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THE FITTING OF TIME~SERIES MODELS

by

Jo Durbin
University of North Carolina
and London School of Economics

1. Introduction

The purpose of this paper is ‘o review methods of efficient estima-
tion of the parameters in some of the models commonly employed in time-
series analysis. The models we shall consider are the following:

The autoregressive model

(l) u,b + Glu_t_l +' [ ] 0* Gkut_k = Et (t = l,. o ¢y n)s

Regression on fixed x's and lagged y's

(2) yt + Gly,b_l +o o o prt-p = lelt e o ot quqt+ St
(t = l,o ¢ ey n);

Ragression on fixed x's with autoregressive disturbances

(3) y,b = ﬁlxlt Fo o ot quqt + ut where

u_b + C\'.lut_l *o o oF apu_t-p =8t (t = l’o * oy n);

The moving~-average model

(b)) uy =€y * Byfyy *o o o* Brlyn (t = 1,0 o o, 0);

lThis research was supported by the Office of Naval Research
under Contract No. Nonr-855(09) for research in probability and
statistics at Chapel Hill. Reproduction in whole or in part for any
purposé of the United States Government is permitted.

21nvited review paper presented at a meeting of the Econometric
Society at Washingpon, D. C. on December 3o, 1959.



The autoregressive model with moving-average errors

(5) uy * U 4 *e o o¥ LA =By ¥ BBy e e ¥ BEL

(t = 1,0 o oy D)
In all cases {St} is assumed to be a sequence of independently
and identically distributed random variables with mean zero, variance
02 and with finite ‘moments of all orders. For discussions of effi-
ciency, but only then, the &t‘s will be assumed to be normally distri-
buted. The sequences Us U_gs U s o o and Vo3 Y_19Y _pse o o are regarded

as sequences of fixed constants. For model (1) we assume that all

the roots of the equation xk + alxk-l *o o oty =0 have modulus less

than one; a similar assumption holds for the equation xp + alxp'l *o o ot
h h l

ap = 0 in model (2) and model (3), the equation: x + ByX *e o ot B0

in model (L) and the equations xP + Yixp -1 Yo o of Y, = o and xJ

%91

* By
o o o Bq = 0 in model (5). These assumptions are more restric-
tive than is necessary for certain parts of the exposition; they have
been made at the outset in this rather sweeping fashion for the sake
of simplicity of presentation later on. Throughout the paper an es-
‘bimdtor will be said to be efficient when it is asymptotically ef-
ficient.

2. The autoregressive model

There is an underlying unity in the methods of estimation to
be discussed in this paper arising from the fact that they all depend
fundamentally on the method of least squares. For the autoregressive

model

u, + a.u +s o ot q

g ¥ S %1 Kk = E
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n
. - 2
the minimisation of > (u, + & u +e o ot & U, , ) leads directly
U T A BBtk

to estimates 8150 ¢ o 2y, which areefficient and easy to compute.
The sampling properties of 8yse ¢ s 8 Were first investigated by
Mann and Wald [B] ‘who showed that they are the same asymptotically
as those of least-squares estimates of regression coefficients in
multivariate normal systems. (Actually Meann and Wald's model con-
tained a constant o and therefore differs slightly from (1) but this
does not substantially affect the conclusions).

It is sometimes preferable to work with the asymptotically equi-

valent values al',o o .,ak' obtained from the equations

rl + al' + rlaz' +o o ot rk-l ak! = 0

r2 + rlall + azl +e o “’rk-E.ak' = 0

(6)

*

{ =
rk + rk_lal' +* o e o + ak o

where ry is the iEE sample serial correlation coefficient. If

desired the ri's can be replaced by estimates of the serial covariances.

