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ABSTRACT
The Fit of Empirical Data to Two Latent Trait Models
September 1981
Leah R. Hutten, B.A., University of Wisconsin-Madison
Ed.D., University of Massachusetts

Directed by: Ronald K. Hambleton

Fit of data to the Rasch and three-parameter 1agistic
latent trait models was explored with 25 empirical datasets.
Deviations in data from latent trait model assumptions were the
primary variables of interest. The study also investigated
estimation precision for small samples and short test lengths and
evaluated costs for latent trait parameter estimation by the two
latent trait models.

Ability and item parameters were estimated under the assump-
tions of the Rasch and three-parameter models for tests with 40
items and 1000 examinees. Estimated parameters were substituted
for true parameters to make predictions about number-correct score
distributions. When ability is known, a theorem by Lord (1980)
equates ability with the conditional distribution of number-correct
scores. Predicted score distributions were compared to observed
score distributions with statistical and graphical techniques. Both
Kolmogorov-Smirnov and Chi-square test statistics were obtained.

The importance of three latent trait model assumptions,

Vi



unidimensionality, equality of item discrimination indices, and no
guessing were assessed with correlation analyses. Estimation pre-
cision for short tests of only 20 items, and small samples of 250
examinees were evaluated with correlation methods and average ab-
solute differences between estimates. CPU time and cost were
tallied for estimations by each model and summary statistics were
gathered for comparison purposes.

Both the Rasch and three-parameter models demonstrated reason-
ably good fit to most of the 25 tests. Only one test deviated greatly
from the two models. Five tests did not appear to fit very well
when the chi-square was employed as the criterion. The chi-square
test was more rigid than the Kolmogorov-Smirnov test and tended to
be very sensitive to irregularities and lack of normality in observed
score distributions. Graphic results tended to support outcomes of
the Kolmogorov-Smirnov test.

Overall, the Rasch model fit data as well as the three-
parameter model. Average K-S statistics across the 25 tests were
1.304 for the Rasch model and 1.289 for the three-parameter model.
For 65 percent of the tests, the three-parameter model fit data
better than the Rasch model, although in most cases, fit statistics
for the two models were very close. Similar results were obtained
with chi-square measures, although these statistics favored three-
parameter model fit somewhat. Graphic evidence demonstrated how

analogous fit was for the two models.
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Lack of unidimensionality was found to be a primary cause
for misfit of models to the data. Correlations between fit statis-
tics and indices of unidimensionality were significant at the .05
level of probability for both the Rasch and three-parameter models.

A weak relationship was found between equality of item discrimina-
tion indices and fit to the Rasch model. Generally, data with more
equal item discriminations fit both models slightly better than other
data. Underestimation of the amount of guessing for both models
resulted in less adequate model fit. Sample sizes were not suffi-
cient for obtaining accurate estimates of guessing.

Ability estimates from short 20-item tests were somewhat more
precise for the Rasch model than for the three-parameter model.
Generally, good estimates of ability from short tests were obtained
from both models. Correlations between ability estimates on short
and longer tests were .923 for the Rasch model and .866 for the
three-parameter model.

Estimates of item difficulty made on samples of 250 examinees
in contrast to larger samples (N=1000) were very good for both models.
Estimates of other item parameters from samples of 250 examinees were
not very accurate. Item discrimination estimates from small samples
were reasonable, but estimates of guessing were very poor. The
results indicated that samples of at least 1000 examinees are needed
to obtain stable estimates of parameters for the three-parameter
model. Smaller samples suffice for obtaining Rasch difficulty esti-

mates.
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The cost and computer time for simultaneous estimation of
ability and item parameters for the Rasch model was one-third that
for the three-parameter model. For 25 tests, the average Rasch
model estimation cost $12.50 in contrast to $35.12 for the three-
parameter model. When item parameters were known in advance, and
only abilities were estimated, the cost of estimation by the two
models was identical. These results suggest that in the long run,
the differences in cost between estimation by the Rasch and three-

parameter models is negligible.
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CHAPTER I

INTRODUCTION

[tem response theory, or latent trait theory as it is commonly
known, was proposed over twenty-five years ago by Frederic Lord (1952)
in the United States and coincidentally by Georg Rasch (1960) in
Denmark. Lord's work focused on exploring relationships between
ability and the probability of responding correctly to items designed
to measure ability. A function describing examinee success in terms
of ability was called an item characteristic curve (ICC) by Lord and
formed the basis for latent trait theory.

Lord postulated the shapes of ICC's to be normal ogives and
showed that their form could be derived if certain assumptions are
made (Lord & Novick, 1968). These models are characterized in the
general case by three parameters: one describing the point of inflexion
in the curve, one describing the slope, and one characterizing the
lower asymptote. Practically these parameters translate into item
difficulty, item discrimination, and guessing, respectively. Later,
in conjunction with Birnbaum (1968), Lord determined that substituting
logistic curves of the form eX/(1+eX) for normal ogives reduced cal-
culation difficulties and made the models mathematically tractable.
Throughout miost of its early development, latent trait theory remained

a theoretical description with Tittle practical relevance due to

1



mathematical and computational complexities in estimating latent
trait parameters.

Concurrently with the development of the two- and three-
parameter models in the United States, Georg Rasch (1960), a Danish
mathematician, independently derived a theory of test scores which
turned out to be a very interesting, albeit a special case of the
work in progress by Lord and Birnbaum. As a mathematician, Rasch
had studied scales of measurement in the physical world. He believed
that mental measurement could be as objective as physical measurement.
Mental measures were classically derived from sample-based statistics,
a tenet which forms the basis of classical test theory. Conventional
scores on mental measures are reported as relative positions in some
reference group composed of items and people. Rasch proposed sample-
invariant measurement on an objective scale which described both items
and people. The scale when applied to people measured ability. When
applied to items, the scale measured difficulty. Rasch proposed a
theory of measurement which associated the probability of examinee
success on items with underlying ability. Although logically, the
Rasch model is derived from the contention that measurement should be
objective, mathematically, the Rasch model 1is the simplest case of the
more general logistic models. The slopes of Rasch ICC's are equal
(equal item discrimination) and the lower asymptotes are all zero

(no guessing).




Purpose of the Research

Because of the historically separate origins of latent trait
models, little comparative research has been performed with the
models. The current study was undertaken to highlight some simi-
larities and differences between two latent trait models. Specific-
ally, the purpose of the study was to compare the Rasch (or one-
parameter) logistic model with the Birnbaum (or three-parameter)
logistic model by fitting the models to empirical data.

Proponents for both models have asserted that their model is
most appropriate for describing test behavior, yet little empirical
evidence has emerged to confirm these claims. Practitioners have
relied primarily upon theoretical assertions to select from the
latent trait mode]si This research was designed to provide concrete
information about the dynamics of the latent trait models particularly
as they apply to estimating ability.

The study examined fit of the models to empirical data. Model
fit was systematically analyzed in terms of deviations from latent
trait model assumptions occurring in the data. This comparison is
important because of the potential ramifications, legal or otherwise,
that could result when the assumptions of the models have not been
met. Because imprecise parameter estimates may be another cause for
misfit of models, the study also examined the suitability of the
models in situations where few examinees were available for esti-
mating item parameters. Although there have been many applications
of latent trait theory in nationwide standardized testing prograns,

there has been increasing interest in their use by local school



systems, the military and by other small scale testing programs.
This part of the study also provided information on the precision

of ability estimates based on short tests, tests typically used in
the classroom. Finally, comparative cost information for estimating
parameters by the two models was collected. While cost should not
usually be the primary reason for selecting oﬁe model over the other,
expenses are an important issue today because of shrinking federal,
state, and local education budgets. Because certain models may be
more desirable than others for certain applications, e.qg., equating
test scores, the information provided by this study can help practi-
tioners make informed rather than arbitrary decisions about latent

trait model selection.

Research Questions

Because this study was exploratory in nature, no specific
hypotheses were tested, rather the study sought to provide information

in the following areas:

1. What methods can be used to determine that empirical data
meet the underlying assumptions of latent trait models?
The assumptions include unidimensionality (and equivalently,
local independence), equality of item discriminations
(Rasch model), and no guessing (Rasch model). Information
in this area was obtained from a review of the literature.
Various procedures were explored on a trial basis, and
those selected were critically analyzed. Recommendations
were made for how model assumptions can be tested.

2 How is model fit defined and what statistical, graphical,
and practical procedures can be employed to determine
model fit? Three measures of fit were used in the study.
Qutcomes based on each measure were compared and suggestions
offered for future research.



3. Do latent trait models fit tests developed by conventional
methods? Which model demonstrates better fit to empirical
data? Fit statistics and graphical evidence of fit of the
Rasch and three-parameter models to 25 empirical data

sets were obtained. Results based on the various methods
of fit were compared.

4. How do deviations from latent trait model assumptions
affect fit of data to the latent trait models? Are the
models robust to violations in their assumptions? For
both models, fit was explored in terms of unidimension-
ality. For the Rasch model, fit statistics were examined
when equality of item discriminations and guessing assump-
tions were violated in the data. Correlation and partial

correlation techniques were used to provide information
in this area.

5. How precise are estimates of ability made on short tests?
Three measures of precision for short tests werc used:
Pearson correlations, Spearman rank order correlations, and
average absolute differences (AAD).

6. How precise are estimates of item parameters from small
samples of examinees? Pearson correlations, Specarman
correlations, and AAD statistics were used to explore pre-
cision of item parameters from small samples.

7. MWhat are the comparative costs (in terms of computer time
and expense) for obtaining parameter estimates of the one-
and three-parameter latent trait niodels? CPU time and cost
were tallied and compared for parameter estimation under
each model.

Concepts Utilized in Latent Trait Theory

A latent trait is a skill or ability (or attitude or perception)

which is not directly measurable but can be inferred from examinees'
responses to test items. Conventional estimates of ability, the raw
score or number-correct score, differ from the latent trait ability
estimate because the latter is measured on a standard score scale
independent of the number of items on a test. The true score can be

seen as a transformation of ability onto a number-correct score scale.



