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ABSTRACT

The Fit of Empirical Data to Two Latent Trait Models

September 1981

Leah R. Hutten, B.A., University of Wisconsin-Madison

Ed.D., University of Massachusetts

Directed by: Ronald K. Hambleton

Fit of data to the Rasch and three-parameter logistic

latent trait models was explored with 25 empirical datasets.

Deviations in data from latent trait model assumptions were the

primary variables of interest. The study also investigated

estimation precision for small samples and short test lengths and

evaluated costs for latent trait parameter estimation by the two

latent trait models.

Ability and item parameters were estimated under the assump-

tions of the Rasch and three-parameter models for tests with 40

items and 1000 examinees. Estimated parameters were substituted

for true parameters to make predictions about number-correct score

distributions. When ability is known, a theorem by Lord (1980)

equates ability with the conditional distribution of number-correct

scores. Predicted score distributions were compared to observed

score distributions with statistical and graphical techniques. Both

Kolmogorov-Smirnov and Chi-square test statistics were obtained.

The importance of three latent trait model assumptions,
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unidimensionality, equality of item discrimination indices, and no

guessing were assessed with correlation analyses. Estimation pre-

cision for short tests of only 20 items, and small samples of 250

examinees were evaluated with correlation methods and average ab-

solute differences between estimates. CPU time and cost were

tallied for estimations by each model and summary statistics were

gathered for comparison purposes.

Both the Rasch and three-parameter models demonstrated reason-

ably good fit to most of the 25 tests. Only one test deviated greatly

from the two models. Five tests did not appear to fit very well

when the chi-square was employed as the criterion. The chi-square

test was more rigid than the Kolmogorov-Smirnov test and tended to

be very sensitive to irregularities and lack of normality in observed

score distributions. Graphic results tended to support outcomes of

the Kolmogorov-Smirnov test.

Overall, the Rasch model fit data as well as the three-

parameter model. Average K-S statistics across the 25 tests were

1.304 for the Rasch model and 1.289 for the three-parameter model.

For 65 percent of the tests, the three-parameter model fit data

better than the Rasch model, although in most cases, fit statistics

for the two models were very close. Similar results were obtained

with chi-square measures, although these statistics favored three-

parameter model fit somewhat. Graphic evidence demonstrated how

analogous fit was for the two models.
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Ldck of unidimonsional i ty was found to bo a primary causo

for misfit of models to the data. Correlations between fit statis-

tics and indices of unidimensionality were significant at the .05

level of probability for both the Rasch and three-parameter models.

A weak relationship was found between equality of item discrimina-

tion indices and fit to the Rasch model. Generally, data with more

equal item discriminations fit both models slightly better than other

data. Underestimation of the amount of guessing for both models

resulted in less adequate model fit. Sample sizes were not suffi-

cient for obtaining accurate estimates of guessing.

Ability estimates from short 20-item tests were somewhat more

precise for the Rasch model than for the three-parameter model.

Generally, good estimates of ability from short tests were obtained

from both models. Correlations between ability estimates on short

and longer tests were .923 for the Rasch model and .866 for the

three-parameter model

.

Estimates of item difficulty made on samples of 250 examinees

in contrast to larger samples (N=1000) were very good for both models.

Estimates of other item parameters from samples of 250 examinees were

not very accurate. Item discrimination estimates from small samples

were reasonable, but estimates of guessing were very poor. The

results indicated that samples of at least 1000 examinees are needed

to obtain stable estimates of parameters for the three-parameter

model. Smaller samples suffice for obtaining Rasch difficulty esti-

mates .
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The cost and computer time for simultaneous estimation of

ability and item parameters for the Rasch model was one-third that

for the three-parameter model. For 25 tests, the average Rasch

model estimation cost $12.50 in contrast to $35.12 for the three-

parameter model. When item parameters were known in advance, and

only abilities were estimated, the cost of estimation by the two

models was identical. These results suggest that in the long run,

the differences in cost between estimation by the Rasch and three-

parameter models is negligible.
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CHAPTER I

INTRODUCTION

Item response theory, or latent trait theory as it is commonly

known, was proposed over twenty-five years ago by Frederic Lord (1952)

in the United States and coincidentally by Georg Rasch {I960) in

Denmark. Lord's work focused on exploring relationships between

ability and the probability of responding correctly to items designed

to measure ability. A function describing examinee success in terms

of ability was called an item characteristic curve (ICC) by Lord and

formed the basis for latent trait theory.

Lord postulated the shapes of ICC's to be normal ogives and

showed that their form could be derived if certain assumptions are

made (Lord & Novick, 1968). These models are characterized in the

general case by three parameters; one describing the point of inflexion

in the curve, one describing the slope, and one characterizing the

lower asymptote. Practically these parameters translate into item

difficulty, item discrimination, and guessing, respectively. Later,

in conjunction with Birnbaum (1968), Lord determined that substituting

logistic curves of the form e^/(l+ex) for normal ogives reduced cal-

culation difficulties and made the models mathematically tractable.

Throughout most of its early development, latent trait theory remained

a theoretical description with little practical relevance due to

1



mathematical and computational complexities in estimating latent

trait parameters.

2

Concurrently with the development of the two- and three-

parameter models in the United States, Georg Rasch (1960), a Danish

mathematician, independently derived a theory of test scores which

turned out to be a very interesting, albeit a special case of the

work in progress by Lord and Birnbaum. As a mathematician, Rasch

had studied scales of measurement in the physical world. He believed

that mental measurement could be as objective as physical measurement.

Mental measures were classically derived from sample-based statistics,

a tenet which forms the basis of classical test theory. Conventional

scores on mental measures are reported as relative positions in some

reference group composed of items and people. Rasch proposed sample-

invariant measurement on an objective scale which described both items

and people. The scale when applied to people measured ability. When

applied to items, the scale measured difficulty. Rasch proposed a

theory of measurement which associated the probability of examinee

success on items with underlying ability. Although logically, the

Rasch model is derived from the contention that measurement should be

objective, mathematically, the Rasch model is the simplest case of the

more general logistic models. The slopes of Rasch ICC's are equal

(equal item discrimination) and the lower asymptotes are all zero

(no guessing)

.
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Purpose of the Research

Because of the historically separate origins of latent trait

models, little comparative research has been performed with the

models. The current study was undertaken to highlight some simi-

larities and differences between two latent trait models. Specific-

ally, the purpose of the study was to compare the Rasch (or one-

parameter) logistic model with the Birnbaum (or three-parameter)

logistic model by fitting the models to empirical data.

Proponents for both models have asserted that their model is

most appropriate for describing test behavior, yet little empirical

evidence has emerged to confirm these claims. Practitioners have

relied primarily upon theoretical assertions to select from the

latent trait models. This research was designed to provide concrete

information about the dynamics of the latent trait models particularly

as they apply to estimating ability.

The study examined fit of the models to empirical data. Model

fit was systematically analyzed in terms of deviations from latent

trait model assumptions occurring in the data. This comparison is

important because of the potential ramifications, legal or otherwise,

that could result when the assumptions of the models have not been

met. Because imprecise parameter estimates may be another cause for

misfit of models, the study also examined the suitability of the

models in situations where few examinees were available for esti-

mating item parameters. Although there have been many applications

of latent trait theory in nationwide standardized testing programs,

there has been increasing interest in their use by local school



4

systems, the military and by other small scale testing programs.

This part of the study also provided information on the precision

of ability estimates based on short tests, tests typically used in

the classroom. Finally, comparative cost information for estimating

parameters by the two models was collected. While cost should not

usually be the primary reason for selecting one model over the other,

expenses are an important issue today because of shrinking federal,

state, and local education budgets. Because certain models may be

more desirable than others for certain applications, e.g., equating

test scores, the information provided by this study can help practi-

tioners make informed rather than arbitrary decisions about latent

trait model selection.

Research Questions

Because this study was exploratory in nature, no specific

hypotheses were tested, rather the study sought to provide information

in the following areas:

1. What methods can be used to determine that empirical data

meet the underlying assumptions of latent trait models?

The assumptions include unidimensionality (and equivalently,

local independence), equality of item discriminations

(Rasch model), and no guessing (Rasch model). Information

in this area was obtained from a review of the literature.

Various procedures were explored on a trial basis, and

those selected were critically analyzed. Recommendations

were made for how model assumptions can be tested.

2. How is model fit defined and what statistical, graphical,

and practical procedures can be employed to determine

model fit? Three measures of fit were used in the study.

Outcomes based on each measure were compared and suggestions

offered for future research.
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3. Do latont trdit niodGls fit tGSts dGvoloped by convGntional
methods? Which model demonstrates better fit to empirical
data? Fit statistics and graphical evidence of fit of the
Rasch and three-parameter models to 25 empirical data
sets were obtained. Results based on the various methods
of fit were compared.

4. How do deviations from latent trait model assumptions
affect fit of data to the latent trait models? Are the
models robust to violations in their assumptions? For
both models, fit was explored in terms of unidimension-
ality. For the Rascfi model, fit statistics were examined
when equality of item discriminations and guessing assump-
tions were violated in the data. Correlation and partial
correlation techniques were used to provide information
in this area.

5. How precise are estimates of ability made on short tests?
Three measures of precision for short tests were used:
Pearson correlations, Spearman rank order correlations, and
average absolute differences (AAD).

6. How precise are estimates of item parameters from small

samples of examinees? Pearson correlations, Spearman
correlations, and AAD statistics were used to explore pre-

cision of item parameters from small samples.

7. What are the comparative costs (in terms of computer time

and expense) for obtaining parameter estimates of the one-

and three-parameter latent trait models? CPU time and cost

were tallied and compared for parameter estimation under

each model

.

Concepts U tilized in Latent Tra it Theory

A la tent tra it is a skill or ability (or attitude or perception)

which is not directly measurable but can be inferred from examinees'

responses to test items. Conventional estimates of ability, the raw

score or n umber-correct score, differ from the latent trait ability

estimate because the latter is measured on a standard score scale

independent of the number of items on a test. The true score can be

seen as a transformation of ability onto a number-correct score scale.
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Ability estimates in latent trait theory are based on probabilistic

models. When the difficulty level of an item is known it is possible

to draw inferences about ability from scores on single items because

difficulty and ability can be represented on the same scale. Assume

that an item has a difficulty level of "Y-j". If an examinee obtains

a correct response on the item, it is probable that ability is greater

than or equal to Yj (e^Yj)* whereas if the examinee fails the item,

it is probable that ability is less than Yj {0<Yj). When such ability

estimates are made on a sufficient number of items, it is possible

to obtain a good measure of ability. Consistent estimates of ability

can be found when test length is reasonably long. Figure 1 illustrates

differences between conventional and latent trai t methods for estimating

ability. Three hypothetical six-item tests are shown in the figure:

the top line of the figure depicts a test with items of mixed diffi-

culty; the middle line shows an easy test; and the bottom line illus-

trates a hard test. Since latent trait item difficulty estimates are

measured on the same scale as ability, a single scale ranging from 0

to 10 has been arbitrarily chosen for difficulty and ability. An

examinee, v;ith an ability score of 5 (0=5) on this scale, is illustrated

in the figure. The conventional number-right scores for this examinee

on the three tests are 3, 5, and 1, respectively. The conclusions

about examinee ability drawn from conventional scoring of these tests

differ significantly, but the latent trait ability estimate for this

examinee would be the same (disregarding measurement error) regardless

of which test the examinee was administered because of the use of item

difficulty in estimating ability. Items which are tailored to examinees
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ability levels provide excellent estimates of ability. Because

latent trait ability estimates do not depend on the specific sample

or number of items in a test, ability can be estimated with different

sets of items.

Conventional number-right scores are derived without regard to

item characteristics, such as item difficulty. The Rasch model incor-

porates item difficulty into estimating ability. Two additional

item characteristics are considered in the three-parameter model:

item discrimination and guessing. Item discrimination operates as

a weight such that better (more discriminating) items have greater

importance for estimating ability than items which are not very dis-

criminating. Items can be selected so that they are most discrimin-

ating at particular locations on the ability continuum. The Rasch

model makes the assumption that all items are equally discriminating,

a proposition somewhat difficult to meet in practice. If present,

equal item discrimination would be signalled by equal item- total score

correlations

.

The guessing or chance level parameter is the third parameter

in the three-parameter model . It is assumed in the model that the

probability of success on an item may be greater than zero when items

are multiple choice. The chance level parameter is particularly

important for estimating ability at the low end of the ability con-

tinuum where guessing is most likely to occur. When the parameter

is not included, such as the case of the Rasch model, ability esti-

mates for low ability examinees tend to be too high.
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Two important assumptions of both models discussed here are

uni dimensional i ty and the equivalent assumption of local independence.

Unidimensionality means that a test includes items which tap only a

single underlying trait. Although there are multivariate extensions

to latent trait models, these are not considered in this study.

Local independence means that responses to items are statistically

independent: for examinees of the same ability, the portability of

success on an item is not related to the probability of success on

any other item. Local independence is indicated by a lack or

correlation between items for examinees at the same bility level.

Model Descriptions

The latent trait models compared in this study have the

logistic form:

P = e^/(l+e^), [1]

where P is the probability of a correct response. For the Rasch or

one-parameter model, the probability function is given by:

P (0)
e(Q‘bg)

[ 2 ]

and for the three-parameter model the probability of a correct

response is:

gDag(e-bg)

Pg(9) = Cg + (1-Cg) ^^^oag(e-^
[ 3 ]
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These functions relating ability to the probability of a correct

response on an item are known as item characteristic curves (ICC's).

The constant, D, in the three-parameter model is set to 1.7 to

equate the model to the form of the normal ogive function introduced

by Lord in 1952. Ability, 0, is measured on a standard score scale

with practical values in the range -3 to +3. which can be linearly

transformed to any arbitrary scale such as the LOGIT scale which is

seen commonly in practice. Item difficulty, bg, in the equations, is

measured on the same scale as ability, with a practical range from -2

to +2. Item difficulty is the point on the ICC where the probability

of a correct response is .5 if there is no guessing. Item discrim-

ination and guessing parameters apply only to the three-parameter

model. Item discrimination, ag, is measured on a scale ranging from

0 to +2, although in theory the values can be considerably higher.

Negative values of discrimination are possible but usually such items

are deleted from tests. Item discrimination is proportional to the

slope of the ICC at the point of its inflexion. Since item discrimi-

nation values are assumed to be equal, the ag term does not appear in

the Rasch ICC. Some developments of the Rasch model include the mean

item discrimination value, a, in the equation. In this instance the

power of the exponent is; Da(6-bg). The guessing parameter, Cg, or

chance probability level, ranges from 0.0 to 1.0. This parameter

forms the lower left asymptote to the ICC and represents the prob-

ability of success by chance alone. Practical limits for guessing

are 0.0 to 0.5 and are related to the number of item choices. Since
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no guessing is assumed by the Rasch model, the parameter has the

value zero and does not appear in the ICC.

Two item characteristic curves for the three- and one-

parameter models are pictured respectively in Figures 2 and 3. The

slopes of Rasch ICC's are identical and hence all one-parameter ICC's

are parallel. The lower asymptotes of Rasch curves are all zero

indicating no guessing. Three-parameter ICC's usually have different

slopes and may vary in their lower asymptotes.

Importance of Latent Trait Theory

Research in latent trait theory is significant because of

the advantages the theory has over classical test theory. Lord and

Novick (1968) draw a distinction between weak and strong true score

theory. Latent trait theory is strong because many assumptions are

made about data. Because classical test theory makes no assumptions

about the items composing a test, generalizations from conventional

tests can only be made to parallel forms. Scores on conventional tests

are sample dependent because they are derived on a specific set of

items and a specific sample of examinees. A consequence of this

limitation has been that classical test theory has failed at providing

solutions to a variety of measurement problems. Because of the parti-

cular choice of strong assumptions in latent trait theory, item and

ability parameters can be estimated which are sample-invariant. The

sample-free nature of latent trait parameters provides solutions to

many problems handled inadequately by conventional testing methods.

Test equating, detection of item bias, and tailored testing are easily
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managed with the results provided in latent trait theory. An excel-

lent discussion of test equating with ICC theory was given by

Marco, Peterson and Stewart (1979). Cowell (1979) provides another

good source on equating. Pine (1976) provided a good description

of application of latent trait theory to the study of item bias.

Lord's (1980) recent book includes many applications of item response

theory to test equating, study of item bias, and tailored testing.

Hambleton et al
. (1978), Lord (1977), and Wright and Stone (1979)

provide reviews of many additional areas in which latent trait

theory has been appl ied, incl uding: test development, optimal scoring

weights, mastery testing, handling omitted items, formula scoring, and

item banking.

While latent trait theory provides flexible tools for solving

measurement problems, the theory also has some limitations. One of

these is that the assumptions made about data may be too strong for

tests to be easily constructed to meet these requirements. A second

shortcoming is that computation costs may be substantially higher

than those incurred by conventional methods, thus prohibiting many

applications. Another disadvantage of the theory is its mathematical

complexity. Likelihood equations cannot be solved directly, and

iterative solutions using Newton-Raphson techniques are required.

Many restrictions are imposed in the process, especially when esti-

mating item discrimination parameters and guessing. Another drawback

to the theory is that the models are rather difficult for school

personnel, students, and parents to comprehend. This lack of
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understanding has resulted in some resistance on the part of school

systems to use the models in their testing programs.

Despite such drawbacks, Hambleton and Cook (1977) noted the

acceptance of the theory by psychometricians and practitioners alike.

In the summer of 1977, the Journal of Educational Measurement devoted

an entire issue to latent trait theory. Two major review articles

have appeared in the Review of Educational Research (Hambleton et al .

,

1978; Baker, 1977), and frequent articles on latent trait theory have

appeared in Psychometri ka and Applied Psychological Measurement .

Sessions on latent trait theory have been very popular at the recent

annual meetings of the American Educational Research Association. A

major section of Lord and Novick's (1968) Statistical Theories of

Mental Tests is devoted to latent trait theory and two books on the

topic (Lord, 1980; Wright & Stone, 1979) have recently been published.

