
Purdue University
Purdue e-Pubs

International Compressor Engineering Conference School of Mechanical Engineering

1972

The Flexibility Matrix for a One Line Structure and
Its Application for Stress and Vibration Analysis in
Hermetic Compressors
P. Madsen
Danfoss A/S

Follow this and additional works at: https://docs.lib.purdue.edu/icec

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.
Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/
Herrick/Events/orderlit.html

Madsen, P., "The Flexibility Matrix for a One Line Structure and Its Application for Stress and Vibration Analysis in Hermetic
Compressors" (1972). International Compressor Engineering Conference. Paper 41.
https://docs.lib.purdue.edu/icec/41

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Ficec%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/icec?utm_source=docs.lib.purdue.edu%2Ficec%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/me?utm_source=docs.lib.purdue.edu%2Ficec%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/icec?utm_source=docs.lib.purdue.edu%2Ficec%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engineering.purdue.edu/Herrick/Events/orderlit.html
https://engineering.purdue.edu/Herrick/Events/orderlit.html


THE FLEXIBILITY MATRIX FOR A ONE LINE STRUCTURE AND ITS 
APPLICATION FOR STRESS AND VIBRATION ANALYSIS IN HERMETIC COMPRESSORS 

P. Madsen 
Danfoss, Nordberg, Denmark 

INTRODUCTION 
Dealing with ·design of pressure tubes for hermetic compressors, it is very important at an early stage to be able to evaluate the stresses in the tube, when it is subjected to given, static displacements. 
Mostly the pressure tube has a complicated, spatial form, which makes it difficult to apply the usual elementary methods of calculation. An extra difficulty arises because the tube is statically indeterminate to the sixth degree. 
In the following a systematic method applicable to a one line structure is described. The principle of the method does not represent anything new. It is thoroughly described in ref. (1) and the basic principles have been used for many years in applied mechanics. However the method is so applicable that it ought to be used in other areas. 

TRANSPORT MATRICES 
Consider two points A and B of a body D, which may be an element of a larger, continous structure 

z 
Figure l 
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Assume that D moves as a rigid body. The displacement of point A can be described by translation V~ and rotation ~ • It is desired to know the corresponding displacement of point B expressed as a function of V., and w,., • 
We have for the translation 

(1) 
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and for the rotation 

(2) 

where RB• (a., b, e) is the vector from A to B. 

Translations and rotations are collected in the column vector 

{vJ. {~] 
and the displacement vector at point B can be written 

(3) 

where the transport matrix is defined as 

o 1 o ~c o a. 
[T] • o o 1 b -a. o 

[

i 0 0 0 c. -b] 
"" 000100 

0 0 0 0 -1 0 
000001 

The transport matrix has the property of transferring a displacement from one point to another in the rigid body. 
By a corresponding method forces can be transferred from one point to another. Assume that the element is subjected to a system of external forces and that equilibrium exist when the force vectov g:.e and the moment vector m8 are added at point B. We wish to find the static equivalent force vector of point A expressed by ~8 and m8 • We have 

4 .. · ~8 
n;," • Fn.a+ RB ~~ h 

and collecting the forces and the moments in a column vector 

fQ} .. {!J 
the static equivalent force system at A 



can be written 

(4) 

where * indicates a transposed matrix. 

FLEXIBILITY MATRICES 

y 
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Figure 2 

We now assume that the element is fixed at 
point A and is subjected to a force system 

{Q}c at c. Assuming that HOOKE's law is 
valid for the material and stability pro
blems do not exist, the deformations 
at c is proportional to the force system, 
and 

(5) {V}'-"' [F)~ {QJc. 

where ifJRe is the flexibility matrix of the 

section AC in point c. Each element of the 
flexibility matrix represent a displacement 

caused by a unit value of one of the actions 

while the other actions are zero. In general 

the element f 1
. is the i-th displacement due 

to a unit valu~ of the j-th action. 

In the same way we introduce the flexibility 

matrix [F]FI8 and [F]6t. . We wish to find the 

relationship between the matrices [F] 11e,, [F]FI(. 
and [FJec.. . 
From (4) the force system at B can be written 

( 6) 

and according to (5) the displacement at B 
is 

and using (6), we have 

{V} e = [FJAe (TJ~ {Q}, 

F'rom ( 3) this displacement can be transported 

to point C giving 

(7) 

The displacement vector iVJ: is due to the 
deformations of the element AB. To this is 

added the displacements due to the deforma
tions in the element BC 

( 8) [V}~ "" (FJsr. {Q}e. 
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and 

from (7) and (8) 

< 9 > (VJe. • [T)se_ [F}R8 [TJ: (Q}'- + (F]6c. {Q}r... 

