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THE FIXED-POINT CONSTRUCTION IN
EQUIVARIANT BORDISM

BY

RUSSELL J. ROWLETT

Abstract. Consider the bordism fl (G) of smooth G-actions. If AT is a

subgroup of G, with normalizer NK, there is a standard NK/ Af-action on

£2 (ÍQ(A11, Proper). If M has a smooth G-action, a tubular neighborhood of

the fixed set of K in M representó an element of fl^XAU, Proper)"*/*.

One thus obtains the "fixed point homomorphism" <J> carrying fl,(G) to the

sum of the Q (ATXA11, Proper)"*/*, summed over conjugacy classes of

subgroups K. Let P be the collection of primes not dividing the order of G.

We show that the ^-localization of <f> is an isomorphism, and give several

applications.

1. The fixed-point homomorphism. Let G be a finite group. We shall be

concerned with smooth actions of G on compact manifolds M, preserving

either an orientation or a unitary structure.

The notation is based on that of Stong [8], [9]. The unadorned symbol S2„

denotes either the oriented bordism ring fi^° or the unitary bordism ring fi^.

If A" is a subgroup of G, then AK is the family of all subgroups of G conjugate

to subgroups of K, and PK is the family of subgroups conjugate to proper

subgroups of K. Thus ß„(G) or fi,(G)(/lG) is the bordism of all G-actions,

while ß„(G)(/iG, PG) is the bordism of all G-actions on manifolds with

boundary, such that each point x of 9A/ has isotropy subgroup Gx in PG.

Beginning with the famous monograph of Conner and Floyd [2], most

research in equivariant bordism has involved fixed-point constructions of the

following sort. Let K be a subgroup of G. If M is a closed manifold with a

smooth Abaction, then the fixed set of K in M has a ^-invariant tubular

neighborhood N. Assigning N to M defines a homomorphism fK: fi»(ÄT) -»

ti„(K)(AK, PK), which is of interest because the "relative" group

Q,(K)(AK, PK) is generally easier to compute than is Ü^(K). If r£: ñ»(G) -»

&t(K) is the forgetful homomorphism restricting G-actions to AT-actions,

there is the composition/*/■£: fi»(G) -» Ü^K^AK, PK).

Definition. If AT is a subgroup of G, let (AT) be the set of subgroups

conjugate to K in G. If *¥' Q *$ are families of subgroups of G, in the sense of
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[9], the fixed point homomorphism

</>: Q,(G)(V, ^')-*2 [Q*(K)(AK, PK): (K) c 9 - fr'}

is the sum of the homomorphisms /^r^, one for each conjugacy class of

subgroups in 9 — 9'.

It is convenient to reduce the range of </> to a submodule of "invariant"

elements. Let N(K) be the normalizer of K in G. The quotient group

L = N(K)/K acts on il+(K)(AK, PA") as follows: given a smooth AT-action

9: K X A/—► M and an element g E G, there is a new AT-action g^9 on M

defined by the rule gt9(k, m) = 9(g~xkg, m). If g is the coset gK in L, the

formula g[M, 9] = [M, g^9] gives a well-defined L-action by automorphisms

of Q^(K)(AK, PK). Let tt+(K)(AK, PK)N(K)/K be the submodule fixed ele-

mentwise under this action. It follows from [2, §20] that the image of </> is a

submodule of Z(K)Qm(K)(AK, PK)N(K)/K.

If P is a collection of prime numbers, ZP is the ring of P-local integers. In

particular, if P is the set of all odd primes ZP is the subring Z{\) of the

rationals, generated by Z and \. (The notation Zm, with lower case subscript,

is reserved for the cyclic group of order m.) Let P(G) be the collection of

primes which do not divide the order of G.

Theorem 1.1. Suppose G is a finite group and P = P(G). Then the localized

fixed point homomorphism,

<i>P: ß„(G) ® ZP -> 2  0,(JOW PK)N(K)/K® ZP,

(*")

« a« isomorphism.

In particular, the kernel of <i> is a torsion group. Combining Theorem 1.1

with [5, Theorem 1] yields the following.

Corollary 1.2. Suppose G is a finite abelian group. Then

<i>:ß*(G)^2  W(K)(AK, PK)
(*)

is a monomorphism. The analogous theorem for ü^° holds if G is abelian of odd

order.