Applications of the theory are numerous. These include the Key Math

Test (Connally, Watchman, & Prichett, 1971), the Woodcock Reading

Mastery Test (Woodcock, 1974), test equating at Educational Testing

Service, and civil service examinations in the State of New York, to

name a few. The theory has been applied to both achievement and apti-

tude tests for both norm and criterion-referenced testing situations.

Organization of the Study

This chapter has provided an introduction to latent trait theory

and a discussion of its importance in solving measurement problems.

The next chapter presents a review of tests for model assumptions and

a discussion of issues revolving around model fit. Chapter III
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contains a description of the methodology for the study. The chap-

ter includes a description of data sets, sampling information,

methods for detecting violations in model assumptions, techniques

for assessing model fit, and methods of comparison utilized in the

study

.

Model fit results are provided in Chapter IV. Descriptive

information and conventional item statistics are presented for 25

data sets. Then the results of overall and comparative model fit

are given. This is followed by a section containing correlations

between fit and indicators of deviation from model assumptions. The

next section examines precision of parameter estimates from short

tests and small samples, and the final segment presents comparative

cost information for the two models.

In the final chapter, the significance of the findings are

discussed. The chapter includes a set of guidelines for latent

trait model selection and a critique of the methodology used in the

study. The study concludes with recommendations for related research.



CHAPTER II

ISSUES AND METHODS FOR TESTING LATENT TRAIT

MODEL ASSUMPTIONS AND GOODNESS OF FIT

Methods for testing latent trait model assumptions and model

fit are reviewed in this chapter. A discussion of previous compara-

tive research studies which contrasts various methodologies for

model fit is also included in the chapter. A presentation of issues

concerning sample size and test length as they relate to parameter

estimation concludes the chapter.

Tests for Latent Trait Model Assumptions

Unidimensional ity (Local Independence)

Although multivariate extensions to latent trait theory have

been developed, an assumption made for the models investigated in

this study is that they are unidimensional. Unidimensionality means

that all items in a test are designed to measure the same underlying

trait or abil i ty.

The assumption of local independence is predicated upon that

of unidimensionality. The condition of local independence states

that, "within any group of examinees all characterized by the same

values 0 -|, 02, the (conditional) distribution of the item

17
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scores are all independent of each other" (Lord & Novick, 1968, p. 361).

Simply stated, for examinees of fixed ability, success on any

pair of items is uncorrelated. If the items in a unidimensional

test were not stochastically independent, this would imply that among

examinees of identical ability some would have a better chance of

success than others for these items. If this were the case, then

more than one ability would be needed to account for success on these

items. This would clearly contradict the fact that the test was uni-

dimensional. Goldstein (1980, p. 239) expressed doubt that the

assumption of local independence can ever be met: "The assumption

of local independence is such a strong assumption that it would be

surprising if it were true other than in a few specially contrived

circumstances." Goldstein asserted that local independence is not

necessarily a logical consequence of unidimensionality and criticized

the definition because it fails to account for the conditional dis-

tribution of other items. Despite this contention, the premise that

local independence follows from unidimensionality is accepted in this

study and a test of unidimensionality is considered sufficient for

accepting that the condition of local independence has been met.

The viability of unidimensionality has been examined by a

variety of techniques. Lumsden (1961) reviewed five methods for

assessing unidimensionality in the test development framework. From

item analysis techniques (magnitudes of item-test biserials),

Loevinger's homogeneity criterion, the local independence criterion,

Guttman's reproducibility criterion, and factor analysis, Lumsden

concluded that the factor analytic method was superior. With this
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method, dimensionality is typically assessed by comparing the ratio

of primary to secondary factor variances. Lord and Novick (1968)

also advised that unidimensionality be investigated by factor analy-

tic methods. Some factor analytic methods used in the latent trait

context are described next. Issues arising from the use of factor

analysis for assessing unidimensionality are also discussed in this

section

.

Bejar, Weiss, and Kingsbury (1977) used a method for deter-

mining unidimensional ity which is attributed to Horn (1965). Test

data were factor analyzed by a principal axis method. Then random

item response data were generated which matched the test under

investigation both in number of examinees and test length. The

simulated data were factor analyzed and the resulting eigenvalues were

compared to the test eignevalues with a graphic technique. With

this procedure the number of test eigenvalues was reduced by the

number of random roots which surpassed the actual roots in value.

The method purportedly eliminates random factors attributed to cor-

relations inflated by sampling fluctuation.

A number of other methods for factoring data have been used

in assessing dimensionality by latent trait researchers. Principal

components analysis was employed by Koch and Reckase (1978), prin-

cipal factoring was done by Slinde and Linn (1979), maximum likeli-

hood factor analysis was used by Bejar (1977), and a combination of

principal components and principal axis common factor analysis was

employed by Hambleton and Traub (1973). This last study used

principal components analysis to determine the number of factors.
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and the principal axis solution gave estimated item-total biserial

correlations. In the studies listed here, dimensionality was

typically assessed by an eigenratio criterion, the ratio between

the first and second latent roots (eigenvalues).

Lord and Novick (1968) suggested that tetrachoric correlations

be employed in factor analysis for assessing dimensionality because

of problems found to emerge with phi coefficients. The primary

difficulty with phi coefficients is that they approach unity only

when the marginal distributions of item scores are identical; other-

wise phi coefficients are less than one even if a perfect relation-

ship between items exists. Another problem with phi coefficients

is that they vary with item difficulty levels and guessing and are

therefore unstable across sample groups. The phi coefficient is a

measure of relationship between two dichotomous variables and is

easily obtained with the Pearson correlation formula. The tetrachoric

correlation, which represents a relationship between two assumed

latent variables scored dichotoniously , is more appropriate for use

in assessing dimensionality of the latent space, but is less easily

obtained. First, there is little agreement in the literature on how

to estimate tetrachoric correlations. A second drawback to the

tetrachoric measure is that it makes the restrictive assumption that

the underlying latent variables are normally distributed. Finally,

when used for factor analysis, tetrachoric matrices are often singular

and therefore impossible to invert. When such difficulties are over-

come, the emergence of one common factor in a factor analysis of
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tetrachorics is a sufficient, but not necessary condition for assum-

ing unidimensionality of the latent space (Lord & Novick, 1968,

p. 382).

Chri stofferson (1976) has developed an alternate solution for

factor analysis of dichotomous variables "based on marginal distri-

butions of single and pairs of items." Generalized least square

estimates are used, and a modified chi-square test examines the

number of factors resulting as part of the procedure. More recently,

Muthen (1978) offered a method for factoring dichotomous variables.

Both methods overcome problems encountered with other methods for

factor analyzing dichotomous variables, but unfortunately the methods

have computational complexities that have not yet been satisfactorily

resolved (Gustaffson, 1980).

Although there is agreement that factor analysis is the most

adequate statistical tool for assessing dimensionality, the procedure

is sample-dependent and may fail to determine that a set of items is

unidimensional for all possible examinee samples. Lord (1980) em-

phasized the need for a statistical method for determining unidimen-

sionality that is sample-invariant. A common sense technique that

has been employed to assure unidimensionality for various examinee

pools is the method of expert judgment, but this method can only be

applied during test development. Hartke (1978) suggested a proce-

dure for employing content experts to detect items which do not fit

with an item set. The well-known Q-sort is another such technique.
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Few dlternatives to factor analysis for assossing unidimension-

ality have been suggested although Bejar (1980) described a new

method which appears quite promising. In this method, unidimension-

ality is defined as a linear relationship between parameter estimates

obtained from subsets of items arranged by content area and the full

set of items. The item subsets are formed basod on a priori hypotheses

about content. "It follows that both sets of parameters should not

differ unless one or more of the content areas is tapping a component

which is unique to that content area" (Bejar, 1980, p. 284). The

equivalence of item parameter estimates is verified with bivariate

plots of the two sets of parameters. Unidimensionality is indicated

when the points lie along a 45 degree line through the origin. Mean

distances are computed to determine the extent of departure from the

line. Bejar also provided a second technique for assessing dimension-

ality based on the intercorrelation of ability estimates resulting

from tests with only single or multiple content structures. Both

procedures avoid the time consuming and computationally complex pro-

cedures required for factor analysis of dichotomous variables.

Some latent trait researchers have argued that: "There are

no separate adequate tests of unidimensionality. The direct test

is the test of fit to the model" (Rentz & Rentz, 1978, p. 12).

Gustaffson (1980) indicated that lack of unidimensionality cannot

always be detected by certain tests of model fit. Gustaffson (1980)

determined that the conditional likelihood ratio test of ICC slopes

detects departures from unidimensionality only when slopes are equal

for all items. The Martin Lbf (1973) Person Characteristic Curve
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(PCC) slope test, based on the chi-square method, was offered as an

alternative test. This test also groups items together a priori by

content and the subset parameters are compared to those obtained

from the total test.

Prior research has shown that when the assumption of unidimen-

sionality has been violated, data have not fit the latent trait

models very well (Hambleton & Traub, 1971). Accurate tests for uni-

dimensionality are therefore quite important both for doing research

with and applying latent trait models.

Equality of Item Discriminations

The Rasch model is a special case of the Birnbaum (1968) logistic

test model in which all item discrimination indices are equal. The

viability of this ass'umption has been challenged: "The assumption

that all item discriminations are equal is restrictive and substantial

evidence is available which suggests that unless items are specifically

chosen to have this characteristic, the assumption will be violated"

(Hambleton et al . , 1978, p. 26). Birnbaum (1968, p. 403) examined

empirical data to explore this assumption and claimed that in most

instances item discrimination indices varied considerably. In two

sets of empirical data, Ross (1966) reported variations in item dis-

crimination (a^) from .47 to 1.99 (range 1.52) in one set, and from

.30 to 1.97 (range 1.67) in the other. Using an approximate estimate

of item discrimination, Hambleton and Traub (1973) reported three

tests with discrimination ranges of .66, .74, and .69. Lack of fit
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to the Rasch model in these studies was attributed in part to heter-

ogeneous item discriminations.

The Rasch model was reported to be robust to heterogeneous

item discriminations in a study by Dinero and Haertel (1977). Model

fit was explored for five data sets generated under two-parameter

model assumptions. Five ranges of item discrimination were simulated

from uniform and normal distributions with variances ranging from

.05 to .25. Tests of fit to the one-parameter model were conducted

with the Wright and Panchapakesan (1969) standard deviate. The con-

clusion of the study was that: "the lack of item discrimination param-

eters in the Rasch model does not result in poor calibration in the

presence of varying item discriminations" (Dinero & Haertel, p. 589).

They suggested that difficulties which might arise in ability estimation

with the Rasch model due to the presence of non-homogeneous discri-

minations can be counteracted by increasing test length. Dinero and

Haertel's results were based on rather small samples and should there-

fore be viewed with caution.

In a simulated comparison of the Rasch two- and three-parameter

models, Hambleton and Cook (1978) found that the presence of hetero-

geneous item discrimination values had little affect on fit of data

to the Rasch model. The criterion for model fit was the rank ordering

of examinees by ability. The study used item discrimination ranges

of zero, .81 to 1.43, .50 to .74, wliere the maximum range was selected

to reflect the range of item discrimination values in the verbal

section of the SAT. Earlier results by Hambleton (1969) demonstrated

that increasing the range of discriminations simulated from a uniform
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distribution caused significant reduction in fit of data to the

Rasch model. Similar results were obtained by Hambleton and Traub

(1971) for data simulated from a normal distribution of ability.

Discrimination parameters in the 1971 study ranged from .2 to .8 and

were generated from a uniform distribution of a^. Ranges of dis-

crimination beyond .2 were found not to be tolerated by the Rasch

model. This range corresponded to biserials in the .44 to .58 band.

The variable results of these studies from those reported by Hambleton

and Cook (1978) and Dinero and Haertel (1977) may be due either to

the differing distributional assumptions or to the alternative methods

for determining fit.

Few statistical procedures have been developed for testing

equality of item discrimination indices. Panchapakesan (1969) pro-

vided a test for unequal item discriminations based on examination

of probability plots of items. Departures from unity in slope indi-

cated items with non-homogeneous discriminations. Birnbaum (1968)

suggested a method based on magnitudes of conventional item discrimi-

nation parameters. Gustaffson (1980) suggested using Martin-Lbf's

chi-square test for explaining variable slopes in ICC's due to

heterogeneous discriiiiinations . Mead (1976) applied a residual approach

to detecting a variety of deviations from Rasch model assumptions

including non-homogeneous discriminations.

Wright (1977) claimed that it is impossible to estimate item

discrimination. Wright shov/ed that without severe restrictions, iteni

discrimination indices tend to drift tov/ard infinity. The BICAL

procedure (Wright & Mead, 1978) for estimating parameters of the
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Rasch model, includes a calculation of what is called "residual"

item discrimination. The quantity is determined after data is fit

to the model and is used as one of a number of statistics to assess

lack of model fit. Such statistics are used to delete items with

unequal discrimination values from a test. In a study of vertical

equating with the Rasch model , Slinde and Linn (1979) used residual

estimates of item discrimination to assess the equality of item dis-

crimination indices. Item discrimination values within the range

.80 to 1.20 were considered equal.

Guessi ng

The assumption that guessing does not occur is made with the

Rasch and two-parameter models. When items are administered in an

open-ended, or free-response , format this appears to be a reasonable

assumption, but the assumption does not seem tenable for multiple

choice tests. It seems plausible that examinees with little or no

knowledge guess, unless cautioned otherwise, when presented with

difficult items. Examinees with some or partial knowledge could

make educated guesses by eliminating obvious erroneous choices, but

examinees with no knowledge could select answers completely at ran-

dom. In this latter case, the chance probability of obtaining a cor-

rect response is 1/C, where C is the number of response alternatives.

Since correct responses, whether obtained by chance or through know-

ledge, are used to estimate ability, resulting ability estimates

for low ability examinees tend to be too high unless some method

is utilized to correct for guessing. Formula scoring, a common
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method for penalizing guessers (Lord & Novick, 1968, p. 307) is

only applicable to conventional scoring, so other methods must be

used to adjust for guessing in latent trait estimates of ability.

The lower asymptote of the three-parameter ICC, seen as a

measure of the chance probability level, is used to correct ability

estimates for random guessing. Since the lower asymptote of the

Rasch ICC is zero, ability estimates are not adjusted for guessing.

Guessing is viewed as an item characteristic in the three-parameter

model, but there are other approaches which assume that guessing

is an interaction of both item and person characteristics, and these

approaches provide other methods for removing the influence of guess-

ing from examinee ability. It is difficult to estimate guessing

directly, although some attempts have been made. These are discussed

next.

A straight forward method for estimating guessing, suggested by

Lord (1970), was to examine visual plots of ICC's. Using this tech-

nique, Lord determined that lower bounds of ICC's for SAT items were

typically below the chance level, 1/C. The efficacy of this method

for estimating guessing is clearly dependent on the accuracy of the

three-parameter model.

Urry (1974) developed a hueristic, or intuitive, method for

estimating guessing which was based on regressing the percent of

examinees passing an item on raw score, adjusted for the item under

investigation. The lower left asymptote of the regression curve

was taken as an estimate of guessing. Lord (1970, 1980) has also

shown that when a sufficient number of examinees is used, item-test
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regression approximates the form of item-ability regression. Unfor-

tunately, these methods are only accurate when thousands of examinees'

scores are considered,

Jensema (1974, p. 74) criticized the approaches taken toward

guessing in latent trait theory because; "A more basic question,

which directly challenges the model, is whether the guessing parameter

is constant over all levels of ability." Jensema postulated that

guessing is a person- or sample-related characteristic or the product

of some person-sample-item interaction. The Lumsden (1977) latent

trait model includes a second person characteristic called "sensi-

tivity" which reflects guessing among other person attributes. Ap-

proaches to guessing, based on these assumptions, have attempted to

remove the effects of random guessing from ability estimates without

estimating a guessing parameter, per se.

Waller (1974a, 1974b, 1976) outlined a procedure which can be

applied to the Rasch and two-parameter models. "This is accomplished

through a modification of the free response model removing those item-

person interactions characterized by the item being too difficult

for the person and therefore likely to invite guessing" (Waller,

1974b, p. 2). With simulated and empirical data. Waller found im-

provements in model fit when the ARRG (ability removing random

guessing) procedure was applied. The ARRG method deletes items too

difficult for an examinee and estimates ability from the remaining

item subset. A number of passes through the data are needed to find

items difficult for each examinee.
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Sinc6 the guessing parameter is not estimated in the Rasch model,

other methods are used to detect guessing. Mead (1976) examined

guessing departures from the Rasch model by a method of standardized

residuals. The residual between the expected and obtained ICC were

plotted against the quantity, "e^ - b^" (the differential between ability

and difficulty), and deviations from linearity in the plots signalled

guessing. Gustaffson (1980) indicated that the Martin-Lbf (1973)

conditional likelihood ratio test can be used to detect irregularities

in slopes of person characteristic curves (PCC) which purportedly

indicate guessing.

With the exception of the Urry procedure, all of the methods for

estimating or detecting guessing described above are based on the

assumptions of latent trait theory. Conventional approaches, which

use item difficulties, have also been suggested for estimating guess-

ing. These approaches are severely limited because of the sample-

independent of item difficulty, but do offer some means, inde-

pendent quality of latent trait theory itself, for estimating guessing.

Such methods estimate guessing by computing the item difficulties

for hard items from low ability examinees' scores. The difficulty

levels indicate the percentage of low ability examinees who passed

items which were supposedly too difficult.

