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THE FLAT MODEL STRUCTURE ON Ch(R)

JAMES GILLESPIE

Abstract. Given a cotorsion pair (A,B) in an abelian category C with enough
A objects and enough B objects, we define two cotorsion pairs in the category
Ch(C) of unbounded chain complexes. We see that these two cotorsion pairs
are related in a nice way when (A,B) is hereditary. We then show that both
of these induced cotorsion pairs are complete when (A,B) is the “flat” co-
torsion pair of R-modules. This proves the flat cover conjecture for (possibly
unbounded) chain complexes and also gives us a new “flat” model category
structure on Ch(R). In the last section we use the theory of model categories
to show that we can define ExtnR(M,N) using a flat resolution of M and a
cotorsion coresolution of N .

1. Introduction

The derived category of an abelian category C is the category D(C) obtained by
formally inverting the homology isomorphisms (H∗-isomorphisms) in the category
Ch(C) of unbounded chain complexes. From the definition alone one immediately
finds difficulty proving anything about D(C). For example, for objects X,Y ∈ C,
is the class of morphisms D(C)(X,Y ) even a set? One application of Quillen’s
notion of a model category is that in some cases we can get a handle on the derived
category. After all, a model categoryM comes equipped with three classes of maps:
cofibrations, fibrations, and weak equivalences, as well as an associated homotopy
category Ho(M) in which the weak equivalences have been made isomorphisms.
So if we can put a model structure M on Ch(C) such that the weak equivalences
are H∗-isomorphisms, then we can identify Ho(M) with D(C). The rich model
structure now lets us describe the class of maps between objects X and Y as the
set of homotopy classes of maps between a cofibrant replacement of X and a fibrant
replacement of Y .

For a commutative ring R with 1, the category Ch(R) of unbounded chain
complexes has two well-known model category structures with weak equivalences
being the H∗-isomorphisms. The “projective” model structure is characterized
by having the fibrations being all epimorphisms and the cofibrations being the
monomorphisms with dg-projective cokernels. The dual “injective” model structure
has the cofibrations being the monomorphisms and the fibrations the epimorphisms
with dg-injective kernels. Here we will see that there is also a “flat” model structure
with cofibrations being the monomorphisms with dg-flat cokernels and the fibrations
being the epimorphisms with dg-cotorsion kernels. We also show that this “flat”
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model structure is monoidal; that is, it interacts properly with the tensor product
on Ch(R).

It is a folk theorem of Joyal [Joy84] that there always is an injective model struc-
ture on Ch(C) whenever C is a Grothendieck category. However, in many important
cases, such as when C is the category of sheaves on a ringed space or quasi-coherent
sheaves on a ringed space, we also have a tensor product. Unfortunately the in-
jective model structure is not monoidal and a desired projective model structure
does not exist since these categories do not have enough projectives. The methods
used here could perhaps be used to construct a “flat” model structure which is
monoidal. The author hopes to follow this up in future work.

To obtain the flat model structure on Ch(R) we use a theorem of Mark Hovey
(see [Hov00]) which relates complete cotorsion pairs on Ch(R) to model structures
on Ch(R). (A cotorsion pair is a pair of classes (A,B) in an abelian category
which are orthogonal with respect to Ext. A precise definition is given in the next
section.) Section 3 shows in a general way that any hereditary cotorsion pair in
Rmod induces cotorsion pairs in Ch(R) for which Hovey’s theorem can apply if
we know the induced cotorsion pairs are complete.

Next, section 4 looks at the two cotorsion pairs of complexes induced by the flat
cotorsion pair (F , C) and we show these are complete. The method follows Enochs’
approach of cogenerating the cotorsion pairs by a set. It follows immediately from
this work that every (possibly unbounded) chain complex has a flat cover, injective
envelope, dg-flat cover, and dg-cotorsion envelope.

Lastly, in section 5 we will see that we can compute Extn(M,N) for R-modules
M and N in terms of a flat resolution of M and a cotorsion coresolution of N .
Again we hope this method can be used to give a convenient way to compute Extn

in more general categories which may not have enough projectives.

2. Preliminaries

Let C be an abelian category. A cotorsion pair (also called a cotorsion theory) is
a pair of classes of objects (A,B) of C such that A⊥ = B and A = ⊥B. Here A⊥ is
the class of objects C ∈ C such that Ext1(A,C) = 0 for all A ∈ A, and similarly ⊥B
is the class of objects C ∈ C such that Ext1(C,B) = 0 for all B ∈ B. We will mainly
be considering cotorsion pairs in the category Rmod ofR-modules and the category
Ch(R) of chain complexes of R-modules. Two simple examples of cotorsion theories
in Rmod are (P ,A) and (A, I), where P is the class of projectives, I is the class
of injectives and A is the class of all R-modules.

The cotorsion pair is said to have enough projectives if for any C ∈ C there is a
short exact sequence 0 −→ B −→ A −→ C −→ 0, where B ∈ B and A ∈ A. We say it
has enough injectives if it satisfies the dual statement. These two statements are in
fact equivalent for a cotorsion pair as long as the category C has enough projectives
and injectives. (In the language we just described this means that the cotorsion
theory (P ,A) has enough projectives and (A, I) has enough injectives, where P is
the class of projective objects, I is the class of injective objects, and A is the class
of all objects in C.) We say that the cotorsion pair is complete if it has enough
projectives and injectives. For a good reference on cotorsion pairs see [EJ01]. The
equivalence of the statements above, although not difficult, is proved as Proposition
7.1.7 in [EJ01] for R-modules, but clearly holds for any abelian category C with
enough projectives and injectives.
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Another example of a cotorsion theory in Rmod is (F , C), where F is the class
of flat modules and C is the so-called cotorsion module. Proving that this cotorsion
pair is complete is nontrivial and two different proofs were recently given by the
three authors of [BBE00]. For a reference on cotorsion modules see [Xu96] and
[EJ01]. Another cotorsion pair that the author has in mind is the pair (F ′, C′), the
“flat” cotorsion pair on Sh(O), the category of sheaves of O-modules, where O is
a ringed space on X . This cotorsion pair is also complete as follows from [EO01].

We always assume our ring R is commutative with 1. A chain complex · · · −→
Xn+1

dn+1−−−→ Xn
dn−→ Xn−1 −→ · · · will be denoted by (X, d) or simply X . We say X

is bounded below (above) if Xn = 0 for n < k (n > k) for some k ∈ Z. We say it is
bounded if it is bounded above and below. The nth cycle module is defined as ker dn
and is denoted ZnX . The nth boundary module is Imdn+1 and is denoted BnX .
The nth homology module is defined to be ZnX/BnX and is denoted HnX . Given
an R-module M , we let Sn(M) denote the chain complex with all entries 0 except
M in degree n. We let Dn(M) denote the chain complex X with Xn = Xn−1 = M
and all other entries 0. All maps are 0 except dn = 1M . Given X , the suspension
of X , denoted ΣX , is the complex given by (ΣX)n = Xn−1 and (dΣX)n = −dn.
The complex Σ(ΣX) is denoted Σ2X and inductively we define ΣnX for all n ∈ Z.
Finally, a complex C is finitely generated if it is bounded and each Cn is a finitely
generated R-module. Similarly a complex D is finitely presented if it is bounded
and each Dn is a finitely presented module. It can be shown that a complex D is
finitely presented iff there exists a short exact sequence 0 −→ K −→ C −→ D −→ 0
with C,K finitely generated and Cn free for each n. For example, see Lemma 4.1.1
in [GR99].

Given two chain complexes X and Y we define Hom(X,Y ) to be the complex

· · · −→
∏
k∈Z

Hom(Xk, Yk+n) δn−→
∏
k∈Z

Hom(Xk, Yk+n−1) −→ · · · ,

where (δnf)k = dk+nfk−(−1)nfk−1dk. Note that the entries are indeed R-modules
since R is commutative. We leave it to the reader to verify that δn is R-linear and
that δnδn+1 = 0. Also the functor Hom(X,−) : Ch(R) −→ Ch(R) is left exact, and
exact if Xn is projective for all n. Similarly the contravariant functor Hom(−, Y )
sends right exact sequences to left exact sequences and is exact if Yn is injective for
all n. We also note that if 0 −→ I −→ X −→ Y −→ 0 is exact and the In are injective,
then 0 −→ Hom(Z, I) −→ Hom(Z,X) −→ Hom(Z, Y ) −→ 0 is exact. Indeed in degree
n we have the exact sequence∏

k∈Z
Hom(Zk, Xk+n) −→

∏
k∈Z

Hom(Zk, Yk+n) −→
∏
k∈Z

Ext1(Zk, Ik+n) = 0.

