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THE FIXED POINT THEOREM IN EQUIVARIANT COHOMOLOGY 

J. D. S. JONES AND S. B. PETRACK 

ABSTRACT. In this paper we study the Sl-equivariant de Rham cohomology of 
infinite dimensional Sl-manifolds. Our main example is the free loop space 
LX where X is a finite dimensional manifold with the circle acting by rotating 
loops. We construct a new form of equivariant cohomology h~ which agrees 
with the usual periodic equivariant cohomology in finite dimensions and we 
prove a suitable analogue of the classical fixed point theorem which is valid for 
loop spaces LX. This gives a co homological framework for studying differ-
ential forms on loop spaces and we apply these methods to various questions 
which arise from the work of Witten [16], Atiyah [2], and Bismut [5]. In par-
ticular we show, following Atiyah in [2], that the A-polynomial of X arises as 
an equivariant characteristic class, in the theory h~, of the normal bundle to 
X , considered as the space of constant loops, in LX. 

INTRODUCTION 

The aim of this paper is to provide a cohomological framework for studying 
the questions concerning differential forms on loop spaces which arise from the 
work of Witten [16], Atiyah [2] and Bismut [5]. We prove a suitable analogue of 
the classical fixed point theorem of Sl-equivariant cohomology which is valid 
in the case of free loop spaces LX with the circle acting by rotating loops. In 
addition, we construct an equivariant Thorn/Euler class (see §4) for the normal 
bundle of the sub manifold of constant loops X in the space of all loops LX 
and show how this class is related to the A polynomial of X. These results 
were announced, without proof, in [12]. 

Throughout we will work with complex valued differential forms and de 
Rham cohomology. This is dictated by simplicity and our applications. Let 
Y be a smooth manifold equipped with a smooth Sl action. We will refer to 
Y as a smooth Sl -manifold. We can associate to Y its equivariant cohomol-
ogy H;(Y). This is a module over the coefficient ring H;(point) = qu] where 
u is an indeterminate of degree 2. Equivariant cohomology can be localised 
by inverting the multiplicative set {I, U, u2 , •.• } to form periodic equivariant 
cohomology u -I H; (Y). The classical fixed point theorem says that if Y is 
finite dimensional and F is the fixed point set of the Sl action on Y then the 
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36 J. D. S. JONES AND S. B. PETRACK 

inclusion i: F ----t Y induces an isomorphism 

It is straightforward to see that u -I H;(F) = H* (F) (9 !C[u , U -I] where H* (F) 
is the ordinary de Rham cohomology of F and so we get a computation of 
periodic equivariant cohomology in terms of the cohomology of the fixed point 
set. 

Now let X be a smooth, connected, finite dimensional manifold and let LX 
be the space of all smooth loops in X with its COO topology. The space LX is 
an infinite dimensional manifold modelled on a Frechet space. The circle acts 
smoothly on LX and the fixed point set of this action is precisley the manifold 
X, considered as the space of constant loops. According to Goodwillie [10], 
u-1H;(LX) depends only on 7r 1(X) so that the fixed point theorem, as it 
stands, cannot be true for LX. This has been an obstacle to progress in the 
study of differential forms and integration on LX. 

Our solution to this difficulty is to construct a new form of equivariant co-
homology, denoted h;(Y), which will be used in place of u- I H;(Y). The 
groups h;(Y) are defined by a simple and natural modification of one def-
inition of periodic equivariant cohomology. If Y is finite dimensional then 
h;( Y) = U -I H;( Y) but in a large class of infinite dimensional examples, in-
cluding the case Y = LX , the inclusion i: F ----t Y of the fixed point set induces 
an isomorphism h;(Y) ----t h;(F) . This cohomology theory is constructed in § 1 
and the fixed point theorem is stated precisely in §2. Some alternative theories 
which also satisfy the fixed point theorem are discussed in §3. In §4 we show 
how to construct an inverse, at the level of differential forms, for the restric-
tion homomorphism t and following [3, 6, 4, and 7] explain how this leads 
to integration formulas. The most important ingredient is the construction of 
an equivariant form r, essentially the form exp( -( w + E)) of [2, 6], which 
defines a class in h;(Y) and has the key property that nr) = 1. This form 
r is essentially the equivariant Thom/Euler class of the normal bundle to the 
fixed point set. In §5 we show how the form r on LX, is related to the A 
polynomial of X, compare [2]. 