Results of studies which have assessed the effect of guessing

on Rasch model fit have been somewhat variable. Ross (1966) used

plots, similar to those suggested by Mead (1976), to visually inspect

the impact of guessing on Rasch model fit. Although guessing was

indicated on 11 out of 95 items, Ross claimed that the Rasch model
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demonstrated adequate fit to data. For the purpose of test score

equating, Slinde and Linn (1978) concluded that guessing was not

tolerated by the Rasch model. Gustaffson (1979) suggested that

equating results might have been inadequate in Slinde and Linn's

study because the presence of guessing would produce spurious cor-

relations between item difficulty and discrimination. Upon analysis

of the same data, Gustaffson determined that there were substantially

high negative correlations between discrimination and difficulty in

the data.

Speededness

Lord and Novick (1968) make a distinction between speed and

power tests. A speed test is one based on an examinee's ability to

answer as many items as possible within a fixed time limit. The score

on a speed test depends on the rate of response. A power test is

one with no time limit or a very liberal time limit. Latent trait

theory does not apply to speeded tests, "but the theory can be still

used to analyze answer sheets obtained in timed test administrations"

(Lord, 1974, p. 248). Lord (1980) refers to consecutively omitted

items at the end of a test as "not reached." Incomplete test response

patterns may be attributed in part to speeded conditions.

If an examinee answers less than one-third of the items in a

test, it can be assumed that the test was speeded for that examinee

and, consequently, no ability estimate can be obtained. For other

examinees, who answer a substantial proportion of items, it is possible
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to obtain ability estimates. LOGIST (Wood, Wingersky, & Lord, 1976)

adjusts ability estimates from timed tests by a modification in the

likelihood fucntion which was given by Lord (1974).

Because of the assumption of local independence, ability esti-

mates can be obtained from any random set of homogeneous items

designed to measure the ability. If an examinee answers items in

the order presented, it can be assumed that those items answered

constitute a small homogeneous set of items administered under non-

speeded conditions for that examinee. Thus, ability can be estimated

from the set of items reached, ignoring the set of items following

the last item reached. When too few items are included in this set,

there is a substantial loss of precision in estimation for the exami-

nee. The procedure is also used to obtain ability estimates for

examinees who omit intermittent items in a test.

There have been no empirical studies which have investigated

the efficiency of ability estimation from timed tests, but Lord (1974)

verified the maximum likelihood estimates of ability when data were

characterized by omitted response patterns.

Significant research for detecting speededness has come from

within the framework of classical test theory. Donlon (1978) pro-

vided an excellent review of these methods. No attempt was made in

this study to evaluate speededness of tests because the LOGIST esti-

mation procedure handled incomplete response patterns quite adequately.

All tests used in the study were reported to have been administered

as non-speeded tests.
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Testing Model Fit

There has been little agreement among latent trait theorists

concerning the measurement of model fit for latent trait models.

There has been no consensus on the operational definition of fit,

which has resulted in a variety of alternative methods for assessing

fit, each based on a different definition.

Many view latent trait model fit in terms of item fit, but

other researchers define fit based on the concept of test fit. Still

other approaches define model fit in terms of ability or person fit.

Separate methods for testing fit have evolved from each of these

definitions.

Lord and Novick (1968, p. 383) described a generalized method

for determining the adequacy of psychometric models. The procedure

consists of the following steps:

1. Estimate the parameters of the model assuming it to be

true;

2. Predict various observable results from the model sub-

stituting the estimated for true parameters;

3. Consider whether the discrepancies between predicted

results and actual results are small enough for the

model to be useful ("effectively valid") for whatever

practical application the investigator has in mind;

and

4. If the discrepancies found in step 3 are too large,

then it may be useful to compare them with the dis-

crepancies to be expected from sampling fluctuations.

Methods for testing model fit (step 3) have varied to some extent

because they have been developed to explore fit in the context of

rather different uses of models.
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Birnbaum (1968) considered many of the statistical measures

often employed for testing model fit to be unsound. For example,

likelihood ratio test statistics which are asymptotically chi-

square, were often assumed to be distributed as chi-squares despite

the fact that they had been calculated on very small samples. For

very large samples, most data are rejected by statistical tests even

though fit may be adequate in a practical sense. Graphical techni-

ques for inspecting fit have an element of subjective judgment, and

few practical (non-statistical
) measures of fit have been devised.

Rentz and Bashaw (1975) and Rentz and Rentz (1978) provided

an excellent discussion of model fit. They viewed fit in terms of

applications (which they called operations): test development and

test analysis. They suggested that during test construction, the

focus be on item fit, where " item fit can be defined as the extent

to which items can be characterized according to those antecedent

conditions derived from the model's assumptions" (Rentz & Bashaw,

1975, p. 17). Based on the model's premises, graphic representations

of items could be used to determine departures from the model, for

example, inspection of plots of ICC's to evaluate the presence of

non-zero lower asymptotes which would indicate guessing. During the

test analysis phase, the focus switches to overall test fit:
" Test

fU can be defined as the extent to which the test achieves those

consequences specifiable from the concept of specific objectivity"

(op, cit., p. 17). Specific objectivity, a concept originated by

Rasch, means that ability and item difficulty can be estimated

independently of one another. An instrument encompassing the quality
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of specific objectivity offers item-free person measurement and

person-free object measurement. To measure test fit , Rentz and

Bashaw suggested the use of a chi-square test based on the mean

square fit criterion developed by Wright and Panchapakesan (1969).

Rentz and Bashaw caution the user with respect to statistical tests

of fit: "We do not believe that a routine application of some sta-

tistical test is adequate or even correct" (op. cit., p. 92). A

second definition for test fit given in the same work is "the extent

to which the test contains fitting items" (op. cit., p. 17). The

mean square fit statistic can be applied to items individually or to

the test as a whole.

Another approach to model fit is in terms of person fit . In

this case, sample item parameter estimates are assumed to be true

(i.e., representing population parameters), and fit is assessed in

terms of person or ability parameters. Studies basing fit on this

definition frequently have compared observed and predicted distribu-

tions of ability (or some monotone transformation of ability) by means

of an approximate or exact chi-square test. Studies by Ross (1966)

and Hambleton and Traub (1973) used this definition of model fit. The

Wright and Panchapakesan mean square criterion is also used to eval-

uate person fit .

A simple technique for testing item fit is a graphic method

(Rasch, 1960). This procedure entails regressing percents of exami-

nees passing an item on raw scores (essentially an item-test

regression). Departures from linearity in a plot can be statistically

tested. Anderson, Kearney, and Everett (1968) developed a more
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sophisticated version of this test based on likelihood ratios.

They applied the method to testing model fit of intelligence test

items. Ross (1966) used a method for assessing guessing which was

based on plots drawn on logistically scaled probability paper.

Other visual methods for exploring model fit include compari-

sons of frequency distributions (observed verses predicted) of

ability, raw scores, true scores, or sufficient statistics. Most

studies of model fit have included some graphic test. Cumulative

distributions (item or test characteristic curves) can similarly be

visually inspected for model departures. Hambleton (1980) described

a method for comparing a predicted ICC with an actual ICC. For each

item, the observed ICC is found by plotting the examinee performance

level (i.e., percent of examinees obtaining a correct response) for

various levels of ability. The predicted ICC is based on the esti-

mated item parameters. The plot is explained by a second figure

which shows the positive and negative discrepancies between the two

ICC's. The magnitude of these discrepancies could be calculated

using a squared distance formula. Gustaffson (1980) reports a graphic

method similar to those discussed in this paragraph for application

to fit of the Rasch model.

Tlie primary statistical test used to measure model fit has been

a chi-square test based on mean square deviations or likelihood

ratios. Wrigfit and Panchapakesan (1969) developed a widely used

statistic for testing fit to the Rasch model.

For each item a standardized deviate is formed between the

predicted and observed item score. The standardized deviate is usually
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expressed in the relative frequency metric. Deviates are summed across

persons (or score groups) to obtain an approximate chi-square statistic

of item fit, or across items to obtain an approximate chi-square

statistic for person fit, or across both to measure overall test fit.

For score group i and item j the standard deviate is

given by:

‘
. [4]

where f^.^. is the observed frequency of examinees in score group i

who answered item j correctly; E(f,,) is the expectation of f..;
,

ij’

and V(f. .)^ is the standard deviation of f... Since f . . has a
1 J 1

J

binomial distribution with parameter P.
.

(the probability of a correct

response), the expectation is found by taking the mean of the binomial:

[ 5 ]

where r^. is the number of examinees in score group i. The variance

of the binomial is given by:

The z. . are normally distributed with mean zero and standard devia-
* 0

tion one and can be summed across items, or people, or both. With

sufficiently large sample size, the sums of the standard deviates

approximate chi-square statistics. The total test chi-square is

given as:

n-1

X' = I
1=1

I
j=l

5
[ 7 ]
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which has (n-1) (n-2) degrees of freedom, where n is the number of

items, and n-1 is the number of score groups.

An alternate formulation of the standard deviate was given by

Wright and Stone (1979) in which the deviate is formed between the

actual and expected item score, u.., where u..=l when item j is
^ J 1 J

correct, and u. .=0 when item j is incorrect. A standardized
* U

residual, found for each person-item combination given by;

=
'^0

-
'ij) ! ’ t8]

is distributed normally with mean zero and unit variance. The sum

of squared residuals, across items, persons, or both, approximates

the chi-square distribution, or alternatively, the mean square can

be found as;

V = zz2 / df , [9]

which is an approximate F-statistic with "(N-1) (n-l)/N" degrees of

freedom for person fit or "(N-1) (n-l)/n" for item fit. Since the

item score, u--, can only assume the values 0 or 1 , equation [8]
^ J

reduces to exp(e-b) for a correct response or exp(b-e) for an incorrect

response

.

George (1979) has shown that meaningless results can be ob-

tained with the mean square statistic when samples employed are too

small. Under these conditions, the chi-square test is inappropriate

since distributional assumptions of the test are not met. Applica-

tion of the test to small samples results in significant errors in

interpretation. George also notes that for very large samples, the
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chi-square test, like other statistical tests, rejects all data

even though fit may be more than adequate from a practical point of

view. A generalized version of the chi-square test which can be

used with all of the latent trait models, was offered by Ross (1966)

and later by Hambleton and Traub (1973). The procedure uses esti-

mated item parameters to predict distributions of number-correct

scores or weighted number-correct scores. These are compared with

actual distributions of number-correct scores using a standard chi-

square test:

k

= I (q(o) - f.(e) )2/f.{e)
, [10]

i=l
1 ' 1

where f^(o) are observed frequencies for score group i and f^(e)

are expected frequencies for score group i, and the summation is

across k score groups. Alternatively, the Kolmogorov-Smi rnov

statistic, which makes fewer assumptions than the chi-square, can

be employed to compare actual and predicted score distributions.

Likelihood ratio tests for the normal ogive model were devised

by Bock and Lieberman (1970) and for the Rasch model by Anderson

(1973). Anderson's test assumes that parameters were estimated by

a conditional maximum likelihood approach. Likelihood ratio sta-

tistics are well-suited for assessing differences in fit due to

alternative models and for testing parameter invariance. The test

statistic used with likelihood ratios is approximated by a chi-square

for large samples. Versions of the test have also been formulated

for estimates based on the unconditional maximum likelihood method.
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A more recent development in likelihood ratio tests for the Rasch

model is found in Anderson and Masden (1977).

The likelihood ratio tests cited above were all devised for

use with a single model. Waller (1980) has formulated a likelihood

ratio test which is claimed to be able to test deviations in fit

for the Rasch, two-, and three-parameter models. The test is an

extension of Bock's (1972) likelihood ratio test for the nominal

response model. A likelihood ratio is formed based on r item

parameters, and another likelihood ratio is formed based on a subset

s of the r parameters from a model with fewer parameters. The log

likelihood of the difference (r-s) is formed. Waller claims that

the log likelihood of the difference is distributed as a chi-square

statistic. The method is based on rank ordering examinees by ability

and grouping them into i fractiles, or ability groups. The same

number of ability groups are formed for each model. Then, for each

item, the test statistic is given by:

1 . = C +
t

i
1=1

(r . . log P . • +
ij ij

log (1 P. .)
ij

[11 ]

where P.. is the probability of item success, is the number of

examinees in fractile i, r-- is the number of examinees in group i

* U

who obtain a correct response on item j, and:

C = log (N.! / r.j! ) • [12]

Another test based on likelihood ratios is the binomial test

offered by Divgi (1980). Divgi also claims that his test is applic-

able to all of the latent trait models of interest. The method
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purportedly detects model fit even when the parameters from a specific

sample may have been estimated in error. The procedure is given as

follows: first item and ability parameters are estimated for the

two models of interest. Then, for a validation sample having approxi-

mately 100 examinees, maximum likelihood ability estimates are ob-

tained based on the two sets of item parameters. Two likelihoods

are calculated for the observed patterns of response. If P is the

proportion of cases for which calibration by one model provides

better fit, then the test is based on the null hypothesis, P=.5.

Since ^ is a binomial with mean .5, the test results in exact prob-

abilities for P^. Divgi notes that when more than 50 examinees are

in the validation sample, the normal approximation for the binomial

can be used. The validation sample in this method is selected to

represent a specific population of interest. The results of the test

supposedly demonstrate model fit in terms of specific applications.

A variant approach to model fitting is one designed by Mead

(1976). This technique uses the standardized residual between the

actual and observed frequencies of examinees for item i in some

score group j, as given earlier in equation [4]. The residual sta-

tistics are plotted against the quantity (e-b) for a visual test of

fit or can be used to perform t-tests or analyses of variance between

models. A method bearing similarity to Mead's method is one used

by Koch and Reckase (1978). In this case, the deviate is formed

between the item response, u^ (zero or one) and the expected prob-

ability of item response, Pg(9)- The deviate is given as:
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N

MSD =
( I (u -P (e) )2 /n

.
|- 13 J

j = l
^ ^

The authors claim that the statistic is normally distributed, but

no empirical evidence exists to support this claim. Until such

evidence exists, the statistic should be used with caution. The MSD

statistic was developed to replace frequently used chi-square test

statistics which are inappropriate for small samples.

Lord (1970) provided a method for model fitting that has in-

tuitive appeal. In this method, the ICC is estimated by two methods

and the resulting curves are compared. One method assumes no

special mathematical form for the ICC. It is based on the regression

of item score on estimated true score (minus the item in question).

The second estimate is an ICC from one of the latent trait models.

Ability is transformed to the true-score metric for comparison by

visual or statistical means. The method can be used to test model

fit and to detect parameter invariance. Lord (1974) utilized this

method to compare two maximum likelihood estimates of ability for

data with omitted responses.

Gustaffson (1980) described a number of new methods for testing

fit of the Rasch model when parameters have been estimated with the

conditional maximum likelihood (CML) approach. Because Gustafsson

has overcome some of the problems in CML estimation, it is claimed

that the method can be practically applied more easily. One of the

statistics discussed by Gustafsson is the Anderson (1973) method

noted earlier. He suggests that the method is primarily appropriate

for detecting deviations in slopes of ICC's. Another method is
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attributed to Martin-Lbf (1973), who devised two tests of fit. One

test statistic is asymptotically equivalent to the Anderson likeli-

hood ratio test, but is constructed using frequency data for persons

in different raw score groups. The second test statistic was de-

signed to detect differences in Person Characteristic Curves (PCC)

such as those described in the model by Lumsden (1978). The statis-

tic uses the maximum of the log likelihood function, where twice the

log function has been shown by Martin-Lof to be asymptotically dis-

tributed as a chi-square. The test can be applied to detecting person

differences including item bias, speededness, guessing, and person

sensitivity, which is defined as varying person reliabilities.

Martin-Lbf also developed a measure called redundancy which supposedly

provides an absolute index of model fit and can be applied when there

are large samples.

When item and ability parameters are known, such as in simula-

tion research, a number of additional techniques for testing model

fit can be employed. Lord (1974) and Hambleton and Cook (1978) used

correlational analysis to compare estimated with true parameters.

Both Pearson and Spearman techniques have been applied. In addition

Hambleton and Cook formed the average absolute difference (AAD)

between estimated and true parameters to explore fit.

Studies of Comparative Model Fit

This section reviews studies which have compared the Rasch model

with the two- and three-parameter logistic models. One of the earliest

empirical comparisons between the Rasch and two-parameter models was
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reported by Hambleton and Traub (1973). This study was based on the

earlier work of Hambleton (1969). Comparisons between the two models

were made for the verbal and math subtests of the Ontario Scholastic

Aptitude Test, and for the verbal section of the SAT. The method of

comparison employed a chi-square statistic to determine deviations

in predicted from observed distributions of weighted raw scores,

which are the sufficient statistics for ability. Since computerized

techniques for parameter estimation had not been developed at the

time of these studies, approximate solutions were used for obtaining

item parameter estimates. These approximations required that ability

be normally distributed which added an additional restriction to the

data. Weighted raw scores were constructed using estimated parameters

as weights. With this technique, Hambleton and Traub found that

when item discriminations were heterogeneous, the two-parameter model

showed improved fit over the Rasch model for the three tests.

Koch and Reckase (1973) and Reckase (1978) compared fit of the

one- and three-parameter models for both empirical and simulated

data. Real data included a vocabulary test, an aptitude test, and

four classroom achievement measures. The results of both studies

indicated improvement in model fit when additional parameters (item

discrimination and guessing) were considered in the model equations.

A mean square deviation (MSD) statistic was employed item by item

to detect fit. The MSD statistic reflects the deviation in the item

response, u^^ (scored zero or one), from the predicted item response,

P (e), which is a probability ranging from zero to one. T-tests
ig

were conducted between models based on average MSD statistics.
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Because sampling properties of the MSD statistic are unknown, the

conclusions of this study must be viewed cautiously.

Rentz and Rentz (1978) fitted the Rasch model to aptitude,

achievement, and criterion-referenced test data. The study used

Wright and Panchapakesan ' s (1969) fit statistic. Although the

model was not compared to others, the study showed that the Rasch

model can fit many diverse forms of tests.

Hambleton and Cook (1978) made comparisons in fit for the

Rasch, two- and three-parameter models using simulated data. With

simulated data, comparisons can be made between estimated and true

parameters (from which the data was generated). Measures of fit

were based on Pearson and Spearman correlations and the average

absolute difference (AAD) between true and estimated ability.