Ability estimates in latent trait theory are based on probabilistic
models. When the difficulty level of an item is known it is possible
to draw inferences about ability from scores on single items because
difficulty and ability can be represented on the same scale. Assume
that an item has a difficulty level of "Y;". If an examinee obtains

a correct response on the item, it is probable that ability is greater
than or equal to Y; (ezyj), whereas if the examinee fails the item,

it is probable that ability is less than Yy (e<Yj). When such ability
estimates are made on a sufficient number of items, it is possible

to obtain a good measure of ability. Consistent estimates of ability
can be found when test length is reasonably long. Figure 1 illustrates
differences between conventional and latent traitmethods for estimating
ability. Three hypothetical six-item tests are shown in the figure:
the top line of the figure depicts a test with items of mixed diffi-
culty; the middle line shows an easy test; and the bottom line illus-
trates a hard test. Since latent trait item difficulty estimates are
measured on the same scale as ability, a single scale ranging from 0
to 10 has been arbitrarily chosen for difficulty and ability. An
examinee, with an ability score of 5 (6=5) on this scale, is illustrated
in the figure. The conventional number-right scores for this examinee
on the three tests are 3, 5, and 1, respectively. The conclusions
about examinee ability drawn from conventional scoring of these tests
differ significantly, but the latent trait ability estimate for this
examinee would be the same (disregarding measurement error) regardless

of which test the examinee was administered because of the use of item

difficulty in estimating ability. Items which are tailored to examinees'



Ajrliqy go
sejow|3js3y }|oJ| jueio’] puUod |ouo | jueAU0] §O uosjJiodwoy y ] eJdnBj 4

3IVIS ALINJIL4I0 —~ ALITIEY

S=-0-
A
Ol 9% Sq Mq fq %q |l O
Y T T T T[] 1S3L QHVH ¥
9 |4 "a fa %a Tq
S=X I I D B 1S3L ASV3 NY
9 fq Mg €q % Iq ALTINITH4IA
g=X _ ] I I 1 A3XINW
e

C3J0IS MY A

JLVHTLSI ALIIIEY NOTLISOJWOD

TVNOILN3ANGD . 1S3l




ability levels provide excellent estimates of ability. Because
latent trait ability estimates do not depend on the specific sample
or number of items in a test, ability can be estimated with different
sets of items.

Conventional number-right scores are derived without regard to
item characteristics, such as item difficulty. The Rasch model incor-
porates item difficulty into estimating ability. Two additional
item characteristics are considered in the three-parameter model:
item discrimination and guessing. Item discrimination operates as
a weight such that better (more discriminating) items have greater
importance for estimating ability than items which are not very dis-
criminating. Items can be selected so that they are most discrimin-
ating at particular locations on the ability continuum. The Rasch
model makes the assumption that all items are equally discriminating,
a proposition somewhat difficult to meet in practice. If present,
equal item discrimination would be signalled by equal item-total score
correlations.

The guessing or chance level parameter is the third parameter
in the three-parameter model. It is assumed in the model that the
probability of success on an item may be greater than zero when items
are multiple choice. The chance level parameter is particularly
important for estimating ability at the lTow end of the ability con-
tinuum where guessing is most likely to occur. When the parameter

is not included, such as the case of the Rasch model, ability esti-

mates for low ability examinees tend to be too high.




Two important assumptions of both models discussed here are
unidimensionality and the equivalent assumption of local independence.
Unidimensionality means that a test includes items which tap only a
single underlying trait. Although there are multivariate extensions
to latent trait models, these are not considered in this study.

Local independence means that responses to items are statistically
independent: for examinees of the same ability, the porbability of
success on an item is not related to the probability of success on
any other item. Local independence is indicated by a lack or

correlation between items for examinees at the same bility level.

Model Descriptions

The latent trait models compared in this study have the
logistic form:
P = eX/(1+e), ' (1]
where P is the probability of a correct response. For the Rasch or

one-parameter model, the probability function is given by:

- e{0-g) (2]
Pg(e) i '|+e(9‘b95 )

and for the three-parameter model the probability of a correct
response 1is:

eDag(e-bg)

3
1+eDag(e'bg) L3]

Pg(e) =cgt (1-cq)
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These functions relating ability to the probability of a correct

response on an item are known as jtem characteristic curves (1cC's).

The constant, D, in the three-parameter model is set to 1.7 to

equate the model to the form of the normal ogive function introduced
by Lord in 1952. Ability, 6, is measured on a standard score scale
with practical values in the range -3 to +3. which can be linearly
transformed to any arbitrary scale such as the LOGIT scale which is
seen commonly in practice. Item difficulty, bg, in the equations, is
measured on the same scale as ability, with a practical range from -2
to +2. Item difficulty is the point on the ICC where the probability
of a correct response is .5 if there is no guessing. Item discrim-
ination and guessing parameters apply only to the three-parameter
model. Item discrimination, ag» is measured on a scale ranging from
0 to +2, although in theory the values can be considerably higher.
Negative values of discrimination are possible but usually such items
are deleted from tests. Item discrimination is proportional to the
slope of the ICC at the point of its inflexion. Since item discrimi-
nation values are assumed to be equal, the ag term does not appear in
the Rasch ICC. Some developments of the Rasch model include the mean
jtem discrimination value, d@, in the equation. In this instance the
power of the exponent is: Dé(e-bg). The guessing parameter, cg, or
chance probability level, ranges from 0.0 to 1.0. This parameter
forms the lower left asymptote to the ICC and represents the prob-
ability of success by chance alone. Practical limits for guessing

are 0.0 to 0.5 and are related to the number of item choices. Since
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no guessing is assumed by the Rasch model, the parameter has the
value zero and does not appear in the ICC.

Two item characteristic curves for the three- and one-
parameter models are pictured respectively in Figures 2 and 3. The
slopes of Rasch ICC's are identical and hence all one-parameter ICC's
are parallel. The lower asymptotes of Rasch curves are all zero
indicating no guessing. Three-parameter ICC's usually have different

slopes and may vary in their lower asymptotes.

Importance of Latent Trait Theory

Research in latent trait theory is significant because of
the advantages the theory has over classical test theory. Lord and
Novick (1968) draw a distinction between weak and strong true score
theory. Latent trait theory is strong because many assumptions are
made about data. Because classical test theory makes no assumptions
about the items composing a test, generalizations from conventional
tests can only be made to parallel forms. Scores on conventional tests
are sample dependent because they are derived on a specific set of
items and a specific sample of examinees. A consequence of this
limitation has been that classical test theory has failed at providing
solutions to a variety of measurement problems. Because of the parti-
cular choice of strong assumptions in latent trait theory, item and
ability parameters can be estimated which are sample-invariant. The
sample-free nature of latent trait parameters provides solutions to
many problems handled inadequately by conventional testing methods.

Test equating, detection of item bias, and tailored testing are easily
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managed with the results provided in latent trait theory. An excel-

lent discussion of test equating with ICC theory was given by

Marco, Peterson and Stewart (1979). Cowell (1979) provides another

good source on equating. Pine (1976) provided a good description

of application of latent trait theory to the study of item bias.
Lord's (1980) recent book includes many applications of item response
theory to test equating, study of item bias, and tailored testing.
Hambleton et al. (1978), Lord (1977), and Wright and Stone (1979)
provide reviews of many additional areas in which latent trait
theory has been applied, including: test development, optimal scoring
weights, mastery testing, handling omitted items, formula scoring,and
item banking.

While Tatent trait theory provides flexible tools for solving
measurement problems, the theory also has some limitations. One of
these is that the assumptions made about data may be too strong for
tests to be easily constructed to meet these requirements. A second
shortcoming is that computation costs may be substantially higher
than those incurred by conventional methods, thus prohibiting many
applications. Another disadvantage of the theory is its mathematical
complexity. Likelihood equations cannot be solved directly, and
iterative solutions using Newton-Raphson techniques are required.
Many restrictions are imposed in the process, especially when esti-
mating item discrimination parameters and guessing. Another drawback
to the theory is that the models are rather difficult for school

personnel, students, and parents to conprehend. This lack of
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understanding has resulted in some resistance on the part of school
systems to use the models in their testing programs.

Despite such drawbacks, Hambleton and Cook (1977) noted the
acceptance of the theory by psychometricians and practitioners alike.

In the summer of 1977, the Journal of Educational Measurement devoted

an entire issue to latent trait theory. Two major review articles

have appeared in the Review of Educational Research (Hambleton et al.,

1978; Baker, 1977), and frequent articles on latent trait theory have

appeared in Psychometrika and Applied Psychological Measurement.

Sessions on latent trait theory have been very popular at the recent
annual meetings of the American Educational Research Association. A

major section of Lord and Novick's (1968) Statistical Theories of

Mental Tests is devoted to latent trait theory and two books on the

topic (Lord, 1980; Wright & Stone, 1979) have recently been published.
Applications of the theory are numerous. These include the Key Math

Test (Connally, Natchman, & Prichett, 1971), the Woodcock Reading

Mastery Test (Woodcock, 1974), test equating at Educational Testing

Service, and civil service examinations in the State of New York, to
name a few. The theory has been applied to both achievement and apti-

tude tests for both norm and criterion-referencedtesting situations.

Organization of the Study

This chapter has provided an introduction to latent trait theory
and a discussion of its importance in solving measurement probliems.
The next chapter presents a review of tests for model assumptions and

a discussion of issues revolving around model fit. Chapter III
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contains a description of the methodology for the study. The chap-
ter includes a description of data sets, sampiing information,
methods for detecting violations in model assumptions, techniques
for assessing model fit, and methods of comparison utilized in the
study.

Model fit results are provided in Chapter IV. Descriptive
information and conventional item statistics are presented for 25
data sets. Then the results of overall and comparative model fit
are given. This is followed by a section containing correlations
between fit and indicators of deviation from model assumptions. The
next section examines precision of parameter estimates from short
tests and small samples, and the final segment presents comparative
cost information for the two models.

In the final chapter, the significance of the findings are
discussed. The chapter includes a set of guidelines for latent

trait model selection and a critique of the methodology used in the

study. The study concludes with recommendations for related research.



CHAPTER 11

ISSUES AND METHODS FOR TESTING LATENT TRAIT
MODEL ASSUMPTIONS AND GOODNESS OF FIT

Methods for testing latent trait model assumptions and model
fit are reviewed in this chapter. A discussion of previous compara-
tive research studies which contrasts various methodologies for
model fit is also included in the chapter. A presentation of issues
concerning sample size and test length as they relate to parameter

estimation concludes the chapter.