Substituting (5) in (9), we have 

(F]~{Q}e"' (T]ec.. (F]AB [TJ~ [Q]e. + [F]er... fQ}c.. 

which may be written 

(10) [F]Af. ... [T]8
c.. [F]Ff8 [TJ! + [F]&. 

The equation shows how the resulting 
flexibility matrix of the two sections AB 
and BC coupled in series is calculated. 

z 
Figure 3 
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Let AB in figure 3 be a beam that is fixed 
at A and free at B. Consider an element ds 

situated at a distance s from the support 
measured along the centroidal axis of the 
beam. Imposing a coordinate system xM, yM, 
z upon the element, where xM is the 
t~ngent to the centroidal axis and yM and 
z coincide with the principal axes of the 

c~oss-section. 
In this coordinate system the flexibility 

matrix of the element is 

..L . 
QFI ~ SYHI"f:ET£1~ 

0 0 Jtij- .f cJ.4 
C> 0 0 '*'..:L 
0 0 0 0 E'l~ -1 

0 OODOEI:~ 

where E is the modulus of elasticity, G is 
the modulus of rigidity, A is the cross
sectional area, I and I are the principal 
moments of inerti~, K isYthe polar moment 
of inertia, and )A; is a factor that depends 
on the form of the cross-section. 

The element system is rotated so that the 
axes coincide with the principal coordinate 
system. Denoting the rotating matrix [R] 
we have 

where 1 indicates a rotated matrix. 



Using equation (101 summing all intinite
simal elements from the support to the free 
end, we obtain 

~
S& ~ 

( lll [F] .. [Tl~.o)l [~Cs)] [l=(-6)]( Rl~]* (Tl-\)j dA 
~ ~ ~ 

. 0 

where [T(s)]$e, is the transport matrix from s 
to B. 

Using equation (lll the flexibility matrix 
Of an arbitrary one line structure can be 
calculated. In order to reduce the computer 
time it is an advantage to calculate the 
flexibility matrices for the standard ele
ments of the system, first of all the 
straight and the curved elements. The total 
flexibility matrix can now be determined 
by successive rotations and transports using 
equation (10). 

APPLICATIONS TO HERMETIC COMPRESSORS 

Figure 4 

Consider figure 4 and assume that the dia
gram represent a pressure tube for a herme
tic compressor. It is further assumed that 
we have calculated the flexibility matrix 
[F]0 "' of the tube at point 0. 

In a compressor the tube is fixed at both 
ends, and if the support at 0 is subjected 
to a displacement {V) 0 the reaction forces 

[QJ
0

can be determined applying equation (5) 

{Q}0 "' [F):: {Vj
0 

Now the static equivalent force vector 
at an arbitrary point P can be calculated 
by transferring the reaction forces to the 
afore-mentioned point 

where [T]~is the transport matrix from 0 
to P. 

The force vector {Q}p is obtained in the 
directions of the principal coordinate sy
stem, but a rotation of the vector gives us 
the forces in the directions of the princi
pal axes of the cross-section 

where [R]p is a rotation matrix. By applica
tion of the theory of elasticity the normal 
and the shear stresses of the cross-section 
are found, and these can be used calculating 
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a reference stress by using an acceptable 
theory of strength, 

When investigating theoretically the vibra
tions of a hermetic compressor it is very 
important to know the stiffness matrix of 
the suspension springs and the pressure 
tube. The stiffness matrix can be determi
ned by measuring the flexibility in diffe
rent directions, setting in the values in 
the flexibility matrix and then inverting 
the matrix. 
The diagonal elements in the flexibility 
matrix are simple to determine, whereas 
the off-diagonal elements can be extremely 
difficult to obtain. In this case the pre
sent method will give the result. 

We have used the method at DANFOSS for some 
time for investigations of pressure tubes. 
Several tubes have been analysed and on the 
basis of this alternative designs have been 
worked out. In a single instance it was 
shown that a good geometrical form signi
ficantly reduced the maximal stresses and 
consequently reduced the risk for failure. 
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