Hambleton and Cook found significant improvements in model fit at

the lower end of the ability continuum for the more general models

especially for tests which had few items. Although it is reasonable

to anticipate improved fit to data when a model is less restrictive,

unfortunately studies involving simulated data do not provide a check

on the adequacy of models for describing the real world.

Douglas (1980) compared Rasch model equating with equating based

on the two- and three-parameter models. Douglas used parameter

estimates to predict raw scores and then compared estimated to true

values with bivariate plots. For the purposes of equating, Douglas

found Rasch equatings to be better and more consistent than those

using the two-parameter model. The three-parameter model was not
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judged to be unacceptable.
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A more encompassing comparison of latent trait equating methods

was done by Marco, Peterson, and Stewart (1980). An anchor test

method was used to equate verbal SAT scores. The Rasch and three-

parameter ICC equating methods were compared to each other and to a

variety of additional methods. Contrary to the results of Douglas

(1980), this study showed that the three-parameter ICC method gave

superior results to all other methods of equating, although the

authors pointed out that the SAT data may violate Rasch model assump-

tions since opportunity to guess on the test is considerable.

Issues Relating to Sample Size and Test Length

There has been some controversy in the latent trait area con-

cerning the number of examinees and items that are required for ob-

taining precise ability and item parameter estimates. Within the

context of the Rasch model, Wright (1977, p. 224) purported that

"calibration sample sizes of 500 are more than adequate" and goes so

far as to say that useful information can even be gained on samples

of 100 examinees. In Wright and Stone (1979), an example of cali-

brating with the Rasch model is repeated throughout the text using

only 35 pupils. Whitely and Davis (1974) and Whitely (1977) dis-

agreed with Wright, and contend that samples of at least 1000

examinees are needed to effectively use Rasch techniques. For the

three-parameter model. Lord (et al .

,

1976) stated that precise item

parameter estimates cannot be obtained with fewer than 1000 examinees.
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Parallel questions to these have been raised regarding test length.

The Rasch model is often used with 20 to 30 items. Lord {op. cit.)

advised that at least 40 items be used to estimate ability with the

three-parameter model

.

In conventional measurement, the reliability of a test is

closely tied to test length. In theory, a test with an infinite

number of items would be perfectly reliable. In latent trait theory,

test length has a bearing on precision of estimation. Tests must be

of sufficient length to obtain precise ability estimates. Conse-

quently, precision of item parameter estimates is a function of

sample size. As an alternative to reliability coefficients, latent

trait theory uses the information function as a measure of precision

(Hambleton, 1979; Lord, 1980).

Sample size has frequently been varied in simulation studies in

the process of exploring other issues, but Ree (1980) was the only

study designed to systematically assess the effects of varied sample

size on item parameter estimates. Ree generated samples of 250, 500,

1000, and 2000 to explore effects on three item parameter estimates

in the context of linear equating. Good estimates of difficulty were

obtained from 250 examinees, but 1000 examinees were needed to get

good discrimination estimates. Although little variation in guessing

estimates was observed (as measured by average absolute differences

between estimates from different sample sizes), correlations of

guessing estimates across sample sizes were negligible. Ree's
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results suggest that 2000 examinees are needed to estimate guessing

so that a sufficient number of low ability examinees are represented

in the sample.

Hambleton and Cook (1978) found surprisingly small gains in

model fit for both the Rasch and Birnbaum models when test length

was extended from 20 to 40 items. This study, like the previous one,

was based on simulated data.

Little other information has been reported on precision of

latent trait parameter estimates. This is an area which has not been

adequately researched.

Summary

This study was undertaken because evidence about latent trait

model fit, especially for real data has been inconclusive. The study

differs significantly from previous research in a number of ways.

First, the data utilized were real and not simulated. Secondly, ability

and item parameter estimates were determined using sophisticated

computer methods rather than by approximation. Thirdly, fit statis-

tics with known sampling properties were utilized to make comparisons,

and fourthly, twenty-five data samples were employed, more than twice

the number used in any previous comparative research study. Finally,

the current study used three measures of fit to substantiate the

results, rather than a single measure.



CHAPTER III

METHODOLOGY FOR COMPARING LOGISTIC

LATENT TRAIT MODELS

Overview of the Design

Item response data for twenty-five tests were obtained from

a variety of sources to make comparisons between Rasch and three-

parameter model fit to empirical data. Data were from multiple choice

tests designed for measurement of achievement or aptitude. The tests

covered a broad range of contents, formats, levels, and examinee

sample characteristics. Five of the tests were used to explore the

effects of sample size and test length on precision of latent trait

parameter estimates, while all 25 tests were used to explore ques-

tions of model fit.

The tests were scored for conventional (right-wrong) and latent

trait (right-wrong-omitted-not reached) analysis, and samples of

1000 examinees were drawn from each test data set. An item analysis

and a factor analysis were performed with each test. Conventional

item statistics were used to roughly approximate the degree to which

each test deviated from the latent trait model assumptions. Then,

item and ability parameters were estimated under the conditions of

each model. These estimated parameters were substituted for true

parameters to make predictions about number-correct score distributions

48
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from each model. Predicted distributions were compared with observed

raw score distributions by statistical and graphical procedures.

Measures of fit were correlated with indices of violation of model

assumptions to examine model robustness. Then, precision of parameter

estimates from small samples and from short tests were explored with

correlational analysis. Finally, computer times and costs for

parameter estimation by the two models were compared.

Selection and Sampling of Data

Data Selection

Twenty-five cognitive data sets were used in this study. Re-

sponse data were obtained from test publishers, local school systems,

and statewide testing agencies. The following criteria were utilized

to select data:

1. Tests were designed to measure cognitive skills. Both

aptitude and achievement tests were used. Most of the

tests were normed-referenced, but some criterion-

referenced measures were also used.

2. Tests were recognized, quality tests which had been con-

structed by well-known testing agencies.

3. Test items were multiple choice in format with only one

correct response per item. Also, the number of response

alternatives per item was consistent for all items in a

test.

4. All tests exceeded 40 items in length.

5. The sample size per test was 1000 examinees. Most samples

were over 3000, and so 1000 examinees were drawn randomly.

6. Tests were not administered under speeded conditions

(although it was assumed that reasonable time limits had

been imposed).
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Description of Data Sets

Table 1 provides information on the 25 tests analyzed in the

study. Additional features are described below:

Stanford Achievement Test (STAN) .—The Stanford Achievement

Test, published by Psychological Corporation, has ten subtests

covering verbal and quantitative skills. The test has been used

extensively in Rasch model studies. One thousand examinees were

randomly drawn from a nationwide sample of 4000 examinees who had

been administered the test in 1973.

Scholastic Aptitude Test (SAT) .— Random samples of 1000 were

drawn from two samples of 3000 which constituted the 1974 ICC equating

samples for the SAT. The SAT, published by Educational Testing

Service, is the primary aptitude measure used for college admission.

The two samples did not include examinees who had not completed the

test.

California Test of Basic Skills (CTBS) .—The CTBS is a

general achievement test published by McGraw Hill. Two subtests,

math comprehension and vocabulary, were used in this study.

California Achievement Test (CAT) .—The CAT is another nation-

ally standardized achievement test. Data used here were from the

1974 Anchor Test Study (Rentz & Bashaw, 1975), an equating study of

seven well-known reading achievement tests. Verbal and comprehension

subtests were used.

Iowa Test of Basic Skills (ITBS) .—The ITBS data were also

obtained from tfie 1974 Anchor Test Study. Both comprehension and

verbal subtest data were utilized in this study.
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Georgia Regents . —The Georgia Regents are a minimum competency

test required for graduation from Georgia state colleges. Three

forms of the verbal subtest were used in the study.

Rasch Tests .—These Rasch constructed tests from the Atlanta

Assessment Program had been administered statewide to twelfth

graders. The tests were criterion-referenced and covered a dozen

goal areas, but only three subtests were selected because too few

examinees (only 500) were available on any subtest.

Individualized Criterion-Referenced Test ( ICRT) .— Criterion-

referenced tests in reading and math were obtained from Educational

Progress Corporation in Oklahoma. Sixteen items had been matched

to each objective. Sufficient data were only available on reading

book 269 and so it was the only one used in the study.

Sampling and Scoring Conventions

Samples of 1000 examinees were drawn for each test. The SPSS

(Nie et al .

,

1975) subprogram SAMPLE was used for this purpose.

Data were scored as l=right and 0=wrong for conventional item

analysis and factor analysis, and rescored as l=right, 0=wrong,

10=omitted, and ll=not reached for latent trait parameter estimation.

Scoring for latent trait parameter estim.ation considered that con-

secutively omitted items at the end of a test had not been attempted

by the examinee due to time constraints.
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Method for Testing Model Assumptions

Uni dimensional ity

A unidiinensional test is one in which all of the items measure

a single underlying trait or ability for all examinee populations of

interest. An operational description of unidimensionality arising

from the foregoing definition is that only one common factor is ob-

tained from a factor analysis of a test. Although there are numerous

ways to evaluate the outcomes of factor analysis, this study used

the eigenratio as the criterion of unidimensionality.

For each test the total available set of data were scored in a

conventional manner and tetrachoric correlation matrices were obtained

with SPSS subprogram TETRACHORIC. For comparative purposes, phi

coefficients were also obtained. Since the results of factoring the

phi coefficients were essentially identical to those obtained with

the teterachorics for five tests, the procedure was eliminated for

the remaining 20 tests. The matrices of tetrachorics were factor

analyzed with SPSS subprogram FACTOR using a principal components

procedure, as an approximation to the common factor solution.

Eigenvalues, first factor variances, and the number of factors

with eigenvalues over 1.0 were recorded. Any of these measures

might have been used to assess dimensionality, but they all bear

relationships to test length. Instead, the eigenratio between the

first and second eigenvalues was used to assess dimensionality

because it indicates the dominance of the first factor over other

factors. High eigenratios indicated unidimensional tests. Tests



55

were rank-ordered based on eigenratios with a rank of 25 signifying

the most unidimensional test.

Equality of Item Discrimination Indices

The point-biserial was used as an approximate measure of item

discrimination. Point-biserials were calculated with SPSS subprogram

RELIABILITY which provides the correlation between the item and the

total score adjusted for the item under investigation. Point biserials

were considered equal when they were within a .1 confidence band

around the mean point-biserial for a test (r t .1). This interval

was selected following considerable experimentation, and provided

the greatest contrast between tests with homogeneous and heterogeneous

item discrimination indices. A FORTRAN program written by the author

was used to analyze equality of point-biserial correlations. The

point bi serials were transformed by a Fisher z so that their

sampling distribution would be normal. The mean and variance of the

transformed correlations were obtained for each test and these were

transformed back into the original metric. A count was made of the

number of point-biserials within the "r - .1" confidence region and

this number was converted to the percentage of items on a test having

equal item discriminations. A high percent indicated a test with

nearly equal item discriminations. Tests were rank-ordered based

on these percents. High ranks indicated tests with homogeneous iteiii

discrimination indices. The standard deviation of point-biserials

for a test was recorded as an alternate measure of equality of item

discrimination.
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Guessing

The guessing parameter of the three-parameter model has no

parallel in conventional item statistics. A rough approximation

to guessing was found by obtaining the conventional item difficulty

for low ability examinees on hard items. A hard item was defined

as an item answered incorrectly by more than two-thirds of the

sample of 1000. A low ability examinee was defined as an examinee

in the lowest decile of the sample. Clearly this rough approxima-

tion to guessing lacked the sample-invariant characteristics of

latent trait parameters. Item "hardness" was assessed based on

difficulty levels in the total sample of examinees. Low ability was

judged from number-correct scores. The lowest deciles contained

approximately 100 examinees for each test. As a measure of guessing,

item difficulties were recomputed on hard items for the lowest ten

percent of the sample. These difficulties indicated the percent of

low ability examinees who scored correctly on items which were pur-

portedly too difficult. It was assumed that correct answers for

these items had been obtained by random guessing. Guessing was only

estimated on tests which had more than three hard items. Little

variability between tests was observed with this measure of guessing,

so rank ordering of tests did not provide very useful information.
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Method for Testing Model Fit

Parameter Estimation

For each data set, ability and item parameters were estimated

under the assumptions of the Rasch and three-parameter models using

an unconditional maximum likelihood approach (UML). In the UML

approach, the likelihood function is solved simultaneously for item

and ability estimates. Parameter estimation was accomplished with

the LOGIST computer program (Wood, Wingersky, & Lord, 1976) with a

modification in the likelihood function for handling omitted and

"not reached" items (Lord, 1974). For item responses, Ug=l or

Ug=0, with the probability of a correct response given as: Pg(6[^),

and where Qg~^“Pg> likelihood function is given by:

N n ,

L = n n QJe, )'-^g

k=l g=l
y

[14]

Log L is differentiated with respect to the unknown parameters
0|^,

b (and a , c in the three-parameter case) resulting in "n+N-2"

simultaneous equations for the Rasch model and "3n+N-2" simultaneous

equations for the three-parameter model. A modified Newton-Raphson

procedure is used to solve the equations since a direct solution is

impossible due to the number of unknowns. Initial estimates for

parameters were computed from conventional item statistics.

On five tests, ability had been restricted to the range -4 to

+4 to assure convergence, but Lord (personal communication, 1979)

suggested that the limits were unnecessary and inappropriate, and

they were removed from subsequent parameter estimations for 20 tests
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without convergence problems resulting. Overall, .01 percent of

abilities were outside of these limits. Item discrimination indices

were limited to the range .01 to 2.0 and rarely exceeded these

limits. Although no restrictions were placed on magnitudes of item

difficulties, the allowable percentage change between stages of

the estimation was restricted.

For the Rasch model a convergence criterion of .02 percent

was used. In the three-parameter case, the convergence criterion was

successively reduced from 200 to .02 percent across stages. The

convergence criterion provided accuracy up to the third position

after the decimal for both item and ability parameters. For estima-

tion of Rasch abilities and difficulties, item discrimination was set

to 1.0 and guessing to 0.0 and held constant.

Estimation Procedure

Examinee samples of 1000 were drawn and scored with LOGIST

scoring conventions for the 25 tests. The estimation procedure began

by editing data: examinees with zero or perfect scores were removed

since abilities cannot be estimated for these examinees (such esti-

mates would be infinity). Examinees who answered less than one-third

of the items were also eliminated since it was assumed that the test

may have been speeded for these individuals. Items answered correctly

or incorrectly by all examinees were then removed since they provide

no information for estimation of ability.
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The next step of the procedure was to compute initial esti-

mates of item and ability parameters from conventional item statis-

tics. The iterative estimation process for solving the likelihood

equations takes the initial estimates as starting values. Table 2

shows the LOGIST control parameters used in this study. Additional

control parameters, not shown in the table, retained the default

values set in LOGIST.

Procedure for Prediction of Number-
Correct Score Distribution

In simulation studies of fit, estimated ability can be directly

compared with true ability, but with real data ability is unknown.

Instead, models are used to predict some observable characteristic of

data by substituting estimated parameters for true values. The pre-

dicted data can be compared to the actual data. Number-correct score

distributions were predicted in this study. Lord (1980) demonstrated

the relationship between ability and the probability density function

of number-correct scores, where the number correct score, X, is given

by:

X = u , and [15]

g=l 9

"Uy" equals zero or one and is a binary scored random variable for

item g. For a fixed level of ability, e,^, the frequency distribution

of number-correct scores is a generalized binomial. The mean of the

conditional distribution of raw scores for fixed ability 0|_,, is given

by:
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Table 2

LOGIST Control Parameters for Estimation
Used in the Study

Model

Parameter 1-PAR 3-PAR Description

LITTLN variable variabl

e

test length

N variable variable number of examinees in sample

NCH not set variabl

e

number of response alternatives

NOPARM 2 2 change default options

MAXST 10 30 maximum stages

NC 1 0 model (1=1 -PAR, 2=2-PAR, 0=3-PAR)

IC 2 0 Cg's (2=set Cg's to zero,

0=estimate c^'s)

ITONE 6 6 number of iterations per stage

INTHET -1 -1 do not limit abilities

MATPD 9 0 process (9=regular, 0=automatic—
only for 3-PAR)
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V = I Pg(6|,)
,

(X|e) g=l 9 [ 16 ]

and the standard deviation is given by:

(X e) g=l 9 k g k [17]

where Pg(9|^) is the probability of a correct response and its form

is based on the model. The quantity is equal to "1-Pg(0|^)." The

mean and standard deviation of the conditional distribution of number-

correct scores can be used to generate number-correct score distri-

butions by forming standard deviates for each number-correct score.

The total predicted number-correct score distribution is found by

summing across the conditional distributions for each level of ability.

The procedure was replicated to obtain predicted number-correct score

distributions for the Rasch and three-parameter models.

Figure 4 demonstrates the relationship between ability and the

conditional distribution of number-correct scores. Seventeen discrete

levels of ability were found for each test by dividing the ability

distribution into 17 groups each .5 wide and taking the midpoint of

the group as the estimate of ability. The number of examinees in

each group was determined from abilities estimated by the Rasch or

three-parameter model. The lowest ability group was bounded by -4.25

and the highest ability group was bounded by 4.25. Experimental

findings from five tests confirmed that the midpoints of the ability

groups obtained with this procedure were not significantly different
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from the means or medians of the actual ability groups (except at

the extremes of the ability distribution).

The mean and standard deviation of the conditional distribu-

tion of number-correct scores were found for each of the 17 discrete

levels of ability for each test using equations [16] and [17].