Tests for Latent Trait Model Assumptions

Unidimensionality (Local Independence)

Although multivariate extensions to latent trait theory have
been developed, an assumption made for the models investigated in
this study is that they are unidimensional. Unidimensionality means
that all items in a test are designed to measure the same underlying
trait or ability.

The assumption of local independence is.predicated upon that
of unidimensionality. The condition of local independence states
that, "within any group of examinees all characterized by the same

values 89, 6,5 ..., 05 the (conditional) distribution of the item

17
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scores are all independent of each other" (Lord & Novick, 1968, p. 361).
Simply stated, for examinees of fixed ability, ek’ success on any
pair of items is uncorrelated. If the items in a unidimensional

test were not stochastically independent, this would inply that among
examinees of identical ability some would have a better chance of
success than others for these items. If this were the case, then
more than one ability would be needed to account for success on these
items. This would clearly contradict the fact that the test was uni-
dimensional. Goldstein (1980, p. 239) expressed doubt that the
assumption of local independence can ever be met: "The assumption

of local independence is such a strong assumption that it would be
surprising if it were true other than in a few specially contrived
circumstances." Goldstein asserted that local independence is not
necessarily a logical consequence of unidimensionality and criticized
the definition because it fails to account for the conditional dis-
tribution of other items. Despite this contention, the premise that
local independence follows from unidimensionality is accepted in this
study and a test of unidimensionality is considered sufficient for
accepting that the condition of local independence has been met.

The viability of unidimensionality has been examined by a
variety of techniques. Lumsden (1961) reviewed five methods for
assessing unidimensionality in the test development framework. From
item analysis techniques (magnitudes of item-test biserials),
Loevinger's homogeneity criterion, the local independence criterion,
Guttman's reproducibility criterion, and factor analysis, Lumsden

concluded that the factor analytic method was superior. With this
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method, dimensionality is typically assessed by comparing the ratio
of primary to secondary factor variances. Lord and Novick (1968)
also advised that unidimensionality be investigated by factor analy-
tic methods. Some factor analytic methods used in the latent trait
context are described next. Issues arising from the use of factor
analysis for assessing unidimensionality are also discussed in this
section.

Bejar, Weiss, and Kingsbury (1977) used a method for deter-
mining unidimensionality which is attributed to Horn (1965). Test
data were factor analyzed by a principal axis method. Then random
item response data were generated which matched the test under
investigation both in number of examinees and test length. The
simulated data were factor analyzed and the resulting eigenvalues were
compared to the test eignevalues with a graphic technique. With
this procedure the number of test eigenvalues was reduced by the
number of random roots which surpassed the actual roots in value.
The method purportedly eliminates random factors attributed to cor-
relations inflated by sampling fluctuation.

A number of other methods for factoring data have been used
in assessing dimensionality by latent trait researchers. Principal
components analysis was employed by Koch and Reckase (1978), prin-
cipal factoring was done by Slinde and Linn (1979), maximum likeli-
hood factor analysis was used by Bejar (1977), and a combination of
principal components and principal axis common factor analysis was
employed by Hambleton and Traub (1973). This last study used

principal components analysis to determine the number of factors,



20

and the principal axis solution gave estimated item-total biseria)
correlations. In the studies listed here, dimensionality was
typically assessed by an eigenratio criterion, the ratio between
the first and second latent roots (eigenvalues).

Lord and Novick (1968) suggested that tetrachoric correlations
be employed in factor analysis for assessing dimensionality because
of problems found to emerge with phi coefficients. The primary
difficulty with phi coefficients is that they approach unity only
when the marginal distributions of jtem scores are identical; other-
wise phi coefficients are less than one even if a perfect relation-
ship between items exists. Another problem with phi coefficients
is that they vary with item difficulty levels and guessing and are
therefore unstable across sample groups. The phi coefficient is a
measure of relationship between two dichotomous variables and is
easily obtained with the Pearson correlation formula. The tetrachoric
correlation, which represents a relationship between two assumed
latent variables scored dichotomously, is more appropriate for use
in assessing dimensionality of the latent space, but is less easily
obtained. First, there is little agreement in the literature on how
to estimate tetrachoric correlations. A second drawback to the
tetrachoric measure is that it makes the restrictive assumption that
the underlying latent variables are normally distributed. Finally,
when used for factor analysis, tetrachoric matrices are often singular
and therefore impossible to invert. When such difficulties are over-

come, the emergence of one common factor in a factor analysis of
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tetrachorics is a sufficient, but not necessary condition for assum-
ing unidimensionality of the latent space (Lord & Novick, 1968,
p. 382).

Christofferson (1976) has developed an alternate solution for
factor analysis of dichotomous variables "based on marginal distri-
butions of single and pairs of items." Generalized least square
estimates are used, and a modified chi-square test examines the
number of factors resulting as part of the procedure. More recently,
Muthén (1978) offered a method for factoring dichotomous variables.
Both methods overcome problems encountered with other methods for
factor analyzing dichotomous variables, but unfortunately the methods
have computational complexities that have not yet been satisfactorily
resolved (Gustaffson, 1980).

Although there is agreement that factor analysis is the most
adequate statistical tool for assessing dimensionality, the procedure
is sample-dependent and may fail to determine that a set of items is
unidimensional for all possible examinee samples. Lord (1980) em-
phasized the need for a statistical method for determining unidimen-
sionality that is sample-invariant. A common seﬁse technique that
has been employed to assure unidimensionality for various examinee
pools is the method of expert judgment, but this method can only be
applied during test development. Hartke (1978) suggested a proce-
dure for employing content experts to detect jtems which do not fit

with an item set. The well-known Q-sort is another such technique.
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Few alternatives to factor analysis for assessing unidimension-
ality have been suggested although Bejar (1980) described a new
method which appears quite promising. In this method, unidimension-
ality is defined as a 1inear relationship between parameter estimates
obtained from subsets of items arranged by content area and the full
set of items. The item subsets are formed based on a priori hypotheses
about content. "It follows that both sets of parameters should not
differ unless one or more of the content areas is tapping a component
which is unique to that content area" (Bejar, 1980, p. 284). The
equivalence of item parameter estimates is verified with bivariate
plots of the two sets of parameters. Unidimensionality is indicated
when the points lie along a 45 degree 1line through the origin. Mean
distances are computed to determine the extent of departure from the
line. Bejar also provided a second technique for assessing dimension-
ality based on the intercorrelation of ability estimates resulting
from tests with only single or multiple content structures. Both
procedures avoid the time consuming and computationally complex pro-
cedures required for factor analysis of dichotomous variables.

Some latent trait researchers have argued that: "There are
no separate adequate tests of unidimensionality. The direct test
is the test of fit to the model" (Rentz & Rentz, 1978, p. 12).
Gustaffson (1980) indicated that lack of unidimensionality cannot
always be detected by certain tests of model fit. Gustaffson (1980)
determined that the conditional likelihood ratio test of ICC slopes
detects departures from unidimensionality only when slopes are equal

for all items. The Martin Lof (1973) Person Characteristic Curve
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(PCC) slope test, based on the chi-square method, was offered as an
alternative test. This test also groups items together a priori by
content and the subset parameters are compared to those obtained
from the total test.

Prior research has shown that when the assumption of unidimen-
sionality has been violated, data have not fit the latent trait
models very well (Hambleton & Traub, 1971). Accurate tests for uni-
dimensionality are therefore quite important both for doing research

with and applying latent trait models.

Equality of Item Discriminations

The Rasch model is a special case of the Birnbaum (1968) logistic
test model in which all item discrimination indices are equal. The
viability of this assumption has been challenged: "The assumption
that all item discriminations are equal is restrictive and substantial
evidence is available which suggests that unless items are specifically
chosen to have this characteristic, the assumption will be violated"
(Hambleton et al., 1978, p. 26). Birnbaum (1968, p. 403) examined
empirical data to explore this assumption and claimed that in most
instances item discrimination indices varied considerably. In two
sets of empirical data, Ross (1966) reported variations in item dis-
crimination (ag) from .47 to 1.99 (range 1.52) in one set, and from
.30 to 1.97 (range 1.67) in the other. Using an approximate estimate
of item discrimination, Hambleton and Traub (1973) reported three

tests with discrimination ranges of .66, .74, and .69. Lack of fit
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to the Rasch model in these studies was attributed in part to heter-
ogeneous item discriminations.

The Rasch model was reported to be robust to heterogeneous
item discriminations in a study by Dinero and Haertel (1977). Model
fit was explored for five data sets generated under two-parameter
model assumptions. Five ranges of item discrimination were simulated
from uniform and normal distributions with variances ranging from
.05 to .25. Tests of fit to the one-parameter model were conducted
with the Wright and Panchapakesan (1969) standard deviate. The con-
clusion of the study was that: "the lack of item discrimination param-
eters in the Rasch model does not result in poor calibration in the
presence of varying item discriminations" (Dincro & Haertel, p. 589).
They suggested that difficulties which might arise in ability estimation
with the Rasch model due to the presence of non-homogeneous discri-
minations can be counteracted by increasing test length. Dinero and
Haertel's results were based on rather small samples and should there-
fore be viewed with caution.

In a simulated comparison of the Rasch two- and three-parameter
models, Hambleton and Cook (1978) found that the presence of hetero-
geneous item discrimination values had little affect on fit of data
to the Rasch model. The criterion for model fit was the rank ordering
of examinees by ability. The study used item discrimination ranges
of zero, .81 to 1.43, .50 to .74, where the maximum range was sclected
to reflect the range of item discrimination values in the verbal
section of the SAT. Earlier results by Hamblcton (1969) demonstrated

that increasing the range of discriminations simulated from a uniform
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distribution caused significant reduction in fit of data to the

Rasch model. Similar results were obtained by Hambleton and Traub
(1971) for data simulated from a normal distribution of ability.
Discrimination parameters in the 1971 study ranged from .2 to .8 and
were generated from a uniform distribution of a_. Ranges of dis-
crimination beyond .2 were found not to be tolerated by the Rasch
model. This range corresponded to biserials in the .44 to .58 band.
The variable results of these studies from those reported by Hambleton
and Cook (1978) and Dinero and Haertel (1977) may be due either to

the differing distributional assumptions or to the alternative methods
for determining fit.