For all except small values of k the equations (6) are easier to solve
than the least-squares equations owing to their possession of a more
symmetric structure. It is found that a pivotal reduction of (6)
reduces to the recurrence relations

1) rg * 85e1,1 Fs-1 ¥ 851.2 Tgapte ’_°+as-l.s-l
7) a, ==
ss

1l+a +a

s=l.1¥1 Yo P T L, |

(S=l,e ¢ oy k)



(8) 85r = %-l.r * 855%5~1,5er (r = 10 o ay8l),

using,all = ~ry as the starting value. The guantities agyer b 0

aSS are the coefficients of the best-fitting autoregressive model of
order s, while =85090 o ° =8 are estimates of the partial correlation
coefficients between observations 2,. « e,k time periods apart with
intermediate observations held fixed. Apart from yielding this in-
formation of incidental interest, the use of (7) and (8) is decidedly
more expeditious than a direct solution of.(6). The final coefficients
Ayse o esdy are identically equal to the values al',. . oak',
obtained from (6).

3, Regression on fixed x'!'s and lagged y's

The extension of the autoregressive model to include fixed x's
appears to have been first considered about 1945 by Cowles Commission
writers in conmection with the study of simultaneous regression systems
(see Koopmans et al {71 )e In this paper we are concerned only with
the single-equation model
Ve ¥ V59 +o o °+°pyt-p = lelt +s . .+pqxqt + St (t = 1,0 + opn)

where-{xlt} se o0 {xq£} are sequences of constants. Putting y, , =

Xeiot and @ = -$q+i (1 = 1,0 » «,p) the model can pe written in
the form

y.b = lelt +o o ot sq-l-pxq-l'-p.'t +8“b ('b = 1,. o .,n)’

or in an obvious matrix notation,
y=XB+¢€,

where X is a nx(p+q) matrix.



The least-squares estimatbra of ﬁl,. ° "pq¢p are the elements
of the vector b = (X'X)'ley. If X were a matrix of constants, least-
squares theory would tell us that the vector of discrepancies b - 8
has vector mean zero and variance matrix cz(X’X)'l. For the present
model these results do not hold since some of the elements of X
are random variables. However we can obtain analogous results by
introducing the matrix t = [E(X#X) | "L XX, where E(X'X) denotes the
matrix whose elements are the expected values of the corresponding
elements of X'X, The matrix t will usually converge stochastically
to the unit matrix as n-—> oo,

It is shown in Eh] that t(b~p) has vector mean zero and variance
matrix G2E(X'X). It is also shown that when the £ 's are normal this
variance matrik is minimal in a certain sense. Letiting

(9) 32 = & }f (yt = bX e &b X )2

=k 3 g+pet “g+p.t
it is shown further that under certain assumptions E(s2) = 02+O(;2)
and that bl”" .,bk are asymptotically multinormal, The implicgtion
of these results is that least-squares theory applies asymptotically
to the model (2).

4o Regression on fixed x's with autoregressive errors

0f greater relevance in many investigations is the model
(10) }’t = ﬁlxlt +e o °+quqt + ut ('b = lye @ .91’1),

where the ut's are autocorrelated, It is well known that a simple least~

sduares analysis of data from such a model can be seriously misleading
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owing to the inefficiency of the least-squares estimators of the
B's and to the biasedness of their estimates of variance (see for
example the discussion by Cochrane and Orcutt [3] s Watson [ld]
and Anderson [i] )o It is true that for certain special cases, in-
cluding regressions on polynomial trends and seasonal constants, the
least-squares coefficients have been shown to be asymptotically ef-
ficient (Grenander and Rosenblatt [61 and Anderson and Anderson [?} )
Nevertheless the least-squares estimator of variance remains biased
and the use of analysis-of-variance methods for testing hypotheses
and setting confidence limits can be expected to give incorrect re~
sults.

It is often reasonable to assume that the ut's have the auto-
regressive structure

(ll) ut + alut-l *o o ot apu_t_p = €_b ,

(10) may then be transformed to the form

(22) 3, * 6q¥pg ¥ o ot O¥e i = Bi¥pg Y GaPrFi eed 4L o ue

o Pr¥y,oep ¥ Po¥at T S1Pr¥2 -1 *0 ¢ oY Pttt

This now has the same structure as (2) except that relations exist
between the coéfficients. Conceptually the simplest approach to the

n
estimation problem would be to minimise zgjetz, when this is expressed

=1
in terms of the y's andm's, with respect to the a's and B's. How=

ever, since some of the coefficients in (12) are quadratic in the
unknowns this procedure results in non-linear estimating equations

which are usually unmanageable for practical use.



