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To specify a grain boundary at a macroscopic length

scale requires the specification of five degrees of

freedom. We use a specification in which three

degrees of freedom associated with the boundary

misorientation are in an orthogonal subspace from

two associated with the mean boundary plane.

By using Rodrigues vectors to describe rotations

we show how paths through these subspaces may

be characterized. Some of these paths correspond

to physical processes involving grain boundaries

during microstructural evolution. Exploiting the

orthogonality of the subspaces, a metric to measure

‘distance’ between two boundaries is defined in terms

of the minimum set of rotations required to map one

boundary on to the other. We compare our metric with

others that have appeared. The existence of rotational

symmetry in face-centred cubic crystals leads to as

many as 2,304 equivalent specifications of a boundary.

We illustrate this multiplicity of descriptions for

the (111) twin and a more general boundary. We

present an algorithm to evaluate the geodesic distance

between two boundaries, and apply it to identify

the path along which the distance between these

two boundaries is minimized. In general the shortest

path does not involve descriptions of boundary

misorientations with the smallest misorientation

angles.

c⃝ The Author(s) Published by the Royal Society. All rights reserved.
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1. Introduction

Crystalline matter almost always exists in a polycrystalline state comprising an agglomeration of

many misoriented but otherwise identical crystals or ‘grains’. The interfaces between the crystals

are called grain boundaries. They are planar defects on either side of which the orientation of

the crystal lattice changes. Grain boundaries play central roles in many properties of crystalline

materials [1]. In this paper we attempt to quantify the similarities between different grain

boundaries in terms of the parameters used to characterise them. We also explore the shortest

paths in this parameter space needed to transform one boundary into another.

In non-enantiomorphic crystals a grain boundary is characterised by five degrees of freedom,

which may be specified in several equivalent ways [1]. Following ref. [1] we choose the three

variables required to specify the rotation describing the misorientation between the crystal

lattices, and the two variables associated with specifying the normal to the boundary plane. In

this way the boundary is defined at a macroscopic length scale. At an atomic length scale length

there are many more degrees of freedom associated with the atomic structure of a boundary, about

which we will say no more here.

One of the most interesting features of grain boundaries is their ability to migrate. For example

during recrystallisation they move through deformed regions where they change the crystal

orientation and reduce the content of defects, softening the material. The varying mobility of

different boundaries may result in a recrystallisation texture, where certain grain orientations are

dominant, altering the isotropy of mechanical properties of the material.

In general, as grain boundaries move and absorb other crystal defects their five degrees of

freedom change. For example, in recrystallisation small angle grain boundaries may eventually

become large angle grain boundaries, whereupon their mobility may increase significantly. Grain

boundaries may undergo faceting transitions where the boundary plane changes locally at a

fixed crystal misorientation. A graphic example of grain boundaries moving through the five-

dimensional space that characterises them is Gleiter’s rotating-spheres-on-a-plate experiment [2].

In these experiments a large number of small single crystal copper spheres were placed randomly

on a flat single crystal copper substrate and the entire assembly was annealed. During the anneal

a neck developed between each sphere and the substrate through diffusion. Inside the neck there

was a grain boundary because in general the crystal lattices of the sphere and the substrate had

different orientations. The spheres rotated in order to reduce the energy of the grain boundaries

in the necks. At the same time the degrees of freedom of the boundaries changed in such a way

that the boundary normal remained roughly parallel to the single crystal substrate normal on one

side [3].

The changes in the five degrees of freedom associated with the boundaries during these

processes may be mapped onto paths in the five-dimensional space used to characterise them.

In this paper we consider a representation of the five degrees of freedom entirely in terms of

vectors, because it enables paths to be calculated and visualised. It also enables us to define a

‘distance’ between two grain boundaries in this five-dimensional space. We define the distance as

the minimum angle associated with rotations required to transform the five degrees of freedom

associated with the first boundary into those of the second. The concept of a distance is useful

for interpolating non-singular grain boundary properties, such as self-diffusivity and propensity

for segregation of impurities, throughout the five-dimensional space in terms of the known

properties at certain points in the space.

The paper is organised as follows. In section 2 we review Frank’s median lattice which

enables a single coordinate system to be used for both crystals. This section also reviews the

concept of the mean boundary plane, and the Rodrigues vector to describe the misorientation

between the crystals. The simple formula [1] for determining the boundary plane normals in

terms of them is also reviewed. In section 3 we present two geometrical constructions that help

the five-dimensional space of grain boundaries to be visualised. The metric for the distance

between points in the five-dimensional space is introduced in section 4, and two significant
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geodesics through the space are defined. This metric is compared with others in the literature

in section 5. When the point group of the crystal includes rotational symmetries there are

equivalent descriptions of the boundary in terms of the misorientation and the boundary plane.

This complicates the task of defining shortest paths considerably, as discussed in section 6. We

conclude in section 7.

2. Frank’s median lattice and the mean boundary plane

Frank introduced [4] the concept of the median lattice to simplify expressions for the dislocation

content of grain boundaries. Sutton and Balluffi [1] showed that it is also a useful concept in the

characterisation of a grain boundary. Although there are two misoriented crystals that meet at the

grain boundary, each with its own coordinate system, the use of the median lattice enables just

one coordinate system to be used for both crystals.

The median lattice is a single crystal lattice. Let n̂ and n̂
′ be normal to two planes in this lattice.

We choose to express these vectors in the coordinate system of the median lattice. One crystal

lattice that meets at the grain boundary is generated by applying to the median lattice a rotation

of +θ/2 about an axis ρ̂, and the other by applying to the median lattice in its original orientation

a rotation of −θ/2 about an axis ρ̂. The final misorientation angle between the two crystal lattices

is θ. During these rotations the vectors normal to planes in each crystal are rotated along with the

crystal lattices, but their components remain as they were in the median lattice. If the two vectors

n̂ and n̂
′ are now parallel they can be normal to a grain boundary plane. The components of n̂

and n̂
′ will differ unless they are parallel to the rotation aixs. In this way the vectors normal to

a boundary plane in the two crystal lattices are expressed in the coordinate system of a single

lattice, the median lattice. The construction process is illustrated schematically in figure 1.

Let the misorientation between the crystal lattices be represented by the Rodrigues vector ρ=

ρ̂ tan θ/2. If n and n
′ are parallel to the boundary plane normal in the two crystal lattices then

Sutton and Balluffi showed ( [1], p.22) that:

n=N−N× ρ (2.1)

n
′ =N+N× ρ (2.2)

We note that interchanging n and n
′ does not produce a distinct grain boundary. This is effected

by changing the sign of ρ, which may be realised by reversing the direction of the rotation axis

ρ̂. N is called the mean boundary plane normal because N= (n+ n
′)/2. As the misorientation

angle θ tends to zero, n and n
′ tend to N. The mean boundary plane is therefore a plane in the

median lattice to which the grain boundary is related by applying equal and opposite rotations to

the median lattice. Figure 2 illustrates these features.