Of course the dual statement holds for a short exact sequence 0 −→ X −→ Y −→ P −→ 0
with each Pn projective.

Recall that Ext1
Ch(R)(Y,X) is the group of (equivalence classes) of short exact

sequences 0 −→ X −→ Z −→ Y −→ 0. We let Ext1
dw(Y,X) be the subgroup of

Ext1
Ch(R)(Y,X) consisting of those short exact sequences which are split in each

dimension. The next lemma is standard and we will not prove it.

Lemma 2.1. For chain complexes X and Y , we have

Ext1
dw(X,Σ(−n−1)Y ) ∼= HnHom(X,Y ) = Ch(R)(X,Σ−nY )/ ∼,

where ∼ is chain homotopy.
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In particular, for chain complexes X and Y , Hom(X,Y ) is exact iff for any n ∈ Z,
any f : ΣnX −→ Y is homotopic to 0 (or iff any f : X −→ ΣnY is homotopic to 0).
Also note that there is nothing special about Rmod and Ch(R) in the lemma.
The definitions of Hom and Ext1

dw easily carry over to any chain complex category
Ch(C), where C is an abelian category, and so does the proof of Lemma 2.1.

Given two chain complexes, X and Y , their tensor product X ⊗ Y is defined
by (X ⊗ Y )n =

⊕
i+j=nXi ⊗ Yj in degree n. The boundary map δn is defined

on the generators by δn(x ⊗ y) = dx ⊗ y + (−1)|x|x ⊗ dy, where |x| is the degree
of the element x. One can easily check that δ2 = 0 (and this would not be true
if we did not introduce the sign (−1)|x|. The tensor product and the above Hom
functor make Ch(R) a closed symmetric monoidal category. In fact, we have the
“enriched” adjointness Hom(X ⊗ Y, Z) ∼= Hom(X,Hom(Y, Z).)

3. Induced cotorsion pairs in chain complex categories

In this section we let C be any abelian category and (A,B) denote a cotorsion
pair on C. If every object of C is a quotient of an object in A, then we will say that
C has enough A objects. If every object of C is a subobject of an object in B, we
will say that C has enough B objects. We will see that whenever C has enough A
objects and enough B objects, then the cotorsion pair induces two cotorsion pairs
on Ch(C), the category of chain complexes on C. In particular, this holds for a
Grothendieck category with enough A objects and for any abelian category with
enough projectives and injectives. As an example, note that the category Sh(O)
does not have enough projectives, but it is a Grothendieck category in which every
object is a quotient of a flat sheaf. So our results will apply in this category along
with the flat cotorsion pair. The main example to keep in mind though is the flat
cotorsion pair of R-modules. It will play a central role in the rest of the paper.

In general, there are a few common and useful adjointness relationships between
an abelian category C and its chain complex category Ch(C). We start by listing a
few easy ones in the following lemma.

Lemma 3.1. Let C be an abelian category and let Ch(C) be the category of chain
complexes on C. Then for an object C ∈ C and X,Y ∈ Ch(C), we have the following
natural isomorphisms:

(1) C(C, Yn) ∼= HomCh(C)(Dn(C), Y ),
(2) C(Xn−1, C) ∼= HomCh(C)(X,Dn(C)),
(3) C(C,ZnY ) ∼= HomCh(C)(Sn(C), Y ),
(4) C(Xn/BnX,C) ∼= HomCh(C)(X,Sn(C)),
(5) Ext1

C(C, Yn) ∼= Ext1
Ch(C)(D

nC, Y ),
(6) Ext1

C(Xn, C) ∼= Ext1
Ch(C)(X,D

n+1C),
(7) Ext1

C(C,ZnY ) ∼= Ext1
Ch(C)(SnC, Y ),

(8) Ext1
C(ZnX,C) ∼= Ext1

Ch(C)(X,S
nC).

Proof. The first batch is very straightforward to prove. For (5), define a map

Ext1
Ch(C)(D

nC, Y ) −→ Ext1
C(C, Yn)

by sending a short exact sequence

0 −→ Y −→ Z −→ DnC −→ 0
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to the short exact sequence

0 −→ Yn −→ Zn −→ C −→ 0.

This is clearly well defined and the inverse map works by taking a short exact
sequence

0 −→ Yn
f−→ Zn

g−→ C −→ 0

and forming the pushout, P , of the arrows f and Yn −→ Yn−1. The crucial part is
to observe that any extension

0 −→ Y −→ Z −→ DnC −→ 0

must necessarily be a pushout square in degrees n and n− 1. This follows from the
universal property of a pushout. The proof of (6) is dual. For (7), define a map

Ext1
Ch(C)(S

nC, Y ) −→ Ext1
C(C,ZnY )

by sending short exact sequence

0 −→ Y −→ Z −→ SnC −→ 0

to the short exact sequence

0 −→ ZnY −→ ZnZ −→ C −→ 0.

In the other direction, consider a short exact sequence

0 −→ ZnY
f−→ Z −→ C −→ 0.

Form the commutative diagram below, where the rows are exact and the left square
is a pushout:

0 −−−−→ ZnY
f−−−−→ Z −−−−→ C −−−−→ 0

i

y i′
y ∥∥∥

0 −−−−→ Yn
f ′−−−−→ P −−−−→ C −−−−→ 0

Using the definition of pushout, the maps dn : Yn −→ Yn−1 along with the zero map
Z −→ Yn−1 induce a map δ : P −→ Yn−1 such that δf ′ = dn and δi′ = 0. Thus we
can form the exact sequence of complexes 0 −→ Y −→ Z −→ Sn(C) −→ 0, a portion of
which is shown below:

Yn+1 Yn+1 −−−−→ 0

d

y f ′d

y y
Yn

f ′−−−−→ P −−−−→ C

dn

y δ

y y
Yn−1 Yn−1 −−−−→ 0

The proof for (8) is dual to (7). �

Notice that (1) implies that Dn(P ) is projective whenever P is a projective
R-module. Dually, (2) implies that Dn(I) is injective whenever I is injective in
Rmod.
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Proposition 3.2. Ch(C) has enough projectives and enough injectives whenever
C has enough projectives and injectives. I.e., given X ∈ Ch(C), there exists a
projective chain complex P and an epimorphism P −→ X. Dually, there exists an
injective complex I and a monomorphism X −→ I.

Proof. Let X ∈ Ch(C) be given. We can find a surjection fn : Pn −→ Xn, where
Pn is projective. By the first adjoint relationship above we have a chain map
Dn(fn) : Dn(Pn) −→ X , which is surjective in degree n. Thus⊕

n∈Z
Dn(fn) :

⊕
n∈Z

Dn(Pn) −→ X

is surjective with
⊕

n∈ZD
n(Pn) projective. Similarly we can show that Ch(C) has

enough injectives. �

In particular, Ch(R) has enough projectives and injectives.

Definition 3.3. Let (A,B) be a cotorsion pair on an abelian category C. Let X
be a chain complex.

(1) X is called an A complex if it is exact and ZnX ∈ A for all n.
(2) X is called a B complex if it is exact and ZnX ∈ B for all n.
(3) X is called a dg-A complex if Xn ∈ A for each n, and Hom(X,B) is exact

whenever B is a B complex.
(4) X is called a dg-B complex if Xn ∈ B for each n, and Hom(A,X) is exact

whenever A is a A complex.

We denote the class of A complexes by Ã and the class of dg-A complexes by dgÃ.
Similarly, the B complexes are denoted by B̃ and the class of dg-B complexes are
denoted by dgB̃.

Note that if X is an A complex (resp. B complex), then Xn ∈ A (resp. B) since
A (resp. B) is closed under extensions.