Another corollary of the theorem is Wheeler's theorem [11] that ß^(G) ®

ZP is a free ñjf ® Z^-module on even-dimensional generations. However, the

present proof is much more elementary than Wheeler's, so much so that the

method can be transferred very readily to other bordism theories. Hopefully,

Theorem 1.1 will thus be a source of new insight into the workings of

equivariant bordism.

I would like to thank R. E. Stong for pointing out several errors in an early
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version of this paper, and the University of Tennessee Faculty Research

Fund for financial support during a portion of the time that the paper was in

preparation.

2. A spectral sequence. Suppose A" is a normal subgroup of G. A family 9

of subgroups of K is G-invariant if gHg~l E 9 whenever H E 9, for every

g E G. If (9, 9') is a pair of G-invariant families of subgroups of K, then the

quotient group L — G/ K acts on iït(K)(9, 9'), just as in the previous

section.

Proposition 2.1. Suppose K is a normal subgroup of G, L = G/K, and

(9, 9') is a pair of G-invariant families of subgroups of K. Let Çl^(K)(9, 9') be

an L-module as above. Then there is a first quadrant spectral sequence {Er =

Er(G, KX9, 9'): r>2) such that

(.z)Ea2b^Ha(L;Qb(K)(9,9'));
(b) £°° is associated to a filtration ofü¿G)(9, 9'); and

(c) the edge homomorphism

Qb(K)(9, 9') -» El„ ~> E£b -» üb{G){9, 9')

is the extension homomorphism, e£.

Proof. Begin with a classifying space EL for principal L-bundles. We may

assume, for example via the Milnor construction [4], that EL is a CW-com-

plex in such a way that its «-skeleton EL" is obtained from EL"~X by

attaching a finite number of copies of L X D", in which L acts trivially on

D". The projection G -» L makes EL a G-space.

If M has a smooth G-action, all of whose isotropy groups lie in K, then the

quotient space M/K inherits a free action of L, and thus admits an L-equi-

variant map h: M/K^EL. The composition M-^M/A"-» EL is then

unique, up to a G-equivariant homotopy. This observation implies that

Q.(GXS\ 9') a Sl¿G)(9, 9'){EL).
By the usual considerations, there is now a spectral sequence {Er: r > 1}

such that E¿b = ßa+6(G)(f, 9')(ELa, ELa~l) and d^ is equal to the

boundary homomorphism of the triple (ELa, ELa~\ ELa~2).

The rest is an easy calculation. If X is obtained from A by attaching

LX D" then

Qk(G)(9,9')(X,A)^ak_„(K)(9,9').

This is obvious since bordism is a G-homology theory [8, Proposition (2.1)]. It

follows that

Üa+b(G)(9, 9'){ELa, EL"'1) « Ha(EL°, EL"~l) ®L Qb(K)(9, 9'),

so that dgb corresponds to 3® 1, where 3 is the boundary homomorphism of

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



476 R. J. ROWLETT

(EL", ELa~\ EL"'1) in ordinary homology. This proves (a). The construc-

tion is such that (b) and (c) are built in, if we begin with EL° = L   □

If K is not central in G, then the coefficients of the E2 term are not trivial

and the computation of the spectral sequence may be very difficult. However,

there is interesting information immediately available. Let P(G: K) be the

collection of primes not dividing the index of K in G.

Proposition 2.2. Suppose K is normal in G, and P = P(G: K). Then the

extension,

eg: Q,{K)(9, 9') ® Zp-*Slt(G)(9, 9') ® ZP, (1)

is an epimorphism for each pair (9, 9') of G-invariant families of subgroups of

K. If K is central in G, then (1) is an isomorphism.

Proof. If a > 0 and 5 is any L-module, then Ha(G/K; S) consists entirely

of torsion annihilated by P-localization. Let S = iïb(K)(9, 9'); then the edge

homomorphism (Proposition 2.1c) is a P-epimorphism, as required. If K is

central, then by [2, p. 54] we know r£e£ is multiplication by the index of A" in

G. Thus r£e£, and hence e£, is a P-monomorphism.   fj

However, we wish to know about restriction rather than extension.

Proposition 2.3. Let K be a subgroup of G, P = P(G : K), and suppose

{9, 9') is a pair of G-invariant families of subgroups of K. Then restriction,

r$: Sl,(G)(9, 9') ® ZP-*tt¿K){9, 9') ® ZP, (2)

is a monomorphism if and only if (1) is an epimorphism, and (2) is an

epimorphism if and only if (I) is a monomorphism.