Few statistical procedures have been developed for testing
equality of item discrimination indices. Panchapakesan (1969) pro-
vided a test for unequal item discriminations based on examination
of probability plots of items. Departures from unity in slope indi-
cated items with non-homogeneous discriminations. Birnbaum (1968)
suggested a method based on magnitudes of conventional item discrimi-
nation parameters. Gustaffson (1980) suggested using Martin-Lof's
chi-square test for explaining variable slopes in ICC's due to
heterogeneous discriminations. Mead (1976) applied a residual approach
to detecting a variety of deviations from Rasch model assumptions
including non-homogeneous discriminations.

Wright (1977) claimed that it is impossible to estimate item
discrimination. Wright showed that without severe restrictions, item
discrimination indices tend to drift toward infinity. The BICAL

procedure (Wright & Mead, 1978) for estimating parameters of the
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Rasch model, includes a calculation of what is called "residual"
item discrimination. The quantity is determined after data is fit
to the model and is used as one of a number of statistics to assess
lack of model fit. Such statistics are used to delete items with
unequal discrimination values from a test. 1In a study of vertical
equating with the Rasch model, Slinde and Linn (1979) used residual
estimates of item discrimination to assess the equality of item dis-
crimination indices. Item discrimination values within the range

.80 to 1.20 were considered equal.

Guessing

The assumption that guessing does not occur is made with the
Rasch and two-parameter models. When items are administered in an
open-ended, or free-response, format this appears to be a reasonable
assumption, but the assumption does not seem tenable for multiple
choice tests. It seems plausible that examinees with little or no
knowledge guess, unless cautioned otherwise, when presented with
difficult items. Examinees with some or partial knowledge could
make educated guesses by eliminating obvious erroneous choices, but
examinees with no knowledge could select answers completely at ran-
dom. In this latter case, the chance probability of obtaining a cor-
rect response is 1/C, where C is the number of response alternatives.
Since correct responses, whether obtained by chance or through know-
ledge, are used to estimate ability, resulting ability estimates
for low ability examinees tend to be too high unless some method

is utilized to correct for guessing. Formula scoring, a common
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method for penalizing guessers (Lord & Novick, 1968, p. 307) is
only applicable to conventional scoring, so other methods must be
used to adjust for guessing in latent trait estimates of ability.

The Tower asymptote of the three-parameter ICC, seen as a
measure of the chance probability level, is used to correct ability
estimates for random guessing. Since the lower asymptote of the
Rasch ICC is zero, ability estimates are not adjusted for guessing.
Guessing is viewed as an item characteristic in the three-parameter
model, but there are other approaches which assume that guessing
is an interaction of both item and person characteristics, and these
approaches provide other methods for removing the influence of gquess-
ing from examinee ability. It is difficult to estimate guessing
directly, although some attempts have been made. These are discussed
next.

A straight forward method for estimating guessing, suggested by
Lord (1970), was to examine visual plots of ICC's. Using this tech-
nique, Lord determined that lower bounds of ICC's for SAT items were
typically below the chance level, 1/C. The efficacy of this method
for estimating guessing is clearly dependent on the accuracy of the
three-parameter model.

Urry (1974) developed a hueristic, or intuitive, method for
estimating guessing which was based on regressing the percent of
examinees passing an item on raw score, adjusted for the item under
investigation. The lower left asymptote of the regression curve
was taken as an estimate of guessing. Lord (1970, 1980) has also

shown that when a sufficient number of examinees is used, item-test
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regression approximates the form of item-ability regression. Unfor-

tunately, these methods are only accurate when thousands of examinees'
scores are considered.

Jensema (1974, p. 74) criticized the approaches taken toward
guessing in latent trait theory because: "A more basic question,
which directly challenges the model, is whether the guessing parameter
is constant over all levels of ability." Jensema postulated that
guessing is a person- or sample-related characteristic or the product
of some person-sample-item interaction. The Lumsden (1977) latent
trait model includes a second person characteristic called "sensi-
tivity" which reflects guessing among other person attributes. Ap-
proaches to guessing, based on these assumptions, have attempted to
remove the effects of random guessing from ability estimates without
estimating a guessing parameter, per se.

Waller (1974a, 1974b, 1976) outlined a procedure which can be
applied to the Rasch and two-parameter models. "This is accomplished
through a modification of the free response model removing those item-
person interactions characterized by the item being too difficult
for the person and therefore likely to invite guessing" (waller,
1974b, p. 2). With simulated and empirical data, Waller found 1im-
provements in model fit when the ARRG (ability removing random
guessing) procedure was applied. The ARRG method deletes items too
difficult for an examinee and estimates ability from the remaining
item subset. A number of passes through the data are needed to find

items difficult for each examinee.
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Since the guessing parameter is not estimated in the Rasch model ,
other methods are used to detect guessing. Mead (1976) examined
guessing departures from the Rasch model by a method of standardized
residuals. The residual between the expected and obtained ICC were
plotted against the quantity, "ea - b;" (the differential between ability
and difficulty), and deviations from linearity in the plots signalled
guessing. Gustaffson (1980) indicated that the Martin-Lof (1973)
conditional likelihood ratio test can be used to detect irregularities
in slopes of person characteristic curves (PCC) which purportedly
indicate guessing.

With the exception of the Urry procedure, all of the methods for
estimating or detecting guessing described above are based on the
assumptions of latent trait theory. Conventional approaches, which
use item difficulties, have also been suggested for estimating guess-
ing. These approaches are severely limited because of the sample-
independent of item difficulty, but do offer some means, inde-
pendent quality of latent trait theory itself, for estimating guessing.
Such methods estimate guessing by computing the item difficulties
for hard items from low ability examinees' scores. The difficulty
levels indicate the percentage of low ability examinees who passed
jtems which were supposedly too difficult.

Results of studies which have assessed the effect of guessing
on Rasch model fit have been somewhat variable. Ross (1966) used
plots, similar to those suggested by Mead (1976), to visually inspect
the impact of guessing on Rasch model fit. Although guessing was

indicated on 11 out of 95 items, Ross claimed that the Rasch model
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demonstrated adequate fit to data. For the purpose of test score

equating, Slinde and Linn (1978) concluded that guessing was not
tolerated by the Rasch model. Gustaffson (1979) suggested that
equating results might have been inadequate in Slinde and Linn's
study because the presence of guessing would produce spurious cor-
relations between item difficulty and discrimination. Upon analysis
of the same data, Gustaffson determined that there were substantially

high negative correlations between discrimination and difficulty in

the data.

Speededness

Lord and Novick (1968) make a distinction between speed and
power tests. A speed test is one based on an examinee's ability to
answer as many items as possible within a fixed time limit. The score
on a speed test depends on the rate of response. A power test is
one with no time 1imit or a very liberal time limit. Latent trait
theory does not apply to speeded tests, "but the theory can be still
used to analyze answer sheets obtained in timed test administrations"
(Lord, 1974, p. 248). Lord (1980) refers to consecutively omitted
jtems at the end of a test as "not reached." Incomplete test response
patterns may be attributed in part to speeded conditions.

If an examinee answers less than one-third of the items in a
test, it can be assumed that the test was speeded for that examinee
and, consequently, no ability estimate can be obtained. For other

examinees, who answer a substantial proportion of items, it is possible
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to obtain ability estimates. LOGIST (Wood, Wingersky, & Lord, 1976)

adjusts ability estimates from timed tests by a modification in the
Tikelihood fucntion which was given by Lord (1974).

Because of the assumption of local independence, ability esti-
mates can be obtained from any random set of homogeneous items
designed to measure the ability. If an examinee answers items in
the order presented, it can be assumed that those items answered
constitute a small homogeneous set of items administered under non-
speeded conditions for that examinee. Thus, ability can be estimated
from the set of items reached, ignoring the set of items following
the last item reached. When too few items are included in this set,
there is a substantial loss of precision in estimation for the exami-
nee. The procedure is also used to obtain ability estimates for
examinees who omit intermittent items in a test.

There have been no empirical studies which have investigated
the efficiency of ability estimation from timed tests, but Lord (1974)
verified the maximum likelihood estimates of ability when data were
characterized by omitted response patterns.

Significant research for detecting speededness has come from
within the framework of classical test theory. Donlon (1978) pro-
vided an excellent review of these methods. No attempt was made in
this study to evaluate speededness of tests because the LOGIST esti-
mation procedure handled incomplete response patterns quite adequately.
A1l tests used in the study were reported to have been administered

as non-speeded tests.
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Testing Model Fit

There has been little agreement among latent trait theorists
concerning the measurement of model fit for latent trait models.
There has been no consensus on the operational definition of fit,
which has resulted in a variety of alternative methods for assessing
fit, each based on a different definition.

Many view latent trait model fit in terms of item fit, but
other researchers define fit based on the concept of test fit. Still
other approaches define model fit in terms of ability or person fit.
Separate methods for testing fit have evolved from each of these
definitions.

Lord and Novick (1968, p. 383) described a generalized method
for determining the adequacy of psychometric models. The procedure
consists of the following steps:

1. Estimate the parameters of the model assuming it to be
true;

2. Predict various observable results from the model sub-
stituting the estimated for true parameters;

3. Consider whether the discrepancies between predicted
results and actual results are small enough for the
model to be useful ("effectively valid") for whatever
practical application the investigator has in mind;
and

4. If the discrepancies found in step 3 are too 1arge,
then it may be useful to compare them with the d1s—
crepancies to be expected from sampling fluctuations.

Methods for testing model fit (step 3) have varied to some extent

because they have been developed to explore fit in the context of

rather different uses of models.
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Birnbaum (1968) considered many of the statistical measures
often employed for testing model fit to be unsound. For example,
likelihood ratio test statistics which are asymptotically chi-
square, were often assumed to be distributed as chi-squares despite
the fact that they had been calculated on very small samples. For
very large samples, most data are rejected by statistical tests even
though fit may be adequate in a practical sense. Graphical techni-
ques for inspecting fit have an element of subjective judgment, and
few practical (non-statistical) measures of fit have been devised.