In equations 2.1 and 2.2 the mean boundary plane does not change direction if both equations

are multiplied by the same scalar quantity. Thus, |N| is arbitrary because it affects only the

magnitudes |n| and |n′|. But it is clear that if N and ρ are both rational then so are n and n
′ (see

ref [1], p.22): rational grain boundaries are generated from rational mean boundary planes and

rational Rodrigues vectors. This is particularly significant in cubic crystals because all coincidence

site lattices are generated by rational Rodrigues vectors.

The arbitrary magnitude of |N| is a consequence of the fact that only the direction of N in

equations 2.1 and 2.2 matters. There are three degrees of freedom associated with the Rodrigues

vector, ρ= ρ̂ tan θ/2, and there are two further, independent degrees of freedom associated with

the direction of N. Thus we account for the five degrees of freedom associated with a grain

boundary.

By fixing N and ρ̂ and allowing θ to vary we generate a systematic series of grain boundaries,

all sharing the same mean boundary plane and rotation axis, where only the misorientation angle

varies. For example, in a cubic crystal with N= [110] and ρ= p
q [001], where p and q are integers
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Figure 1. To illustrate the construction of a grain boundary from the median lattice. On the left we start with a single crystal

lattice, called the median lattice. A lattice plane (broken line) with normal N is selected, which will become the location

of the boundary. This is the mean boundary plane. We identify two further lattice planes with normals n and n
′ at ±θ/2

on either side of the mean boundary plane. These will become the plane normals of the grain boundary. In the centre

image the material between the planes with normals n and n
′ is removed to enable the crystal halves to be rotated. On

the right the upper crystal is rotated by θ/2 clockwise and the lower crystal by θ/2 counterclockwise, so the two crystal

halves meet forming a grain boundary with misorientation angle θ and normals n and n
′. Both the coordinate system

and the vectors in each crystal are rotated. As a result n+ n
′ remains parallel to N throughout the construction. In this

illustration the rotation axis is perpendicular to the page for simplicity. In general it is inclined to the page. After refs. [5]

and [6].

and p
q = tan(θ/2), we generate the familiar series of symmetric [001] tilt boundaries: n= [q −

p, q + p, 0] and n
′ = [q + p, q − p, 0].

Equations 2.1 and 2.2 also enable all possible grain boundary normals with a given

misorientation ρ to be generated by allowing N to range over all normals to planes of the

median lattice. This generates the normals to all possible boundary planes of a misoriented

crystal embedded within another crystal. For example, for ρ= 1
3 [111] in a cubic crystal,

which generates the Σ = 3 coincidence site lattice1, and N= [HKL], we generate boundary

plane normals n= [3H + L−K, 3K +H − L, 3L+K −H] and n
′ = [3H − L+K, 3K −H +

L, 3L−K +H]. Alternatively, as we shall see later, we may choose to represent this crystal

misorientation by ρ= 1
2 [101]. The boundary plane normals with N= [HKL] then become n=

[2H −K, 2K − L+H, 2L+K] and n
′ = [2H +K, 2K + L−H, 2L−K]. This illustrates an

important point: in general, equivalent descriptions of the crystal misorientation and the same

mean boundary plane generate different boundary normals in equations 2.1 and 2.2.

The remarkable formula [7] for combining Rodrigues vectors is as follows:

ρ2 ⋆ ρ1 =
ρ1 + ρ2 − ρ1 × ρ2

1− ρ1 · ρ2
, (2.3)

1If the lattices of two misoriented crystals are allowed to interpenetrate there are certain misorientations where a superlattice

exists of coincident sites common to both crystal lattices. The superlattice is called a coincidence site lattice and the ratio of

the number of sites of one crystal lattice to the number of coincident sites is calledΣ
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Figure 2. The geometry of equations 2.1 and 2.2. The rotation axis ρ̂ is inclined to the mean boundary plane N. The

unit normals to the boundary of misorientation θ about ρ̂ are the vectors n̂1 and n̂
′

1
, shown as black arrows. Note that

N is parallel to n̂1 + n̂
′

1
. The length of BC is 2|N× ρ̂|tan(θ/2) = 2|N× ρ|. Thus n̂1 =N−N× ρ and n̂

′

1
=

N+N× ρ, which are equations 2.1 and 2.2. The grey arrows show the boundary normals n̂2 and n̂
′

2
when the

misorientation angle is decreased. Note that N remains parallel to n̂2 + n̂
′

2
. As θ→ 0 the boundary normals become

coincident with N: the boundary plane becomes a plane of the perfect crystal with normal N. After fig.1.7 of ref. [1].

where ρ2 ⋆ ρ1 is the Rodrigues vector representing the resultant rotation obtained by first

applying the rotation represented by ρ1 followed by the rotation represented by ρ2. We will use

this formula extensively in the following2.

Gibbs3 [8] showed that we may eliminate N in equations 2.1 and 2.2 to obtain the relationship

between n̂ and n̂
′:

n̂ =
(1− ρ2)n̂′ + 2(ρ · n̂′)ρ− 2n̂′ × ρ

1 + ρ2

= ρ ⋆ n̂′ ⋆ (−ρ). (2.4)

The first line of equation 2.4 expresses the relationship between n and n
′ as a rotation in terms of

the usual ‘rotation formula’, e.g. [1] p.9. When this equation is expressed in Cartesian components

2This formula is closely related to the formula for combining quaternions, but it was published by Rodrigues in 1840, three

years before Hamilton’s quaternions.
3Gibbs showed that equations 2.1 and 2.2 hold for all vectors N in that the rotation represented by ρ (which he gave the

unmemorable name a vector semi-tangent of version) carries n
′ into n. By eliminating N he derived the rotation formula. He

also derived equation 2.3. It is not known whether Gibbs was aware of the paper by Rodrigues because he included no

references in his lecture notes on vector analysis.

Page 5 of 19

http://mc.manuscriptcentral.com/prsa

Submitted to Proceedings A

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r R

eview
 O

n
ly

6

rs
p

a
.ro

y
a

ls
o

c
ie

ty
p

u
b
lis

h
in

g
.o

rg
P

ro
c

R
S

o
c

A
0

0
0

0
0

0
0

..........................................................

it enables the matrix R representing the grain boundary misorientation to be expressed in terms

of the components of the corresponding Rodrigues vector:

Rij =
(1− ρ2)δij + 2ρiρj − 2ϵijkρk

1 + ρ2
,

where ni =Rijn
′
j , or n=Rn

′. We will not make any further reference to rotation matrices in this

paper. The second line of equation 2.4 expresses the rotation operation on n
′ in terms of Rodrigues

vectors, in which n
′ is itself treated as a Rodrigues vector. There is a similar formula for rotation

operations involving quaternions, e.g. [9].