The main theme running through this article is that if we use the cohomology 
theory h; many of the familiar results concerning the equivariant cohomology 
of finite dimensional manifolds generalise, in a fairly straightforward manner, 
to infinite dimensions. The fixed point theorem (Theorem 2.1) and the way in 
which the Thom/Euler class r of the normal bundle to the space of constant 
loops gives rise to the A polynomial (see §5) are the main justifications for our 
equivariant cohomology theory h;. Our ultimate goal is to use h; to relate 
the differential geometry of loop spaces to index theory of elliptic differential 
operators. This is a more delicate question requiring the use of ideas from cyclic 
homology which will be treated elsewhere, see [8, 9]. 
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THE FIXED POINT THEOREM IN EQUIV ARIANT COHOMOLOGY 37 

Remark on conventions. As we are interested primarily in infinite dimensional 
manifolds, we should state at the outset the structures we assume implicit in 
the word manifold. All manifolds will be assumed to admit smooth partitions 
of unity and a smoothly varying positive definite inner product (that is a pre-
Hilbert space structure) on each tangent space. We could in fact prove our 
theorems under weaker conditions but these hypotheses simplify the presenta-
tion and are verified in the geometric examples. 

1. EQUIV ARIANT COHOMOLOGY THEORIES 

Let Y be a smooth Sl-manifold and let n* (Y) be the space of smooth 
differential forms on Y. Let I: nn(y) -+ nn-\y) be the operator given 
by taking the interior product with the vector field on Y generating the circle 
action. It is easy to check that 12 = o. Let n~(Y) be the space of invariant 
forms on Y. Let d be the exterior derivative, then dl + Id = 0 on n~(Y). 

The following de Rham model for equivariant cohomology is described in [3]. 
Form the polynomial ring n~(Y)[u] where u is an indeterminate of degree 2. 
Introduce the operator dT = d + UI on n~(Y)[u]; then d~ = 0 and dT is 
a derivation with respect to the natural product on n~(Y)[u]. Equivariant 
cohomology is defined by 

H;(Y) = H*(n~(Y)[u]; dT). 

Ifwe use n~(Y)[u, u- I ], the space of Laurent polynomials in u, u- I , in place 
of n~(Y)[u] then we get periodic equivariant cohomology: 

-1 * * * -I u HT(Y) = H (nT(Y)[u, u ]; dT). 

This is easy to check using the fact that localisation and forming homology 
commute. 

The cohomology theory h; is defined using the space n~(Y)[[u, u- I ]] of 
formal power series in u, u- I with coefficients in n~(Y). A typical homoge-
neous element w, of total degree p, in n~(Y)[[u, u- I ]] has the form 

We can multiply homogeneous elements, so n~(Y)[[u, u- I ]] becomes a graded 
ring and dT is a derivation with respect to this product. We define h;( Y) to 
be 

h;(Y) = H*(n~(Y)[[u, u- I ]]; dT) 

and we will refer to this theory as completed periodic equivariant cohomology. 
The presence of an infinite number of negative powers of u is essential; if we in-
sist on only a finite number of negative powers then we get periodic equivariant 
cohomology and we know from [10] that this is trivial in the infinite dimensional 
cases of interest. If Y is finite dimensional then n~(Y)[u] = n~(Y)[[u, u- I ]] 
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38 J. D. S. JONES AND S. B. PETRACK 

and so h~( Y) = U -I H;( Y) but if Y is infinite dimensional the two theories 
are, in general, different. 

We will often use the term equivariant differential form for an element of one 
of the algebras Q~(Y)[u], Q~(Y)[u, u- I ], Q~(Y)[[u, u- I ]] and refer to the 
operator dT as the equivariant exterior derivative. Then terms like equivariantly 
closed will have the natural meaning. 