Rentz and Bashaw (1975) and Rentz and Rentz (1978) provided
an excellent discussion of model fit. They viewed fit in terms of
applications (which they called operations): test development and
test analysis. They suggested that during test construction, the
focus be on item fit, where "item fit can be defined as the extent
to which items can be characterized according to those antecedent
conditions derived from the model's assumptions" (Rentz & Bashaw,
1975, p. 17). Based on the model's premises, graphic representations
of items could be used to determine departures from the model, for
example, inspection of plots of ICC's to evaluate the presence of
non-zero lower asymptotes which would indicate guessing. During the
test analysis phase, the focus switches to overall test fit: "Test
fit can be defined as the extent to which the test achieves those
consequences specifiable from the concept of specific objectivity"
(op, cit., p. 17). Specific objectivity, a concept originated by
Rasch, means that ability and item difficulty can be estimated

independently of one another. An instrument encompassing the quality
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of specific objectivity offers item-free person measurement and
person-free object measurement. To measure test fit, Rentz and
Bashaw suggested the use of a chi-square test based on the mean
square fit criterion developed by Wright and Panchapakesan (1969).
Rentz and Bashaw caution the user with respect to statistical tests
of fit: "We do not believe that a routine application of some sta-
tistical test is adequate or even correct" (op. cit., p. 92). A
second definition for test fit given in the same work is "the extent
to which the test contains fitting items" (op. cit., p. 17). The
mean square fit statistic can be applied to items individually or to
the test as a whole.

Another approach to model fit is in terms of person fit. 1In
this case, sample item parameter estimates are assumed to be true
(i.e., representing population parameters), and fit is assessed in
terms of person or ability parameters. Studies basing fit on this
definition frequently have compared observed and predicted distribu-
tions of ability (or some monotone transformation of ability) by means
of an approximate or exact chi-square test. Studies by Ross (1966)
and Hambleton and Traub (1973) used this definition of model fit. The
Wright and Panchapakesan mean square criterion is also used to eval-
uate person fit.

A simple technique for testing item fit is a graphic method
(Rasch, 1960). This procedure entails regressing percents of exami-
nees passing an item on raw scores (essentially an item-test :
regression). Departures from linearity in a plot can be statistically

tested. Anderson, Kearney, and Everett (1968) developed a more
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sophisticated version of this test based on likelihood ratios.
They applied the method to testing model fit of intelligence test
items. Ross (1966) used a method for assessing guessing which was
based on plots drawn on logistically scaled probability paper.

Other visual methods for exploring model fit include compari-
sons of frequency distributions (observed verses predicted) of
ability, raw scores, true scores, or sufficient statistics. Most
studies of model fit have included some graphic test. Cumulative
distributions (item or test characteristic curves) can similarly be
visually inspected for model departures. Hambleton (1980) described
a method for comparing a predicted ICC with an actual ICC. For each
item, the observed ICC is found by plotting the examince performance
level (i.e., percent of examinees obtaining a correct response) for
various levels of ability. The predicted ICC is based on the esti-
mated item parameters. The plot is explained by a second figure
which shows the positive and negative discrepancies between the two
ICC's. The magnitude of these discrepancies could be calculated
using a squared distance formula. Gustaffson (1980) reports a graphic
method similar to those discussed in this paragraph for application
to fit of the Rasch model.

The primary statistical test used to measure model fit has been
a chi-square test based on mean square deviations or likelihood
ratios. Wright and Panchapakesan (1969) developed a widely used
statistic for testing fit to the Rasch model.

For each item a standardized deviate is formed between the

predicted and observed item score. The standardized deviate is usually
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expressed in the relative frequency metric. Deviates are summed across

persons (or score groups) to obtain an approximate chi-square statistic
of item fit, or across items to obtain an approximate chi-square
statistic for person fit, or across both to measure overall test fit.

For score group i and item J the standard deviate is
given by:

)2 [

Z"z( (f]J)‘E(f]J) )/V( ] l.4]

1] fij

where fij is the observed frequency of examinees in score group i

who answered item j correctly; E(fij) is the expectation of fi';

and V(fij)% is the standard deviation of fij' Since fij has a
binomial distribution with parameter Pij (the probability of a correct
response), the expectation is found by taking the mean of the binomial:

E(fi5) = 1Py [5]

where rs is the number of examinees in score group i. The variance

of the binomial is given by:

V(£5) = e (-Pr) (6]

The Zij are normally distributed with mean zero and standard devia-
tion one and can be summed across items, or people, or both. With
sufficiently large sample size, the sums of the standard deviates
approximate chi-square statistics. The total test chi-square is
given as:

n

X2 [7]

s~ 35
N
N
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which has (n-1) (n-2) degrees of freedom, where n s the number of
items, and n-1 is the number of score groups.

An alternate formulation of the standard deviate was given by
Wright and Stone (1979) in which the deviate is formed between the

actual and expected item score, uij’ where ui.=] when item j

is
correct, and u1j=0 when item J 1is incorrect. A standardized
residual, found for each person-item combination given by:
1
- - - s . I
235 = (ugs - Pyg) / (Pyy (1P} )F (&)

is distributed normally with mean zero and unit variance. The sum
of squared residuals, across items, persons, or both, approximates

the chi-square distribution, or alternatively, the mean square can

be found as:
v = 1z2 /df , [9]

which is an approximate F-statistic with "(N-1) (n-1)/N" degrees of
freedom for person fit or "(N-1) (n-1)/n" for item fit. Since the
item score, Ui 5o can only assume the values O or 1, equation [8]
reduces to exp(e-b) for a correct response or exp(b-8) for anincorrect
response.

George (1979) has shown that meaningless results can be ob-
tained with the mean square statistic when samples employed are too
small. Under these conditions, the chi-square test is inappropriate
since distributional assumptions of the test are not met. Applica-
tion of the test to small samples results in significant errors in

interpretation. George also notes that for very large samples, the
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chi-square test, like other statistical tests, rejects all data
even though fit may be more than adequate from a practical point of
view. A generalized version of the chi-square test which can be
used with all of the latent trait models, was offered by Ross (1966)
and later by Hambleton and Traub (1973). The procedure uses esti-
mated item parameters to predict distributions of number-correct
scores or weighted number-correct scores. These are compared with

actual distributions of number-correct scores using a standard chi-

square test:

k
X2 = T (fi00) - file) 2/f(e) [10]

where fi(o) are observed frequencies for score group i and fi(e)
are expected frequencies for score group i, and the summation is
across k score groups. Alternatively, the Kolmogorov-Smirnov
statistic, which makes fewer assumptions than the chi-square, can
be employed to compare actual and predicted score distributions.
Likelihood ratio tests for the normal ogive model were devised
by Bock and Lieberman (1970) and for the Rasch model by Anderson
(1973). Anderson's test assumes that parameters were estimated by
a conditional maximum likelihood approach. Likelihood ratio sta-
tistics are well-suited for assessing differences in fit due to
alternative models and for testing parameter invariance. The test
statistic used with likelihood ratios is approximated by a chi-square
for large samples. Versions of the test have also been formulated

for estimates based on the unconditional maximum 1ikelihood method.
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A more recent development in likelihood ratio tests for the Rasch
model is found in Anderson and Masden (1977).

The Tikelihood ratio tests cited above were all devised for
use with a single model. Waller (1980) has formulated a likelihood
ratio test which is claimed to be able to test deviations in fit
for the Rasch, two-, and three-parameter models. The test is an
extension of Bock's (1972) likelihood ratio test for the nominal
response model. A likelihood ratio is formed based on r item
parameters, and another likelihood ratio is formed based on a subset
s of the r parameters from a model with fewer parameters. The log
likelihood of the difference (r-s) is formed. Waller claims that
the lTog likelihood of the difference is distributed as a chi-square
statistic. The method is based on rank ordering examinees by ability
and grouping them into i fractiles, or ability groups. The same
number of ability groups are formed for each model. Then, for each

item, the test statistic is given by:

f— |
1
o
+
o3+

=T . -P.. , 1
L (rij log Pij + (N] r1J) Tog (1 P1J) ) [11]

where Pij is the probability of item success, Ni is the number of

examinees in fractile 1, I is the number of examinees in group i

who obtain a correct response on item j, and:

C = log (Ni! / rij! (Ni'rij)! B [12]

Another test based on likelihood ratios is the binomial test
offered by Divgi (1980). Divgi also claims that his test is applic-

able to all of the latent trait models of interest. The method
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purportedly detects model fit even when the parameters from a specific
sample may have been estimated in error. The procedure is given as
follows: first item and ability parameters are estimated for the

two models of interest. Then, for a validation sample having approxi-
mately 100 examinees, maximum 1ikelihood ability estimates are ob-
tained based on the two sets of item parameters. Two likelihoods

are calculated for the observed patterns of response. If P is the
proportion of cases for which calibration by one model provides

better fit, then the test is based on the null hypothesis, Hyo P=.5.

Since P is a binomial with mean .5, the test results in exact prob-
abilities for P. Divgi notes that when more than 50 examinees are
in the validation sample, the normal approximation for the binomial
can be used. The validation sample in this method is selected to
represent a specific population of interest. The results of the test
supposedly demonstrate model fit in terms of specific applications.

A variant approach to model fitting is one designed by Mead
(1976). This technique uses the standardized residual between the
actual and observed frequencies of examinees for item i in some
score group Jj, as given earlier in equation [4]. The residual sta-
tistics are plotted against the quantity (6-b) for a visual test of
fit or can be used to perform t-tests or ana]yses of variance between
models. A method bearing similarity to Mead's method is one used
by Koch and Reckase (1978). In this case, the deviate is formed
between the item response, ug (zero or one) and the expected prob-

ability of item response, Pg(e). The deviate is given as:
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MSD = (

e~ =

iy WgPgled [13]

The authors claim that the statistic is normally distributed, but

no empirical evidence exists to support this claim. Until such
evidence exists, the statistic should be used with caution. The MSD
statistic was developed to replace frequently used chi-square test
statistics which are inappropriate for small samples.

Lord (1970) provided a method for model fitting that has in-
tuitive appeal. In this method, the ICC is estimated by two methods
and the resulting curves are compared. One method assumes no
special mathematical form for the ICC. It is based on the regression
of item score on estimated true score (minus the item in question).
The second estimate is an ICC from one of the Tatent trait models.
Ability is transformed to the true-score metric for comparison by
visual or statistical means. The method can be used to test model
fit and to detect parameter invariance. Lord (1974) utilized this
method to compare two maximum likelihood estimates of ability for
data with omitted responses.