3. Geometrical constructions

If we choose the grain boundary normals n and n
′ to be unit vectors n̂ and n̂

′, then N has a

definite magnitude which depends on ρ. The condition that n̂ and n̂
′ are unit vectors leads to the

following restriction on the length of the vector N parallel to the mean boundary plane normal:

|N|2 = 1

1 + tan2(θ/2) sin2 α
, (3.1)

where α is the angle between N and ρ̂. This leads to the construction shown in fig. 3, where the

mean boundary plane normal N in equations 2.1 and 2.2 lies on a prolate spheroid with major

axis along ρ̂. The semi-major axis is 1 and the semi-minor axis is cos(θ/2), so that the eccentricity

is sin(θ/2). As θ→ 0 the prolate spheroid tends towards a sphere, and the boundary normals n̂

and n̂
′ tend to N, which becomes a unit vector. At the other extreme as θ→ π the prolate spheroid

tends to the diameter parallel to ρ̂.

For a given N and ρ̂ equations 2.1 and 2.2 lead to the construction shown in fig.4. The unit

normals n̂ and n̂
′ are radius vectors of the sphere. As θ increases |N× ρ| increases too, which

results in decreasing |N|. By allowing ρ̂ to range over all possible radius vectors of the unit sphere,

and N to range over all points within the sphere we may represent the normals n̂ and n̂
′ of all

possible grain boundary planes in the five-dimensional space. The misorientation angle θ for a

given choice of N and ρ̂ follows immediately from equation 3.1. In both constructions there are

three degrees of freedom associated with N and two associated with ρ̂, giving five altogether.

In the remainder of this paper the five degrees of freedom of a grain boundary will be the

three associated with the Rodrigues vector representing the misorientation relationship between

the crystals, and the two associated with the direction of the mean boundary plane.

4. The metric

In this section we define a metric to measure the ‘distance’ between two boundaries. The distance

will be a measure of the extent of the operations required to transform the five degrees of freedom

of one boundary into those of the other.

The choice of metric is not unique. There are certain mathematical conditions that have to be

satisfied by any metric, which are enumerated below. Assuming those conditions are satisfied the

choice has to be motivated by other considerations, such as the physical processes by which grain

boundaries alter their five degrees of freedom. The metric we develop in this paper describes the

changes in the five degrees of freedom associated with two independent physical processes. Their

independence physically is reflected in the independence of N and ρ mathematically.

The first process is faceting, where the mean boundary plane changes but the misorientation

relationship remains constant. The second is where the misorientation relationship changes but

the mean boundary plane remains constant. This can be effected in principle by the absorption of

dislocations from the adjoining crystal lattices, although in practice such a random process would

normally change both the mean boundary plane and the misorientation relationship. But this

second process does relate directly to many systematic studies of grain boundaries by computer
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Figure 3. Geometrical construction to illustrate equation 3.1. The normal to the mean boundary plane N lies on a cone of

semi-angle α, with axis ρ̂, the rotation axis. As the angle α varies between 0 and π the mean boundary plane normal N

moves on the surface of a prolate spheroid, with semi-minor axis cos(θ/2), where θ is the boundary misorientation angle.

As θ decreases the prolate spheroid moves from positions 1 to 2 to 3, eventually coinciding with the unit sphere when the

misorientation is zero. In the limit that the misorientation is π the prolate spheroid shrinks to the diameter parallel to ρ̂.

simulation where the mean boundary plane and misorientation axis are held constant and the

misorientation angle is varied, as discussed in section 2.

The independence of these two physical processes implies that the distance between two

arbitrary boundaries involves independent contributions arising from the change in the mean

boundary plane and the change in the misorientation relationship. A change in the mean

boundary plane cannot be effected by a change in the misorientation relationship and vice versa.

Therefore, we choose to define the distance between the boundaries as the sum of these two

contributions.

Consider two grain boundaries labelled ‘1’ and ‘2’. They are each characterised by a mean

boundary plane and a Rodrigues vector: (N̂1, ρ1) and (N̂2, ρ2), where ρ1 = ρ̂1 tan(θ1/2) and

ρ2 = ρ̂2 tan(θ2/2). The normals to the boundaries (n1, n′
1) and (n2, n′

2) are obtained from (N̂1,

ρ1) and (N̂2, ρ2) using equations 2.1 and 2.2.

Consider first the case of a very large, spherical, misoriented crystal embedded inside

another crystal. The large radius enables the boundary plane to be identified locally. Clearly, the

boundaries of the embedded grain share the same misorientation ρ= ρ̂ tan(θ/2) between the

crystals, but they have different mean boundary planes. To transform one boundary surrounding

the embedded grain into another we have to change the direction of the mean boundary plane

from N̂1 to N̂2. This may be achieved through the following sequence of operations: (i) Reverse

the rotations of the two crystals by ±θ/2 about ρ̂ to return the embedded crystal to the same

orientation as the surrounding crystal. During this operation the location of the boundary with
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Figure 4. A construction to represent all possible gain boundaries in the 5D parameter space. The rotation axes ρ̂ and

mean boundary plane normals N of three grain boundaries are represented by vectors in a unit sphere. ρ̂ and N define

the unit boundary normals n̂ and n̂
′ as radius vectors of the unit sphere. The boundary normals n̂ and n̂

′ lie on a cone

with axis ρ̂, and apex at the centre of the sphere. The base of the cone is a circle on the surface of the sphere. It is

the same cone as depicted in fig.2. By allowing ρ̂ to range over all possible radius vectors, and by allowing N to be

any point within the sphere, unit boundary normals of all possible grain boundaries throughout the 5D parameter space

may be generated. This construction is based on equations 2.1 and 2.2, but with the requirement that the normals to the

boundary plane are unit vectors, which fixes the magnitude of N.

mean boundary plane N̂1 does not change but the misorientation between the crystal lattices on

either side of it decreases to zero. When the angle of misorientation reaches zero the boundary

plane becomes a plane in a single crystal with normal N̂1. (ii) Rotate the entire single crystal

to bring the plane with normal N̂2 into the former location of the plane with normal N̂1. This

involves a rotation of the single crystal by ψ12 = cos−1(N̂1 · N̂2). This is the step that changes

the mean boundary plane normal. (iii) Reintroduce the misorientation between the embedded

and surrounding crystals by applying equal and opposite rotations of θ/2 to each crystal about

the axis ρ̂. At the end of this sequence of operations the boundary (N̂1, ρ) has been transformed

into the boundary (N̂2, ρ). The rotations in the first and third steps are equal and opposite. The

net rotation is the change of the mean boundary plane normal N̂ by ψ12 = cos−1(N̂1 · N̂2). As N̂

traces the arc of the great circle between N̂1 and N̂2 it varies as follows:

N̂=
sin(ψ12 − ψ)N̂1 + sinψN̂2

sinψ12
, (4.1)

where 0≤ψ≤ψ12. Equation 4.1 is the shortest path connecting N̂1 and N̂2 in the two-

dimensional subspace associated with mean boundary plane normals.
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Now consider the case where the mean boundary plane N̂ does not change but the boundary

misorientation changes from that represented by ρ1 = ρ̂1 tan(θ1/2) to that represented by ρ2 =

ρ̂2 tan(θ2/2). Let θ12 be the angle associated with the Rodrigues vector ρ1→2 = ρ2 ⋆ (−ρ1) =

ρ̂1→2 tan θ12/2, representing the rotation required to transform ρ1 into ρ2, thus ρ2 = ρ1→2 ⋆ ρ1.