The cohomological properties of h~ differ from those of the classical theo-
ries in one important way. The theories H; and u -I H; have the following 
weak homotopy invariance property: Suppose that f: X -+ Y is a smooth 
equivariant map which is an ordinary homotopy equivalence; then f* is an 
isomorphism in H; and u -I H;. The proof of this fact is a standard dou-
ble complex argument, see for example [11]. The theory h~ does not have 
this property as we will show by an example in §2. It does have the following 
equivariant homotopy invariance property. Suppose that fo' J; : X -+ Yare 
smooth equivariant maps which are equivariantly homotopic (i.e. there is a 
smooth equivariant map F: [0, 1] x X -+ Y, where the circle acts trivially on 
[0, 1], such that F(O, x) = fo(x) and F(1 , x) = J; (x)); then f; = J;* in h~. 
Of course the theories H; and u -I H; also have this property. 

To prove the equivariant homotopy invariance property define S = 7r*F* 
where 7r. is integration along the fibres of the projection 7r: [0, 1] x X -+ X. 

Then ds + sd = .fa* - f( and the fact that F is equivariant shows that s maps 
invariant forms to invariant forms and Sl + IS = O. Therefore 

d TS + S d T = f; - J;* 
and so f; = J;* in each of the three equivariant cohomology theories. 

There are Mayer-Vietoris sequences, associated to two invariant open sets U 
and V such that U U V = Y , in each of the equivariant cohomology theories. 
Since the circle is compact we may average a chosen partition of unity to con-
struct invariant partitions of unity and then use the standard construction of 
the Mayer-Vietoris sequence. 

Here is a slightly different description of the groups h~. Let 

QT(Y) = IT Q~(Y), Q~ (Y) = IT Q~q (Y), Q~dd(y) = IT Q~q+l(y) 
q?O q?O q?O 

and set 15: QT(Y) -+ QT(Y) to be the operator 15 = d + I. This amounts to 

setting u = 1 . Then 152 = 0 and we have 

h2n(y) _ ker(t5: Q~(Y) -+ Q~dd(y)) 
T - im(t5 : Q~dd(Y) -+ Q~(Y)) , 

h2n+I(Y) = ker(t5: Q~dd(y) -+ Q~;(Y)). 

T im(t5: Q~(Y) -+ Q~dd(Y)) 
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THE FIXED POINT THEOREM IN EQUIVARIANT COHOMOLOGY 39 

2. THE FIXED POINT THEOREM 

Let Y be a smooth Sl -manifold; then the action will be called regular if 
the fixed point set F is a smooth sub manifold which has an invariant neigh-
bourhood N such that the inclusion i: F --+ N is an equivariant homotopy 
equivalence. If Y is finite dimensional then any smooth action of the circle is 
regular. If the fixed point set has an invariant tubular neighbourhood, by which 
we mean there is an Sl-vector bundle E over F and a smooth equivariant 
map h: E --+ Y which is a diffeomorphism onto its image, then the action is 
regular. We will construct such a neighbourhood for LX in an Appendix. The 
question of finding general conditions under which an action of the circle on 
an infinite dimensional manifold is regular is technical and will not be pursued 
here. 

Theorem 2.1. If Y is a regular Sl -manifold then the inclusion of the fixed point 
set i: F --+ Y induces an isomorphism 

i* : h;(Y) --+ h;(F). 

Using the notation introduced in §1, h~(F) = H*(F)[[u- 1 , u]] and so we get 
a computation of h~( Y) in terms of H* (F) just as in the case of the classical 
fixed point theorem. The most important step in the proof of Theorem 1.2 is 
the following lemma. 

Lemma 2.2. Let Y be a smooth Sl -manifold and suppose that the circle action 
on Y has no fixed points; then h~( Y) = O. 
Proof. We construct an equivariant form W E Q~(Y)[[u, u- I ]] such that dTw 
= 1 . Using the fact that dT is a derivation with respect to the natural product 
on Q~(Y)[[u, u- I ]] it follows that s(x) = wx is a contracting homotopy of 
the complex (Q~(Y)[[u, u- I ]]; dT); that is 

dTs(x) + sdT(x) = x. 
This shows that h~(Y) = O. It remains to construct the form w. 