One should be aware that in the case of the flat cotorsion pair (F , C) in Ch(R),
our definitions for “dg-cotorsion” and “cotorsion” are reversed from what appears
in the literature, much of which is gathered in [GR99]. Obviously, the author feels
that these complexes were named incorrectly: An adjective with the prefix “dg”
should stand for a sort of weaker “degreewise” notion rather than the adjective
without the “dg”, which should be a stronger categorical notion. The projective
complexes we define here from (P ,A) are indeed the categorical projectives and the
flat complexes obtained from (F , C) can be described as a colimit of projectives.
See [GR99].

Lemma 3.4.
(1) Bounded below complexes with entries in A are dg-A complexes.
(2) Bounded above complexes with entries in B are dg-B complexes.

Proof. First we prove (1). Let (X, d) be a bounded below complex with entries in
A. We need to show that Hom(X,B) is exact whenever B is a B complex. This
will follow from showing that any f : X → B is homotopic to zero, where B is a
B complex. So let such a map f : X → B be given and without loss of generality
assume Xn = 0 for n < 0. Now

(†) 0 −→ ker d1 −→ B1 −→ Imd1 −→ 0
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is exact and each object in the sequence belongs to B. Furthermore, f0 : X0 −→ B0

lands in Imd1 and so may be thought of as an element of HomC(X0, Imd1). Now
mapping X0 into (†) yields a short exact sequence

0 −→ HomC(X0, kerd1) −→ HomC(X0, B1) −→ HomC(X0, Imd1) −→ 0.

Thus f0 lifts to a map D1 : X0 −→ B1. I.e., there exists D1 such that d1D1 = f0.
Now set g1 = f1 −D1d1 and note d1g1 = d1f1 − d1D1d1 = d1f1 − f0d1 = 0 so that
g1 : X1 −→ B1 lands in Imd2. As above, we can lift g1 to a map D2 : X1 −→ B2 such
that d2D2 = g1 = f1 − D1d1. Therefore, d2D2 + D1d1 = f1. Continuing in this
way we can construct a homotopy {Dk} such that dkDk +Dk−1dk−1 = fk−1.

Statement (2) is dual to (1). Indeed suppose we are given a complex (X, d)
which is bounded above and such that each Xn is in B. We assume that Xn = 0
for n > 0. Let (A, d) be an A complex and f : A −→ X be a chain map. We want
to show f is homotopic to 0. First let Dn : An−1 −→ Xn be zero for n > 0. We first
construct D0 : A−1 −→ X0 such that D0d0 = f0. To do this note that Imd1 = ker d0

is in A and is contained in ker f0. Thus we have a map f̂0 : ker d−1 −→ X0 such
that f̂0d0 = f0. Since the short exact sequence 0 −→ ker d−1 −→ A−1 −→ Imd−1 −→ 0
has entries in A and X0 ∈ B, there exists D0 : A−1 −→ X0 which equals f̂0 when
restricted to ker d−1.Thus D0d0 = f̂0d0 = f0. Now define g−1 = f−1 − d0D0. Then
we have g−1d0 = f−1d0−d0D0d0 = f−1d0−d0f0 = 0. So Imd0 = ker d−1 ⊆ ker g−1.
This means we have a map ĝ−1 : ker d−2 −→ X1 such that ĝ−1d−1 = g−1. As above,
ĝ−1 extends to a map D−1 : A−2 −→ X−1. Thus d0D0 + D−1d−1 = (f−1 − g−1) +
(ĝ−1d−1) = (f−1−g−1)+g−1 = f−1. We can continue this way to build a homotopy
{Dk} from f to 0. �

Now suppose C has enough A objects and enough B objects as defined in the
beginning of this section. Then the argument used in Proposition 3.2 will also
show that for any chain complex X there exists a surjective map A −→ X with A
an A-complex. The dual argument works, too. So we have the following lemma.

Lemma 3.5. If (A,B) is a cotorsion pair in an abelian category C with enough
A objects and enough B objects, then Ch(C) has enough Ã objects and enough B̃
objects.

Of course if C does have enough projectives (respectively, injectives), then Ch(C)
has enough Ã objects (respectively, B̃ objects).

Proposition 3.6. Let (A,B) be a cotorsion pair in an abelian category C with
enough A objects and enough B objects. Then (Ã, dgB̃) and (dgÃ, B̃) are cotorsion
pairs in Ch(C).
Proof. First we consider the cotorsion pair (dgÃ, B̃). Let X ∈ (dgÃ)⊥. We will
argue that X ∈ B̃. First we want to show that ZnX ∈ B. But for A ∈ A, adjointness
property (5) from Lemma 3.1 tells us Ext1

C(A,ZnX) ∼= Ext1
Ch(C)(SnA,X) = 0. So

indeed ZnX ∈ B. Next we show X is exact. Let fn : A′ −→ ZnX be a surjection
with A′ ∈ A. It induces a map f : Sn(A′) −→ X which by hypothesis is homotopic
to zero since Sn(A′) ∈ dgÃ. If {Dn} is the homotopy, then dn+1Dn = fn and thus
BnX = ZnX . Thus X ∈ B̃. Therefore (dgÃ)⊥ ⊆ B̃.

It is easy to see that (dgÃ)⊥ ⊇ B̃ : Let X ∈ B̃ and say A ∈ dgÃ. It is enough
to show that Ext1

dw(A,X) = 0 and by Lemma 2.1 this follows from the fact that
Hom(A,X) is exact.
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Now we show that dgÃ = ⊥B̃. Let X ∈ ⊥B̃. Then Ext1(X,B) = 0 whenever
B is a B complex. In particular, Ext1

dw(X,B) = 0 and so by Lemma 2.1 we have
Hom(X,B) is exact whenever B is a B complex. It remains to show Xn ∈ A. So
let B ∈ B. Then using adjointness property (6) from Lemma 3.1 we see

Ext1
C(Xn, B) = Ext1

Ch(C)(X,D
n+1B) = 0

since Dn+1B ∈ B̃. So Xn ∈ A. This shows dgÃ ⊇ ⊥B̃ and dgÃ ⊆ ⊥B̃ is easy to
show (just use Lemma 2.1 again).

The method used to show (Ã, dgB̃) is a cotorsion pair is dual. �

Definition 3.7. Let (A,B) be a cotorsion pair in an abelian category C. Whenever
(Ã, dgB̃) and (dgÃ, B̃) are indeed cotorsion pairs, we will call them the induced
cotorsion pairs (of chain complexes). We say that the induced cotorsion pairs are
compatible if Ã = dgÃ∩E and B̃ = dgB̃∩E , where E is the class of exact complexes.

Corollary 3.8. If C is any abelian category with enough projectives and injectives
or if C is Grothendieck with enough A objects, then for any cotorsion pair (A,B) in
C we have the induced cotorsion pairs (Ã, dgB̃) and (dgÃ, B̃) of chain complexes.

Next we want to investigate when the induced cotorsion pairs are compatible.
This is important when one wishes to apply Hovey’s Theorem 1.2 from [Hov00] to
get a model structure on Ch(C).

Lemma 3.9. Every chain map from an A complex to a B complex is homotopic
to 0.

Proof. Let X be an A-complex and Y a B-complex, and let f : X −→ Y be a chain
map. The proof is in two stages. First we show that we can replace f with a
homotopic map g which satisfies dngn = 0 and gndn+1 = 0. Then we show that
any map g : X −→ Y with this property is homotopic to 0.

The map fn : Xn −→ Yn restricts to f̂n : ZnX −→ ZnY , and

0 −→ Zn+1Y −→ Yn+1 −→ ZnY −→ 0

is an exact sequence of objects in B. So

0 −→ Hom(ZnX,Zn+1Y ) −→ Hom(ZnX,Yn+1) −→ Hom(ZnX,ZnY ) −→ 0

is a short exact sequence. Therefore we have αn : ZnX −→ Yn+1 such that dn+1αn =
f̂n.

Now also 0 −→ ZnX −→ Xn −→ Zn−1X −→ 0 is an exact sequence of objects in A.
So 0 −→ Hom(Zn−1X,Yn+1) −→ Hom(Xn, Yn+1) −→ Hom(ZnX,Yn+1) −→ 0 is exact
and there exists βn : Xn −→ Yn+1 which equals αn when restricted to ZnX .