This may be achieved by the following two operations: (i) Reverse the rotations of the two crystals

by ±θ1/2 about ρ̂1 to return the boundary (N̂,ρ1) to the plane with normal N̂ in the single crystal.

(ii) Apply the rotations ±θ2/2 about ρ̂2 to the two crystals to generate the boundary (N̂,ρ2). The

resultant change of misorientation is given by ρ1→2 = ρ̂1→2 tan(θ12/2), where

tan2(θ12/2) =
(ρ1 − ρ2)

2 + (ρ1 × ρ2)
2

(1 + ρ1 · ρ2)
2

=
(1 + ρ2

1)(1 + ρ2
2)

(1 + ρ1 · ρ2)
2

− 1. (4.2)

In the general case there is a change of mean boundary plane normal and a change of the

misorientation relationship between two crystals. The rotations associated with these changes

are independent and in orthogonal subspaces: one does not affect the other. The two rotations

may be done in either order to effect the same resultant change of mean boundary plane and

misorientation relation. This is evident in equations 2.1 and 2.2 where N and ρ may be varied

independently. It follows that the ‘distance’ between two boundaries may be defined as follows:

∆12 =ψ12 + θ12, (4.3)

where ψ12 and θ12 are taken as positive. Any change required in ψ12 cannot be effected by a

change in θ12 and vice versa. This is because to change ψ12 we have to rotate both crystals together,

to maintain the same relative orientation of the two crystals while changing the mean boundary

plane. In contrast a change in θ12 involves a change in the relative orientation of the two crystals

while maintaining the same mean boundary plane. We note that
√

ψ2
12 + θ212 is always less than

ψ12 + θ12 provided ψ12 ̸= 0 and θ12 ̸= 0, and therefore this expression does not capture the full

extent of the rotations required to transform one boundary into the other.

Before any crystal point group symmetries are taken into account 0≤ψ12 ≤ π/24 and 0≤ θ12 ≤
π, and the maximum value of ∆12 is therefore 3π/2. The metric thus defined takes into account

differences in both the crystal misorientation and the mean boundary plane.

For the metric in equation 4.3 to be an acceptable measure of the ‘distance’ between two grain

boundaries it must satisfy the following four criteria:

(i) The distance between two grain boundaries must be positive or zero.

(ii) If it is zero then the two grain boundaries are identical with the same Rodrigues vector

and the same mean boundary plane.

(iii) The distance between grain boundary 1 and grain boundary 2 must be the same as the

distance between grain boundary 2 and grain boundary 1.

(iv) The distance between grain boundaries 1 and 2 must be less than or equal to the sum

of the distances between grain boundaries 1 and 3 and grain boundaries 3 and 2, where

grain boundary 3 is any other grain boundary. This is known as the triangle inequality.

The equality holds when grain boundary 3 lies on the geodesic between grain boundaries

1 and 2.

It is obvious that the first three criteria are satisfied by our metric. Since the Rodrigues vectors

and mean boundary plane normals lie in orthogonal subspaces of the 5 dimensional space, it is

necessary only to show that the triangle inequality is satisfied in each of these subspaces. The

geodesic in the 3D space of Rodrigues vectors between ρ1 and ρ2 is the straight line (λρ1→2) ⋆

ρ1 = λ(ρ2 ⋆ (−ρ1)) ⋆ ρ1, where λ varies from 0 to 1:

4if ψ12 >π/2 then it may be brought within the range 0≤ ψ12 ≤ π/2 by changing the sign of N1 or N2.
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λ(ρ2 ⋆ (−ρ1)) ⋆ ρ1 = ρ1 +
λ(1 + ρ2

1)

1 + ρ1 · ρ2 + λ(ρ2
1 − ρ1 · ρ2)

(ρ2 − ρ1)

= ρ1 + f(λ)(ρ2 − ρ1), (4.4)

where f(λ) is a scalar function of λ satisfying f(λ) = 0 when λ= 0 and f(λ) = 1 when λ= 1.

It follows that θ13 + θ32 ≥ θ12 and the equality holds only when ρ3 lies on the straight line in

equation 4.4 between ρ1 and ρ2.

Turning to the 2D subspace of the mean boundary plane normals, these are radius vectors of

the unit sphere. The angle ψ12 between N̂1 and N̂2 is the length of the arc of the great circle

passing through these points on the surface of the unit sphere (see equation 4.1). Consider a third

mean boundary plane unit normal N̂3. Then ψ13 + ψ32 ≥ψ12 and the equality holds when N̂3

lies on the great circle between N̂1 and N̂2.

We conclude that the metric defined in equation 4.3 satisfies the four criteria listed above.

5. Comparisons with the literature

(a) Morawiec (2000)

Morawiec [10] defined a metric as follows:

∆
(M)
12 = 2 (1− cos θ12) + (1− n̂1 · n̂2) +

(

1− n̂
′
1 · n̂′

2

)

(5.1)

The first term on the right of equation 5.1 is the contribution arising from the misorientation of

the crystal lattices. It may be expressed in terms of Rodrigues vectors as follows:

2 (1− cos θ12) = 4
ρ2
1→2

1 + ρ2
1→2

= 4

{

(ρ1 − ρ2)
2 + (ρ1 × ρ2)

2

(1 + ρ2
1)(1 + ρ2

2)

}

(5.2)

The second and third terms on the right of equation 5.1 represent the contribution from the

changes in boundary normals. Using equations 2.1 and 2.2 they may be expressed as follows:

(5.3)(1− n̂1 · n̂2) +
(

1− n̂
′
1 · n̂′

2

)

= 2







1−
N̂1 · N̂2 +

(

N̂1 × ρ1

)

·
(

N̂2 × ρ2

)

∣

∣

∣
N̂1 + N̂1 × ρ1

∣

∣

∣

∣

∣

∣
N̂2 + N̂2 × ρ2

∣

∣

∣







We see that the contribution arising from the boundary normals is not independent of the

boundary misorientations because both ρ1 and ρ2 appear on the right hand side. This lack of

separation between the contributions from (a) the misorientations of the two crystals and (b)

the boundary normals, leads to inconsistencies. For example, if N̂1 = N̂2 we have seen that the

shortest path connecting the boundaries involves only the change in the misorientation ρ1→2.

The change in the boundary normals from n̂1, n̂
′
1 to n̂2, n̂

′
2 is effected entirely by replacing ρ1 in

equations 2.1 and 2.2 by ρ2. In this case the metric should have no contribution from the change in

the boundary normals. In equation 4.3 this is indeed the case because ψ12 = 0. But that is clearly

not the case in equation 5.3.