Let V be the vector field on Y generating the circle action and let 0: be the 
one-form dual to V; then 

2 dTo: = do: + UIO: = do: + uWI . 
Since the circle action has no fixed points, V is never zero and 

dTo: = ulVI 2 (1 + do: 2) . 
uWI 

Therefore dTo: is a unit in the ring Q~( Y)[[u, U -I]] ; the inverse is given by 

00 ( ) i -I -I -2 -do: 
y = (dTo:) = u WI L --2 

i=O uWI 
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40 J. D. S. JONES AND S. B. PETRACK 

Since y(dTa) = 1 it follows that (dTy)(dTa) = 0 and therefore, since dTa IS 

a unit, dTy = 0; so dT(ay) = (dTa)y = 1 and we define w = ay. 0 

u 
Note that in finite dimensions da is nilpotent so that y is a polynomial in 

-I 

Proof of Theorem 2.1. Pick an invariant neighbourhood N of F such that 
the inclusion of F in N is an equivariant homotopy equivalence. We use 
the Mayer-Vietoris sequence associated to the invariant open sets Y\F and 
N. Both Y\F and (Y\F) n N are fixed point free so, using Lemma 2.2, the 
sequence gives an isomorphism 

The inclusion of F in N is an equivariant homotopy equivalence and the 
equivariant homotopy invariance property completes the proof. 0 

It is important to note that the fixed point theorem and the weak homo-
topy invariance property are incompatible in infinite dimensions. There is no 
equivariant cohomology theory k * with the following properties: 

( 1) The weak homotopy invariance property described in § 1. 
(2) k* (point) -1= o. 
(3) k*(Y) = 0 if Y is fixed point free. 

To see this let S be the unit sphere in a separable Hilbert space with the circle 
action given by multiplication by unit complex numbers. This is a standard 
model for ESI. The constant map S -+ point is equivariant and since S 
is contractible it is an ordinary homotopy equivalence. Therefore (1) and (2) 
show that k* (S) -1= o. However S is fixed point free and so this contradicts (3). 

Therefore in infinite dimensions we must choose between the fixed point 
theorem and the weak homotopy invariance property. 

3. OTHER DE RHAM MODELS FOR EQUIVARIANT COHOMOLOGY 

There are other de Rham models for equivariant cohomology which use diff-
erential forms in an essential way. Here we describe and compare these vari-
ations. First we can replace the space of invariant forms on the SI-manifold 
Y by the space of all forms n* (Y) and then replace the operator I by the 
operator I: rt (Y) -+ nP- 1 (Y) defined by the following procedure. The circle 

action defines a smooth map ({J: SiX Y -+ Y and I is defined to be 

where 7C* is integration along the fibres of the projection 7C: SI x Y -+ Y. It 

is straightforward to check that 1= IA = Al where A: n*(Y) -+ n~(Y) is the 
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averaging operator. Furthermore I satisfies the identities 12 = d I + I d = 0 
and so we may form the complexes 
(Q* (Y)[u]; d + ul), (Q* (Y)[u, u -I]; d + ul), (Q* (Y)[[u, u -I]]; d + ul). 

From the definition of I it follows that if a E Q~(Y) then la = la. 

Theorem 3.1. The inclusion j : Q~(Y) -+ Q*(Y) induces isomorphisms 

H*(Q~(Y)[u]; dT ) -+ H*(Q*(Y)[u]; d + ul), 

H*(Q~(Y)[u, u- I ]; dT ) -+ H*(Q*(Y)[u, u- I ]; d + ul), 

H*(Q~(Y)[[u, U -I]]; dT ) -+ H*(Q*(Y)[[u, U -I]]; d + ul). 