Now set gn = fn − (dn+1βn + βn−1dn). It is easy to see that g = {gn}n∈Z is a
chain map. It is homotopic to f since fn − gn = dn+1βn + βn−1dn. Furthermore,
a straightforward computation shows it satisfies dngn = 0 and gndn+1 = 0.

The remainder of the proof shows that whenever we have a chain map g such that
dg = 0 = gd, then g is homotopic to 0. Indeed we know that Imgn ⊂ ker dn and
Imdn+1 = kerdn ⊂ ker gn. This allows us to define a map ḡn : Xn/ZnX −→ ZnY

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE FLAT MODEL STRUCTURE ON Ch(R) 3377

which makes the following diagram commute:
Xn Xn Xn

dn

y π

y ygn
Zn−1X

∼=←−−−−
d̄n

Xn/ZnX −−−−→
ḡn

ZnY

If we set ĝn : = ḡnd̄
−1
n , then ĝn : Zn−1X −→ ZnY and ĝndn = gn. Now (using the

argument as above to obtain the maps αn) there exists a map δn : Zn−1X −→ Yn+1

such that dn+1δn = ĝn. One can easily check that the maps δndn : Xn −→ Yn+1 are
a homotopy from g to 0. �

Lemma 3.10. Let (A,B) be a cotorsion pair in an abelian category. Then Ã ⊂
dgÃ ∩ E and B̃ ⊂ dgB̃ ∩ E.

Proof. This follows immediately from the last lemma and the definitions. �
Lemma 3.10 tells us that the critical question in the notion of being compatible

is whether or not the containments Ã ⊃ dgÃ ∩ E and B̃ ⊃ dgB̃ ∩ E hold. We now
see that this is directly linked to whether or not (A,B) is a hereditary cotorsion
pair.

Definition 3.11. A cotorsion pair (A,B) in an abelian category is called hereditary
if one of the following hold:

(1) A is resolving. That is, A is closed under taking kernels of epis.
(2) B is coresolving. That is, B is closed under taking cokernels of monics.
(3) Exti(A,B) = 0 for any R-modules A ∈ A and B ∈ B and i ≥ 1.

See [GR99] for a proof that these are equivalent.

Theorem 3.12. Suppose (A,B) is a hereditary cotorsion pair in an abelian category
C. If C has enough projectives, then dgB̃ ∩ E = B̃ and if C has enough injectives,
then dgÃ ∩ E = Ã. In particular, if C has enough projectives and injectives, then
the induced cotorsion pairs on C are compatible.

Proof. We show dgB̃∩E ⊂ B̃ when C has enough projectives. The second statement
is dual.

Let X be an exact dg-B complex. We need to show Ext1(A,ZnX) = 0 for all A ∈
A. Let P◦ be an augmented projective resolution of A : P◦ = · · ·P2 −→ P1 −→ A −→ 0.
Since (A,B) is hereditary, P◦ ∈ Ã. Now 0 −→ ZnX −→ Xn −→ Zn−1X −→ 0 is exact
and Ext1(A,Xn) = 0, so we will be done if we can show that any f : A −→ Zn−1X
factors through Xn. But any f : A −→ Zn−1X induces a chain map Σn−1P◦ −→ X .
(This is easy to check: use the fact that X is exact and build lifts inductively.)
Since X is a dg-B complex and Σn−1P◦ is an A complex, this map is homotopic to
0. A chain homotopy {Dn} will give the desired lift f = dnDn−1. �
Corollary 3.13. Let (A,B) be a cotorsion pair in an abelian category with enough
projectives and injectives and let (Ã, dgB̃), (dgÃ, B̃) be the induced cotorsion pairs
of chain complexes. TFAE:

(1) (A,B) is hereditary.
(2) (Ã, dgB̃) is hereditary.
(3) (dgÃ, B̃) is hereditary.
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(4) Ã = dgÃ ∩ E.
(5) B̃ = dgB̃ ∩ E.
(6) The induced pairs (Ã, dgB̃), (dgÃ, B̃) are compatible and hereditary.

Proof. Clearly (6) implies (2), (3), (4), and (5). The plan is to show (2), (3), (4),
and (5) each imply (1) and finally that (1) implies (6).

For (2) ⇒ (1) let 0 −→ B′ −→ B −→ B′′ −→ 0 be a short exact sequence with
B′, B ∈ B. Then 0 −→ S◦B′ −→ S◦B −→ S◦B′′ −→ 0 is exact and S◦B′, S◦B ∈ dgB̃.
Thus S◦B′′ ∈ dgB̃, so B′′ ∈ B. For (3) ⇒ (1) we do the analogous thing. Show A
is resolving.

For (4) ⇒ (1) we show A is resolving. Let 0 −→ A′ −→ A −→ A′′ −→ 0 be exact
with A,A′′ ∈ A. Extend this sequence to a resolution P◦ = · · · −→ P2 −→ P1 −→
A −→ A′′ −→ 0, where the Pi’s are projective. Then P◦ is a dg-A complex since it
is bounded below. It is also exact (by construction). The hypothesis implies P◦ is
an A complex, so ker(A −→ A′′) = A′ ∈ A. In a similar way (5) ⇒ (1). Show B is
coresolving by dualizing the argument above.

It is left to show (1)⇒ (6). Theorem 3.12 shows that the cotorsion pairs induced
from (A,B) are compatible. So it suffices to show that (dgÃ, B̃) and (Ã, dgB̃) are
hereditary. The statements are in fact dual and so we are done after we show that
dgÃ is resolving. So let 0 −→ A′ −→ A −→ A′′ −→ 0 be exact with A,A′′ ∈ dgÃ.
Clearly, A′n ∈ A since (A,B) is hereditary. Now let X be a B complex. Then
0 −→ Hom(A′′, X) −→ Hom(A,X) −→ Hom(A′, X) −→ 0 must be exact. (Just check
in each degree). It follows by the fundamental lemma of homological algebra that
Hom(A′, X) is exact. Thus A′ is a dg-A complex and so dgÃ is resolving. �

The examples of cotorsion pairs given in section 2 are all hereditary. For each
example, the induced cotorsion pairs exist. Note however that for the flat cotorsion
pair (F ′, C′) on the category Sh(O), Theorem 3.12 only allows us to conclude that
F̃ ′ = dgF̃ ′ ∩ E , since Sh(O) does not have enough projectives. Nevertheless, the
author has been able to show that in this case the induced cotorsion pairs are still
compatible. He has not however found a general proof of Theorem 3.12 assuming
only the existence of A objects and B objects. The next lemma shows how one
can deal with “almost compatible” cotorsion pairs such as the sheaf situation just
mentioned.

Lemma 3.14. Suppose C is an abelian category and (A,B) is a cotorsion pair.

(1) If (dgÃ, B̃) is a cotorsion pair with enough injectives and dgÃ ∩ E = Ã,
then dgB̃ ∩ E = B̃.

(2) If (Ã, dgB̃) is a cotorsion pair with enough projectives and dgB̃ ∩ E = B̃,
then dgÃ ∩ E = Ã.

Proof. The two statement are dual. We will prove the first one. By Lemma 3.10
we just need to show dgB̃ ∩ E ⊂ B̃. So let X be an exact dg-B complex. Since
(dgÃ, B̃) has enough injectives we have a short exact sequence

0 −→ X −→ B −→ A −→ 0

with B ∈ B̃ and A ∈ dgÃ. Since X and B are each exact, so is A. But then A ∈ Ã
by hypothesis. So the sequence must split, forcing X to be a direct summand of
B. Since B̃ is closed under direct summands we have X ∈ B̃. �
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The question of whether or not the induced cotorsion pairs are complete when
the original cotorsion pair is complete is open.

4. The flat case

Again let F be the class of flat modules and let C be the class of cotorsion
modules. The goal of this section is to show that the cotorsion theories on Ch(R)
induced by (F , C) are both complete. Two different proofs were given in [BBE00]
that (F , C) is complete. One was given by L. Bican and R. El Bashir and the second
by E. Enochs. Our method of proof is analogous to Enochs’.