Figure 4 shows an ability group with the range 2.25 to 2.75 and

mean ability, 9|^, 2.50. The mean of the conditional distribution of

number-correct scores (in the percent-correct metric) was .75 and

the standard deviation was .433. The conditional distribution of

raw scores was found by calculating a standard deviate for each raw

score;

z
g

X-^xle
[18]

The normal deviates were transformed to percentage points of the

normal distribution. Denoting <{>(x,l0|^) as the probability density of

number-correct scores, the joint distribution of number-correct

scores and ability is found as:

0(X,e|^) = 0(Xl6^) g*(e|^) ,
L'S]

where g*(e|^) is the number of examinees in ability group k, obtained

from the data. The marginal distribution of number-correct scores,

0(X), was found by summing the joint distributions of X and
0|^

across

the 17 levels of ability:

17

0(X) = I 0(X,0,.)

k=l

[20 ]
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Two predicted number-correct score distributions were obtained:

one with Pg(6|^) estimated from the Rasch model, and one with Pg(0|^)

estimated from the three-parameter model

.

Model Fit

Predicted distributions of number-correct scores were compared

to actual distributions of number-correct scores for the 25 tests

with non-parametric statistics. Although the generating functions for

the predicted distributions resulted in the normal form, there is no

assumption in latent trait theory that the distribution of ability is

normal. Graphic methods were employed to interpret statistical findings.

Kolmogorov-Smirnov Statistic . —The Kolmorgorov-Smirnov (K-S)

statistic was used to compare cumulative distributions of predicted

and observed number-correct scores. Cumulative distributions were

obtained by accumulating raw score frequencies predicted by the

models (f^) or observed in the data (fQ). Negative, positive, and

absolute differences between predicted and observed cumulative dis-

tributions were calculated at each raw score level. The K-S statistic

is based on the maximum absolute difference, D=MAX( ] f^-f^
| )

occurring

at any point along the distribution. The difference is used to

compute a test statistic Z, which takes into account the number of

score levels. Z is compared to tabled values to determine exact prob-

ability levels. The probability level for the K-S statistic is

not a function of degrees of freedom. A K-S statistic was found

for the Rasch model and the three-parameter model for 20 tests.
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K-S statistics were computed in a FORTRAN program written by the

author.

Chi-Square Statistic . A chi-square test was used as a secondary

measure for detecting discrepancies between expected and actual dis-

tributions of number-correct scores. Because it is assumed in the

chi-square test that sample frequencies are normally distributed

about population frequencies, expected cell frequencies below 5 are

generally considered insufficient. Because many predicted cell fre-

quencies were zero or negl igible, especial ly at the lower score

levels, it was necessary to group across score levels before applying

the chi-square test. Depending on test length, three to four raw

score levels were grouped together before computing the test sta-

tistic. Score groups at the extremes of the distribution contained

5 or 6 raw score levels. Grouping rules were based on expected fre-

quencies for the three-parameter model and were consistently applied

to Rasch and observed data frequencies. Grouping of scores resulted

in a reduction of degrees of freedom for the test from "n-1" for n

items to approximately "1/3 (n-1)" or "1/4 (n-1)".

The chi-square statistic is given as:

= I (V^e^'/^e ’

1^1
0 e

where j is the number of score groups, f^ is the observed frequency

of examinees in score group j, and f^ is the expected frequency of

persons in group j. The test statistic is compared to tabled values

to obtain the exact probability with (j-1) degrees of freedom.
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Sinc6 t6st l6ngth dnd, cons6qu6ntly, degr66S of freedom wore

different for each test, a mean square statistic was computed to

make comparisons between tests. The mean square was given by:

MSQ = x^/9/ [22]

where 9/ stands for degrees of freedom. Chi-square and mean square

statistics were computed for each model for 25 tests in a FORTRAN

program written by the author.

Graphic Interpretation

Graphs provided a visual aid for exploring the location of

the greatest discrepancies between the predicted and observed score

distributions. Frequency plots also provided a means for assessing

model fit when score distributions took on different forms. The

graphs each pictured the observed number-correct score distribution

for a test and two predicted number-correct score distributions based

on the one- and three-parameter models. Frequencies in the plots

were based on grouped score distributions. The horizontal axis in

a graph indicated score group, and the vertical axis depicted rela-

tive frequency of examinees. Graphs were produced on a Tektronix

4000 series terminal with the PLOT 10— EASY GRAPHING software.

Comparative Fit. — Model fit was explored with a .01 rejection

region, but results were also reported with the more stringent .05

region of rejection. To make comparisons between the two models,

the mean K-S statistic across 20 tests was found and the mean square

across 25 tests was obtained. Statistical findings were supplmented
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by graphical evidence for more meaningful interpretation of compari-

sons between the two models.

Association Between Niodel Violations and Model Fit . —Correl a-

tional methods were used to explore relationships between fit statis-

tics and indices of deviation from model assumptions. Such techniques

were only able to detect linear relationships, although associations,

if they existed, may have been non-linear. Average K-S statistics

across 20 tests, and average mean squares across 25 tests had been

obtained by methods described earlier. These measures were corre-

lated with the indices of violation of model assumptions using product

moment and rank order methods. Partial correlations were computed

to further probe relationships. The IDAP package, an interactive

statistical tool written in APL, was employed for these analyses.

Estimation Precision

Precision of Item Parameters

Estimated From Small Samples

Five tests were used to explore precision of item parameter esti-

mates from small samples of 250 examinees. Itemi response data for 250

examinees was drawn from larger samples of 1000 by a spaced sampling

plan. Prior to sampling, it was statistically verified for each test

that a relationship did not exist between raw score and examinee order.

Abilities previously estimated with larger samples of 1000 were assumed

to be good approximations of population values and were substituted

as true abilities for the 250 examinees. Then, item parameters of
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the Rasch and three-parameter models were estimated on the small

samples. Precision of the small sample item parameter estimates

was explored by correlating these estimates with those based on the

larger samples of 1000 examinees. Both Pearson and rank order

methods were employed. The average absolute differences (AAD's)

between item parameters estimated on the small and large samples

were also computed. For both the Rasch and three-parameter models,

item difficulties (bg) estimated from the two sized samples were

compared; for the three-parameter model, comparisons were also made

between item discrimination and guessing estimates (a^ and Cg) from

the two-sized samples. Finally, the Rasch and three-parameter models

were compared, using the statistics described above, to determine

which model demonstrated more precise small sample estimates of item

di fficul ty

.

Precision of Abilities Estimated

from Short Tests

Five tests were used to explore precision of ability estimates

based on short 20-item tests. Twenty items were randomly sampled

from the longer tests. Estimates of item parameters for the 20 items,

determined earlier, were assumed to be population values and were

substituted as true values for the item parameters. Ability was

estimated for 1000 examinees on the short tests under the assumptions

of the one- and three-parameter models. Estimation precision for

the short tests was examined by correlating short tests ability esti-

mates with those obtained from the full-length tests. Both product

moment and rank order correlations were computed. AAD statistics
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between ability estimates from the 20-item and longer tests were

obtained as an additional measure of comparison. The three mea-

sures of precision were then evaluated between models to determine

whether the Rasch or three-parameter model produced more precise

short-test ability estimates.

Cost Method

Little data has been available for making comparisons in cost

of estimation of parameters between the Rasch and three-parameter

models. Such data were readily available in this study. Both Central

Processor Unit (CPU) time and total dollar expense for estimations

under each model for each test had been recorded. Average CPU seconds

and cost were computed across 25 tests to compare the estimation

process between the two models. Cost data were also available from

estimations in which either ability or item parameters had been

known in advance and only person or item parameters were estimated.

These data were recorded for the five tests which had been utilized

in the estimation precision analyses. This allowed a cost comparison

betv/een the Rasch and three-parameter models when only ability, or

only item parameters, needed to be estimated.

The costs and CPU times recorded in this study were based on the

batch processing cost of executing the LOGIST computer program and

did not include data preparation or time-sharing costs which had been

quite substantial in some instances. The data was accumulated on a

Control Data Corporation (CDC) CYBER-175, an extremely high speed
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machine, operating under the NOS 1-3 operating system. Costs cannot

be compared to commercial rates because they were charged at

academic discounts. The costs for each parameter estimation was

based on a weighted average of central processor usage, memory extents,

input/output units, and CPU time, and hence cannot even be generalized

to similar computer systems in other academic environments. Computa-

tion speed on the CYBER-175 for this problem was benchmarked to be

approximately twice the speed on CDC 6400 series computers and

nearly four times faster than IBM 360/370 series computers. The

efficiency of computation on the CYBER-175 for LOGIST was partially

attributed to the fact that the machine has a 60-bit word in con-

trast to the 32-bit word on the IBM computers.



CHAPTER IV

FIT OF LATENT TRAIT MODELS TO EMPIRICAL DATA

Conventional Description of Tests

Standard item statistics for the 25 tests used in the study

are presented in Table 3 which includes average item difficulties,

average item- total score correlations, and the KR-20 for each test.

The measures in the table show that the tests varied considerably

in their conventional difficulty levels and average item-total

score correlations. The mean item difficulty level across the 25

tests was .59 and ranged from a difficulty level of .711 on an

easier test to a difficulty level of .475 on a harder test. Item

difficulty levels for the majority of tests were in the range .55

to .65.

Average item-total score correlations ranged from a low of

.212 to a high of .538 with an overall average of .380 across tests.

Item-total correlations in this study tended to be somewhat lower

than values generated in simulation studies of latent trait model

fit, although they did reflect values frequently observed with

empirical data.

Internal consistency estimates (KR-20) v^ere high for nearly

all of the tests: eighty-eight percent of the tests had a KR-20

value over .80 and forty-eight percent of the tests had a KR-20

71
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measure over .90. The least reliable test in the study was the

language subtest of the Stanford which had an estimated KR-20

of .722. The most reliable test was the Stanford word study

subtest. The reliability estimate was .954.

Measures of Violation of Latent

Trait Model Assumptions

Uni dimensional i ty

Results of principal components analyses of 25 tests are pre-

sented in Table 4. Test length, the number of factors with eigen-

values greater than one, the percent of variance accounted for by the

first factor, the eigenvalue for the first factor, and the eigenratio

between the first and second factors are shown in the table. The

last column of the table provides information pertaining to a ranking

of tests based upon the extent to which they are unidimensional.

The highest rank, 25, was assumed to be the most unidimensional of

the 25 tests. Although all tests had more than one factor with an

eigenvalue over one, inspection of the factor variances, eigenvalues,

and factor loading patterns (not shown) suggested that there was only

one primary factor on each test. Most secondary factors displayed

high factor loadings for only one or two items and were considered

to represent unique factors. The factor loading patterns indicated
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that none of the primary factors seemed to be "difficulty" factors,

since all loadings had the same sign.

Variances associated with first factors ranged from a maximum

of 58.6 percent on the math comprehension subtest of the CTBS to a

minimum of 16.8 percent on one of the forms of the Georgia Regents.

Eighty percent of the tests had 25 percent or more of the test vari-

ance explained by the first factor.

First factor variance, while indicating the strength of the

primary factor, provides little information about unidimensionality

since it does not show the dominance of the primary factor over other

factors. The ratios between first and second factor variances (the

eigenratios) denionstrated the inter-relationship between factors and

thus provided a more powerful measure of unidimensionality. Because

eigenratios do not vary with test length, they allow comparisons

between tests with different numbers of items. Using the eigenratio

as a criterion, the most unidimensional test was the CTBS vocabulary

subtest which had an eigenratio of 14.957. The CTBS math comprehen-

sion subtest was the next most unidimensional test by the criterion

and had an eigenratio of 11.59, but it should be noted that this test

had the highest percentage of variance associated with its first

factor. The remaining 23 tests had eigenratios below ten. The

lowest eigenratio obtained in the study was 3.332 on one form of the

Georgia Regents. The SAT, the Stanford language subtest, the Rasch

citizenship test, and other forms of the Georgia Regents had eigen-

ratios below 4.0 and were considered to be lacking unidimensionality.
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The achievement tests tended to be more unidimensional than the

aptitude tests in the study.

Equality of Item Discrimination
Indices

Data concerning item discrimination indices for the 25 tests are

shown in Table 5 which includes average item-total correlations, per-

cents of "equal discrimination" indices, and a ranking of tests based

on the percent of equal discrimination indices. The Stanford math

applications subtest had the most homogeneous discriminations (87.5

percent). The CAT vocabulary subtest and the Rasch environment test

had the most heterogeneous discrimination values since only 50 percent

were about equal. Sixty to seventy percent of discrimination indices

were approximately equal in value on the remainder of the tests. The

data suggest that many of the tests had been designed so that the

item-total correlations for most items would be nearly equal. Other

results, based on estimated discrimination values (Sg), collected

during the parameter estimation phase of the study, indicated that

discrimination values were not so equal.

Descriptive statistics for estimated item discrimination values

(ag) are shown in Table 6. The tests in the table are rank ordered

based on the standard deviation of estimated discrimination values,

a" . Tests with the most unequal discrimination values are shown at

the top of the list. The mean and standard deviation of estimated

discrimination values for each test, along with information on ranges

of ag values, are shown in the table. For the test with the most

11
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Table 5

Equality of Item Discrimination Indices
(N=25)

Test

Average
point-
biserial

Percent of
items with
equal dis-
crimination Rank^

Stan. Word Study .538 72.00 14.0

Stan. Reading .444 60.56 4.0

SAT Verbal #1 .316 77.65 19.5

CTBS Math Comp. .497 72.92 15.0

CTBS Vocabulary .379 70.00 10.5

Stan. Vocabulary .383 82.00 22.0

Stan. Science .389 81 .67 21 .0

Stan. Language .406 71.25 12.0

Stan. Soc. Stud. .348 66.67 75.0

Stan. Listening .378 84.00 23.0

Stan. Spelling .463 71 .67 13.0

Stan. Math Applic. .473 87.50 25.0

Stan. Math Con. .351 74.29 17.0

I CRT .415 62.50 6.0

SAT Verbal #2 .319 77.65 19.5

Georgia Regents #1 .212 70.00 10.5

Georgia Regents #2 .248 68.57 9.0

Georgia Regents #3 .249 58.57 3.0

CAT Vocabulary .402 50.00 1.5

ITBS Vocabulary .426 73.68 16.0

CAT Comprehension .338 66.67 7.5

ITBS Comprehension .378 61.76 5.0

Rasch-Envi ronment .382 50.00 1 .

5

Rasch-Citizenship .308 86.67 24.0

Rasch-Career .395 76.92 18.0

^The highest rank was assigned to the test with the most

homogeneous item discrimination values.
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heterogeneous discriminations, the standard deviation, o: was .575

The standard deviation of discrimination indices for the test with the

most homogeneous discriminations was .236. The average standard

deviation of estimated discrimination indices across tests was .399.

One or two items on some of the tests had very high item discrimination

estimates, which had been set to the maximum value of 2.00 during

estimation. When these few items were included in the calculation

of the range of discrimination indices for a test, they tended to

exaggerate the range, hence an approximate range, based on two standard

deviations, was also reported. These data suggest that item discri-

mination values were more heterogeneous than the item-total correlation

evidence had indicated. The correlation between the two measures of

equality of item discrimination indices was .414.

Guessing

Results pertaining to estimates of guessing on 25 tests are pre-

sented in Table 7. Test length, the number of "hard" items on a test

(items answered incorrectly by more than two-thirds of examinees),

average test difficulty, average difficulty level for hard items, and

average difficulty level for hard items computed for the bottom ten

percent of examinees ("guessing") are shown in the table. The next to

last column in the table is a ratik ordering of tests based on the amount

of guessing. The highest rank, 16, was assigned to the test which

demonstrated the lowest percent of guessing. The last column in

Table 7 shows the chance level parameter (dg), averaged across hard
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items, estimated with latent trait methods. Guessing was estimated

on only 16 tests since nine tests had too few difficult items to

evaluate guessing. The conventional and the latent trait guessing

estimates suggest that there was a considerable amount of random

guessing on the 16 tests. On the average, 12 percent of low ability

examinees obtained correct responses on hard items, yet only 33 percent

of all examinees scored correctly on these items. The percent of low

ability examinees who obtained correct answers by chance ranged from

nine to 20 percent. The latent trait pseudo-guessing, or chance level

parameter, indicated that, on the average, 18 percent of low ability

examinees obtained correct answers by random guessing. The chance level

parameter, averaged across hard items, ranged from .08 to .23. The

correlation between the conventional and latent trait estimates of

guessi ng was .208.

Overall Model Fit

Kolmogorov-Smi rnov (K-S) Test

K-S statistics for 20 tests are shown in Table 8, which also

includes the rank for each test based on three measures of deviation

from latent trait model assumptions. The average K-S statistic across

the 20 tests was 1.304 for the Rasch model as compared to 1.289 for

the three-parameter model, which indicates that the more general three-

parameter model fit data somewhat better, on the average, than the

Rasch model. Data fit the three-parameter model better than the Rasch

model on 55 percent of the tests. Probability levels associated with
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K-S statistics indicated that the Stanford reading subtest was the

only test rejected as not fitting either of the models when a one

percent rejection region was the criterion. The IG-item criterion-

referenced test did not fit the Rasch model with this criterion.

When the region of rejection was increased from one percent to five

percent, probability levels shov^ed that the Stanford language subtest

and the SAT verbal test did not fit either model very well, the math

concepts subtest of the Stanford did not fit the Rasch model, and the

16-item ICRT did not fit the three-parameter model. There was a .977

correlation between K-S statistics for the Rasch and three-parameter

models. The rank order correlation between K-S statistics for the two

models was .836. These correlations indicated that the pattern of

fit of data to the two models was quite similar. It is reasonable to

conclude from the K-S test of fit that many standardized achievement

and aptitude tests, developed with conventional methods, can be fit

by latent trait models. It is also concluded that the Rasch model

fits tests nearly as well as the three-parameter model.

Chi-Square Test

Chi-square test results are presented in Table 9, which includes

mean squares (x^/3/) the Rasch and three-parameter models, rank-

ings based on three deviations from model assumptions, and the degrees

of freedom for the chi-square test for the 25 data sets. Although

correlations between K-S measures and mean squares were significant

{r=.764 for the three-parameter model and r=.776 for the one-parameter

model), the chi-square test proved to be a considerably more rigid
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t6st of fit thdn tho K-S tost dnd dlso displayed some curiously in-

consistent results with those from the previous measure. Rank order

correlations between K-S statistics and mean square statistics were

quite low: .165 for the three-parameter model and .223 for the Rasch

model

.