Another inconsistency is evident when ρ1 = ρ2 and N̂1 ̸= N̂2. This describes two boundaries

with the same misorientation relationship but different planes. The metric should then be

independent of ρ1 and ρ2, and in equation 4.3 that is the case because it depends only on

ψ12 = cos−1(N̂1 · N̂2). But that is not the case in equation 5.3.

Contributions to the metric arising from changes in the misorientation relationship must be

separated from those arising from changes in the mean boundary plane. Unless the rotation axis is

normal to the boundary plane there will be changes to the boundary normals as a result of changes

in the misorientation relationship. But those changes must not be double-counted by including

them as a separate contribution to the metric arising from changes in the boundary normals. It
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is a feature of equations 2.1 and 2.2 that this separation is explicit from the outset because the

misorientation relation ρ and the mean boundary plane N are independent variables.

(b) Cahn and Taylor (2006)

Cahn and Taylor [11] expressed the view that in defining a metric there is no unique way

of weighting the importance of the difference in misorientation between two grains with the

difference in boundary normals. In this work the contribution to the metric of equation 4.3 from

the change of the crystal misorientation is independent from the change of the mean boundary

plane. As a result of their independence they must have an equal weighting: in general changes

in both contributions are required to map one boundary onto another. In the previous subsection

we showed that the metric of Morawiec [10] does not achieve this separation of the contributions.

In the next section we show that the metric of Olmsted [12] does not either.

(c) Olmsted (2009)

Olmsted [12] introduced a metric that was expressed entirely in terms of rotations. Thus, Olmsted

creates a grain boundary in the plane z = 0 of a reference lattice by rotating the lattice in

z > 0 by a rotation ρA, and rotating the lattice in z < 0 by a rotation ρB . The boundary is

thus characterised by two rotations, (ρA,ρB), which involves six degrees of freedom. Olmsted

identifies the redundant degree of freedom with a common rotation of both grains about the

boundary normal, which leaves the grain boundary invariant but alters the rotations ρA and ρB .

The misorientation between the lattices in the two half-spaces is ρA→B = ρB ⋆ (−ρA).

A second grain boundary may be characterized in a similar way by replacing ρA and ρB by ρC
and ρD in z > 0 and z < 0 respectively: (ρA,ρB)→ (ρC ,ρD). Olmsted then defines the following

metric, expressed in our notation:

d2 = 8
ρ2
A→C + ρ2

B→D + 2ρ2
A→Cρ

2
B→D

(

1 + ρ2
A→C

) (

1 + ρ2
B→D

) (5.4)

where ρA→C = ρC ⋆ (−ρA) and ρB→D = ρD ⋆ (−ρB). This metric should include the

contributions from the change in the misorientation relation from ρA→B to ρC→D and the change

in the mean boundary planes.

It is clear that ρC→D ⋆ ρD→B ⋆ ρB→A ⋆ ρA→C = 0. The change in the misorientation

relationship between the crystals is given by ρC→D ⋆−(ρA→B) = ρC→D ⋆ ρB→A. It is not

possible to express this in terms of only ρA→C and ρB→D . If ρA→B = ρC→D the two boundaries

share the same misorentation, and the boundaries differ only in their mean boundary planes. In

that case ρA→C = ρA→B ⋆ ρB→D ⋆ (−ρA→B), confirming that the angle between grains A and

C is identical to the angle between grains B and D, as expected in this case.

The difference between the metrics in equations 4.3 and 5.4 may best be illustrated

with two examples. Setting n̂z = [001],ρA =−ρB = tan( 12 tan−1 ( 1
5

)

)[010], and ρC =−ρD =

tan( 12 tan−1 (1
2

)

)[010], we generate symmetric [010] tilt boundaries with normals [105]/[1̄05]

and [102]/[1̄02] respectively. The mean boundary plane normals are both [001] so the ‘distance’

between these boundaries is exactly equal to the difference in their misorientations, which is given

by 2 tan−1 ( 1
2

)

− 2 tan−1 (1
5

)

≈ 30.51◦ for which tan2(θ/2) = 9/121≈ 0.074. This is also the result

of applying equation 4.2. The result of applying equation 5.4 is d2 ≈ 0.282.

In the second example consider two grain boundaries sharing the same misorientation ρ=
1
2 [110], with boundary plane normals [312]/[132] and [71̄2]/[336], for which ρ2

A→C = ρ2
B→D =

(
√
756− 24)/(

√
756 + 24). The metric of equation 5.4 then gives d2 = (

√
756− 24)/

√
756≈ 0.127.

On the other hand since the boundary misorientations are the same the ‘distance’ between the

boundaries is the angle between their mean boundary planes, which is just cos−1 10/(3
√
14), for

which tan2 ψ12 ≈ 0.058.
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We conclude that Olmsted’s metric does not appear to measure either the difference in

misorientation between the crystal lattices adjoining two boundaries, or the change of their mean

boundary planes.

(d) The no boundary problem

Cahn and Taylor [11] identified a problem when the boundary misorientation angle θ tends to

zero. When it is zero there is no grain boundary, just a single crystal. If we consider two small

angle boundaries with mean boundary planes N1 and N2, then as θ1 and θ2 tend to zero the

metric in equation 4.3 tends to ψ12 = cos−1(N̂1 · N̂2). The ‘no boundary problem’ is that the

metric tends to a finite value, i.e. ψ12, when there is no grain boundary 1 or 2, and ψ12 may

be as large as π/2.

As θ1, θ2 → 0 and ψ12 remains finite the boundaries will comprise distinct sets of dislocations

if N1 ̸=N2, as shown by Frank [4] and Hirth and Lothe [13]. In that limit ∆12 →ψ12 reflects

this distinction. If θ1 = 0 and θ2 = 0 the finite value of the metric if ψ12 ̸= 0 should be viewed

as the result of the limit θ1, θ2 → 0. Alternatively, one can simply exclude the case where the

misorientation angles are zero because there is no grain boundary to discuss.

6. The influence of point group symmetry

(a) Equivalent specifications of a grain boundary

Point group rotational symmetry complicates the picture considerably, as we shall illustrate for

a face centred cubic (FCC) crystal. There are 24 rotational symmetries in the point group: the

identity, 6 of π/2 about ⟨100⟩, 3 of π about ⟨100⟩, 6 of π about ⟨110⟩ and 8 of 2π/3 about ⟨111⟩.
These rotational symmetries lead to 24 equivalent specifications of a plane (hkl), and a further

24 are obtained by taking their negatives. They are referred to collectively by using braces: {hkl}.

Suppose we have a grain boundary and we wish to characterise its five degrees of freedom in

terms of the mean boundary plane and Rodrigues vector. Let the boundary plane be parallel, at

least locally, to planes of the type {hkl} and {h′k′l′} in the two crystals. There are up to 48× 48 =

2, 304 equivalent specifications of the boundary plane in the two crystals. After we adjust the

lengths of the vectors n= ⟨hkl⟩ and n
′ = ⟨h′k′l′⟩ to be the same we may generate up to 2, 304

mean boundary plane normals N= (n+ n
′)/2.

