexible Fisher." Alter
natively, one might give up on a nominal level altogether 
and instead for each t adjust the level to the attainable (con
ditional) power. 
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The situation is much more complicated for the Behrens
Fisher problem. On the one hand, the arguments for con
ditioning an st IS~ seems less compelling; on the other 
hand, even if this conditioning requirement is accepted, the 
conditional distribution depends on unknown parameters, 
and thus it is less clear how to control the conditional level. 
Robinson's formulation, mentioned in Section 7, provides 
an interesting possibility but requires much further investi
gation. But such work can be carried out from the present 
point of view by combining considerations of both condi
tioning and power. 

To summarize, p values, fixed-level significance state
ments, conditioning, and power considerations can be com
bined into a unified approach. When long-term power and 
conditioning are in conflict, specification of the appropriate 
frame of reference takes priority, because it determines the 
meaning of the probability statements. A fundamental gap 
in the theory is the lack of clear principles for selecting the 
appropriate framework. Additional work in this area will 
have to come to terms with the fact that the decision in any 
particular situation must be based not only on abstract prin
ciples but also on contextual aspects. 

{Received January 1992. Revised February 1993.} 
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