Complexes belonging to the class F̃ are called flat. That is, flat complexes are
exact with all cycle modules flat. Unfortunately the usual tensor product on Ch(R)
does not characterize flatness as it does in Rmod. In particular we may have a
chain complex X for which X ⊗ − is exact and yet X is not flat. Indeed X ⊗ −
is exact even if we just have Xn flat for all n. However, there is a different closed
symmetric monoidal structure on Ch(R) introduced by Enochs and Rozas which
behaves properly with the flat complexes. This was studied in [EGR97]. Here we
will briefly discuss the “new” tensor product and hom functor and their important
properties. The advantage is that many analogues and proof methods from Rmod
will carry over to Ch(R).

Given chain complexes X and Y , X⊗Y is the chain complex with nth entry
(X⊗Y )n = (X ⊗ Y )n/Bn(X ⊗ Y ) and boundary map

(X ⊗ Y )n
Bn(X ⊗ Y )

−→ (X ⊗ Y )n−1

Bn−1(X ⊗ Y )

given by (x⊗ y) = dx⊗ y. This gives us a bifunctor

−⊗− : Ch(R)×Ch(R) −→ Ch(R).

For a complex X , the functor X⊗− is right exact. The following is due to Enochs
and Garćıa-Rozas. Consult [GR99] for a proof.

Theorem 4.1. A chain complex F ∈ Ch(R) is flat iff F⊗− is exact.

Hom(X,Y ) is the chain complex defined by

Hom(X,Y )n = ZnHom(X,Y )

with

λn : Hom(X,Y )n −→ Hom(X,Y )n−1

the map (λf)k = (−1)ndk+nfk. This makes Hom(X,Y ) a chain complex with
nth degree just equal to HomCh(R)(X,Σ−nY ). In this way we have a functor
Hom(X,−) : Ch(R) −→ Ch(R) and a contravariant functor Hom(−, Y ) : Ch(R) −→
Ch(R). Both of these are left exact since the functors HomCh(R)(X,−) and
HomCh(R)(−, Y ) are left exact. (For a contravariant functor, take left exact to
mean that it takes right exact sequences to left exact sequences.) Furthermore, if
I ∈ Ch(R) is injective, then Hom(−, I) is exact because each In is injective, and
similarly if P is projective, then Hom(P,−) is exact.

The next theorem appears to be due to Enochs and Garćıa-Rozas. Rather than
repeat the (long) proofs here we refer the reader to [GR99], pp. 89–96.
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Proposition 4.2. Let X,Y, Z be chain complexes. We have the following natural
isomorphisms:

(1) Hom(X⊗Y, Z) ∼= Hom(X,Hom(Y, Z)) (Therefore, (colimi∈I Xi)⊗Y ∼=
colimi∈I(Xi⊗Y ) for a directed family {Xi } of chain complexes.)

(2) X⊗Y ∼= Y⊗X.
(3) X⊗ (Y⊗Z) ∼= (X⊗Y )⊗Z.
(4) For an R-module M , Dn(M)⊗X ∼= M ⊗R ΣnX.

The following definition will not be a surprise.

Definition 4.3. Let 0 −→ P −→ X −→ X/P −→ 0 be a short exact sequence of chain
complexes. We say the sequence is pure if for any Y , the sequence 0 −→ Y⊗P −→
Y⊗X −→ Y⊗X/P −→ 0 is exact.

Using Theorem 4.1 and Proposition 4.2 one can prove the following characteriza-
tions of purity. As noted in [GR99], the proofs are analogous to the corresponding
results for R-modules. See for example [Wis91], pp. 286–288.

Proposition 4.4. Let 0 −→ P −→ X −→ X/P −→ 0 be a short exact sequence of chain
complexes. TFAE:

(1) For any Y ∈ Ch(R), the sequence 0 −→ Y⊗P −→ Y⊗X −→ Y⊗X/P −→ 0 is
exact.

(2) The sequence

0 −→ HomZ(X/P , D(Q/Z)) −→ HomZ(X , D(Q/Z)) −→ HomZ(P , D(Q/Z)) −→ 0

is still exact after applying Y⊗− for any Y ∈ Ch(R).
(3) 0 −→ Hom(W,P ) −→ Hom(W,X) −→ Hom(W,X/P ) −→ 0 is exact for any

finitely presented complex W .
(4) For every commutative diagram

F
g−−−−→ G

f

y y
0 −−−−→ P −−−−→ X

with F,G finitely generated, projective and with each Fn, Gn free, there
exists β : G −→ P with βg = f .

(5) 0 −→ P −→ X −→ X/P −→ 0 is a direct limit of split exact sequences 0 −→
Ai −→ Bi −→ Ci −→ 0 (i ∈ I) with Ci finitely presented for all i ∈ I.

Next we generalize a lemma of Eklof and Trlifaj regarding transfinite extensions
and cotorsion pairs. The author learned this from [Hov00]. First some definitions:

A transfinite composition in an abelian category C is a map of the form X0
f−→

colimXα, where X : λ −→ C is a colimit-preserving functor and λ is an ordinal. We
refer to f as the transfinite composition of the maps Xα −→ Xα+1. If in addition,
the maps Xα −→ Xα+1 are all monomorphisms with cokernel in some class D, then
we refer to f : X0 −→ colimXα as a transfinite extension of X0 by D. If X0 ∈ D
as well, we just refer to colimXα as a transfinite extension of D. Notice that this
generalizes the usual notion of extension (λ = 2) and finite extensions (λ = n).

By way of example, let λ be a limit ordinal and let (Mα)α<λ be a family of
submodules of a module M . We call the family a continuous chain of submodules
if Mα ⊆ Mα+1 for all α < λ and if Mβ =

⋃
α<βMβ whenever β < λ is a limit
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ordinal. Clearly, M is the union of a continuous chain of submodules (Mα)α<λ iff
M0 ⊆ M is a transfinite composition of the maps Mα ⊆ Mα+1. If M0 ∈ D and
Mα+1/Mα ∈ D, where D is some class of modules, then M is a transfinite extension
of D. The same ideas apply to chain complexes as well.

Lemma 4.5. Let C be a bicomplete abelian category. Given Y ∈ C the class of all
objects X for which Ext1

C(X,Y ) = 0 is closed under transfinite extensions.

Notice that for a cotorsion pair (A,B), Lemma 4.5 shows that A is closed under
transfinite extensions.

Proof. Let λ be a limit ordinal and let X : λ −→ C be a colimit-preserving functor
such that Ext1

C(X0, Y ) = 0, Xα −→ Xα+1 is a monomorphism for all α < λ, and
Ext1
C(Xα+1/Xα, Y ) = 0 for all α < λ. We will show that Ext1

C(Xβ , Y ) = 0 for all
β ≤ λ by transfinite induction, where we take Xλ = colimα<λXα. The initial step
and the successor ordinal step of the induction are easy.

For the limit ordinal step, suppose β ≤ λ is a limit ordinal and Ext1
C(Xα, Y ) = 0

for all α < β. An element of Ext1
C(Xβ , Y ) is represented by a short exact sequence

0 −→ Y
f−→ N

p−→ Xβ −→ 0.

By pulling this short exact sequence back through the map Xα
iα−→ Xα+1 for each

α ≤ β, we get an enormous commutative diagram as implied by

0 −−−−→ Y
f−−−−→ N

p−−−−→ Xβ −−−−→ 0∥∥∥ x x
0 −−−−→ Y

fα−−−−→ Nα
pα−−−−→ Xα −−−−→ 0

and
0 −−−−→ Y

fα−−−−→ Nα
pα−−−−→ Xα −−−−→ 0∥∥∥ jα

y iα

y
0 −−−−→ Y

fα+1−−−−→ Nα+1
pα+1−−−−→ Xα+1 −−−−→ 0.

We will construct splittings sα : Xα −→ Nα of pα such that jαsα = sα+1iα by
transfinite induction on α. Then since Xβ is the colimit of the Xα, the sα give rise
to a unique map s : Xβ −→ N . The uniqueness of the map will show that indeed
ps = 1Xβ . Therefore we will get that Ext1

C(Xβ, Y ) = 0 as required to complete the
transfinite induction.