Proof. Since Sl is compact and connected the de Rham cohomology of Y can 
be computed from the complex of invariant forms. So the first and second 
isomorphisms, and the third in the case where Y is finite dimensional, follow 
from standard double complex arguments, see for example [11]. But we need 
an explicit homotopy argument for the third isomorphism in the case where Y 
is infinite dimensional. This is an allusion to the more analytical nature of the 
theory h~. 

Since AI = IA , the averaging operator A defines a map from the complexes 
using all forms to the complexes using invariant forms. The composite Aj is the 
identity so to complete the proof we construct an operator s: Q* (Y) -+ Q* (Y) 
with the following properties: 

(1) ds-sd=l-jA, 
(2) sl = Is. 

It will then follow that (d+ul)s-s(d+ul) = 1-jA. Therefore jA is homotopic 
to the identity and j, A induce inverse isomorphisms in cohomology. 

To define s regard the circle action as a one-parameter group of diffeo-
morphisms rpt of Y with rpo = rpl' Define ht : [0, t] x Y -+ Y by setting 
ht(u, y) = rpu(y). If WE Q*(Y) define s(w) as follows: 

s(w) = fol (7rtth;(w)dt 

where (7rtt is integration along the fibres of the projection 7rt : [0, t] x Y -+ Y. 
To compute ds(w) use the formula 

d ((7r t t8) = (7r t))d8) + (i~8 - i;8) 
where io' it : Y -+ [0, t] x Yare the inclusions of the two ends. This gives 

ds(w) = fol d((7rt)*h;(w)) dt 

= fol (7rt).h;(dw) dt + fol (rp~w - rp; w) dt 

= s(dw) + w - jA(w). 
It is straightforward to check that Is(w) = s/(w). 0 
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The second variation is to use finitely smooth forms which are defined as 
follows. Let OJ be a multi-linear function from the space of vector fields on Y 
to functions on Y which is multi-linear over functions. Then OJ will be called 
finitely smooth if for any finite dimensional manifold M and any smooth map 
f: M ---.. Y the form f* (OJ) is a smooth form on M. This is only interesting 
in infinite dimensions. We can form the algebra Q* (Y) f of finitely smooth 
forms. The operators d, I and I all map finitely smooth forms to finitely 
smooth forms and so we may form cohomology theories 

H;(Y) f' u -I H;(Y) f' h;(Y) j" 

Since any smooth differential form is finitely smooth there are homomorphisms 

H;(Y) -+ H;(Y)f' u-1H;(Y) -+ u-1H;(Y)f' h;(Y) -+ h;(Y)j" 

It is not clear whether, in general, these maps are isomorphisms. However it 
is clear that our proof of the fixed point theorem, Theorem 2.1, extends to the 
theory h;(Y) f. 

More generally, suppose Y is equipped with an increasing filtration by in-
variant finite dimensional submanifolds Yn . We define the space of filtered 
forms to be 

Invlim Q* (Yn ) 

and then construct equivariant cohomology theories using these filtered forms. 
One important example, which occurs in Taubes' work on elliptic genera [15], 
where there is a natural filtration is the case where Y is the normal bundle to 
the space of constant loops in the space of all loops. Here the filtration comes 
from the Fourier decomposition, see [2]. 

We will not pursue the theory of finitely smooth forms or filtered forms here 
since all the constructions we wish to do can be carried out directly in the space 
of smooth forms. 

4. THE INVERSE OF RESTRICTION TO THE FIXED POINT SET 

AND THE INTEGRATION FORMULA 

Let Y be a Sl-manifold whose fixed point set F has an invariant tubular 
neighbourhood. We will construct a map Q~(Y)[[u, u- I ]] -+ Q~(Y)[[u, u- I ]] 

which commutes with the equivariant exterior derivative such that the induced 
map h;(F) -+ h;(Y) is the inverse of i*. We will also explain the relation 
between this construction and the integration formulas of [3, 6, 4, 7]. 