The mean square, averaged across 25 tests, was 1.83 for the

Rasch model and 1.79 for the three-parameter model indicating, as

earlier, that the three-parameter model fit the data slightly better

than the Rasch model . Lower mean squares were obtained for the three-

parameter model on 64 percent of the tests. Exact probability levels

associated with chi-square test statistics indicated that four tests

were not fit by either model when a .01 rejection region was set.

When the rejection region was expanded to five percent, 48 percent

of the tests were not fit very well by the Rasch model and 44 percent

of tests were not fit very well by the three-parameter model. These

chi-square test results are of dubious value because it is unlikely

that the test statistics used in the study approximated the chi-square

di stribution.

The Stanford reading subtest shov/ed the poorest fit to data with

both the K-S and mean square statistics. The 16-item ICRT, which had

demonstrated very poor fit to both models with the K-S statistics, had

low mean squares, indicating reasonably acceptable model fit, with

the mean square criterion. The 1 anguage, spel 1 ing
,
and math concepts

subtests of the Stanford did not show very good model fit with the

The Stanford word study subtest, the ITBSmean square criterion.
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comprehension subtest, the Stanford science subtest, and the CAT

vocabulary subtest also showed rather poor fit with the mean square

criterion, yet demonstrated reasonably adequate fit with the K-S

statistic as a criterion. The correlation between mean square fit

statistics for the Rasch and three-parameter models was .892, and

the rank order correlation between the two mean squares was .812,

indicating a systematic relationship in fit for the two models.

There was a small but insignificant association between mean

square statistics and test length. Product moment correlations

between number of score intervals and mean square statistics were .299

and .287 respectively for the Rasch and three-parameter models sug-

gesting that longer tests had been detected as not fitting the models

as well as shorter tests. Test length had no relationship to K-S

statistics

.

The unfavorable picture of model fit suggested by chi-square

statistics may be attributed to a number of shortcomings associated

with the approach taken in the study. In much statistical work,

sample values provide an acceptable approximation to population

values. Lord (1980) noted that because sampling frequency distri-

butions tend to be very irregular, a large amount of error is intro-

duced by substituting sampling frequencies for population frequencies.

Lord (1980, p. 239) suggested: "The simplest way to reduce such

irregularities is to group the observed scores into class intervals,

and Lord provided a set of grouping rules comparable to those used

in this study. The resulting test statistics, unfortunately do not
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have the chi-square distribution. During the course of this study,

a substantial amount of experimentation was conducted with re-grouping

specifications. It was observed that chi-square values were extremely

sensitive to the manner in which scores had been grouped into class

intervals.

Test statistics, such as those constructed in this study, only

have the chi-square distribution when N is infinitely large. Thus,

strictly speaking, it was inappropriate to compare these test sta-

tistics to tabled values of the chi-square distribution. There has

been some sharp debate concerning just how large N needs to be to

permit use of chi-square tables. A rule of thumb offered in many

statistical texts is that the chi-square test is appropriate when the

expected freqeuncies in all categories are over 5. On the other hand,

when N is too large, most data is rejected by the chi-square test

(and other statistical tests) despite its practical usefulness.

Since mean square values were used to make inter-model compari-

sons, they were not subject to the criticisms of the chi-square

procedure stated in the previous section. The K-S test required only

that data were ordinal so that they could be put in cumulative form,

and was used for both significance tests of model fit and inter-model

comparisons. The K-S test is considered to be a more powerful test

of fit than the chi-square test (Hays & Winkler, 1971) and had none of

the limitations of the chi-square or mean square measures. Generally,

the mean square results supported the conclusions of the K-S test,

namely, that the Rasch model describes cognitive test data nearly as

well as the three-parameter model.

i

1
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Graphic Results

Visual evidence, supplied by graphs, was very consistent with

model fit results provided by statistical tests. Frequency polygons

for 25 tests used in the study are displayed in Figure 5 through 28.

Three frequency distributions are shown in each figure: the observed

distribution of number correct scores (solid line); the distribution

of number-correct scores predicted with the Rasch model (broken line);

and the distribution of number-correct scores predicted with the

three-parameter model (mixed line). These distributions show fre-

quencies of scores which had been grouped into class intervals to

reduce sampling fluctuations. The horizontal axis in each figure

represents the class interval and the vertical axis depicts relative

frequency of examinees in each score group.

The Influence of Distribution
Form on Model Fit

Three general forms of number-correct score distributions

were obtained in this study: normal, uniform, and skewed. No bi-

modal distributions occurred. Some distributions were quite jagged

despite the fact that scores had been grouped, but most were relatively

smooth. Normal distributions are shown in Figures 7, 10, 13, 19, 23,

and 24. Uniformly distributed scores are found in Figures 8, 11, 12,

15, and 18 and the rest of the figures illustrate skewed distributions

of number-correct scores. Tests which had particularly irregular

number-correct score distributions are seen in Figures 5, 6, 8, 9, 10,

11, 12, 15, 16, 23, 24, and 26.

I
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Overall, tests having normal score distributions fit both models

better than those with uniform or skewed distributions. The chi-

square test was more sensitive to departures from normality than the

K-S test. Longer tests with uniformly distributed scores were often

rejected by the chi-square test, although it is believed that this

outcome may be attributed both to test length and to distributional

form. Shorter tests, with either positively or negatively skewed

number-correct score distributions, were also detected as fitting

poorly by chi-square tests. The graphs indicated that latent trait

models may not be very adequate for shorter tests. A discussion con-

derning test length is offered in a later section.

Location of Misfit of
Latent Trait Models

The poorest fit of data to the latent trait models occurred in

the extremes of the distributions. The graphs indicated that the

number-correct score distributions predicted by the three-parameter

model tended to be shifted toward the high end of the ability scale.

This model predicted fewer low ability examinees and more high ability

examinees than the numbers suggested by the observed score distributions.

This result was more evident for skewed distributions, but appeared

to be evident in other forms as well. On many tests a similar outcome

was observed for the Rasch model but, on other tests, the Rasch

model predicted too many examinees at both extremes of ability. Since

there was considerable opportunity to guess on all of the tests used

in the study, it was anticipated that the Rasch model, lacking a
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guessing parameter, would overestimate abilities, thereby under-

estimating the frequency of examinees at the low end of the ability

scale. Underestimation of the frequency of low ability examinees

by the three-parameter model as well, suggests that the estimated

chance level parameters v;ere too low. Discrepancies betv/een pre-

dicted and observed number-correct score distributions were especially

large for both models at the upper end of the ability distribution

and tended to be the primary cause for rejection of data by statisti-

cal criteria. The results indicate that ability estimates at both

extremes of the ability scale for this data were not very precise.

Concluding Remarks on Overall
Model Fit

The results of this study indicate that cognitive tests, con-

structed with conventional test development strategies, can be nicely

characterized by latent trait models. Because of the substantial

amount of guessing and the lack of equal item discrimination parameters

in the data, it was not anticipated that the Rasch model would fit

data nearly as well as it did.

Some tests in the study had been rejected as not fitting the

models when statistical criteria were used, yet graphic evidence for

these same tests implied that fit was moderately good. Some psycho-

metricians have argued that the practical relevance of a model is

more important than some arbitrary statistical test of fit. The

practical significance of latent trait models can only be verified

within the context of specific applications of the models. For

\
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estimating abilities, model fit needs to be very good, but for other

applications, for example, determining transformations for test

equating, more lenient criteria for fit may be warranted.

Because irregularities due to sampling fluctuations in number-

correct score distributions contributed to lack of model fit, overall

model fit may actually be somewhat better than the results indicated.

Nevertheless, model fit was quite poor at the extremes of the distri-

bution, and efforts will be required to improve ability estimates in

these locations.

The Relationship Between Model Fit and Violations

in Latent Trait Model Assumptions

Unidimensionality

Unidimensionality was an important condition for fit of data

to the Rasch and three-parameter models. Data which were multidimen-

sional did not fit the latent trait models very well. Pearson and

rank order correlations between K-S fit statistics and unidimension-

ality measures, shown in Table 10, were significant at the .05 level

of probability. Correlations between mean square fit statistics

and unidimensionality indices, also shown in Table 10, were not

significant, but demonstrated a parallel trend. The negative sign

of the correlations meant that high eigenratios (most unidimensional)

were associated with good model fit (low fit statistics).

Generally, the tests used in this study had been designed to

be unidimensional. When data tended to be multidimensional, problems
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Table 10

Association Between Model Fit and Unidimensional i ty

Model

Criterion
1 -Parameter 3-Parameter

Pearson Spearman Pearson Spearman
Corr. Corr. Corr. Corr.

Mean Square^ -.26 -.08 -.31 -.17

K-S Statistic^
1

-.46* -.56* -.42* -.47*

iN=25 tests.

^N=20 tests.

*Signif icant, p < .05.
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ensued in attempting to solve maximum likelihood equations and the

estimation process took considerably longer. Cook, Eignor, and

Hutten (1979) observed that when data were characterized by many

factors, item parameters fluctuated wildly during estimation which

frequently impeded convergence to a solution. Their data consisted

of 1 00-i tern, mul ti -objecti ve, cri terion-referenced tests in quanti-

tative and verbal areas.

Table 8, presented earlier, demonstrated the correspondence

between K-S fit statistics and a ranking of tests based on unidimen-

sionality and other model assumptions. Table 9 presented similar

data for mean square statistics. Four of five tests which fit the

models best (math applications and listening subtests of the Stanford,

and Rasch developed career and environment tests) had been ranked

as some of the most unidimensional tests. Based on a ranking of 25

tests, the average rank for the four tests was 18. The CTBS compre-

hension subtest, which also demonstrated good fit to both latent

trait models, had a rank of only 10 on unidimensionality. The tests

which showed the poorest fit to the Rasch and three-parameter models

(reading and language subtests of the Stanford, the SAT verbal, and

the 16-item ICRT) had some of the lowest unidimensionality ranks.

The average rank for the four tests was 6. The poorest fitting test

in the study, the Stanford reading subtest, was the second most multi-

dimensional test. The next most poorly fitting test, the Stanford

language subtest, had a dimensionality rank of 7 and had the lowest

internal consistency index (KR-20) of tests in the study.

e
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The results suggest that latent trait models are not appro-

priate unless data is unidimensional. Principal components analysis

provided a reasonable method for determining v/hether a set of items

was unidimensional. For data characterized as multidimensional,

multivariate extensions to latent trait theory, suggested by Samejima

(1974) may provide an appropriate solution. Alternatively, items

can be grouped into unidimensional subsets prior to applying the

latent trait methods described in this paper.

Equality of Item Discrimination
Indices

A modest relationship was found between fit to the Rasch model

and equality of item discrimination indices. Pearson and rank order

correlations between Rasch and three-parameter model fit statistics

and indices of equality of item discrimination are shown in Table 11.

The negative sign of the correlations is interpreted to mean that the

more homogeneous the item discriminations, the better the fit of

the data to the latent trait models. Correlations between Rasch and

three-parameter model fit statistics and measures of homogeneity of

item discrimination, alternatively evaluated with latent trait methods,

are shown in Table 12. The results in this table are very similar to

those found in Table 11.

Three tests which had demonstrated the poorest fit to the

latent trait models (Stanford reading, Stanford language, and the

ICRT) generally had very heterogeneous item discriminations (ranked

4, 7, and 6 respectively), yet the SAT, which also did not fit the

models very well, had quite homogeneous item discrimination values
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Table 11

Association Between Model Fit and Equality of
Item Discrimination^

Model

Criterion
1 Parameter 3-Parameter

Pearson
Corr.

Spearman
Corr.

Pearson
Corr.

Spearman
Corr.

Mean Square^ -.10 -.02 -.23 -.03

K-S Statistic^ -.22 -.16 -.24 -.19

^Based on conventional item-total score correlation.

2 n= 25 tests.

3n= 20 tests.
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Table 12

Association Between Model Fit and Equality
of Item Discrimination^

Model

Criterion
1 -Parameter 3-Parameter

Pearson
Corr

.

Spearman
Corr.

Pearson Spearman
Corr. Corr.

Mean Square^ -.17 -.23 -.31 -.35

K-S Statistic^ -.30 -.29 -.23 -.15

^Based on the variance of discrimination, agA estimated

with latent trait methods. ^

2n= 22 tests.

3N=17 tests.
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(rank 19.5 out of 25 tests). Except for the ITBS comprehension

subtest, tests which fit the latent trait models quite well, demon-

strated very homogeneous discrimination values.

Previous results in this area, based on simulation techniques,

have shown that the Rasch model does not fit data as well when item

discrimination values have been heterogeneous. Since there were

interactions between unidimensionality, equality of item discrimina-

tions, and guessing in the empirical data used in this study,

partial correlation analyses were done to remove the effects of

confounding variables. Partial correlations between fit statistics

and measures of homogeneity of item discrimination are shown in

Table 13. When correlations were controlled for other factors,

there was little change in the relationship between model fit and

equality of item discriminations.

Two opposite conclusions might be drawn from the results con-

cerning item discrimination and Rasch model fit. The first is that

the data used in this study had a sufficiently narrow range of item

discrimination values so that, for practical purposes, they did not

actually violate the Rasch model assumption of equal item discrimi-

nation and, consequently, the Rasch model fit rather well. The

second is that the Rasch model fit data despite the fact that item

discriminations were not equal, i.e., the Rasch model was robust to

violation of the assumption. The results of this study are con-

trasted to those from other studies to explore which conclusion is

appropriate.
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Table 13

Partial Correlations Between Model Fit and Equality
of Item Discrimination^ ’2

Correlation 1 -parameter model 3-parameter model

Simple Correlation

Mean Square -.25 -.40
K-S Statistic -.29 -.33

1st Order Partial-
Unidimensional ity
Partialled Out

Mean Square -.21 -.35
K-S Statistic -.21 -.26

1st Order Partial-
Guess i ng

Partialled Out

Mean Square -.26 -.42

K-S Statistic -.36 -.41

2nd Order Partial-
Guessing and
Unidimensional ity

Partialled Out

Mean Square -.20 -.38

K-S Statistic -.28 -.33

^Based on N=21 tests (tests with less than 30 items and less

than 900 examinees were excluded).

^Conventional item-total score correlations were used to

estimate equality of item discrimination.



125

Hambleton and Cook (1978) and Dinero and Haertel (1977) found

a weak relationship between homogeneity of item discrimination values

and fit of data to the Rasch model. Hambleton and Traub (1971), on

the other hand, found that the presence of unequal discrimination

values significantly reduced fit of data to the Rasch model. The

discrimination parameters in the simulation studies had been gen-

erated to span a fairly wide range. Discrimination parameters found

in the standardized tests used in this study were thought to be

relatively homogeneous.

The ranges of discrimination values for the empirical data in

this study are compared to the ranges reported in other studies in

Table 14. In this study and the Dinero and Haertel study, the ranges

were estimated from the variances of discrimination parameters. In

the other studies, discrimination parameters had been generated within

the reported ranges. The minimum, maximum, and average ranges of

discrimination values are reported for the empirical data. Hambleton

and Traub (1971) concluded that when the range of item discriminations

was greater than .2, the Rasch model failed to fit simulated data.

They observed that a range of discrimination values of .8 is more

commonly seen in real data. Hambleton and Cook (1978, p. 8) gen-

erated narrow and broad ranges of discrimination values and concluded:

"For the values studied in the paper, using discrimination parameters

as weights contributed very little to the proper ranking of examinees."

Dinero and Haertel (1977, p. 14) examined five variances for item

discrimination and concluded: "The present research suggests that

the lack of an item discrimination parameter in the Rasch model does
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not result in poor calibration in the presence of varying discrimi-

nations." The comparative results in Table 14 indicate that the

ranges of discrimination values in this study were as broad as those

explored in the simulation studies. Nevertheless, in the present

study, the lack of homogeneity of item discrimination values did

not appreciably reduce fit of data to the Rasch model. It is con-

cluded that the Rasch model can tolerate heterogeneity of item

discrimination indices. It is not clear why the results of Hambleton

and Traub (1971) differ from those in the other studies. One differ-

ence between the studies is that the more recent studies utilized

sophisticated computer methods for estimation, in contrast to the

approximate solutions used by Hambleton and Traub. There is not a

consensus on how wide a range of discrimination values can be tolerated

by the Rasch model, but if the data in this study are representative

of tests used in practice, the question of importance of homogeneous

item discriminations for the Rasch model may be moot.

There was also a relationship found between heterogeneity of

item discrimination and lack of fit to the three-parameter model.

One explanation for this outcome is that item discrimination param-

eters may not have been estimated very precisely.
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Guessi ng

Results concerning the effect of guessing on Rasch model fit

were not conclusive. Pearson and rank order correlations between

estimates of guessing based on conventional item difficulty levels

and fit statistics for the Rasch and three-parameter models are

presented in Table 15. These data show the surprising result that

both the Rasch and three-parameter models fit data better when

examinees guessed. A complimentary set of results, based on guessing

estimated with latent trait methods, is shown in Table 16. Results

in this table suggest that the Rasch and three-parameter models had

fit data more poorly when examinees guessed. The rank order corre-

lation between the latent trait estimate of guessing and fit to

the three-parameter model was significant at the .05 level of

probabi 1 ity

.

Some might argue that the latent trait estimates of guessing

were not very good (particularly proponents of the Rasch model),

but it seemed more plausible to this author that the contridictory

results, reported above, can be attributed to poor estimation of

guessing with conventional methods. The two approaches to

estimating guessing differed significantly.

\
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Table 15

Relationship Between Model Fit and Guessing^

Model

Criterion
1 -Parameter 3-Parameter

Pearson^
Corr

.

Spearman^
Corr.