Gustaffson (1980) described a number of new methods for testing
fit of the Rasch model when parameters have been estimated with the
conditional maximum likelihood (CML) approach. Because Gustafsson
has overcome some of the problems in CML estimation, it is claimed
that the method can be practically applied more easily. One of the
statistics discussed by Gustafsson is the Anderson (1973) method
noted earlier. He sugaests that the method is primarily appropriate

for detecting deviations in slopes of ICC's. Another method is
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attributed to Martin-Lof (1973), who devised two tests of fit. One
test statistic is asymptotically equivalent to the Anderson likeli-
hood ratio test, but is constructed using frequency data for persons
in different raw score groups. The second test statistic was de-
signed to detect differences in Person Characteristic Curves (PCC)
such as those described in the model by Lumsden (1978). The statis-
tic uses the maximum of the log likelihood function, where twice the
log function has been shown by Martin-Lof to be asymptotically dis-
tributed as a chi-square. The test can be applied to detecting person
differences including item bias, speededness, guessing, and person
sensitivity, which is defined as varying person reliabilities.
Martin-Lof also developed a measure called redundancy which supposedly
provides an absolute index of model fit and can be applied when there
are large samples.

When item and ability parameters are known, such as in simula-
tion research, a number of additional techniques for testing model
fit can be employed. Lord (1974) and Hambleton and Cook (1978) used
correlational analysis to compare estimated with true parameters.
Both Pearson and Spearman techniques have been applied. In addition
Hambleton and Cook formed the average absolute difference (AAD)

between estimated and true parameters to exp1ore fit.

Studies of Comparative Model Fit

This section reviews studies which have compared the Rasch model
with the two- and three-parameter logistic models. One of the earliest

empirical comparisons between the Rasch and two-parameter models was



43

reported by Hambleton and Traub (1973). This study was based on the
earlier work of Hambleton (1969). Comparisons between the two models
were made for the verbal and math subtests of the Ontario Scholastic
Aptitude Test, and for the verbal section of the SAT. The method of
comparison employed a chi-square statistic to determine deviations

in predicted from observed distributions of weighted raw scores,
which are the sufficient statistics for ability. Since computerized
techniques for parameter estimation had not been developed at the
time of these studies, approximate solutions were used for obtaining
item parameter estimates. These approximations requiredthat ability
be normally distributed which added an additional restriction to the
data. Weighted raw scores were constructed using estimated parameters
as weights. With this technique, Hambleton and Traub found that
when item discriminations were heterogeneous, the two-parameter model
showed improved fit over the Rasch model for the three tests.

Koch and Reckase (1973) and Reckase (1978) compared fit of the
one- and three-parameter models for both empirical and simulated
data. Real data included a vocabulary test, an aptitude test, and
four classroom achievement measures. The results of both studies
indicated improvement in model fit when additional parameters (item
discrimination and guessing) were considered in the model equations.
A mean square deviation (MSD) statistic was employed item by item
to detect fit. The MSD statistic reflects the deviation in the item
response, Ujg (scored zero or one), from the predicted item response,
Pig(o)’ which is a probability ranging from zero to one. T-tests

were conducted between models based on average MSD statistics.
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Because sampling properties of the MSD statistic are unknown, the
conclusions of this study must be viewed cautiously.

Rentz and Rentz (1978) fitted the Rasch model to aptitude,
achievement, and criterion-referenced test data. The study used
Wright and Panchapakesan's (1969) fit statistic. Although the
model was not compared to others, the study showed that the Rasch
model can fit many diverse forms of tests.

Hambleton and Cook (1978) made comparisons in fit for the
Rasch, two- and three-parameter models using simulated data. With
simulated data, comparisons can be made between estimated and true
parameters (from which the data was generated). Measures of fit
were based on Pearson and Spearman correlations and the average
absolute difference (AAD) between true and estimated ability.
Hambleton and Cook found significant improvements in model fit at
the lower end of the ability continuum for the more general models
especially for tests which had few items. Although it is reasonable
to anticipate improved fit to data when a model is less restrictive,
unfortunately studies involving simulated data do not provide a check
on the adequacy of models for describing the real world.

Douglas (1980) compared Rasch model equating with equating based
on the two- and three-parameter models. Douglas used parameter
estimates to predict raw scores and then compared estimated to true
values with bivariate plots. For the purposes of equating, Douglas
found Rasch equatings to be better and more consistent than those

using the two-parameter model. The three-parameter model was not
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considered in the final comparison because lower asymptotes were
Jjudged to be unacceptable.

A more encompassing comparison of latent trait equating methods
was done by Marco, Peterson, and Stewart (1980). An anchor test
method was used to equate verbal SAT scores. The Rasch and three-
parameter ICC equating methods were compared to each other and to a
variety of additional methods. Contrary to the results of Douglas
(1980), this study showed that the three-parameter ICC method gave
superior results to all other methods of equating, although the
authors pointed out that the SAT data may violate Rasch model assump-

tions since opportunity to guess on the test is considerable.

Issues Relating to Sample Size and Test Length

There has been some controversy in the latent trait area con-
cerning the number of examinees and items that are required for ob-
taining precise ability and item parameter estimates. Within the
context of the Rasch model, Wright (1977, p. 224) purported that
"calibration sample sizes of 500 are more than adequate" and goes so
far as to say that useful information can even be gained on samples
of 100 examinees. In Wright and Stone (1979), an example of cali-
brating with the Rasch model is repeated throughout the text using
only 35 pupils. Whitely and Davis (1974) and Whitely (1977) dis-
agreed with Wright, and contend that samples of at least 1000
examinees are needed to effectively use Rasch techniques. For the
three-parameter model, Lord (et al., 1976) stated that precise item

parameter estimates cannot be obtained with fewer than 1000 examinees.
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Parallel questions to these have been raised regarding test length.
The Rasch model is often used with 20 to 30 items. Lord (op. cit.)
advised that at least 40 items be used to estimate ability with the
three-parameter model.

In conventional measurement, the reliability of a test is
closely tied to test length. 1In theory, a test with an infinite
number of items would be perfectly reliable. In latent trait theory,
test length has a bearing on precision of estimation. Tests must be
of sufficient length to obtain precise ability estimates. Conse-
quently, precision of item parameter estimates is a function of
sample size. As an alternative to reliability coefficients, latent
trait theory uses the information function as a measure of precision
(Hambleton, 1979; Lord, 1980).

Sample size has frequently been varied in simulation studies in
the process of exploring other issues, but Ree (1980) was the only
study designed to systematically assess the effects of varied sample
size on item parameter estimates. Ree generated samples of 250, 500,
1000, and 2000 to explore effects on three item parameter estimates
in the context of linear equating. Good estimates of diffi¢u1ty were
obtained from 250 examinees, but 1000 examinees were needed to get
good discrimination estimates. Although little variation in guessing
estimates was observed (as measured by average absolute differences
between estimates from different sample sizes), correlations of

guessing estimates across sample sizes were negligible. Ree's
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results suggest that 2000 examinees are needed to estimate guessing
so that a sufficient number of low ability examinees are represented
in the sample.

Hambleton and Cook (1978) found surprisingly small gains in
model fit for both the Rasch and Birnbaum models when test length
was extended from 20 to 40 items. This study, like the previous one,
was based on simulated data.

Little other information has been reported on precision of
latent trait parameter estimates. This is an area which has not been

adequately researched.

Summary

This study was undertaken because evidence about latent trait
model fit, especially for real data has been inconclusive. The study
differs significantly from previous research in a number of ways.
First, the data utilized were real and not simulated. Secondly, ability
and item parameter estimates were determined using sophisticated
computer methods rather than by approximation. Thirdly, fit statis-
tics with known sampling properties were utilized to make comparisons,
and fourthly, twenty-five data samples were employed, more than twice
the number used in any previous comparative research study. Finally,
the current study used three measures of fit to substantiate the

results, rather than a single measure.



CHAPTER TIT11I

METHODOLOGY FOR COMPARING LOGISTIC
LATENT TRAIT MODELS

Overview of the Design

Item response data for twenty-five tests were obtained from
a variety of sources to make comparisons between Rasch and three-
parameter model fit to empirical data. Data were from multiple choice
tests designed for measurement of achievement or aptitude. The tests
covered a broad range of contents, formats, levels, and examinee
sample characteristics. Five of the tests were used to explore the
effects of sample size and test length on precision of latent trait
parameter estimates, while all 25 tests were used to explore ques-
tions of model fit.

The tests were scored for conventional (right-wrong) and latent
trait (right-wrong-omitted-not reached) analysis,and samples of
1000 examinees were drawn from each test data set. An item analysis
and a factor analysis were performed with each test. Conventional
item statistics were used to roughly approximate the degree to which
each test deviated from the latent trait model assumptions. Then,
item and ability parameters were estimated under the conditions of
each model. These estimated parameters were substituted for true

parameters to make predictions about number-correct score distributions

48
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from each model. Predicted distributions were compared with observed
raw score distributions by statistical and graphical procedures.
Measures of fit were correlated with indices of violation of model
assumptions to examine model robustness. Then,precision of parameter
estimates from small samples and from short tests were explored with
correlational analysis. Finally, computer times and costs for

parameter estimation by the two models were compared.

Selection and Sampling of Data

Data Selection

Twenty-five cognitive data sets were used in this study. Re-
sponse data were obtained from test publishers, local school systems,
and statewide testing agencies. The following criteria were utilized

to select data:

1. Tests were designed to measure cognitive skills. Both
aptitude and achievement tests were used. Most of the
tests were normed-referenced, but some criterion-
referenced measures were also used.

2. Tests were recognized, quality tests which had been con-
structed by well-known testing agencies.

3. Test items were multiple choice in format with only one
correct response per item. Also, the number of response
alternatives per item was consistent for all items in a
test.

4. A1l tests exceeded 40 items in length.

5. The sample size per test was 1000 examinees. Most samples
were over 3000, and so 1000 examinees were drawn randomly.

€. Tests were not administered under speeded gondi?igns
(although it was assumed that reasonable time limits had
been imposed).
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Description of Data Sets

Table 1 provides information on the 25 tests analyzed in the

study. Additional features are described below:

Stanford Achievement Test (STAN).—The Stanford Achievement

Test, published by Psychological Corporation, has ten subtests
covering verbal and quantitative skills. The test has been used
extensively in Rasch model studies. One thousand examinees were
randomly drawn from a nationwide sample of 4000 examinees who had

been administered the test in 1973.