Beférs going on to discuss general methods we draw attention to
an important special case in which simple methods based on least-
squares theory do give satisfactory results. This arises when each

Xy g (i=1,s o 533 J=lsye « o,P) can be expressed as a linear function

of X0 * "xqt. Examples are polynomial trends, seasonal constants
and periodic regressions, (12) then reduces to the form (2) with
functionally independent coefficients which can be legitimately
estimated by least squares. We illustrate the procedure by consider-
ing the case of regression on a pure periodic function with first-
order autoregressive disturbances, i.e.

¥y = By COSAL + B, sin\t + U, where u, + au, =f£, and
where A is known,

We have
Yyravy 1 = By coth+apl cosh(t~l) + By §in At+ap, sinX(t-l)**Et

=Y cosAt + Y, sin\t + 8t

3

where vy =By + afy cosh ~ aB, sink,

Yo = By + afy sinh + aB, cosh,

Efficient estimates a, & and Cy are then obtained by minimising

n
s 2 .
2{: (yt *ayy 4 = O cosit - ¢, gin\t)" , whence estimates bl’ b,
t=1
of By, Py result from the equations
(L + acos ) bl -~ a sin hqz = ¢y
+ (l+acosh)b2 =c, -

a sin } bl
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o is estimated by s~ = 5= 22: Yy*aVy_ g = CpCO8ME 0251nXt) .

t=1
For simplicity of exposition our discussion of the general
problem will be based mainly on the two~coefficient model

(13) Yy = BXy * Uy s where

() u, vou o= €y (t=1,6 o oyn)e

It was pointed out by Cochrane and Orcutt {;3] that if a were

known we could employ an autoregressive transformation yt' = V¥ 0¥

Sy x, V=X 4 oaXx to put the model in the form

t t -l
= tht + 8'[‘.’
to which least squarescan be applied quite validly. For the case
of unknown o they suggested that one should insert in the autoregressive
transformation either a value of g guessed on a priori grounds or
a valuerestimated from the residuals of a fitted least-squares re-
gression, further iterations being carried out if desired. The first of
these suggestions:. is computationally attractive, though inefficient,
while the second, though efficient, is computationally burdensome.
An approach will now be outlined which leads to estimates

which are efficient and which are not too onerous to compute.

From (13) and (14) we have

(15) oy ey = BE YRt Eys
where Y = of. If we were to ignore the restriction ¥ = of and regard

v as a free parameter, (15) would have the form (2) so that the least-

n
squares estimators a, b, ¢ obtained by minimising‘ZET(yt+ayt_l-bxt-cxt_l)2

t=1
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would be efficient estimators of a, B, v« To obtain efficient esti-

mators of o and B we need only therefore consider the joint distri-

bution of a, b, c.

Now y, + &y, o = DK, = 0Ky o =¥y voau - bx, - (¢ - ap) X q
since Vg1 = th—l Y Consequently a, b and ¢ = af are the
least~squares coefficients of regression of Yy o U 4o Xy and X

The corresponding true coefficients are a, B and zero in virtue of the

relation
(16) Yy *t oW 4 " px, + c 4

By a slight extension of the results of the previous section we
know that least-squares regression theory applies asymptotically
to (16). Consequently the quentities a = a, b ~p and ¢ ~ 33 are

asymptotically normally distributed with zero means and variance

matrix o A™L, where A is the expected value of the matrix

2 -1
Zu t-lx " Zu

Zu el gl

-l

Zx2

% 2

Zu

T Xe¥em1

' 2
el 2%l )

Zu

41Xl Zx

Since E(2 u = B(2

t-lxt) ) = 0 it follows that the asymptotic

R
distribution of a, b and ¢ ~ a has a density which is the limit as

n - o of the expression
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(17) constant x expii- Eiz{ka-a)z E(Zutfl) + (b-p)Q Exi
o

+ 2(b= )(c~=ap) Exﬁxt_l * (c-ap)2 zxtgig] .