Pearson
Corr.

Spearman
Corr.

Mean Square'^ -.35 .25 -.42 .42

K-S Statistic^ -.43 .23 -.36 .08

^Based on conventional estimate for guessing.

2A negative correlation associate guessing with good model fit.

^Since a high rank was assigned to tests with the least guessing,

a positive correlation associates guessing with good model fit.

^N=16 tests (4 or more hard items per test).

5N=12 tests (4 or more hard items per test).
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Table 16

Relationship Between Model Fit and Guessing^

Model

Criterion
1 -Parameter 3-Parameter

Pearson^
Corr

.

Spearman^
Corr.

Pearson Spearman
Corr. Corr.

Mean Square‘s .44 -.24 .51 -.59*

K-S Statistic^ .30 -.24 .36 -.36

^Based on average chance level parameter, c, for hard items

estimated by latent trait methods.

positive correlation associates guessing with poor model fit.

negative correlation associates guessing with poor model fit

since high ranks were assigned tests with less guessing.

^N=14 tests (4 or more hard items per test).

5N=10 tests (4 or more hard items per test).

*Significant, p < .05.
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In latent trait theory, the lower asymptote of the ICC is

assumed to provide a measure of guessing. The lower asymptote

gives the probability of obtaining a correct answer by chance alone

and, as such, is a characteristic of the item. The conventional

method gave the percentage of low ability examinees who actually

answered difficult i terns correctl y , presumably by chance, and was

more a characteristic of the examinees. Conventional item diffi-

culty levels are unfortunately sample dependent and, consequently,

no method existed for equating the difficulties for items across

tests. Since latent trait parameter estimates are sample-invariant,

they allow comparisons between tests.

Another difficulty with the conventional procedure for esti-

mating guessing was that there was no way to equate what "low ability"

meant across samples. Conventional difficulties were based on the

bottom ten percent of examinees, who were assumed to be of low

ability. There was no method for verifying this assumption. The

lowest decile group on each test may have had significantly different

levels of ability.

Another criticism of the conventional guessing estimates is that

they were based on the scores of al

1

examinees regardless of whether

they answered an item or not. Conventional test scoring assumes that

omitted items are incorrect. Latent trait methods do not base in-

formation on omitted items.
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Both conventional and latent trait estimates of guessing

were based on a small number of examinees, 100 or less, in this

study. Neither estimate may be very accurate considering the modest

number of low ability examinees represented in the samples in this

study

.

Given the foregoing problems, guessing results based on con-

ventional item difficulties were suspect. These estimates could

represent some other quality of the data, but no relationships with

other variables emerged.

In the remainder of this discussion, it is assumed that the

latent trait chance level parameter was a more accurate measure of

guessing. Given this assumption, the fact that the three-parameter

model also fit data rather poorly when there was evidence of guessing

needs to be explained.

When ability estimates are not corrected for the chance level

parameter they tend to be too high. This phenomena is illustrated

with simulated data in Tables 17 to 19. Table 17 provides ability

estimates at various probability levels for an item of average

difficulty (bg=0.0) when the estimate of guessing is varied. Table

18 shows ability estimates for a difficult item (bg=-2.0) given

different probability levels and estimates of guessing. Table 19

illustrates the error in ability estimates that results when true

values of the lower asymptote are greater than zero by various

amounts. The tables show the extent to which ability is over-

estimated when the chance parameter is assumed to be too low or zero.

Overestimation of ability at the low end of the scale would result in
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Table 17

The Effect of Underestimating Guessing on Ability
Estimates for an Item of Average Difficulty^

Ability Estimates (§) for Estimated Values of Cg

Pr(e) Cg-0 .

0

Cg=.10 Cg-.20 £g=.25 Cg-.30 Cg-.50

0.00 • 00 X X X X X

.05 -2.944 X X X X X

.10 -2.197 — _oo X X X X

.15 -1.735 -2.833 X X X X

.20 -1.386 -2.079 — 00 X X X

.25 -1.099 -1 .609 -2.708 . 00 X X

.30 - .847 -1 .253 -1.946 -2.639 - 00 X

.35 - .619 - .955 -1 .466 -1 .871 -2.565 X

.40 - .405 - .693 -1 .099 -1.386 -1.792 X

.45 - .201 - .452 - .788 -1 .012 -1 .299 X

.50 0.0 - .223 - .511 - .693 - .916 — 00

.55 .201 0.0 - .251 - .405 - .588 -2.197

.60 .405 .223 0.0 - .133 - .288 -1 .386

.65 .619 .452 .251 .133 0.0 - .847

.70 .847 .693 .511 .405 .288 - .405

.75 1 .099 .955 .788 .693 .588 0.0

.80 1 .386 1.253 1 .099 1 .012 .916 .405

.85 1.735 1.609 1 .466 1.386 1 .299 .847

.90 2.197 2.079 1 .946 1 .871 1.792 1.386

.95 2.944 2.833 2.708 2.639 2.565 2.197

1 .00 + 00 4* oo + oo + 00 + 00 + 00

Ug=l .0; bg=0.0.
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Table 18

The Effect of Underestimating Guessing on Ability
Estimates for a Hard Itemi

Ability Estimates (e) for Estimated Values of dg

Pr (e) eg=0.0 Cg=.10

0.00 — 00 X

.05 -4.944 X

.10 -4.197 oo

.15 -3.735 -4.833

.20 -3.386 -4.079

.25 -3.099 -3.609

.30 -2.847 -3.253

.35 -2.619 -2.955

.40 -2.405 -2.693

.45 -2.201 -2.452

.50 -2.000 -2.223

.55 -1.799 -2.000

.60 -1.595 -1.777

.65 -1 .381 -1.548

.70 -1 .153 -1.307

.75 - .901 -1 .045

.80 - .614 - .747

.85 - .265 - .391

.90 .197 .079

.95 .944 .833

1 .00 + 00 + 00

.0; bg=-2,.00.

eg=.2o eg=.25 eg=.30 eg=.5o

X X X X

X X X X

X X X X

X X X X

— QO X X X

-4.708 « 00 X X

-3.946 -4.639 — 00 X

-3.466 -3.871 -4.565 X

-3.099 -3.386 -3.792 X

-2.788 -3.012 -3.299 X

-2.511 -2.693 -2.916 > 00

-2.251 -2.405 -2.588 -4.197

-2.000 -2.133 -2.288 -3.386

-1.749 -1 .867 -2.000 -2.847

-1 .489 -1 .595 -1 .712 -2.405

-1 .212 -1.307 -1 .412 -2.000

- .901 - .988 -1 .084 -1.595

- .534 - .614 - .701 -1.153

- .054 - .129 - .208 - .614

.708 .639 .565 .197

+ 00 + oo + 00 + CO
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Table 19

Error in Estimating Ability (e) when the Rasch Model (No
Guessing) is Assumed and There is Actually Guessing

Pr(0)

Error in Rasch Ability Estimates
True Values of Cg

(e) for Various

Cg=.l0 Cg=.20 Cg=.25 Cg-.30 Cg=.50

0.00 a a a a a

.05 a a a a a

.10 a a a a a

.15 1.098 a a a a

.20 .693 a a a a

.25 .511 1.609 a a a

.30 .406 1.099 1 .792 a a

.35 .336 .847 1.252 1 .946 a

.40 .288 .694 .981 1.387 a

.45 .251 .587 .811 1.098 a

.50 .223 .511 .693 .916 a

.55 .201 .452 .606 .789 2.398

.60 .182 .405 .538 .693 1 .791

.65 .167 .368 .486 .619 1 .466

.70 .154 .336 .442 .559 1 .252

.75 .143 .310 .405 .510 1 .098

.80 .133 .287 .374 .470 .981

.85 .126 .269 .349 .436 .888

.90 .118 .251 .326 .405 .811

.95 .111 .236 .305 .379 .747

1 .00 b b b b b

^Error approaches infinity.

*^Error approaches zero.
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an underestimation of the number of examinees in the lowest score

groups

.

Other results in the study showed that the numbers of exami-

nees predicted in the lower score groups by both the Rasch and

three-parameter models were too low. These results could have been

obtained either because chance level parameter estimates were too

low (or zero in the case of the Rasch model), or because other item

parameters had been poorly estimated. Swaminathan and Gifford (1979)

demonstrated that maximum likelihood estimates of difficulty and

discrimination with the LOGIST procedure were rather good in con-

trast to estimates of guessing. This suggests that in this study

guessing estimates had been underdetermined.

Overall, guessing estimates were obtained for only 25 percent

of items; the remainder of items retained their initial values

throughout the estimation process. This undesirable situation was

attributed to the fact that too few low ability examinees were

represented in the samples. Other parameter estimates were based

on 1000 examinees.

Although the relationship between guessing and model fit was

not significant, the results suggest that the guessing parameter

may be quite important for estimating ability. Unfortunately, the

maximum likelihood estimate for guessing was not well determined

on samples of 1000. These difficulties suggest that other methods

for dealing with guessing, such as those suggested by Waller (1974a,

1974b, 1976) might provide more useful approaches.
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The Effects of Sample Size and Test Lengh

on Precision of Latent Trait Parameter Estimates

Ability Estimation on
Short Tests

Three measures of association between abilities estimated on

short (20-item) and longer tests are shown in Table 20. The high

Pearson and rank order correlations between abilities on short and

long tests indicate that ability estimates on short tests were very

good. A third measure, the average absolute difference (AAD) between

the two sets of estimates, was approximately one-third of a standard

deviation and supported the information provided by the correla-

tions. Abilities estimated on the short test with the Rasch model

were somewhat better than those estimated with the three-parameter

model. Although the Rasch ability estimates were more consistent,

it cannot be concluded that they were also more valid. The AAD

statistic can be viewed as an approximate measure of error in the

short test ability estimates. Based on a practical range in ability

from -4 to +4, or 8 units, a .3 difference in ability estimates

represents an error of 3.7 percent for the Rasch model and the .37

difference represents an error of 4.6 percent for the three-parameter

model. These results suggest that ability estimates from short

tests were quite precise with both models. This result is particu-

larly important for tailored testing, but means, in general, that

test administration times need not be substantial when latent trait

methods are used to score data.
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Table 20

Three Measures
from

of Precision of Ability
Short and Long Tests^

Estimates

Statistic 3-Parameter Model 1 -Parameter Model

Pearson Correlation .866 .923

Spearman Correlation .918 .926

Av. Abs . Difference .372 .300

^Based on n=5 tests. Short tests were 20 items. Long

tests were over 40 items.
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Item Parameter Estimation
on Small Samples

Item pdrsmeters estimdted on smdll samples (N“250) dre com-

pdred with those estimdted on Idrger sdmples (N=1000) in Tdble 21.

Correldtions between difficulties estimdted from the smdll dnd

Idrge sdmples dre quite high for both the Rdsch dnd three-pdrdmeter

models. The difficulties estimdted with the RdSch model dre slightly

more precise thdn those estimdted with the three-pdrdmeter model.

Bdsed on d prdcticdl rdnge of difficulty from -2 to +2, dn AAD of

.153 represents d 3.8 percent difference in difficulties estimdted

on the two different size sdmples for the three-pdrdmeter model.

The corresponding percentdge error, bdsed on dn AAD of .22, wds 3.0

percent for the RdSch model

.

Item discrimindtion estimdtes from the smdll sdmple were not

ds good ds difficulty estimdtes. Since item discrimindtion hdd d

prdcticdl rdnge of 0 to +2, only two units, dn AAD stdtistic of .407

represented d 20 percent difference in item discrimindtion estimdtes

from the smdll dnd Idrge sdmples. Correldtion between the two sets

of discrimindtion estimdtes were redsondbly high, dlthough the megni-

tudes of the discrimindtions were quite dispdrdte in the smdller dnd

Idrger sdmples. The results suggest thdt sdmples of 250 exdminees

were too smdll for estimdting item discrimindtion.

Estimdtes of guessing from the smdll dnd Idrger sdmples hdd

only d modest correldtion, but were very close in mdgnitude. Since

the rdnge of guessing pdrdmeters is rdther ndrrow (dpproximdtely 0 to

.20 for this ddtd), the vdlues of the pdrdmeters in the two sdmples

differed by dpproximdtely 15 percent. This error wds somewhdt less
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Table 21

Three Measures of Precision of Item Parameter Estimates
from Small and Large Samples^

Statistic
3-Parameter
A A

ag ag

Model
A

"g

1 -Parameter Model

6g

Pearson Correlation .833 .974 .413 .987

Spearman Correlation .830 .975 .478 .983

Av. Abs. Diff. .407 .513 .030 .122

^Based on n=5 tests. Small

Large samples were 1000 examinees
samples were 250 examinees

.
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than the error in estimating item discrimination values. This result

is attributed to the fact that 75 percent of guessing parameters in

the study were inestimable and kept at their initial values. The

initial values were the same regardless of sample size since they

were computed as one divided by the number of choices on an item.

The low correlation between guessing parameters estimated on the

different size samples indicates that guessing estimates on the small

sample were very poor. Considering that 75 percent of the guessing

estimates were identical in the two different size samples, the re-

mainder had been extremely inconsistent in value, resulting in very

low correlations.

The results on guessing clearly show that samples greater than

250 examinees are required to obtain good estimates of guessing. It

is not clear whether 1000 examinees are a sufficient number of

examinees for estimating guessing.

Generally, the results of this section indicate that the Rasch

model can be used effectively with samples of only 250. More examinees

are required to obtain good item parameter estimates with the three-

parameter model, but just how many examinees are needed isn't known.

Cost of Latent Trait Parameter Estimation

Test length, computer time (CPU seconds), and batch processing

cost for estimating parameters of the Rasch and three-parameter

models for 25 tests are shown in Table 22. It can be seen that

the CPU time and cost for estimation were directly proportional

to the number of items in a test. Doubling test length had the effect
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Table 22

Computer Time (CPU Seconds) and Cost for Parameter Estimation
by the Rasch and Three-Parameter Models for 25 Tests^’^

Test
Number

of
Items

1 -Parameter Model

Time Cost

3-Parameter Model

Time Cost

Stan. Word Study 50 34" $12.91 92" $34.87

Stan. Reading 71 46 17.57 116 43.98

SAT Verbal #1 85 68 23.38 179 69.96

CTBS Math Comp. 48 35 13.66 81 31 .56

CTBS Vocabulary 40 27 10.62 99 38.46

Stan. Vocabulary 50 34 13.00 101 38.64

Stan. Science 60 39 15.01 116 44.37

Stan. Language 80 49 18.63 155 58.25

Stan. Soc. Stud. 54 32 12.11 94 35.39

Stan. Listening 50 35 13.11 78 29.54

Stan. Spelling 60 41 15.69 98 36.91

Stan. Math Applic. 40 27 10.09 67 25.35

Stan. Math Con. 35 22 8.37 54 20.49

I CRT 16 9 3.85 32 12.43

SAT Verbal #2 85 60 22.91 134 50.51

Georgia Regents #1 70 45 17.21 118 44.61

Georgia Regents #2 70 46 17.30 116 43.79

Georgia Regents #3 70 47 17.99 116 43.92

CAT Vocabulary 40 26 9.93 84 31.67

ITBS Vocabulary 38 21 8.24 61 23.33

CAT Comprehension 45 26 9.96 98 37.00

ITBS Comprehension 68 38 14.46 139 52.43

Rasch- Environment^ 34 12 4.69 29 11.19

Rasch-Ci tizenship^ 30 11 4.42 18 6.89

Rasch-Career^ 30 12 4.78 35 13.55

iBased on a CDC CYBER-175 computer.

2 n= 1000 examinees.

3N-500 examinees.
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of approximately doubling the time and cost of an estimation. Al-

though data are not shown, a similar relationship existed between

the number of examinees and the time and cost of an estimation.

Cost results, across tests, are summarized in Table 23 which

shows the minimum, maximum, and average CPU time and cost for esti-

mation by each model. When abilities and item parameters were both

simultaneously estimated, costs were three times more for the three-

parameter model than for the Rasch model . When item parameters were

known, and only abilities were estimated, the time and cost of esti-

mation was identical for the two models. This result is shown in

Table 24 which gives the average cost for parameter estimation by

each model with known item parameter values. This result suggests

that when items are drawn from item banks, regardless of the number

of parameters (one, two, or three), the cost for estimating ability

remains the same. The average cost for estimating the parameters

of the Rasch and three-parameter models, when abilities are already

known, is shown in Table 25. The cost of estimating item parameters

with the three-parameter model was less than twice that of the Rasch

model

.

The costs reported in this study were significantly less than

costs normally associated with latent trait parameter estimation. It

should be emphasized that these costs were based on academic dis-

counts and cannot be generalized to commercial computer establish-

ments. Additional cautions regarding the interpretation of costs

reported in this study were given in Chapter III and should be re-

viewed at this time to avoid confusion.
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Table 23

Mean Computer Time (CPU Seconds) and Cost for Parameter
Estimation by the Rasch and Three-Parameter Models^

1 -Parameter

Time

Model

Cost

3-Parameter

Time

Model

Cost

Minimum 9"
$ 3.85 18" $ 6.89

Maximum 68 23.40 179 69.00

Average 33.68 12.80 92.4 35.12

1N=25 tests.
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Table 24

Average Cost for Estimating Ability for 250 Examinees
When Item Parameters are Known^

Model Average Cost

1 -Parameter Model $3.24

3-Parameter Model $3.28

^ased on N=5, 20-item tests.
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Table 25

Average Cost for
for 20 Items

Estimating Item Parameters
When Ability is Known

^

Model Average Cost

1 -Parameter Model $3.27

3-Parameter Model $5.46

^Based on N=5 tests with 250 examinees.
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Summary of the Results

Several comparisons between the Rasch and three-parameter

models were presented in this chapter. The important findings are

summarized as follows:

1. Standardized cognitive tests, constructed by conventional
methods, were accurately described by the Rasch and
three-parameter logistic latent trait models;

2. The Rasch model characterized data nearly as well as the
three-parameter model

;

3. Unidimensionality was an important consideration in
latent model fit;

4. Lack of conformity to the Rasch model assumptions of equal
item discrimination and no guessing had a small impact on
Rasch model fit;

5. The presence of unequal item discriminations and guessing
also affected three-parameter model fit;

6. Precise ability estimates were found with both the Rasch
and three-parameter models on 20-item tests;

7. Precise estimates of item difficulty were obtained with

samples of 250 examinees for both the Rasch and three-

parameter models;

8. Estimates of item discrimination and guessing were not

very good on samples of 250 examinees;

9. The cost of estimating item parameters and abilities

simultaneously with three times more for the three-

parameter model; and,

10.