First consider the following general situation. Let Y be an Sl-manifold with 
an invariant metric. We have the following geometric data: 

( 1) The smooth vector field V generating the circle action. 
(2) The one-form a dual to V in the given metric. 
(3) The two-form OJ = da. 
(4) The function H = la = 1V12 . 
(5) r = exp( -(H + u-1OJ)) E Q~(Y)[[u, u- 1]]. 
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All this data is natural with respect to equivariant maps which preserve the met-
ric. The equivariant form r is homogeneous of total degree 0, equivariantly 
closed and i*( r) = 1 . 

First we look at the case where Y is a smooth Sl -vector bundle E with an 
invariant metric over some manifold X where the circle action on X is trivial. 
Let i: X -+ E be the inclusion of the zero section and let n: E -+ X be the 
projection. Define 

* -I * -I (J: QT(X)[[U, u J] -+ QT(E)[[u, u J], (J(O:) = rn*(o:); 

then i* (J = 1 and since r is equivariantly closed, (J commutes with dT . 
Now suppose that Y is a Sl-manifold whose fixed point set has an invariant 

tubular neighbourhood. Let E be the normal bundle of the fixed point set and 
let h: E -+ Y be an equivariant diffeomorphism of E with a neighbourhood 
of F. We assume that Y and E have compatible invariant metrics. We can 
"graft" the equivariant forms rand rn*(o:) in Q~(E)[[u, u-1J] into Y by 
the following proceedure: As in [14], let g: E -+ E be the map 

g(y) = y . VI + lyl2 
This is a fibrewise diffeomorphism of E with the unit disc bundle in E. Using 
g and extending by zero defines a smooth equivariant form r 1 on E whose 
support is contained in the unit disc bundle. Now use h and extend r 1 by zero 
to construct a smooth equivariant form r h on Y. By the same procedure we 
can define a smooth equivariant form (Jh(O:) on Y. 

It is necessary to do this grafting proceedure in two steps since we do not 
have enough hypotheses on the diffeomorphism h: E -* h(E) to guarantee that 
the form constructed by using h and extending by zero is smooth. Note that 
h may be chosen so that r h and (Jh(O:) have support in an arbitrarily small 
neighbourhood of the fixed point set. 

Theorem 4.1. Let Y be a Sl -manifold with fixed point set F and suppose that 
F has an invariant tubular neighbourhood. The map 

* -I * -I (Jh : Q (F)[[u, u ]] -+ QT(Y)[[U, u J] 

commutes with the equivariant exterior derivative and in cohomology 
.* -1 * * (Jh = (z) : hT(F) -+ hT(Y). 

Proof. The fact that (Jh commutes with dT follows directly from the defini-
tions. To prove the second statement we compute i* (Jh : 

i* (Jh(O:) = t(rhn*(o:)) = t(rh)o: = 0: 

where the last equality follows since i*( r h) = I. 0 
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Now we explain the relation between this theorem and integration formulas 
for equivariant differential forms in finite dimensions. First we will discuss the 
case of a finite dimensional Sl vector bundle n: E ---+ X over a compact 
manifold X where the circle acts trivially on X. We assume that X is 
equipped with a Riemannian metric and E an invariant metric. This pro-
vides the manifold E with an invariant Riemannian metric and so we have 
the equivariant form r defined on E. Given any equivariant form a on X, 
rn * (a) has exponential decay in the fibre directions and since X is compact 
it follows rn*(a) has a well defined integral. Furthermore we can define the 
integral along the fibres n*(rn*(a)) and 

h rn*(a) = Ix n*(rn*(a)) = Ix n*(r)a. 

We now identify nJr). In equivariant cohomology this is straighforward since 
the equivariant Thom isomorphism gives 

.* * * -I en*(/J) = 1 (/J) E hT(X) = H (X)[u, u ] 

where e is the equivariant Euler class. When we apply this to r we see that 
1 

n*(r)=-, e 
indeed we may use this equation as a definition of the equivariant Euler class. 
The advantage of this point of view is that it will extend to give a definition of 
the equivariant Euler class of an infinite dimensional bundle provided we can 
define the operation n*. 