On maximising the exponent of (17) with respect to a and B we find
thgt their efficient estimates are
a=a

(18) B - Blxg + axy )3y + &¥4)

Z(xt + axt_l)2

It is remarkable that % is precisely the same estimator as is obtained
by using a as an estimator of a in an autoregressive transformation.
The same procedure was arrived at earlier by the author [h] using a
rather different approach.

Ignoring the difference between % thz and % in_l, as is legi~
timate to the order of accuracy considered here, we find that (18)
reduces to

ra (L +ar)b + (a+ r)c

(19) B

l+2ar +a
where r = ImX, . / in . Note that a and B are asymptotically in-
depently distributed. '
The treatment of the general model (3) follows along similar lines.
We shail confine ourselves here to the presentation of a brief summary
of the computing routine, referring the reader to {p:)for further
theorétical discussion. For simplicity of exposition let us suppose

that the variables Xqps X pagre * 09 xqt" . °’xq.t-p are linearly
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independent. (The outstanding case to the contrary is the common
one in which the model contains a constant term, i.e. xit equals
unity for some i and all t; this, however, is easily dealt with by
working throughout with deviations from sample means as in ordinary
regression analysis. Modifications for other cases are easily worked
out ad hoc)o

Suppose that the normal equations for the least-squares fitting

of the regression of ¥y, on xiﬁ’ Xy gel?" ° "xl.t-p" . "xqt

3 ¢ oy

Xq°£;§, ~Vgop0e * "'yt-p’ the variables being taken in this order,
are denoted by

Ap=cy,

where Al is the (p + g9 + pg) x (p + g + pq) matrix of sums of scuares

and products of the variables X, e « o Xgotep® Vtel,s o o) :?3:9
"-?

where cy is the vector of sums of products of these variables with
Yy and where b is the vector of regression coefficients. If the
equations are solved by a method such as the abbreviated Doolittle
method note that it is only necessary to carry the back solution

far enough to give the coefficients 8yse o .,ap of ~Vio12t ¢ o> -yt_p.

Form a new matrix A2 whose first row is obtained by multiplying

the first p+l rows of Al by 1, a

whose second row is obtained by taking the second group of p+l rows

PR .,ap respectively and adding,

of Al, multiplying by 1, 8yse o .,ap respectively and adding. Con-

tinue in this way until A2 has q rows. Repeat the process on 0y

to give a new vector ¢, containing g ialementd. Repeat the process on the
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4"

columns of A2 to give a new matrix A, with g rows anu colums. Let ¢, be

3 3
the vector obtained by subtracting from ¢, the sum of & times the

last column of A2, a, times the second last columhye o o, ap times

the 1:::('-1-l column of A2 counting backwards from the last column. Then

the solution p of the equation

(20) A3‘§ = 03

is the vector of efficient estimators of Byse » .,Bq. Its estimated

. co 2 B
variance matrix is' s A31, where

32 - i g (y, + a + + a )2 Bre
n~p=q | 4oy Iy V-1 7 0t pyt-p P 31*

5. The moving-average model

The special problems of fitting moving-average models can be

appreciated from a consideration of the first-order model

(21) u =€y v BEyy (t = 1,0 s ss0)e

A simple estimator of B can be obtained by equating the theoretical

value of the first serial correlation, namely p/(1+pz), to the sample

value e However, the estimator was shown to be inefficient by
Whittle [11,12] who proposed the use of an approximate maxinume

likelihood estimator equivalent to the solition to the equation

7 |1

. . th . : .
where r, is the i— sample serial correlation.

2 {_Lé(l..zprl«»zgzrz-.”)]-o

Although efficient, this estimator 1is difficult to calculate

and the method does not easily extend to higher-order models. The
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author‘:SJ has therefore suggested a different method in which a

kEE - order autoregressive model is first fitted to the data, k

being taken to be large. It is shown inK;S] that the fitted coeffi-
cients 8ys0 o 58 have an asymptotic distribution with the approximate
density

k=1
constant x (1-32) -1/2 exp&:- giiio (8,1 *931)2 + Bzai:] .