Let the misorientation of the crystal lattices be described by a Rodrigues vector ρ. Equation

2.4 must hold for each specification of the boundary parameters: n= ρ ⋆ n′ ⋆ (−ρ). Let σi be the

Rodrigues vector representing the i’th rotational symmetry of the FCC crystal. The 24 Rodrigues

vectors representing the rotational symmetries in an FCC crystal are listed in Table 1. We may

generate 24 equivalent specifications of the boundary from equation 2.4 as follows:

(σi ⋆ n ⋆ (−σi)) = (σi ⋆ ρ) ⋆ n
′ ⋆ (−ρ) ⋆ (−σi)

= (σi ⋆ ρ) ⋆ n
′ ⋆−(σi ⋆ ρ) (6.1)

The left hand side of equation 6.1 is one of 24 equivalent specifications of the plane normal

n. The Rodrigues vector (σi ⋆ ρ) represents one of the 24 equivalent ways of specifying the

misorientation between the crystals. It is necessary to consider only the 24 Rodrigues vectors

with directions that fall within or on the standard stereographic triangle defined by the directions

[001], [101] and [111]5. We call this set of 24 Rodrigues vectors the ‘standard set’.

A vector v= [v1, v2, v3] lies within or on the standard triangle provided v3 ≥ v1 ≥ v2. If the

direction of (σi ⋆ ρ) is outside the standard triangle one evaluates the set of 24 equivalent

5In a stereographic projection of a cubic crystal there are 24 triangles bounded by ⟨100⟩, ⟨110⟩ and ⟨111⟩ poles in each of the

upper and lower hemispheres. There is one of the 48 equivalent plane normals ⟨hkl⟩ within or on each triangle.
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Rodrigues vectors (σi ⋆ ρ ⋆ σj), among which one, or its negative, will fall within or on the

standard triangle. In that case equation 6.1 becomes

(6.2)(σi ⋆ n ⋆ (−σi)) = (σi ⋆ ρ ⋆ (−σj)) ⋆ (σj ⋆ n
′ ⋆ (−σj)) ⋆−(σi ⋆ ρ ⋆ (−σj))

To summarise, there are 24 equivalent Rodrigues vectors within or on the standard triangle

describing the misorientation between the two crystals. For each member ρi of this standard set

the boundary plane normals ni and n
′
i are related by ni = ρi ⋆ n

′
i ⋆ (−ρi). All three vectors ρi,ni

and n
′
i are expressed in the coordinate system of the median lattice. The mean boundary plane

corresponding to each member of the standard set is then Ni =
1
2 (ni + n

′
i). The 24 equivalent

descriptions of the boundary in the standard triangle are characterised by the 24 pairs (N̂i,ρi),

where the mean boundary plane normal is specified as a unit vector to emphasise that only its

direction matters, and hence only two degrees of freedom are associated with it. The boundary

plane normals (ni,n
′
i) are obtained using ni =Ni −Ni × ρi and n

′
i =Ni +Ni × ρi, where the

mean boundary plane normal does not have to be a unit vector.

(b) Example 1: the (111) twin in an FCC crystal

Obviously, the Miller indices are {111} type on both sides of the boundary plane, but they are

not necessarily the same Miller indices on both sides. The misorientation may be specified as

π/3 about ⟨111⟩. The Rodrigues vector representing this misorientation in the standard triangle

is ρ= 1
3 [111]. It is also obvious that if we choose the boundary plane normals to be the same n=

n
′ = [111], then n= ρ ⋆ n′ ⋆ (−ρ). According to this description the twin boundary is a π/3 (111)

twist boundary.

By applying the 24 rotational symmetries, as in equation 6.1, to [111] = 1
3 [111] ⋆ [111] ⋆

1
3 [1̄1̄1̄]

we generate 24 Rodrigues vectors and the associated pairs of boundary normals. Twenty three of

these Rodrigues vectors lie outside the standard triangle, the 24th being the original ρ= 1/3[111].

Equivalent Rodrigues vectors may be found inside or on the standard triangle using equation

6.2, together with the associated pairs of boundary normals. It is found that there are just seven

distinct Rodrigues vectors in the standard triangle, which are repeated certain numbers of times

to make up the 24. These seven characterisations of the boundary are listed in Table 2, together

with their degeneracies. A further seven descriptions are generated by negating n and n
′. These

14 relationships n= ρ ⋆ n′ ⋆ (−ρ) may be rotated into the other 47 stereographic triangles using

equation 6.2, giving a total of 672 distinct but equivalent characterisations of the (111) twin in

terms of N and ρ.

Some comments about Table 2 are in order. We have already seen that the boundary may be

described as a twist boundary. It may also be described as a tilt or mixed tilt and twist boundary.

The ρ= 1/2[101], [101] and ∞[112] Rodrigues vectors lie in the corresponding boundary planes:

these are tilt boundary descriptions. The ρ= [102] and [113] Rodrigues vectors are inclined to the

corresponding boundary planes: they are therefore mixed tilt and twist boundary descriptions.

This lack of uniqueness of the classification of the twin boundary as tilt, twist or mixed is well

known and it applies to other boundaries.

Secondly, there are two Rodrigues vectors in Table 2 (and Table 1) which have infinite length

and are written as ∞[112] and ∞[111]. They represent rotations by π about [112] and [111]. If ρ2

is a rotation by π then equation 2.3 is evaluated by taking the limit |ρ2|→∞:

ρ2 ⋆ ρ1 = lim
|ρ

2
|→∞

ρ1 + ρ2 − ρ1 × ρ2

1− ρ1 · ρ2

=
ρ1 × ρ̂2 − ρ̂2

ρ1 · ρ̂2
(6.3)

It follows that ρ2 ⋆ v ⋆−ρ2 = 2(ρ̂2 · n)ρ̂2 − v, where v is an arbitrary vector, which is a well

known result. If both |ρ1|, |ρ2|→∞ then taking the limit |ρ1|→∞ of equation 6.3 we obtain:
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ρ2 ⋆ ρ1 →
ρ̂1 × ρ̂2

ρ̂1 · ρ̂2
(6.4)

This is another well known result, namely that an arbitrary rotation by θ about an axis â may be

described as two successive rotations by π about axes separated by an angle θ/2, and both axes

perpendicular to â.

In Table 2 the mean boundary plane for the rotation by π about [112] in the boundary plane is

written as [1̄10]/∞. In this case the axis of the rotation by π is normal to n and n
′. The notation

[1̄10]/∞ signifies that the direction of the mean boundary plane normal is along [1̄10], and that its

magnitude tends to zero as the magnitude of the Rodrigues vector tends to infinity. The difference

n
′ − n= 2N× ρ= [222̄] is finite, and therefore |N| must approach zero in a particular limiting

way as |ρ|→∞. If we write N= (ρ̂/(2|ρ|))× (n′ − n) then |N|→ 0 as |ρ|→∞ and 2N× ρ is

identically equal to n
′ − n in the limit |ρ|→∞ because ρ̂ · n= ρ̂ · n′ = 0. It is easy to show that

equations 2.1 and 2.2 are also satisfied by this choice of N.