By the inductive hypothesis we obviously can choose a splitting tα : Xα −→ Nα
of pα. The transfinite induction will consist of modifying the tα to construct a
compatible collection sα. Begin by setting s0 = t0. This time the limit ordinal case
is easy: for a limit ordinal γ we take sγ : Xγ = colimα<γ Xα −→ Nγ to be the map
induced by the “colimit impostor” {kαsα}, where kα is the obvious map Nα −→ Nγ .
Now we consider the successor ordinal step. So suppose α is an ordinal and we have
constructed compatible sα’s. We now construct sα+1 such that jαsα = sα+1iα.
Note that pα+1(jαsα − tα+1iα) = 0. Since Ext1

C(Xα, Y ) = 0, one can find a map
h : Xα −→ Y such that fα+1h = jαsα − tα+1iα. Similarly, since

HomC(Xα+1, Y )
i∗α−→ HomC(Xα, Y ) −→ ExtC(Xα+1/Xα, Y ) = 0
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is exact we have a map g : Xα+1 −→ Y such that giα = h. Now set sα+1 =
tα+1 + fα+1g. Then pα+1sα+1 = pα+1tα+1 + pα+1fα+1g = pα+1tα+1 + 0 = 1Xα+1 .
So sα+1 is a splitting of pα+1. Also sα+1 is compatible with the other sα’s for
sα+1iα = (tα+1+fα+1g)iα = tα+1iα+fα+1h = tα+1iα+(jαsα−tα+1iα) = jαsα. �

For a chain complex X , we define its cardinality to be |
∐
n∈ZXn|. The author

learned the next lemma from [GR99].

Lemma 4.6. Let |R| ≤ κ, where κ is some infinite cardinal. Say X ∈ Ch(R) and
we are given x ∈ X (by this we mean x ∈ Xn for some n). Then there exists a pure
P ⊆ X with x ∈ P and |P | ≤ κ.

Proof. If x ∈ Xn, let Sn = Rx and Sn−1 = dn(Rx). Then S0 = · · · −→ 0 −→
Sn −→ Sn−1 −→ 0 −→ · · · is a subcomplex of X and |S0| ≤ κ. Denote S = S0 and
consider the class of quadruples (Y, Z, φ, ψ), where Y and Z are finitely generated
projective complexes with each entry free and φ : Y −→ Z and ψ : Y −→ S0 are maps
of complexes with the property that there exists a map Z −→ X making the diagram
below commute:

Y
φ−−−−→ Z

ψ

y y
S0 −−−−→ X

Let T0 = {(Yi, Zi, φi, ψi, )}i∈I0 be a set of representatives of this class (indexed
by a set I0). Thus for any (Y, Z, φ, ψ) with the above property there exists a k ∈ I0
and isomorphisms Yk

∼=−→ Y, Zk
∼=−→ Z such that the diagrams below commute:

Yk
φk−−−−→ Zk

∼=
y ∼=

y
Y

φ−−−−→ Z

Yk
∼=−−−−→ Y

ψk

y yψ
S0 S0

Then we have |T0| ≤ κ. (To see this just note that T0 is a subset of the set
of ALL quadruples (Y, Z, φ, ψ) (up to isomorphic representatives), and this set
also has cardinality less than or equal to κ, by a simple counting argument). For
each (Yi, Zi, φi, ψi) ∈ T0 pick an extension ψi : Zi −→ X of ψ. Then set S1 =
S0 +

∑
i∈I0 ψi(Zi). Then we have |S1| ≤ |S0|+ |

∑
i∈I0 ψi(Zi)| ≤ |S0|+ |T0| · |R| ≤ κ.

Now continue inductively. After constructing x ∈ So ⊆ S1 ⊆ S2 ⊆ · · · ⊆ Sn−1

with |Si| ≤ κ, consider the class of quadruples (Y, Z, φ, ψ) for which Y and Z are
finitely generated projective complexes with each degree free and there exists a map
making the diagram

Y
φ−−−−→ Z

ψ

y y
Sn−1 −−−−→ X
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commute. Let Tn = {(Yi, Zi, φi, ψi)}i∈In be a set of representatives as above. Again
|Tn| ≤ κ since |Sn−1| ≤ κ. Now for each i ∈ In pick one such extension, ψi, and
set Sn = Sn−1 +

∑
i∈In ψi(Zi). Then Sn−1 ⊆ Sn and |Sn| ≤ |Sn−1|+ |Tn| · |R| ≤ κ.

Now set P =
⋃
Sn. Then |P | ≤ κ. We show that P ⊆ X is pure. Suppose we

are given a commutative diagram

F
g−−−−→ G

f

y yh
0 −−−−→ P −−−−→ X

where F and G are finitely generated projective complexes which are free in each
degree. To show that P ⊆ X is pure we want a map G −→ P making the upper left
triangle commute. But since F is finitely generated, f(F ) ⊆ Sn for some n. As a re-
sult (F,G, g, f) is isomorphic to an element (Yk, Zk, φk, ψk) ∈ Sn. By construction,
ψk(Yk) ⊆ Sn+1, and therefore we may complete the diagram as desired. �

Since we have a tensor product which characterizes flatness and purity, the next
two lemmas have proofs exactly like the analogous lemmas in Rmod.

Lemma 4.7. Let F be a chain complex. If F is flat and P ⊆ F is pure, then
(1) F/P is flat.
(2) P is flat.

Proof. Let 0 −→ X −→ Y −→ Z −→ 0 be a short exact sequence. Since 0 −→ P −→ F −→
F/P −→ 0 is a pure sequence we get the following commutative diagram:

0y
0 −−−−→ X⊗P −−−−→ X⊗F −−−−→ X⊗F/P −−−−→ 0y y y
0 −−−−→ Y⊗P −−−−→ Y⊗F −−−−→ Y⊗F/P −−−−→ 0y y y
0 −−−−→ Z⊗P −−−−→ Z⊗F −−−−→ Z⊗F/P −−−−→ 0y y y

0 0 0
The rows are exact because P is pure and the center column is exact because F is
flat. Applying the snake lemma tells us that

0 −→ X⊗P −→ Y⊗P −→ Z⊗P
and

0 −→ X⊗F/P −→ Y⊗F/P −→ X⊗F/P
are both exact. �

Lemma 4.8. If 0 −→ X −→ Y −→ F −→ 0 is a short exact sequence of chain complexes
and F is flat, then the sequence is pure.
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Proof. Let Z be arbitrary. By Proposition 3.2, Ch(R) has enough projectives, so
we have a short exact sequence 0 −→ K −→ P −→ Z −→ 0, where P is projective. We
have the commutative diagram:

0y
X⊗K −−−−→ Y⊗K −−−−→ F⊗K −−−−→ 0y y y

0 −−−−→ X⊗P −−−−→ Y⊗P −−−−→ F⊗P −−−−→ 0y y y
X⊗Z −−−−→ Y⊗Z −−−−→ F⊗Z −−−−→ 0y y y

0 0 0
The 0 on the left is because any projective complex is flat. The snake lemma now
tells us that

0 −→ X⊗Z −→ Y⊗Z −→ F⊗Z −→ 0
is exact. �

Note that the direct limit of pure exact sequences is pure exact since ⊗ commutes
with direct limits. In particular, an increasing union of pure subcomplexes is again
a pure subcomplex. Also if P ⊆ X is pure and P ⊆ S ⊆ X , then P ⊆ S is pure:
For given any Z, the composite Z⊗P −→ Z⊗S −→ Z⊗X must be injective (because
P is pure) and this implies Z⊗P −→ Z⊗S is injective.

We are now ready to prove that (F̃ , dgC̃) is complete. We use a generalized
version of a well-known theorem of Eklof and Trlifaj [ET99] which says that a
cotorsion pair (A,B) in Rmod is complete when it is cogenerated by a set. (This
result actually holds in any Grothendieck category with enough projectives, as
Hovey proved in [Hov00].) We say that a cotorsion pair (A,B) is cogenerated by a
set G if G⊥ = B. The next proposition provides us with a set which cogenerates
(F̃ , dgC̃).
Proposition 4.9. Let |R| ≤ κ, where κ is some infinite cardinal. Let G be the
set of all flat complexes F ∈ Ch(R) for which |F | ≤ κ (take one representative for
each isomorphism class). Then any flat complex F ∈ Ch(R) is (isomorphic to) a
transfinite extension of G.