-1/2 gince this is of small order in

Neglecting the factor (1-32)
n compared with the remainder and maximising the exponent with respect

to p we obtain as our estimator of B,

kel
2%t
(22) b=~ 3 (a, =dl),
2
Z a,
j=o *

the efficiency of which can be made as close to unity as desired by
taking k sufficiently large.
For the general model

u =€+ Bi€e g te o o Bpfyy (B 1o e on)

the same approach yields estimators bl,. . .,bh which are obtained

as the solution to the linear eguations

h
K=r
where Ar = iioaiai+r s the ai’s being as before,

6. The autoregressive model with moving-average errors.




This model,which has the generating equation

(2h) u, +vqu g 4o o vy Uep = By ¥ B8y e e ot

t b

84%tmg (t21,0 « o,n)s

has greater theoretical importance than the attention paid to it in
time-series literature would appear to indicate., Firstly, it is the
general model of which the autoregressive and moving-average models
are special cases. Secondly, when q=p-1 it is the only one of the
three models whose structure is invariant uhder changes in the time-
period between successive observations, a fact pointed out by
Quénouille[:QJ « Thirdly, equi~spaced observations from a continuous
stochastic process generated by a linear stochastic differential
equation, pr having a rational spectral density, conform to a
discrete model (24) with g = p-1. Cdnsequently a solution to the
problem of efficient fitting of (2L4) also gives as a by-product the
solution to the problems of fitting stochastic differential equation
models and of estiméting rational spectral densities from discrete
data, Yet in spite of the theoretical importance of the model
only Quenouille[;9J appears to have considered the fitting problem;
however Quenouille did not attempt to discuss efficient methods of
estimation,

Two methods of fitting will now be described. The first is
non-iterative but is not fully efficient. The second is an iterative
method in which the autoregressive and moving-average parameters are

estinmated alternately.. It is hoped to investigate the performance



15

of both methods by means of sampling experiments and to publish
the results later,

Let us begin by considering the first-order model
(25) u_b + Y ut-l =8t + ﬁet_l (t"l,o . o,n)o

Let 8yg0 098 denote the coefficients of a fitted autoregressive

model of large order k and let e, denote the residual u, + au, 4

+s o oF 3 1

e Pk ® In the first method of estimation we replace £ £l

in (25) by e and estimate ¥ and & by the values of c and of d

t~1
which minimise 2 (ut + cu, o - detql)z o« This leads to the equations

2 _
CZuy o= d2u g8 5 = =20l
cZug e, 4 ~d2 ei—l = = Ju,e

the solution of which is asymptotically equivalent to the expressions

) a1r2 + a2r3 +e o ot akrk+l

(26) c= : »
alrl + 321’2 +e o ot akrk
@7 doc s Ty * ATy e e ot BTN
j + alrl *e o oF akrk

The method is readily extended to cover higher-order systems and can
be used to give starting values for the second method, which we now
describe.

First let us consider the estimation of & for a given value of v,

Suppose that the true values of the first k autoregressive coefficients
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are Gy o sffy the fitted values being denoted by 8yse ¢ v,8 85
before. Using Mann and Wald's results [8] we know that for large k

the asymptotic distribution of a1se o .,ak is normal with density

: k
n
(28) constant x exp[- ——2-20 i,§=l (a; = cci) (aj - o.j) E(u_; ut_j)]o

The guadratic form in the exponent can be represented operationally as

k 2
(29) Q = 6 (iil(ai ~a,) ut_j).
Wherea denotes the operation of taking an expectation over variation
of the u's, the ats being regarded as fixed constants.
Suppose that the true value of y were known and the following
transformation from 8y90 » ”ak and Gae e ° 30y to ’1" . .,ﬁk and

)\1,0 ° n,}\.k were made,

U]
"

b+ Gl

ay = f, + vy (G = Ay ¥ YN

? .
»

i

.

a =+l G = M Y,

Substituting in (29) we have

Coe

(30) @ = éﬁfi";i)k“t-l*”i-z)*' SRS MR LWL

"'( gk.xk) ut-k} 2 *
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Now u, + hut-l = Qt *BE, 4 Consequently, on putting z, = u, + Yo .