Proof. Notice that A" is not required to be normal. Let k be the index of K

in G, and write r and e for r£ and e£, respectively. The composition re is

given by the formula

re(x) = S {gx: g E G/K}    for x E Qm(K)(9, 9'),

by [2, pp. 53-54]. It follows that ere(x) = ke(x), since G acts trivially on

Q¿G)(9, 9').
Suppose e is a P-epimorphism. If y E ÜJ,G){9, 9') ® ZP, let y = e{x). If

r(y) = 0, then ky = ke(x) = ere(x) = er(y) = 0, so y = 0. Thus r is P-

injective. Now suppose e is a P-monomorphism and x E Ci^(K)(9, 9') ®

ZP\ then e(re(x) — kx) = 0, which implies that x = re(x/k) since e is

P-injective. Thus r is P-surjective.

The reader is invited to prove the converse statements, using [9, Proposition

13.2] to compute the composition er.   □

We shall not require the next proposition, but it is worth mentioning as

another easy consequence of Proposition 2.1.
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Proposition 2.4. Suppose Q^(A")CÍ, 9') is a free Sl^-module. Then Cartesian

product induces an isomorphism

ß,(L) ®K$l¿K){9, 9')-+Q,(L X K)(9, 9').

In particular, if K is abelian then

Û"(L) ®n^ ß?(A") s ß^(L X A")(^A").

Proof. As in [8], ß,(L) is the bordism of free L-actions. Let {Qr: r > 2}

be the Atiyah-Hirzebruch spectral sequence, Q2b = Ha{L : ß0)=>ß,(L), of

[2, §7 and Theorem (19.1)]. From our definition of Er(L X K, K)(9, 9'), one

clearly has an isomorphism Q2b ®n Q^(K)(9, 9') -* E2b commuting with

the differentials, and the proposition then follows immediately.   □

3. Freeness of localized bordism. Let (9, 9') be a pair of families of G. If

9 - 9' = (A"), then 9 and 9' are said to be adjacent, differing by K (see [9,

p. 19]). In this case, and if JVA" is the normalizer of K in G, then it is known [9,

Corollary 5.1, p. 20] that e%K is an isomorphism of ti,(NK)(AK, PK) with

Qm(G)(9, 9'). By Proposition 2.3, if P - P(G: NK) the P-localization of r£K

is also an isomorphism.

Proposition 3.1. Suppose 9 and 9' are adjacent, differing by K, and

P = P{G : K). Then the restriction,

rg: ß,(G)(^, 9') ® ZP -» Q¿K)(AK, PK)NK/K® ZP, (3)

is an isomorphism.

Proof. By Propositions 2.2 and 2.3, we know that rfiKr£K is a P-monomor-

phism. Suppose x E ß+(A")04A:, PK)NK/K and k is the index of K in NK.

Then r£Ke£K(x) = kx, so x = r£Ke£K(x/k). Since rfiK is a P-iso-

morphism,this implies that x ® 1 lies in the image of (3).   □

Now suppose 9' and 9" are also adjacent, differing by H, and suppose

P = P(G : K) n P(G : H). Recall the bordism exact sequence for a triple of

families [8, Proposition 2.2]:

• • • ->Û,(G)(f', 9") ® ZpX Q,(G)(9, 9") ® Zp

^ ß*(G)(f, 9')®ZP^- ■ ••

Clearly rß = rgim: ß,(G)(f', 9") ® ZP^Sl¿H)(AH, PH) ® Z,,. By Prop-
osition 3.1, im is a split monomorphism. Similarly, one has that r£ = r^, so

rH + r* 1S an isomorphism of ß,(G)(f, f ) ® ZP with

(ti¿H)(AH, PHfH'H 0 ß„(A")(/lA", PK)NK'K) ® Zp.

Proposition 3.2. Suppose G is a finite group, (9, 9') is a pair of families of

subgroups of G,and P = D {P(G : AT): K E «F - f}. 77ten /ne sum of the
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restrictions r£ is an isomorphism,

Q,(G)(9, 9') ® Zp~  2 [q¿K)(AK, PK)NK/K ® ZP: (K) C 9 - 9'].

The proof, of course, is to repeat the procedure given above. As corollaries,

we obtain Theorems 1.1 and 1.2, as well as the following useful result.

Corollary 3.3. Suppose (9, 9', 9") is a triple of families, and P =

D {P(G : K) : K E 9' - 9"). Then the forgetful homomorphism

ij Qm(G)(9', 9") ® ZP^Ü¿G){9, 9") ® ZP

is a split monomorphism.