When item parameters were known, the cost of obtaining ability

estimates was the same for the Rasch and three-parameter

model s.



CHAPTER V

CONCLUSIONS AND FUTURE DIRECTIONS

Review of the Design

The study explored the fit of the Rasch and three-parameter

models to 25 empirical data sets. The degree to which data met

the assumptions of the models was the primary variable investigated.

Estimation precision based on test length and sample size was also

examined. Item and ability parameters were estimated under the

assumptions of the Rasch and three-parameter models. These were sub-

stituted for true parameters to make predictions about number-correct

score distributions. Goodness of fit to observed score distributions

was assessed with mean squares, Kolmogorov-Smirnov statistics, and

graphic procedures. Correlation techniques were applied to evaluate

model fit in relation to degree of unidimensionality, equality of

item discrimination, amount of guessing, sample size, and test length.

In addition, parameter estimation costs for the Rasch and three-

parameter models were compared.

Re^uHs and Conclusjojis

The results of this study demonstrated that latent trait theory

provided at least adequate models for describing high quality

standardized tests in a number of subject areas. Aptitude and

14B
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achievement tests, developed for norm and criterion-referenced

measurement, displayed good fit to the Rasch and three-parameter

models. It is concluded that latent trait theory is appropriate for

analyzing standardized tests used to measure ability.

The Rasch model compared favorably with the three-parameter

model in this study. On fifty percent of the tests, the Rasch model

fit data as well as the three-parameter model. Overall, for each

test, there was little difference between number-correct score dis-

tributions predicted by the Rasch and three-parameter models. The

close results were due in part to the fact that the number-correct

score is the sufficient statistic for the Rasch model, but not for

the three-parameter model. Fit of data to the three-parameter

model might have appeared better had a less biased criterion been

used. Nevertheless, the results for the two models were so similar,

that it is concluded that ability estimates from the Rasch model are

nearly as acceptable as those from the three-parameter model.

The study illustrated the importance of the assumption of uni-

dimensionality for latent trait model fit. As item sets tended to

be more multidimensional, fit of data to the Rasch and three-parameter

models was reduced. It is concluded that the latent trait models

described in this study can only be applied to unidimensional tests.

One approach to handling multidimensional data is to apply the models

only to unidimensional subsets of the items. Factor analysis was

suggested as a method for assessing dimensionality. The principal

components solution used in this study offered a reasonable approxi-

mation to the more computationally bound principal axis method of
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factoring. Factor analytic solutions, suggested by Christofferson

(1976) and Muthen (1978), are claimed to be more appropriate than

conventional factoring techniques for dichotomous variables and

might be applied when computer programs for the methods become

available.

Rasch model fit was slightly impaired when data were char-

acterized by heterogeneous item discrimination indices. A similar

outcome was obtained with the three-parameter model. The results

suggested that the presence of unequal item discrimination values

may have been undesirable for both models. Because the results

were not significant, it can be assumed that the Rasch model was

fairly robust to departures from the assumption of equal item dis-

crimination. The similar outcome for the three-parameter model may

indicate that estimation of discrimination parameters is less

accurate than desired, but the result can probably be better attri-

buted to the potential unfairness of the number-correct score cri-

terion for assessing three-parameter model fit.

The analysis of item-total score correlations for the purpose

of assessing equality of item discrimination produced consistent

results with those based on an analysis of estimated item dis-

crimination indices. Lord and Novick (1968) gave an approxi-

mation to item discrimination from the biserial correlation.

The item-total score correlation, or point-bi serial ,
tends to

fluctuate between samples because of varying difficulty levels

and the presence of guessing. Consequently, the point-biserial
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cannot be translated into item discrimination. Despite this short-

coming, in this study, the values of point-biserials provided an

adequate technique for evaluating homogeneity of item discrimination.

The result was attributed to the high correspondence between bi-

serial and point-biserial correlations in the data.

Both the Rasch and three-parameter models were affected by the

presence of guessing. Both models fit data less well when examinees

guessed. The Rasch model result was attributed to the lack of a

guessing parameter in the model. In the three-parameter case, the

result was attributed to underestimation of the chance level parameter.

Estimates of chance level parameters in this study were not very

acceptabl e, which may have been due to the modest numbers of low ability

examinees represented in the samples.

Previous results (Hambleton & Traub, 1971) have shown that the

Rasch model was quite sensitive to departures from the no guessing

assumption. Since the results concerning guessing in this study were

not significant, the previous conclusion could neither be supported

or refuted. A method relying on item difficulty levels for estimating

guessing failed to produce any meaningful results. Because the

outcomes concerning guessing in this study were so confusing, it is

thought that simulation techniques may be required for exploring the

effects of guessing on model fit. Simulation studies can be designed

to simultaneously vary guessing and heterogeneity of item discrimi-

nation values so that unique and mutual effects on model fit can be

studied.
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The results of the study demonstrated that good estimates of

ability and item difficulty can be obtained with the Rasch model

from tests with only ?0 items and from samples with only 250 exami-

nees. Although good ability estimates were obtained using the

three-parameter model when tests had only 20 items, parameter esti-

mates for guessing and item discrimination from samples with only

250 examinees were not adequate. The results of the study supported

Lord's (1980) contention that 1000 examinees are required for ob-

taining good estimates of item discrimination. It would seem that

larger samples may be needed to estimate the guessing parameter so

that a moderate number of examinees are represented at the low end

of the abi 1 ity seal e.

The study was not able to pinpoint the minimum number of

examinees required in a sample for estimating item discrimination

or guessing. More research, using a variety of sample sizes, is

required in this area. It was also not determined whether tests

shorter than 20 items can be used for estimating ability. Research

is needed in this area as well.

It was shown that when ability was estimated from items with

known values for item parameters, computer expenses for the Rasch

and three-parameter models were about the same. When ability and

item parameters were estimated simultaneously, the cost of estimation

for the three-parameter model was tiiree times more than for the

Rasch model, but both costs were not high ($70.00 maximum for 40

items and 1000 examinees). In most practical work, item parameters

are estimated at the onset, with subsequent estimations consisting
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only of dbilitios. Thus, in tho long run, differencGS in parametGr

estimation costs for the two models would seem to be negligible.

Methodological Issues

Assessment of Model Fit

There have been many procedures developed for evaluating latent

trait model fit. Since some of these methods are appropriate for

only one of the latent trait models, the method used in this study

was chosen because it could be applied to both the Rasch and three-

parameter models.

The procedure used for testing model fit was based on steps out-

lined in Lord and Novick (1968). Parameters were estimated from the

models and then substituted for true values to make predictions about

some observable quality of the data, in this case, number-correct score

distributions. The predicted distributions were compared using

statistical and graphical methods to assess deviations from observed

score distributions. The rationale for using number-correct score as

a criterion was based on Lord's (1980, p. 51) specification of the

relationship between fixed ability and the conditional distribution

of number-correct scores. Using this relationship, the distribution

of number-correct scores could be generated across ability levels.

In conventional measurement, the number-correct score provides an

n

estimate of true-score. True-score, which can be described as E

g=l

with latent trait parameters, provides a common basis for com-

paring latent trait models.
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Hainbleton and Traub (1973) used a significant modification of

this method to compare fit of data to the Rasch and two-paramter

models. They also used estimated values of parameters to make pre-

dictions about observed score distributions, but their score dis-

tributions were obtained by weighting number-correct scores by the

optimal scoring weights derived from latent trait theory. The justi-

fication for using weighted number-correct scores was that the raw

score is only a sufficient statistic for Rasch ability, but does not

contain sufficient information to describe ability estimated with

the two-parameter model. The weight which provided the sufficient

statistic for ability for the two-parameter model was item discrimi-

nation. In assessing fit of data to the two-parameter model, hambleton

and Traub compared the predicted weighted score distribution to the

observed weighted score distribution. Since the raw score was the

sufficient statistic for the Rasch model ability estimates, all

weights were one and the method reduced to the one used in this study

in the Rasch case.

The method employed by Hambleton and Traub, although preferable

in some ways to the one employed in this study, is lacking a theoretical

basis since latent trait theory does not provide a relationship

between distributions of weighted number-correct scores and ability.

Nevertheless, this method would have been used in this study if there

was a sufficient statistic for ability estimated with the three-

parameter model

.

Because of the complexity introduced into the three-parameter

model by the guessing parameter, a sufficient statistic cannot be
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found. Birnbaum (1968) provided an optimal scoring weight for the

three-parameter model which did not have the desirable properties

of a sufficient statistic since it was not independent of level of

ability. It is not possible to decompose the maximum likelihood

function for the three-parameter model into two terms, one inde-

pendent of ability. There is also not a sufficient statistic for

the two-parameter model when the item response function is based on

the normal ogive. For this reason, the logistic model is seen as

a more desirable model.

Because predicted number-correct score distributions in this

study were not adjusted by some optimal weight, the results are thought

to have been biased in favor of Rasch model fit. Results for direct

comparisons of the two models should be viewed with this caution in

mi nd.

An Alternative for Assessing
Model Fit

The mean square fit statistic, developed by Wright and Panchapakesan

(1969), was designed for testing fit of data to the Rasch model, but

could have been applied to the three-parameter model. This statistic

has received criticism from George (1979) and others because of its

frequent application to data in which sampling assumptions (large M)

have not been fulfilled. In these cases the statistic is only approx-

imately chi-square. Experience with chi-square values in this study

demonstrated how sensitive the statistic is to sample size and to

re-grouping of data into arbitrary class intervals. For these reasons
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approximate chi-square statistics are best avoided in testing model

fit. The K-S statistic and graphic procedures applied in this

study fortunately were not plagued by the same difficulties.

Although the mean square statistic has been inappropriate in

many instances for computing chi-square values, the method suggests

a graphic technique for comparing models that seems quite promising.

The numerator of the mean square statistic is computed as the differ-

ential between the frequency of examinees who obtained a correct

answer on an item and the expected frequency of examinees who got

the item correct. The method, to be described here, is applied on

an item basis, although there is some justification for using the

method with test characteristic functions.

The ability distribution is divided into i class intervals in

a manner similar to the one used in this study. For each ability

level, i, the item characteristic function for item g, P-jg(0i)» is

found for each model using estimated item parameters. P-ig(0i) is the

probability that examinees in ability group i will get item g correct

and can be taken as an estimate of the proportion of examinees in

ability group i who obtained correct responses to the item. This pro-

portion can be compared graphically with the observed sample propor-

tion, Ptq, of examinees in score group i who actually got item g

correct. Figure 30 demonstrates the graphical method for a hypotheti-

cal item based on simulated data. Since the sum of the item prob-

n

abilities provides the test characteristic function, E(Z) = S P-jg(9^),

g=i

it can be argued that E(Z) is an estimate of the proportion

correct score on the test. This could be compared to the observed

proportion correct score for each ability group i.
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^ u>^ti on of Departures from
Ho del As sump tjo n s

”

Latent trait theory is considered a superior method for mea-

suring ability because of its sample-invariant properties. In this

study, three departures from latent trait model assumptions had

been evaluated with conventional methods. The conventional estimate

of guessing failed to produce any meaningful data. The conventional

estimate of equality of item discrimination was comparable to a

method based on latent trait theory. Although unidimensionality

measurement could not be directly compared to an assessment based

on latent trait theory, the conventional estimate appeared to be

accurate since multidimensional tests could not be fit by the latent

trait models. A criticism of all conventional approaches used in

this study to measure departures from latent trait model assumptions

was that each was based on some sample-dependent quantity. Factor

analysis, for example, only appraised whether a set of items had

been unidimensional for a specific sample of examinees. Little could

have been concluded about samples composed of different examinees.

Sample- invariant measures of departures from latent trait model

assumptions are needed. This is an area in which considerable re-

search is warranted.

As s ump tj 0 n of Linearity in

Cor^lation Metliods

Inferences regarding the impact of depat'tures from latent trait

model assumptions on model fit were based on correlations between fit

statistics and various measures of departure from model assumptions.
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Th6 P6arson product Fnomcnt corrolation is us6d to investigate linear

relationships. The assumption of linearity may not have been warranted

in this study. There was no reason to anticipate that mean square or

K-S statistics would have been linearly related to contrived measures

of departure from model assumptions. In future research in this area,

techniques which do not assume linearity would seem to be more appro-

priate.

Methods for Estimation of Latent
Trait Parameters

The LOGIST method for parameter estimation used in this study

employed an unconditional maximum likelihood approach designed to esti-

mate abilities and item parameters of the three-parameter model. By

assuming that all item discriminations were equal and by fixing the

lower asymptotes to zero, the method was applied to the Rasch model.

The estimation costs reported in the study were based on the LOGIST

method and consequently were more expensive for estimating Rasch

model parameters than they would have been if another method, for

example, BICAL (Wright & Mead, 1976), had been used. The reason for

this is that LOGIST estimated "N" abilities, where N was the number

of examinees, rather than the "n-1" ability estimates required

by the Rasch model, where n was the number of items. Since

raw score is the sufficient statistic for Rasch ability, "n-1"

raw scores correspond to "n-1" ability estimates. LOGIST had been

used to estimate parameters for both the three-parameter and Rasch

models to avoid introduction of variation from other unanticipated

factors. It would be desirable to compare the costs of estimation
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of Rasch model parameters between LOGIST and BICAL or some other

Rasch model estimation routine.

Limitations of the Study

Drawbacks of Empirical Data

Because empirical data was used in the study, results could

be generalized to the real world, but some information could not be

obtained from empirical data. Because of the interaction of vari-

ables in real data, it was not possible to evaluate the unique

importance of various factors on model fit. When data is generated

in simulation studies, there is absolute control over dimensionality,

equality of item discrimination, and guessing in a data set. With

real data, when a test did not fit one of the latent trait models,

it was impossible to conclude whether misfit was due to a single

factor or to a mutual contribution of factors. Too few tests had

been available for partial correlation analyses to have been useful.

Some of the information sought in the study would have been more

easily gathered from simulation techniques. It is important to

emphasize that results based on simulated data can not substitute

for those based on real data.

Restricted Number of Models Studied

Interest in latent trait models has primarily focused on the

Rasch and three-parameter models. The two-parameter model has also

been a topic of interest. Because of the substantial number of

analyses dictated by the study design, time constraints, and limited
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resources prohibited exploration of the two-parameter model. The

nominal response model and the graded response model are interesting

generalizations of the logistic models. These models reguire

special estimation techniques and that data be scored in special

ways. Neither computer programs or appropriately scored data were

available for this study. Future research on the fit of latent

trait models to empiriccil data should include some of these inter-

esting modifications to the general logistic model.

Data Limitations

The number of tests analyzed in this study was twice the number

evaluated in previous comparative research on latent trait models.

The complexities of data management in the study prohibited inclusion

of more tests, although this may have been desirable. Data were

limited in a number of ways. Perfect data can only be obtained

through simulation. Real data is naturally imperfect. Data were

scored differently; some data were from timed test administrations;

others were not. Tests differed in length, content area, and composi-

tion of examinee samples. Texts for question sets were not available,

so interpretation was limited to statistical qualities. While lack

of knowledge about data limited interpretation, it also assured non-

biased treatment of data.
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Future Directions

A number of topics for future research have been mentioned in

this chapter. The study concludes with a review of areas which

need additional clarification:

1 . Better tests for departures from latent trait model

assumptions . This study applied sample-dependent item statistics

to evaluate departures from model assumptions. Sample-invariant

methods are needed to replace these techniques. Bejar (1980) sug-

gested a method for assessing dimensionality. New approaches are

needed for assessing equality of item discrimination and guessing.

2. Additional criteria for model fit . The number-correct

score had too many shortcomings as a criterion for model fit. A

graphic method which used predicted item probabilities was suggested

as one alternative. Little research has examined person fit to the

latent trait models. Computer-based graphing programs provide a

means for exploring thousands of items or persons. More research is

needed to determine causes of misfit of persons as well as items

and to assess the impact of poorly fitting persons/items on overall

model fit.

3. Need for simulation studies . Confounding of variables in

empirical data prohibited evaluation of unique contributions of

various factors on model fit. Simulation designs, which offer experi-

menter control, are needed to explore the unique and mutual effects of

guessing and heterogeneity of item discriminations on model fit.
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4- Minimum sample size and test length needed for latent

trait parameter estimation . The study explored estimation precision

for 20-item tests and for examinee samples of 250. Additional re-

search is needed to determine if latent trait parameters can be

estimated on shorter tests and even smaller samples.

5* Fit of additional latent trait models . This study focused

on fit of data to the one- and three-parameter logistic latent trait

models. More empirical research is needed to evaluate the appropriate-

ness of the two-parameter, nominal, and graded response models for real

data.

6. Comparison to other parameter estimation methods . The costs

reported in this study could not be generalized to other computing

establishments. Benchmark data is needed for LOGIST on other academic

and commercial computing facilities. In addition, data is needed

which compares the costs, and other aspects of LOGIST, to other

estimation programs.

7. Other ways of evaluating the impact of departure from model

assumptions on mode! fit . Fit statistics in this study were correlated

with measures of departure from latent trait model assumptions. Since

these relationships cannot be assumed to be linear, other methods are

needed which do not make the assumption of linearity. A decision

theoretic approach might be used in this area. This would be based

on a set of classification rules for fit and conformity to assumptions.
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