Proof. Let F ∈ Ch(R). We will show that F is equal to the union of a continuous
chain (Pα)α<λ of pure subcomplexes of F with |P0| ≤ κ and |Pα+1/Pα| ≤ κ for all
α. By the above lemmas, it follows that F is a transfinite extension of G.

Let T =
∐
n∈Z Fn. We may well order the set T so that for some ordinal λ,

T = { x0, x1, x2, . . . , xα, . . .}α∈λ.
For x0, use Lemma 4.6 to find a pure P1 ⊆ F containing x0 with |P1| ≤ κ. Then
F/P1 is flat by Lemma 4.7. Now x1 ∈ F/P1. Therefore we can find a pure P2/P1 ⊆
F/P1 containing x1 such that |P2/P1| ≤ κ. Then (F/P1)/(P2/P1) ∼= F/P2 is flat.
It follows by Lemma 4.8 that P2 is pure. Note that P1 ⊆ P2 and x0, x1 ∈ P2.
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In general, given any ordinal α, and having constructed pure subcomplexes P1 ⊆
P2 ⊆ · · · ⊆ Pα where xγ ∈ Pα for all γ < α, we find a pure subcomplex Pα+1 ⊆ F as
follows: xα ∈ F/Pα, so by Lemma 4.6 we can find a pure subcomplex Pα+1/Pα ⊆
F/Pα containing xα such that |Pα+1/Pα| ≤ κ. Thus (F/Pα)/(Pα+1/Pα) ∼= F/Pα+1

is flat, whence Pα+1 is pure. We now have P1 ⊆ P2 ⊆ · · · ⊆ Pα ⊆ Pα+1 and
x0, x1, . . . , xα ∈ Pα+1.

For the case when α is a limit ordinal we just define Pα =
⋃
γ<α Pγ . Then as we

noted above, Pα is pure, and xγ ∈ Pα for all γ < α. This construction gives us the
desired continuous chain (Pα)α<λ. �
Corollary 4.10. Let (F , C) be the flat cotorsion pair on Rmod. Then the induced
cotorsion pair (F̃ , dgC̃) on Ch(R) is complete.

Proof. As in the hypothesis of Proposition 4.9, let |R| ≤ κ, where κ is some infinite
cardinal, and let G be the set of all flat complexes F ∈ Ch(R) for which |F | ≤ κ.
Then G⊥ = dgC̃:

(⊇). This is clear since (F̃ , dgC̃) is a cotorsion theory and G ⊆ F̃ .
(⊆). Suppose we are given any chain complex C such that Ext1(G,C) = 0 for

all G ∈ G. Since any flat complex is a transfinite extension of complexes in G,
Lemma 4.5 tells us Ext1(F,C) = 0 for any flat complex F . Therefore C ∈ dgC̃. So
G⊥ ⊆ dgC̃. Since (F̃ , dgC̃) is cogenerated by a set, it is complete. �

Next we prove that (dgF̃ , C̃) is complete. The method of proof is entirely anal-
ogous to the method we used above. We just need to derive the proper analogs to
Lemmas 4.6 - 4.8. We will use the following well-known characterization of dg-flat
complexes. The reader can find a proof of this in [GR99].

Proposition 4.11. A chain complex F is dg-flat iff each Fn is flat and F ⊗ E is
exact whenever E is an exact complex.

With this in hand we start with the proper analog to the notion of pure.

Definition 4.12. A short exact sequence 0 −→ X −→ Y −→ Z −→ 0 is called dg-pure
if 0 −→ E⊗X −→ E⊗Y −→ E⊗Z −→ 0 is exact whenever E is an exact complex.

Lemma 4.13. Let |R| ≤ κ, where κ is some infinite cardinal. Say X ∈ Ch(R) and
we are given x ∈ X. Then there exists a dg-pure P ⊆ X with x ∈ P and |P | ≤ κ.

Proof. This is easy since any pure subcomplex is dg-pure. We just use Lemma 4.6.
�

Lemma 4.14. Let F be a dg-flat complex. If P ⊆ F is pure, then P and F/P are
dg-flat.

Proof. Let M ∈ Ch(R). Then

0 −→ P⊗Dn(M) −→ F⊗Dn(M) −→ F/P⊗Dn(M) −→ 0

is exact. By Proposition 4.2, we see that

0 −→ Σn(P ⊗RM) −→ Σn(F ⊗RM) −→ Σn(F/P ⊗RM) −→ 0

is also exact. Therefore P ⊆ F is pure in each degree.
By Proposition 4.11 it remains to show that for any exact complex E, P ⊗ E

and F/P ⊗E are exact. Notice however that 0 −→ P ⊗E −→ F ⊗E −→ F/P ⊗E −→ 0
is exact (because it is exact in each degree). So by the fundamental lemma of

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3386 JAMES GILLESPIE

homological algebra, showing P ⊗E exact is equivalent to showing F/P ⊗E exact.
But it is not hard to see why P ⊗ E is exact: We know that P ⊗ E −→ F ⊗ E is
injective, so if we let z ∈ (P ⊗ E)n be a cycle, then we may view it as a cycle in
(F ⊗ E)n. Since F ⊗ E is exact, z ∈ Bn(F ⊗ E). But by the very definition of ⊗
and the fact that P⊗E −→ F⊗E is injective, z must be a boundary in (P ⊗ E)n.
Hence P ⊗ E is exact. �
Lemma 4.15. If 0 −→ X −→ Y −→ F −→ 0 is a short exact sequence of chain
complexes and F is dg-flat, then the sequence is dg-pure.

Proof. Let S : 0 −→ X −→ Y −→ F −→ 0 be such a sequence and E an exact complex.

We must show that X⊗E f⊗ 1−−−→ Y⊗E is injective. We know that S is pure in each
degree since each Fn is flat. Therefore, for all pairs (m,n), 0 −→ Xn ⊗ Em −→ Yn ⊗
Em −→ Fn⊗Em −→ 0 is exact which implies that 0 −→ X⊗E −→ Y ⊗E −→ F ⊗E −→ 0
is exact.

Now suppose x ∈ (X⊗E)n and (f⊗ 1)(x) = 0. This means

(f ⊗ 1)(x) ∈ Bn(Y ⊗ E).

But f ⊗ 1 is a chain map and X ⊗ E −→ Y ⊗ E is injective, so we must have
x ∈ Zn(X ⊗ E). Now F ⊗ E is exact since F is dg-flat and it follows from the
fundamental lemma of homological algebra that f ⊗1 is an H∗-isomorphism. Since
the isomorphism induced by f ⊗ 1 is exactly the definition of the map f⊗ 1, we see

that x ∈ Bn(X ⊗ E). I.e. x = 0. So X⊗E f⊗ 1−−−→ Y⊗E is injective. �
Lemma 4.16. A direct limit of dg-pure sequences is dg-pure. In particular, a direct
union of dg-pure subcomplexes is dg-pure.

Proof. Let 0 −→ Pi −→ Xi be dg-pure (i ∈ I). Then for any exact complex E,
0 −→ Pi⊗E −→ Xi⊗E is exact. So 0 −→ colimi∈I(Pi⊗E) −→ colimi∈I(Xi⊗E) is
exact. By Rozas’ adjointness Proposition 4.2, we have 0 −→ (colimi∈I Pi)⊗E −→
(colimi∈I Xi)⊗E is exact, so that colimi∈I Pi is dg-pure. �
Proposition 4.17. Let |R| ≤ κ, where κ is some infinite cardinal. Let G be the
set of all dg-flat complexes F ∈ Ch(R) for which |F | ≤ κ (take one representative
for each isomorphism class). Then any dg-flat complex F ∈ Ch(R) is (isomorphic
to) a transfinite extension of G.

Proof. This follows exactly as the proof of Proposition 4.9. Just replace the word
“flat” by “dg-flat” and the word “pure” by “dg-pure” and quote the analogous
Lemmas 4.13 - 4.16. �

The following corollary follows as well by referring to Lemma 4.5.