Scholastic Aptitude Test (SAT).—Random samples of 1000 were

drawn from two samples of 3000 which constituted the 1974 ICC equating
samples for the SAT. The SAT, published by Educational Testing
Service, is the primary aptitude measure used for college admission.
The two samples did not include examinees who had not completed the

test.

California Test of Basic Skills (CTBS).—The CTBS is a

general achievement test published by McGraw Hill. Two subtests,
math comprehension and vocabulary, were used in this study.

California Achievement Test (CAT).—The CAT is another nation-

ally standardized achievement test. Data used here were from the
1974 Anchor Test Study (Rentz & Bashaw, 1975),.an equating study of
seven well-known reading achievement tests. Verbal and comprehension
subtests were used.

Iowa Test of Basic Skills (ITBS).—The ITBS data were also

obtained from the 1974 Anchor Test Study. Both comprehension and

verbal subtest data were utilized in this study.
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Georgia Regents.—The Georgia Regents are a minimum competency

test required for graduation from Georgia state colleges. Three
forms of the verbal subtest were used in the study.

Rasch Tests.—These Rasch constructed tests from the Atlanta
Assessment Program had been administered statewide to twelfth
graders. The tests were criterion-referenced and covered a dozen
goal areas, but only three subtests were selected because too few
examinees (only 500) were available on any subtest.

Individualized Criterion-Referenced Test (ICRT).—Criterion-

referenced tests in reading and math were obtained from Educational
Progress Corporation in Qklahoma. Sixteen items had been matched
to each objective. Sufficient data were only available on reading

book 269 and so it was the only one used in the study.

Sampling and Scoring Conventions

Samples of 1000 examinees were drawn for each test. The SPSS
(Nie et al., 1975) subprogram SAMPLE was used for this purpose.
Data were scored as 1=right and O=wrong for conventional item
analysis and factor analysis, and rescored as 1=right, 0=wrong,
10=omitted, and 11=not reached for latent trait parameter estimation.
Scoring for latent trait parameter estimation ;onsidered that con-
secutively omitted items at the end of a test had not been attempted

by the examinee due to time constraints.
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Method for Testing Model Assumptions

Unidimensionality

A unidimensional test is one in which all of the items measure
a single underlying trait or ability for all examinee populations of
interest. An operational description of unidimensionality arising
from the foregoing definition is that only one common factor is ob-
tained from a factor analysis of a test. Although there are numerous
ways to evaluate the outcomes of factor analysis, this study used
the eigenratio as the criterion of unidimensionality.

For each test the total available set of data were scored in a
conventional manner and tetrachoric correlation matrices were obtained
with SPSS subprogram TETRACHORIC. For comparative purposes, phi
coefficients were also obtained. Since the results of factoring the
phi coefficients were essentially identical to those obtained with
the teterachorics for five tests, the procedure was eliminated for
the remaining 20 tests. The matrices of tetrachorics were factor
analyzed with SPSS subprogram FACTOR using a principal components
procedure, as an approximation to the common factor solution.

Eigenvalues, first factor variances, and the number of factors
with eigenvalues over 1.0 were recorded. Any of these measures
might have been used to assess dimensionality, but they all bear
relationships to test length. Instead, the eigenratio between the
first and second eigenvalues was used to assess dimensionality
because it indicates the dominance of the first factor over other

factors. High eigenratios indicated unidimensional tests. Tests
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were rank-ordered based on eigenratios with a rank of 25 signifying

the most unidimensional test.

Equality of Item Discrimination Indices

The point-biserial was used as an approximate measure of item
discrimination. Point-biserials were calculated with SPSS subprogram
RELIABILITY which provides the correlation between the item and the
total score adjusted for the item under investigation. Point biserials
were considered equal when they were within a .1 confidence band
around the mean point-biserial for a test (¥ ¥ .1). This interval
was selected following considerable experimentation, and provided
the greatest contrast between tests with homogeneous and heterogeneous
item discrimination indices. A FORTRAN program written by the author
was used to analyze equality of point-biserial correlations. The
point biserials were transformed by a Fisher z so that their
sampling distribution would be normal. The mean and variance of the
transformed correlations were obtained for each test and these were
transformed back into the original metric. A count was made of the
number of point-biserials within the "¥ T .1" confidence region and
this number was converted to the percentage of items on a test having
equal item discriminations. A high percent indicated a test with
nearly equal item discriminations. Tests were rank-ordered based
on these percents. High ranks indicated tests with honiogeneous iten
discrimination indices. The standard deviation of point-biserials
for a test was recorded as an alternate measure of equality of item

discrimination.
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Guessing

The guessing parameter of the three-parameter model has no
parallel in conventional item statistics. A rough approximation
to guessing was found by obtaining the conventional item difficulty
for Tow ability examinees on hard items. A hard item was defined
as an item answered incorrectly by more than two-thirds of the
sample of 1000. A low ability examinee was defined as an examinee
in the Towest decile of the sample. Clearly this rough approxima-
tion to guessing lacked the sample-invariant characteristics of
latent trait parameters. Item "hardness" was assessed based on
difficulty levels in the total sample of examinees. Low ability was
judged from number-correct scores. The lowest deciles contained
approximately 100 examinees for each test. As a measure of guessing,
item difficulties were recomputed on hard items for the lowest ten
percent of the sample. These difficulties indicated the percent of
low ability examinees who scored correctly on items which were pur-
portedly too difficult. It was assumed that correct answers for
these items had been obtained by random guessing. Guessing was only
estimated on tests which had more than three hard items. Little
variability between tests was observed with this measure of guessing,

so rank ordering of tests did not provide very useful information.
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Method for Testing Model Fit

Parameter Estimation

For each data set, ability and item parameters were estimated
under the assumptions of the Rasch and three-parameter models using
an unconditional maximum likelihood approach (UML). 1In the UML
approach, the likelihood function is solved simultaneously for item
and ability estimates. Parameter estimation was accomplished with
the LOGIST computer program (Wood, Wingersky, & Lord, 1976) with a
modification in the likelihood function for handling omitted and

"not reached" items (Lord, 1974). For item responses, ug=1 or

ug=0, with the probability of a correct response given as: Pg(ek),
and where Qg=1-Pg, the likelihood function is given by:
N N n U 1-u
L = kgl ggl Pg(ek) g Qg(ek) g , [14]

Log L is differentiated with respect to the unknown parameters ©

K>
bg (and ag, cg in the three-parameter case) resulting in "n+N-2"
simultaneous equations for the Rasch model and "3n+N-2" simultaneous
equations for the three-parameter model. A modified Newton-Raphson
procedure is used to solve the equations since a direct solution is
impossible due to the number of unknowns. Initial estimates for
parameters were computed from conventional item statistics.

On five tests, ability had been restricted to the range -4 to
+4 to assure convergence, but Lord (personal communication, 1979)

suggested that the limits were unnecessary and inappropriate, and

they were removed from subsequent parameter estimations for 20 tests
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without convergence problems resulting. Overall, .01 percent of
abilities were outside of these Timits. Item discrimination indices
were Timited to the range .01 to 2.0 and rarely exceeded these
limits. Although no restrictions were placed on magnitudes of item
difficulties, the allowable percentage change between stages of
the estimation was restricted.

For the Rasch model a Eonvergence criterion of .02 percent
was used. In the three-parameter case, the convergence criterion was
successively reduced from 200 to .02 percent across stages. The
convergence criterion provided accuracy up to the third position
after the decimal for both item and ability parameters. For estima-

tion of Rasch abilities and difficulties, item discrimination was set

to 1.0 and guessing to 0.0 and held constant.

Estimation Procedure

Examinee samples of 1000 were drawn and scored with LOGIST
scoring conventions for the 25 tests. The estimation procedure began
by editing data: examinees with zero or perfect scores were renoved
since abilities cannot be estimated for these examinees (such esti-
mates would be infinity). Examinees who answered less than one-third
of the jtems were also eliminated since it was assumed that the test

may have been speeded for these individuals. Items answered correctly

or incorrectly by all examinees were then removed since they provide

no information for estimation of ability.
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The next step of the procedure was to compute initial esti-
mates of item and ability parameters from conventional item statis-
tics. The iterative estimation process for solving the likelihood
equations takes the initial estimates as starting values. Table 2
shows the LOGIST control parameters used in this study. Additional

control parameters, not shown in the table, retained the default

values set in LOGIST.

Procedure for Prediction of Number-
Correct Score Distribution

In simulation studies of fit, estimated ability can be directly
compared with true ability, but with real data ability is unknown.
Instead, models are used to predict some observable characteristic of
data by substituting estimated parameters for true values. The pre-
dicted data can be compared to the actual data. Number-correct score
distributions were predicted in this study. Lord (1980) demonstrated
the relationship between ability and the probability density function
of number-correct scores, where the number correct score, X, is given

by:

n
X= 7 u,  ,  and [15]

"ug" equals zero or one and is a binary scored random variable for
item g. For a fixed level of ability, O the frequency distribution
of number-correct scores is a generalized binomial. The mean of the

conditional distribution of raw scores for fixed ability o, is given

by:




60

Table 2

LOGIST Control Parameters for Estimation
Used in the Study

Model
Parameter 1-PAR 3-PAR Description
LITTLN variable variable test length
N variable variable number of examinees in sample
NCH not set variable number of response alternatives
NOPARM 2 2 change default options
MAXST 10 30 maximum stages
NC 1 0 model (1=1-PAR, 2=2-PAR, 0=3-PAR)
IC 2 0 cg's (2=set cg's to zero,
O=estimate cg's)
ITONE 6 6 number of iterations per stage
INTHET -1 -1 do not limit abilities
MATPD 9 0 process (9=regular, O=automatic—

only for 3-PAR)
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U(Xle) - L Pg(ek) s [16]

and the standard deviation is given by:

n
)5

O(Xle) = (gzl Paley) Qqle) )2, [17]
where Pg(ek) is the probability of a correct response and its form

is based on the model. The quantity Qg is equal to “1-Pg(ek).“ The
mean and standard deviation of the conditional distribution of number-
correct scores can be used to generate number-correct score distri-
butions by forming standard deviates for each number-correct score.

The total predicted number-correct score distribution is found by
summing across the conditional distributions for each level of ability.
The procedure was replicated to obtain predicted number-correct score
distributions for the Rasch and three-parameter models.