Proof. As above, we see that (2 /*)»* = 5>£, where the summations are

over all (A*) c 9'. Thus Proposition 3.2 implies the result.   □

The virtue of this line of proof is that, so far, it has been absolutely

simple-minded, without requiring any knowledge of representation theory or

of the classification theory of G-vector bundles. We now add the simplest

result from the latter area.

Proposition 3.4. Let G be a finite group. If®* = ß», or //ß+ = ß£° and G

has odd order, then Cl¡.(G)(AG, PG) is a free Qt-module on even-dimensional

generators. If G has even order, then tis°{G){AG, PG)® Z{\) is a free

ßj° ® Z ( \ )-module on even-dimensional generators.

Proof. The following procedure is well known, but no single reference

applies in this generality. We give only an outline.

If M is a manifold with smooth G-action, representing an element of

ß„(G)(ylG, PG), then we may replace M by a tubular neighborhood N of the

fixed point set F of G in M, by [9, Lemma 5.1]. The normal bundle v to F in

M can be decomposed into G-invariant subbundles vL, indexed by the

irreducible real (if ß„ = ß£°) or complex (if ß,, = ß^) representations L of

G. This idea goes back to Conner and Floyd [2, Theorem (38.3)]. Next, one

may classify the bundle vL by a map of M into BO(J), or BU(J), or BSp(J).

If ß„ = ßjif, the vL are all complex vector bundles and BU(J) is used; if

ß» = ß£° the choice is governed by whether the field Homc(L, L) of the

representation is real, complex, or quaternionic.

If ß, = ßjf, it is now easy to show that ß^(G)(/!G, PG) is isomorphic to a

direct sum of bordism groups of the form ß^(Ät/(j',) X • • • X BU(J„));

each of these groups is known to be a free ß^-module on even-dimensional

generators [3, Lemma (2.3)].

If ß„, = ß^° and G is of odd order, then some of the representations may

be quaternionic. Thus some of the BU(jk) may be replaced by PSptj*), but

the theorem follows in the same fashion, by use of [2, Theorem (18.1)].

If ß„ = ßj° and G is of even order the classification scheme must be
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revised, for F need not be oriented. However, we may classify v by a map of

the (oriented) tubular neighborhood N into an appropriate Thorn space. Thus

ß,,(G)04G, PG) is a sum of bordism groups üs°(My¡), where y' = y(j¡)

X • • • X y(Jn) is a product of universal y^-bundles over BO(Jk), or BU(Jk),

or BSp(Jk), as the case may require. In each case, H*(My(Jk); Z(j)) is a free

Z(i)-module on even-dimensional generators. The theorem will now follow,

by the Künneth theorem and a lemma of Conner [1, (3,1), p. 93].   □

By Theorem 1.1 and Proposition 3.4, we obtain the localized freeness

theorem.

Theorem 3.5. If G is a finite group, and P = P(G), then ß*(G) ® ZP is a

free ß„ ® Zp-module on even-dimensional generators.

This completes work of Wheeler [11], who proved Theorem 3.5 for ßjf and

for ß£° and groups of odd order. However, it is not trivial that if G is a finite

2-group, then ß*°(G) ® Z{\) is a free ß*° ® Z(±)-module; indeed, Theo-

rem 3.5 is (so far as I know) the first result on the structure on ß£°(G) that

holds for all groups G. By methods of Ossa [5], one may improve Theorem 3.5

for abelian groups.

Corollary 3.6. If G is a finite abelian group, then ßf°(G) ® Z{\) is a free

ß,° ® Z(\)-module on even-dimensional generators.

Again this completes work of Wheeler, who proved Corollary 3.6 for cyclic

groups [10].

4. An application to 2-group actions. One of the most difficult problems in

equivariant bordism is to compute ß,°(G) in case G is a 2-group. There are

essentially no published results, except for the case G = Z2 [1], and the

theorem of [6] on free actions. Now Theorems 1.1 and 3.5 give us a

description of ß£°(G) ® Z{\), and in this section we give some information,

albeit somewhat crude, about the torsion of ß£°(G).

Theorem 4.1. Let G be a group of order 2k. Then a torsion element in

ß*°(G) is of order 2s for some s <{k(k + 3). // G is abelian, s <\k(k + 1).

In other words, the torsion is of bounded order. The specific bounds given

may be very excessive, however. In fact there is no known example of an

element of order 4 in any fi*°(G), although there is no reason to believe such

elements do not exist.