Corollary 4.18. Let (F , C) be the flat cotorsion pair on Rmod. Then the induced
cotorsion pair (dgF̃ , C̃) on Ch(R) is complete.

We finish this section by observing that each chain complex X has a (dg-)flat
cover and a (dg-)injective envelope. This problem was recently solved by the group
of authors in [Ald01] for the case of flat covers and dg-cotorsion envelopes.

Recall that if A is a class in an abelian category C and C ∈ C, then an A-precover
of C is a morphism φ : A −→ C with A ∈ A such that given any other morphism
φ′ : A′ −→ C with A′ ∈ A, there exists a map ψ : A′ −→ A such that φ′ = φψ. An
A-precover φ is called an A-cover if whenever ψ satisfies φ = φψ we must have ψ as
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an automorphism. A-pre-envelopes and A-envelopes are defined dually. Note that
if (A,B) is a cotorsion theory with enough projectives and injectives, then we have
that every object has an A-precover and a B-pre-envelope.

Corollary 4.19. Every chain complex X has a flat cover, a dg-flat cover, a cotor-
sion envelope, and a dg-cotorsion envelope.

Proof. We refer to [Xu96], pp. 30–37. Since the class of flat and dg-flat complexes
are closed under direct limits, Xu’s Theorem 2.2.6 and 2.2.12 give us the result.
Although the proofs given are for R-modules, they clearly hold for complexes,
too. �

5. An alternate definition of Ext

In this section we assume that the reader has some familiarity with Quillen’s
notion of a model category introduced in [Qui67]. This is a category M in which
we can do homotopy theory. We refer the reader to [DS95] for a readable introduc-
tion to model categories and to [Hov99] for a more in-depth presentation. We will
show that we have a “flat” model structure on Ch(R) and that this gives us an
alternate description of Ext. We also show that this model structure is monoidal.
For R-modules M and N , ExtnR(M,N) is normally defined by taking a projective
resolution P• of M and taking the homology of HomR(P•, N). Alternatively, it is
often defined by taking an injective coresolution I• of N and taking the homology
of HomR(M, I•). We will show that we can also compute ExtnR(M,N) by taking a
“flat” resolution F• of M and a “cotorsion” coresolution C• of N and taking the ho-
mology of the “enriched” complex Hom(F•, C•). Essentially this works because in
each situation there is a cotorsion pair (A,B) of R-modules which induces two com-
plete cotorsion pairs on Ch(R) that are compatible in the sense of Definition 3.7.

The next corollary follows from Mark Hovey’s Theorem 1.2 of [Hov00] which
relates cotorsion pairs to model structures on abelian categories.

Corollary 5.1. There is a monoidal model category structure on Ch(R), where the
weak equivalences are the H∗-isomorphisms, the (trivial) cofibrations are the injec-
tions with (exact) dg-flat cokernels, and the (trivial) fibrations are the surjections
with (exact) dg-cotorsion kernels. In particular dgF̃ is the class of cofibrant objects
and dgC̃ is the class of fibrant objects.

Proof. As we have seen in section 4, both of the induced cotorsion pairs (dgF̃ , dgC̃∩
E) and (dgF̃ ∩E , dgC̃) are complete. To get the model structure use the converse of
Hovey’s Theorem 1.2 (taking P to be the class of all short exact sequences in the
theorem) along with his Definition 4.1. To see that the model structure is monoidal
(with respect to the usual tensor product ⊗) we will now prove the hypotheses of
Hovey’s Theorem 6.2.

First we observe that Hovey’s notion of a P-pure short exact sequence in this
case just means a short exact sequence of complexes that is pure in each degree.
According to the theorem we now must check:

(1) Every cofibration is a pure injection in each degree.
(2) If X and Y are dg-flat, then X ⊗ Y is dg-flat.
(3) If X is dg-flat and Y is flat, then X ⊗ Y is flat.
(4) S(R) is dg-flat
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(1) is obvious since a cofibration is an injection with dg-flat cokernel. Also (4) is
obvious since the complex is bounded and R is flat. Now for (2), since for any pair
of integers i, j we know that Xi⊗Yj is flat, it follows that

⊕
(Xi⊗Yj) = (X⊗Y )n is

flat. Also, for any exact complex E, Y ⊗E is exact. So X⊗ (Y ⊗E) = (X⊗Y )⊗E
is exact. For (3), say X is dg-flat and Y is flat. Then Y is also dg-flat, so by (2)
X ⊗ Y is dg-flat. But Y is also exact, so X ⊗ Y must be exact, too. Therefore,
X ⊗ Y is flat. �

Let M and N be R-modules. Recall the usual definition of ExtnR(M,N). We
let (P•, ε) be a projective resolution of M , so that · · ·P2 −→ P1 −→ P0

ε−→ M −→ 0 is
exact with each Pn a projective module. Then

(1) Extn(M,N) = H−n(Hom(P•, N)).

It is easy to see that this is the same as Ch(R)(P•, Sn(N))/ ∼. So we get the
equation

(2) Extn(M,N) = Ch(R)(P•, Sn(N))/ ∼,

where ∼ is chain homotopy.

Definition 5.2. Let (A,B) be a cotorsion pair of modules and let M be a module.
Then (A•, ε) = · · · −→ A1 −→ A0

ε−→ M −→ 0 is called an (A,B)-resolution of M
if the sequence is exact with each An ∈ A and each cycle module in B. Dually,
(B•, η) = 0 −→ M

η−→ B0 −→ B1 −→ · · · is called an (A,B)-coresolution of M if the
sequence is exact with each Bn ∈ B and each cycle module in A.

Clearly if (A,B) is complete, then (A,B)-resolutions and coresolutions exist for
all modules. In particular, (F , C) resolutions and coresolutions exist. We will simply
call them flat resolutions and cotorsion coresolutions, respectively. The next lemma
just relates this language to Hovey’s model structure induced by (F , C).

Lemma 5.3. Let M be a module and (A,B) be a hereditary cotorsion pair for
which both induced cotorsion pairs on Ch(R) are complete.

(a) If (A•, ε) is an (A,B)-resolution of M , then A• is a cofibrant replacement of
S(M) in the model structure induced by (dgÃ, dgB̃ ∩ E) and (dgÃ ∩ E , dgB̃).

(b) If (B•, η) is an (A,B)-coresolution of M , then B• is a fibrant replacement
of S(M) in the model structure induced by (dgÃ, dgB̃ ∩ E) and (dgÃ ∩ E , dgB̃).

Proof. We will just prove (a); part (b) is dual. Since A• is bounded below and each
entry belongs to A, it is a dg-A complex. I.e. A• is cofibrant. Furthermore, the
map ε̄ : A• −→ S(M) defined by ε in degree 0 is clearly a surjective H∗-isomorphism
with ker ε̄ a B complex (trivially fibrant). �

Now we apply the power of model categories. With any model structure on
Ch(R) in which the weak equivalences are the H∗-isomorphisms we have

HoCh(R)(S(M), Sn(N)) = Ch(R)(Q,R)/ ∼,

where Q is a cofibrant replacement of S(M) and R is a fibrant replacement of
Sn(N). First consider the usual “projective” model structure on Ch(R) (induced
by the usual projective cotorsion pair of R-modules using Theorem 3.12 and The-
orem 1.2 of [Hov00]). By letting P• be a projective resolution of M and using
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Lemma 5.3 we get

(3) HoCh(R)(S(M), Sn(N)) = Ch(R)(P•, Sn(N))/ ∼

because P• is a cofibrant replacement of S(M) and Sn(N) is already fibrant. Our
new “flat” model structure gives us a new description of HoCh(R)(S(M), Sn(N))
since we have changed the fibrations and cofibrations. Now letting F• be a flat
resolution of M and C• be a cotorsion resolution of N , we see that

(4) HoCh(R)(S(M), Sn(N)) = Ch(R)(F•,ΣnC•)/ ∼ .

Putting equations (2), (3), and (4) together we get

Extn(M,N) = Ch(R)(F•,ΣnC•)/ ∼ .

Using Lemma 2.1 we see that this just expresses Extn(M,N) as the homology
of the enriched hom-complex:

Extn(M,N) = H−nHom(F•, C•).

Compare this to the original definition (1) above.
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