There is a slight imprecision here since the usual form of the Thom iso-
morphism involves forms of compact support. There are two simple ways 
around this. The first is to define forms of rapid decay on E as in [14] and 
prove a Thom isomorphism using such forms. The second is to notice that 
nJr) = n*(r l ) where r l is defined above. But now r l has compact support 
and we may use the standard form of the Thom isomorphism. 

The Thom class U has the property that n* (U) = 1 in cohomology so it 
seems natural to use the name Thorn/Euler class for the form r. 

Suppose now that Y is a finite dimensional compact closed Sl -manifold 
with an invariant metric and a E n~(Y)[u, u- I ] is equivariantly closed. Let 
E be the normal bundle to the fixed point set F and N = h(E) an invariant 
tubular neighbourhood of F. Then using Theorem 4.1 and the definition of 
rIh i a = i rIhU*(a)) = h rn*(i* a). 

The preceding discussion gives the exact integration formula of [3, 6, 4, 7]: 

(a= (t(a). 
}Y }F e 

where e is the equivariant Euler class of E. 
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Following [6, 4] this may be refined as follows. Since the circle acts on Y 
by isometries the fixed point set F is totally geodesic and the Riemannian 
connection on Y induces an invariant connection on E , the normal bundle to 
the fixed point set. Let R be the curvature of this connection on E . Let L be 
the skew adjoint endomorphism of E given by the infinitesimal action of the 
circle. Then in [6] and [4] it is shown that 

1 * -1 
nJr) = Pf( R!~L) En (X)[u, u ] 

where Pf is the Pfaffian defined on matrices of differential forms. This gives 
the following integration formula for equivariantly closed forms a: 

r r t(a) 
J y a = J F Pf( R!~L ) . 

We may interpret (R+uL)/2n as the equivariant curvature of E so that nJr) 
is the Chern-Weil representative for lie [13]. 

5. Loop SPACES AND THE A-POLYNOMIAL 

Assume that X is compact and finite dimensional and is equipped with a met-
ric. We will explain the relation between the equivariant forms r and the 
A-polynomial of X. More precisley, we will show how to recover the Chern-
Weil representative for the A-polynomial of X, defined by the metric, from 
the Thorn/Euler class r of the normal bundle of the space of constant loops 
inside the space of all loops. Our method is to combine the formula for nJr) 
in finite dimensions with a calculation in [2]. 

The fixed point set of the circle action on LX is the space X considered 
as the space of constant loops; it has an invariant tubular neighbourhood (see 
the Appendix) and the normal bundle N is the bundle over X whose fibre at 
x E X is the space of loops in TxX whose first Fourier coefficient is zero. Let 
Nk be the subbundle of N whose fibre at x consists of those loops in TxX 
whose (real) Fourier series 

Lan sinn8 + bn sinn8 
n?:O 

has the property that an = bn = 0 for n 2: k. Let jk: Nk -+ N be the inclusion 
and nk : Nk -+ X be the projection. Let 

.* * -1 r k = h(r) E n (Nk)[u, u ] 

be the equivariant form associated to the bundle Nk constructed in §4 and 
define 

* -1 Yk = (nk)Jrk ) E n (X)[u, u ]. 
Since r k is homogeneous of degree 0 and integration along the fibres decreases 
degree by 2mk it follows that Yk is homogeneous of degree -2mk, where m 
is the dimension of X. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



46 J. D. S. JONES AND S. B. PETRACK 

Let 

be the element defined by taking a i to be the component in degree 2i of the 
Chern-Weil representative for the A-polynomial of X. 

Theorem 5.1. Let m be the dimension of X. The sequence (k! Uk)mYk converges 
in the COO topo!ogyon Q*(X)[u, u- I ] and 

k m A 

lim (k! u ) Yk = A(u). 
k~oo 

Proof. The Sl-bundle Nk is a direct sum 

k 

Nk = EB Tc(X)n 
n=O 

where Tc(X) is the complexified tangent bundle of X and the action of the 
circle on Tc(X)n is given by multiplication by zn . Let R be the curvature of 
TcX regarded as a two-form on X with values in End(TcX) and let L be the 
skew adjoint endomorphism L(v + iw) = w - iv of TeX. Then (compare §4) 

rrk (2nnuL+R)-1 h = (nk)Jrk ) = P f 2n 
n=1 

and since TcX has rank m it follows that 
(5.2) 