Our final comment about Table 2 is that for each Rodrigues vector there is a different mean

boundary plane. If the angle of rotation represented by a particular choice of Rodrigues vector is

traced back to zero the boundary plane will become a plane in the perfect crystal, the normal to

which is N̂. The lack of uniqueness of the mean boundary plane is a direct consequence of the

lack of uniqueness of the rotation describing the boundary misorientation. The mean boundary

plane normal and the Rodrigues vector conspire in equations 2.1 and 2.2 to give boundary plane

normals that are of the same types n= ⟨hkl⟩ and n
′ = ⟨h′k′l′⟩.

(c) Example 2: A less special boundary

In this example we consider a boundary parallel to a {223} plane on one side and {885} on the

other, and the misorientation is 2 tan−1(
√
29/7)≈ 75.14◦ about ⟨234⟩6.

In order for n and n
′ to be related by a rotation the normal ⟨223⟩ is multiplied by 3 to give it

the same length as ⟨885⟩. The first task is to find a pair of plane normals n,n′ equal to ⟨669⟩, ⟨885⟩
(or ⟨885⟩, ⟨669⟩), and a Rodrigues vector 1/7⟨234⟩ such that n= ρ ⋆ n′ ⋆ (−ρ). There are 2,304

possible choices, and we need just one from which all the others may be generated by applying

the symmetry rotations of Table 1.

One choice is [696] = 1
7 [234] ⋆ [858] ⋆

1
7 [2̄3̄4̄]. Applying the symmetry rotation of π about [11̄0]

to this relationship it may be transformed into one involving a Rodrigues vector in the standard

triangle: [9̄6̄6̄] = 1
7 [3̄2̄4̄] ⋆ [5̄8̄8̄] ⋆

1
7 [324]. This may be expressed as [588] = 1

7 [324] ⋆ [966] ⋆
1
7 [3̄2̄4̄],

for which the Rodrigues vector 1
7 [324] lies in the standard triangle. This relationship is the first

entry in Table 3.

The other 23 entries in Table 3 are obtained from the first by applying the rotational symmetries

of Table 1 using equations 6.1 and 6.2 to generate equivalent relationships n= ρ ⋆ n′ ⋆ (−ρ) with

Rodrigues vectors in the standard triangle. A further 24 may be obtained by negating n and

n
′ in Table 3. These 48 relationships between n and n

′ with ρ in the standard triangle may be

rotated using equation 6.2 into 48 relationships in each of the other 47 stereographic triangles,

thus generating 2,304 descriptions of the boundary in total. For each description the 5 degrees of

freedom are ρ and the mean boundary plane normal N, from which the boundary plane normals

n and n
′ may be generated using equations 2.1 and 2.2. All 2,304 descriptions of this boundary

have the rotation axis inclined to the boundary plane, and therefore they are all mixed tilt and

twist boundary descriptions.

(d) The ‘distance’ between these two boundaries

Let the set of 672 characterisations of the (111) twin boundary be {N(1)
i ,ρ

(1)
i }, i= 1, 2, 3, . . . 672.

Let the set of 2,304 characterisations of the {669}{558} boundary of the previous section be

{N(2)
j ,ρ

(2)
j }, j = 1, 2, 3, . . . 2, 304. To change the boundary represented by (N

(1)
i ,ρ

(1)
i ) into the

6The associated coincidence site lattice isΣ = 39b

Page 14 of 19

http://mc.manuscriptcentral.com/prsa

Submitted to Proceedings A

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r R

eview
 O

n
ly

15

rs
p

a
.ro

y
a

ls
o

c
ie

ty
p

u
b
lis

h
in

g
.o

rg
P

ro
c

R
S

o
c

A
0

0
0

0
0

0
0

..........................................................

boundary represented by (N
(2)
j ,ρ

(2)
j ) the crystals have to undergo a change of misorientation

represented by ρ
(1)→(2)
ij = ρ

(2)
j ⋆ (−ρ

(1)
i ), and the mean boundary plane has to undergo a change

of orientation given by cos−1(N̂
(2)
j · N̂(1)

i ). The ‘distance’ between the two boundaries is then the

minimum value of ∆ij = cos−1(N̂
(2)
j · N̂(1)

i ) + 2 tan−1
∣

∣

∣
ρ
(1)→(2)
ij

∣

∣

∣
.

Without loss of generality we may limit the characterisations of the second boundary to

the 24 listed in Table 3 in the standard triangle. It is found by inspection that each of the 24

misorientations represented in Table 3 is no more than 2 tan−1(1/5)≈ 22.62◦ from one of the

misorientations listed in Table 2. Consider this set of 24 pairs of Rodrigues vectors in each of which

the crystal misorientation changes by 2 tan−1(1/5). The smallest ∆ij is determined by the the

smallest angle between the normals to the mean boundary planes, allowing for the possibility that

either N may be negated. For ρ
(2)
j = 1

7 [324] and ρ
(1)
i = 1

3 [111] the normals to the mean boundary

planes are both [111]. The ‘distance’ between these two boundaries is therefore 2 tan−1(1/5)≈
22.62◦. The twin boundary with normals n= n

′ = [111] and ρ= 1
3 [111] is transformed into the

second boundary with normals n= [588],n′ = [966] and ρ= 1
7 [324] by applying the change of

crystal misorientation represented by ρ= 1
15 [21̄2] i.e. 1

7 [324] =
1
15 [21̄2] ⋆

1
3 [111], and the mean

boundary plane does not change. Along this path the Rodrigues vector changes according to:

ρ(λ) =
1

3
[111] +

2λ

45− 3λ
[21̄5], (6.5)

where λ varies from 0 to 1. For example, when λ= 1
3 ,ρ= 1

22 [879],n= [20 23 23],n′ = [24 21 21],

and when λ= 2
3 ,ρ= 1

43 [17 13 21],n= [35 47 47],n′ = [51 39 39]. Along this path n+ n
′ remains

parallel to [111].

We note that this shortest path does not involve the description of the {669}{558} boundary

in which the misorientation has the smallest angle – the so called disorientation relationship.

The Rodrigues vector for the disorientation relation is 1
8 [213] and the mean boundary plane is

[14 11 17]. The change of mean boundary plane involves a rotation of ≈ 9.92◦, in addition to the

change of misorientation of ≈ 22.62◦.

7. Discussion

In a triclinic crystal the task of finding the distance between two grain boundaries is relatively

straightforward using equation 4.3. The boundary plane normals n and n
′7 and the Rodrigues

vector ρ must be related by equation 2.4. There is no ambiguity about the specification of these

vectors because there are no rotational symmetries.