we see t.haf. Z, satisfies the moving-average process 2, = St + 58,0_1 o
2
Moreover W = Byl T th-k-l Y2 2 +e o o  Consequently
i = (- r 2 { et r = 7
on putting QL+r (=v) ﬂ& and M . (~¥) M (r = 1,2,404), (30)

gives
© 2
31 Q= z - A . °
oy E{isl Uy =2y zt'l}

From the fact that the true autoregressive coefficients are
generated by the relation l+alz+a222+. .« o = (1&72)(1+52)-1, it
follows that for large k, xi = (té)i (1 =1,s o o;k) as accurately

as desired. Since A, can be made arbitrarily small the error committed

k

r . . r
by taking A . = (=8) A, in (30) in place of Xk+r (=v) kk(r-1,2,. o o)
can be made arbitrarily small. Thus to a high degree of accuracy (31)

holds with Zy10 Zgapse c 0 - gorreéspgnding to a moving-average
model for which hl, Xz,o . » are the true autoregressive coefficients.

Comparing (31) with (29) we see that Qi, [2,. « « behave like

autoregressive coefficients fitted to data corresponding to the modsl

z'b ’E_b + 5Ct_l (t'""l,o o o,n) .

Consequently it follows from (22) that the efficient estimator of
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6 is

w
RN A
(32) d = - 1;0 (g:) = 1) o

2 6

=0

In practice it will probably suffice to terminate the summations in
this expression at about i = k., Note that we need not take explicit
account of the fact that the "constant" in (28) depends on the co-
variance determinant of 8150 o .,ak, which in turn depehds on the
unknown parameter &, since the determinant is of small order inn
compared with the exponent of (28),

Let us now congilder the cdnverse problem, i.e. the estimation

of ¥ given the true value of 8. Define Wyso o o,ﬁh by the relation

u, =w, + 6w (t = l,o ° u,n)

t t -1

where W is either defined arbitrarily eor taken equal to uo-ﬁu_l+52u~2. o oo
The w's then satisfy the autoregressive model
wt ey =By e

Consequently ¥ is efficiently estimated by the expression

pAR R
+ b
(33) C = m o UL s

2
Z'Wt

where Z!' denotes summation over the range of possible values of t
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divided by the number of terms summed.

Let

= ?
Sr 2 u‘but+r

b o = 2! utwt+r

o]
I

1
r z Wtwt+r

O
i

It is easy to verify that to a good approximation we have the relations

(34) P,=8,-6P (r = ~k+l, =k+2,0 o o,k)

(35) qr = Pr -5 qr+1 (r = k"'lg k-2,. ) o,O) .

Applying (34) recursively taking Py = 8 and then (35) recursively

taking qk = pk, we obtain q:L and qo from which we obtain the estimate

of v as
9
(36) C = w2
%

By applying (32) and (36) alternately we obtain an iterative
method of estimating vy and 8. (26) or (27) can be used to provide

a starting point.

The treatment of the general model

+o0 o o Y U

u_b + ?lu_t‘_l P 'b'“p ne_b + 51 E'b"'l +o o ot 5q8t_q (tﬂl,l . -’n)

follows similar lines. The fitted altoregressive constants 30 v o T

are transformed to fl,a . "fk by the relations
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and further (s are obtainable from the expression

g,r + Ylgr_l Yo o oF Ypyr_p =0 (r=ktl; k+2,0 « o)

The {/'s behave approximately like auboregressive coefficients fitted

to data generated by the moving-average model

2= Ey O 8y

o

[ 2 [ 4 9+ 5
¥ q & tmg

51, o » .,ﬁq can therefore be estimated from equations (23) taking

o)
%r = iioog(i*r (Q; = 1), 1In practice the summation can probably be

truncated at about i = k,

To estimate Yyoe e .Yb for given Gl,o ° .,6q we use in place

of (34) and (35) the expressions

(37) P, + 51Pr_l *o o ot 5qpi,‘_q = Sr (r = =ttgye o o, k)

(38) qr *.5lqr+l *o o oF Sqqr+q = Pr (r = k-q,o . U,O) .

Estimates Cqse o o,cp are then obtained from the equations

9Bl ¥ R e ot B a% T T

(39) Qi) * G0 *e o o Gy o0, = =G,

4

qp_lol 2 0 oF qocp = ‘qp °
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