Figure 4 demonstrates the relationship between ability and the
conditional distribution of number-correct scores. Seventeen discrete
levels of ability were found for each test by dividing the ability
distribution into 17 groups each .5 wide and taking the midpoint of
the group as the estimate of ability. The number of examinees in
each group was determined from abilities estimated by the Rasch or
three-parameter model. The Towest ability group was bounded by -4.25
and the highest ability group was bounded by 4.25. Experimental
findings from five tests confirmed that the midpoints of the ability

groups obtained with this procedure were not significantly different
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from the ineans or medians of the actual ability groups (except at
the extremes of the ability distribution).

The mean and standard deviation of the conditional distribu-
tion of number-correct scores were found for each of the 17 discrete
levels of ability for each test using equations [16] and [17].
Figure 4 shows an ability group with the range 2.25 to 2.75 and
mean ability, Ek, 2.50. The mean of the conditional distribution of
number-correct scores (in the percent-correct metric) was .75 and

the standard deviation was .433. The conditional distribution of

raw scores was found by calculating a standard deviate for each raw

score:

X-ux|o
-

iy (18]
g /leez

The normal deviates were transformed to percentage points of the
normal distribution. Denoting ¢(xJek) as the probability density of
number-correct scores, the joint distribution of number-correct

scores and ability is found as:
p(X.8,) = B(X[e,) g*(6) [1e]

where g*(ek) is the number of examinees in ability group k, obtained
from the data. The marginal distribution of number-correct scores,
p(X), was found by summing the joint distributions of X and 0 across
the 17 levels of ability:

17

o0 = T o0ty - (20]
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Two predicted number-correct score distributions were obtained:
one with Pg(ek) estimated from the Rasch model, and one with Pg(uk)
estimated from the three-parameter model.

Model Fit

Predicted distributions of number-correct scores were compared
to actual distributions of number-correct scores for the 25 tests
with non-parametric statistics. Although the generating functions for
the predicted distributions resulted in the normal form, there is no
assumption in latent trait theory that the distribution of ability is
normal. Graphic methods were employed to interpret statistical findings.

Kolmogorov-Smirnov Statistic.—The Kolmorgorov-Smirnov (K-S)

statistic was used to compare cumulative distributions of predicted
and observed number-correct scores. Cumulative distributions were
obtained by accumulating raw score frequencies predicted by the

models (fe) or observed in the data (fo). Negative, positive, and
absolute differences between predicted and observed cumulative dis-
tributions were calculated at each raw score level. The K-S statistic
is based on the maximum absolute difference, D=MAX([fe-f0|) occurring
at any point along the distribution. The difference is used to
compute a test statistic Z, which takes into account the number of
score levels. Z is compared to tabled values to determine exact prob-
ability levels. The probability level for the K-S statistic is

not a function of degrees of freedom. A K-S statistic was found

for the Rasch model and the three-parameter model for 20 tests.



K-S statistics were computed in a FORTRAN program written by the

author.

Chi-Square Statistic. A chi-square test was used as a secondary

measure for detecting discrepancies between expected and actual dis-
tributions of number-correct scores. Because it is assumed in the
chi-square test that sample frequencies are normally distributed
about population frequencies, expected cell frequencies below 5 are
generally considered insufficient. Because many predicted cell fre-
quencies were zero or negligible, especially at the lower score
levels, it was necessary to group across score levels before applying
the chi-square test. Depending on test length, three to four raw
score levels were grouped together before computing the test sta-
tistic. Score groups at the extremes of the distribution contained
5 or 6 raw score levels. Grouping rules were based on expected fre-
quencies for the three-parameter model and were consistently applied
to Rasch and observed data frequencies. Grouping of scores resulted
in a reduction of degrees of freedom for the test from "n-1" for n
items to approximately "1/3 (n-1)"or "1/4 (n-1)".

The chi-square statistic is given as:

(F,-F)2/F, [21]

>
N
1
It o>,

1=1
where Jj 1is the number of score groups, fo is the observed frequency
of examinees in score group Jj, and fe is the expected frequency of

persons in group Jj. The test statistic is compared to tabled values

to obtain the exact probability with (j-1) degrees of freedom.



66

Since test length and, consequently, degrees of freedom were
different for each test, a mean square statistic was computed to

make comparisons between tests. The mean square was given by:
MSQ = x2/5f [22]

where 3f stands for degrees of freedom. Chi-square and mean square
statistics were computed for each model for 25 tests in a FORTRAN

program written by the author.

Graphic Interpretation

Graphs provided a visual aid for exploring the location of
the greatest discrepancies between the predicted and observed score
distributions. Frequency plots also provided a means for assessing
model fit when score distributions took on different forms. The
graphs each pictured the observed number-correct score distribution
for a test and two predicted number-correct score distributions based
on the one- and three-parameter models. Frequencies in the plots
were based on grouped score distributions. The horizontal axis in
a graph indicated score group, and the vertical axis depicted rela-
tive frequency of examinees. Graphs were produced on a Tektronix
4000 series terminal with the PLOT 10—EASY GRAPHING software.

Comparative Fit.—Model fit was explored with a .0l rejection

region, but results were also reported with the more stringent .05
region of rejection. To make comparisons between the two models,
the mean K-S statistic across 20 tests was found and the mean square

across 25 tests was obtained. Statistical findings were supplmented
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by graphical evidence for more meaningful interpretation of compari-

sons between the two models.

Association Between Model Violations and Model Fit.—Correla-

tional methods were used to explore relationships between fit statis-
tics and indices of deviation from model assumptions. Such techniques
were only able to detect linear relationships, although associations,
if they existed, may have been non-linear. Average K-S statistics
across 20 tests, and average mean squares across 25 tests had been
obtained by methods described earlier. These measures were corre-
lated with the indices of violation of model assumptions using product
moment and rank order methods. Partial correlations were computed

to further probe relationships. The IDAP package, an interactive

statistical tool written in APL, was employed for these analyses.

Estimation Precision

Precision of Item Parameters
Estimated From Small Samples

Five tests were used to explore precision of item parameter esti-
mates from small samples of 250 examinees. Item response data for 250
examinees was drawn from larger samples of 1000 by a spaced sampling
plan. Prior to sampling, it was statistically verified for each test
that a relationship did not exist between raw score and examinee order.
Abilities previously estimated with larger samples of 1000 were assumed
to be good approximations of population values and were substituted

as true abilities for the 250 examinees. Then, item parameters of
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the Rasch and three-parameter models were estimated on the small
samples. Precision of the small sample item parameter estimates
was explored by correlating these estimates with those based on the
larger samples of 1000 examinees. Both Pearson and rank order
methods were employed. The average absolute differences (AAD's)
between item parameters estimated on the small and large samples
were also computed. For both the Rasch and three-parameter models,
item difficulties (Bg) estimated from the two sized samples were
compared; for the three-parameter model, comparisons were also made
between item discrimination and guessing estimates (ég and ég) from
the two-sized samples. Finally, the Rasch and three-parameter models
were compared, using the statistics described above, to determine

which model demonstrated more precise small sample estimates of item

difficulty.

Precision of Abilities Estimated
from Short Tests

Five tests were used to explore precision of ability estimates
based on short 20-item tests. Twenty items were randomly sampled
from the longer tests. Estimates of item parameters for the 20 items,
determined earlier, were assumed to be population values and were
substituted as true values for the item paramefers. Ability was
estimated for 1000 examinees on the short tests under the assumptions
of the one- and three-parameter models. Estimation precision for

the short tests was examined by correlating short tests ability esti-

mates with those obtained from the full-length tests. Both product

moment and rank order correlations were computed. AAD statistics
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between ability estimates from the 20-item and longer tests were
obtained as an additional measure of comparison. The three mea-
sures of precision were then evaluated between models to determine
whether the Rasch or three-parameter model produced more precise

short-test ability estimates.

Cost Method

Little data has been available for making comparisons in cost
of estimation of parameters between the Rasch and three-parameter
models. Such datawere readily available in this study. Both Central
Processor Unit (CPU) time and total dollar expense for estimations
under each model for each test had been recorded. Average CPU seconds
and cost were computed across 25 tests to compare the estimation
process between the two models. Cost data were also available from
estimations in which either ability or item parameters had been
known in advance and only person or item parameters were estimated.
These data were recorded for the five tests which had been utilized
in the estimation precision analyses. This allowed a cost comparison
between the Rasch and three-parameter models when only ability, or
only item parameters, needed to be estimated.

The costs and CPU times recorded in this study were based on the
batch processing cost of executing the LOGIST computer program and
did not include data preparation or time-sharing costs which had been
quite substantial in some instances. The data was accumulated on a

Control Data Corporation (CDC) CYBER-175, an extremely high speed



70

machine, operating under the NOS 1-3 operating system. Costs cannot
be compared to commercial rates because they were charged at

academic discounts. The costs for each parameter estimation was

based on a weighted average of central processor usage, memory extents,
input/output units, and CPU time, and hence cannot even be generalized
to similar computer systems in other academic environments. Computa-
tion speed on the CYBER-175 for this problem was benchwarked to be
approximately twice the speed on CDC 6400 series computers and
nearly four times faster than IBM 360/370 series computers. The
efficiency of computation on the CYBER-175 for LOGIST was partially
attributed to the fact that the machine has a 60-bit word in con-

trast to the 32-bit word on the IBM computers.



CHAPTER 1TV
FIT OF LATENT TRAIT MOLELS TO EMPIRICAL DATA

Conventional Description of Tests

Standard item statistics for the 25 tests used in the study
are presented in Table 3 which includes average item difficulties,
average item-total score correlations, and the KR-20 for each test.
The measures in the table snow that the tests varied considerably
in their conventional difficulty levels and average item-total
score correlations. The mean item difficulty level across the 25
tests was .59 and ranged from a difficulty level of .711 on an
easier test to a difficulty level of .475 on a harder test. Item
difficulty levels for the majority of tests were in the range .55
to .65.

Average item-total score correlations ranged from a low of
.212 to a high of .538 with an overall average of .380 across tests.
Item-total correlations in this study tended to be somewhat lower
than values generated in simulation studies of latent trait model
fit, although they did reflect values frequently observed with
empirical data.

Internal consistency estimates (KR-20) were high for nearly
all of the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>