The existence of up to 2,304 equivalent specifications of a grain boundary in an FCC crystal

makes the task much more complicated, as we have illustrated in section 6. As shown in section

(a) there are up to 24 characterisations {(N(b)
i ,ρ

(b)
i )} of a grain boundary ‘b’ with equivalent

Rodrigues vectors in the standard triangle. Each of them satisfies n
(b)
i = ρ

(b)
i ⋆ n

′(b)
i ⋆ (−ρ

(b)
i ),

where n
(b)
i =N

(b)
i −N

(b)
i × ρ

(b)
i and n

′(b)
i =N

(b)
i +N

(b)
i × ρ

(b)
i . Given two boundaries b= 1 and

b= 2 the distance between them is determined by the minimum value of ∆ij = cos−1(N̂
(1)
i ·

N̂
(2)
j ) + 2 tan−1

∣

∣

∣
ρ
(1)→(2)
ij

∣

∣

∣
, where ρ

(1)→(2)
ij = ρ

(2)
j ⋆ (−ρ

(1)
i ). The minimum value does not

necessarily involve the misorientation relationships with the smallest angles of misorientation,

i.e. the disorientations.

Even the distance between boundaries sharing the same crystal misorientation needs care,

as in the case of the embedded crystal. For example, consider an embedded FCC crystal in

the Σ = 3 orientation with a surrounding FCC crystal. There are four boundaries parallel to

{111} in the embedded grain. One of them is the twin boundary {111}, the other three are

parallel to {115} planes in the surrounding crystal. What is the shortest distance between the

twin and any one of the {333}{115} facets? By inspecting the set of four boundaries found

7The normal to the plane (hkl) is along ha∗

1
+ ka∗

2
+ la∗

3
where the a

∗

i
are basis vectors of the reciprocal lattice.
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with each of the seven equivalent misorientation relationships in Table 2 it is found that the

smallest angle between the mean boundary planes of the twin and any one of the {333}{115}
facets is 29.21◦. It is achieved with ρ= [113], between the twin n

′ = [1̄11],n= [11̄1],N= [001],

and the facet n′ = [333],n= [1̄15],N= [124]. The path between these two boundaries is defined

by equation 4.1 with N̂1 = [001], N̂2 =
1√
21

[124], sinψ12 =
√

5
21 . Equations 2.1 and 2.2 enable

n and n
′ to be calculated along this path using N̂ thus defined and ρ= [113]. This example

demonstrates that even when two boundaries share the same misorientation it is essential to

consider the equivalent boundary misorientations to identify the smallest distance between their

mean boundary planes. It is also another demonstration that the shortest path does not necessarily

involve the disorientation relationship.
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Table 1. Axis, angle and Rodrigues vectors for 24 rotational symmetries in FCC crystals and how they transform the

components of [HKL].

Axis Angle Rodrigues vector [HKL]→
⟨UVW⟩ 0 0 [HKL]

[110] π ∞[110] [KHL̄]

[11̄0] π ∞[11̄0] [K̄H̄L̄]

[101] π ∞[101] [LK̄H]

[101̄] π ∞[101̄] [L̄K̄H̄]

[011] π ∞[011] [H̄LK]

[011̄] π ∞[011̄] [H̄L̄K̄]

[100] π ∞[100] [HK̄L̄]

[010] π ∞[010] [H̄KL̄]

[001] π ∞[001] [H̄K̄L]

[111] 2π/3 [111] [LHK]

[1̄1̄1̄] 2π/3 [1̄1̄1̄] [KLH]

[111̄] 2π/3 [111̄] [KL̄H̄]

[1̄1̄1] 2π/3 [1̄1̄1] [L̄HK̄]

[11̄1] 2π/3 [11̄1] [K̄L̄H]

[1̄11̄] 2π/3 [1̄11̄] [LH̄K̄]

[1̄11] 2π/3 [1̄11] [K̄LH̄]

[11̄1̄] 2π/3 [11̄1̄] [L̄H̄K]

[100] π/2 [100] [HL̄K]

[1̄00] π/2 [1̄00] [HLK̄]

[010] π/2 [010] [LKH̄]

[01̄0] π/2 [01̄0] [L̄KH]

[001] π/2 [001] [K̄HL]

[001̄] π/2 [001̄] [KH̄L]

Table 2. The seven characterisations of the FCC (111) twin with misorientation axes in the standard triangle and their

degeneracies. In each case n= ρ ⋆ n
′ ⋆ (−ρ). The boundary normals n and n

′ are related to the mean boundary

normal N and the Rodrigues vector ρ through equations 2.1 and 2.2.

Rodrigues vector n
′

n N degeneracy
1
3 [111] [111] [111] [111] 2

[102] [11̄1] [111] [101] 6

∞[112] [111̄] [1̄1̄1] [1̄10] 3

[113] [1̄11] [11̄1] [001] 6

∞[111] [111] [111] [111] 1

[101] [111̄] [1̄11] [010] 3
1
2 [101] [1̄11] [1̄1̄1] [1̄01] 3
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Table 3. The twenty four characterisations of a grain boundary with plane {966}/{588} and misorientation axes in

the standard triangle equivalent to 2 tan−1(
√
29/7)≈ 75.14◦ about ⟨234⟩. In each case n= ρ ⋆ n

′ ⋆ (−ρ). The

boundary normals n and n
′ are related to the mean boundary normal N and the Rodrigues vector ρ through equations

2.1 and 2.2.

Rodrigues vector n
′

n N

1
7 [324] [966] [588] [111]

1
5 [3 1 11] [66̄9] [588] [11 2 17]

[5 3 11] [6̄9̄6] [885̄] [21̄1]
1
7 [519] [96̄6] [885] [17 2 11]

[759] [6̄6̄9] [858̄] [21̄1]
1
3 [215] [85̄8] [696] [747]

[325] [5̄8̄8] [966̄] [21̄1]
1
3 [427] [6̄69] [88̄5] [11̄7]
1
2 [437] [5̄88] [96̄6] [217]
1
4 [327] [8̄58] [69̄6] [1̄2̄7]

[546] [669] [858] [14 11 17]
1
8 [213] [858] [669] [14 11 17]
1
3 [218] [6̄69] [58̄8] [1̄ 2̄ 17]
1
4 [516] [8̄5̄8] [96̄6̄] [1 1̄̄1 2]

[328] [88̄5] [6̄96] [2 1 11]
1
6 [415] [885̄] [6̄96] [2 17 1]
1
2 [318] [5̄88] [69̄6] [1 1̄ 14]
1
5 [416] [966̄] [8̄85] [1 14 1̄]
1
2 [315] [66̄9] [885] [717]
1
5 [213] [96̄6̄] [588̄] [717̄]
1
5 [719] [85̄8] [966] [17 1 14]
1
9 [517] [88̄5̄] [696̄] [14 1 1̄̄1]

1
3 [5 1 11] [58̄8] [696] [11 1 14]
1
11 [315] [85̄8̄] [669̄] [14 1 1̄̄7]
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