(k! l)m(Yk) = (k! l) IT P f (2nn~~ + R) -I = IT P f (2n~~~n+ R)-I 
n=1 n=1 

The rest of the calculation follows Atiyah [2] and we summarise it very briefly. 
It is sufficient to assume that TcX splits into a sum of complex line bundles 
with curvatures Xi and, since we are dealing with the complexification of a real 
bundle, the total Chern form is given by 

g (1 + :!2) 
where d is the greatest integer less than or equal to m12. Now we compute 
the Pfaffians occurring in (5.2) to get 

Finally since 

. ) rrd x)2u 
hm Pk(X I ' ••• ,xd = . h( 12 ) 
k~oo SIn X· u i=1 I 
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uniformly on compact sets, as complex valued functions, it follows that 

lim (k! l)m(nkt(rk) = . :(~;2 ) k-+oo Sin u 

in the COO topology on the space n* (X) [u, U -I]. 0 

Theorem 5.1 is one way to understand the statement that the renormalised 
equivariant Euler class of the bundle N is A(U)-I . One thinks of the operation 

x f---t lim (k! Uk)m(nk)*JZ(X) , 
k-+oo 

when it is defined, as a renormalised integration along the fibres operation. It 
is defined when x is the Thorn/Euler class r of the normal bundle to the 
space of constant loops inside the space of all loops and so, following the finite 
dimensional analogy, the equivariant Euler class of N is A(U)-I . 

ApPENDIX: THE GEOMETRY OF THE LOOP SPACE 

The smooth loop space is modelled on a Frechet space. It is not true that 
any Frechet manifold admits smooth partitions of unity or a metric. The loop 
space, however is modelled on the particular Frechet space COO (Sl , V) where 
V is a finite dimensional real vector space. The Frechet topology is given by 
the family of seminorms 

maxl/k)(t)I. 
tESI 

However, in view of the inequalities 

l/k)(t)12 = lfa t /k+I)(S) dsl2 ::; fal l/k+I)1 2 ds 

we can use instead the family of L 2 -norms 

II/k )11 2 = fal l/k)(t)12 dt. 

Let d be the metric defined by this family of L 2 -norms. If B is a smooth bump 
function on lR centered at 0, then B (d (f, -)) is a smooth bump function 
on COO (Sl , V) centered at f. Thus COO (Sl , V) has enough smooth bump 
functions to guarantee the existence of partitions of unity on LX, see [1, §5.5]. 

A similar argument shows that any manifold with local model COO (Sl , V) 
admits a metric but for LX it is easier to use a direct argument. Suppose 
g( -, -) is a Riemannian metric on X. Let y be a loop in X and let WI' u-; 
be vector fields along the loop y, that is vectors in the tangent space TyLX. 
Then 

G(WI' W2) = fal g(WI(t), W2(t))dt 

is the required positive definite inner product on the tangent space TyLX. We 
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now construct an invariant tubular neighbourhood of the constant loops inside 
the space of all loops. Embed X isometrically inside lRn , then since X IS 

compact there exists e > 0 such that 
( 1) Any ball of radius e in X is geodesic ally convex. 
(2) The set Ne = {x E lRn I d(x, X) < e} is an open tubular neighbour-

hood of X in lRn • 

Now let U be the open set in LX such that any loop in U has radius less 
than e. Define a projection 7C: U --+ X as follows. Let a: LlRn --+ lRn be the 
map which assigns to each loop its zero Fourier coefficient. Then if y is in U, 
a(y) is in Ne and we define 7C to be the composite of a with the projection 
Ne ---+ X. Then U is the required invariant tubular neighbourhood of X in 
LX and 7C is the projection from the total space of this tubular neighbourhood 
onto X. 

Another interesting example where the hypotheses of Theorem 2.1 can be 
verified by a similar argument is the space of based loops in a Lie group with 
its natural circle action. 
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