For the proof we shall need the following lemma.

Proposition 4.2. Let L be a subgroup of G of index 2, and let (9, 9') be a

pair of G-invariant families of subgroups of L. Then the composition e¿r£ is

multiplication by two in ß*°(G)(f, 9').
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Proof. Let x'. G X Ai -» M be a smooth action representing an element of

®l°(G)(9, 9'). Let 9 be the non trivial one-dimensional real representation of

G having kernel L. Let N c M be a submanifold dual to 9; that is, the

normal bundle of TV in M is R X N with action 9 X (x\N). Such a submani-

fold exists by [7, Proposition 4]. Notice that TV is orientable, but that the

elements of G — L reverse the orientation of TV. Choose g0 E G — L.

Let M' be a second copy of M, but with action x'(£> m) = x(8o88o\ m)-

Let P = N X [- 1, 1] be a tubular neighborhood of TV in M, and let P' = TV'

X [ — 1, 1] be the corresponding neighborhood of TV' in A/'.

Take the disjoint union of M x [0, 1] and M' x [0, 1], and identify (x, t)

E TV X[-l, 1] = P X {1} with (gox, t)EN' X[-l, 1] = P' X {0}. Call

the resulting manifold Q.

Now g0 X 1 is an orientation-reversing, G-equivariant diffeomorphism of

TV X [-1, 1] with TV' X [-1, 1]. Thus Q is oriented, and inherits an orienta-

tion-preserving G-action Xi from (x X 1) + (x' X 1). Also, TV separates TV/; in

fact, we can obtain TV as /"'(5m_1) for some G-map /: M -* Sm c EZ2

(compare §2 above). Hence M is the union of L-invariant submanifolds in the

form M = V \jh V, where dV = TV and h: TV ̂ TV' is left multiplication by

g0. It is then easy to see that

9(0- X.) = e^{M, x) -(M, x) -(A/', X')-

Since [A/', x] = [M, x] E Qt(G){9, 9') by [2, §20], this implies the proposi-

tion.   □

We can now prove Theorem 4.1. For 0 < j < k, define families

9j ={H < G: order of H < 2J }.

Thus Qt(G)(9k) = ti¿G)(AG), while ß,(G)(<5o) = ß,(G), the bordism of
free G-actions. Since all elements of 9j — 9J_i are maximal in 9Jy it follows

from [9, Corollary 5.2, p. 21] that

a*(G)(9j, 9j_{) *±{Q,(NK)(AK, PK): (K) ç % - %_,}.      (4)

Next we shall show that if H is a normal subgroup of G of index 2', then all

torsion of Ü+(G)(AH, PH) is of exponent 2'+1. This is done by induction on

i. If /' = 0 (that is, if H = G), then, as in the proof of Proposition 3.4, we

write Qn(G)(AG, PG) as a sum of reduced bordism groups of Thom spaces.

One may check that H^(My(J)) has no torsion except of order two; by [2,

Theorem (15.2)] the same is true for ti,(G)(AG, PG).

Now if i > 0, then H is a. proper subgroup of G. We may choose a normal

subgroup L of index two in G, such that L contains H. Suppose x E

S¡t(G)(AH, PH) is a torsion class. Then 2'r£(x) = 0 by inductive assump-

tion. By Theorem 4.1,

2i+xx =2ie¿r°(x) = 0.
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From (4) we now see that the torsion classes in ß^(GX"3), %-\) are of

exponent 2(k~J)+x. Consider now the exact sequences

.. . ->0,(G)(9>, %.x) i Q¿G)(AG, 9J_l)-*Q¿G)(AG, 9}-*....

The crucial observation is that rt is a 2-monomorphism, by Corollary 3.3.

Therefore if v = r^x is a torsion class we may assume x is a torsion class. An

easy inductive argument shows that all torsion in ß,(G)C3^, 90) is of expo-

nent 2", where n = 2,-((* - j) + 1) - 5 *:(& + 1).

If G is abelian, then by [6] we know that ÎÎ^G)(90)-^iîm(G)(9k) has

torsionfree image. This finishes the proof in that case. In general, it follows

from [2, Theorem (15.2)] that all torsion in ß*(G) = ß+(G)(%) is of exponent

2k, and hence that the torsion in ß»(G) = ü^(G)(9k) is of exponent 2s for

s = k + \k(k + 1) = \k(k + 3). Thus the proof of Theorem 4.1 is com-

plete.    □
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